1
|
Spooner HC, Costa AD, Westhoff M, Hernández-González A, Ibrahimkhail H, Yarov-Yarovoy V, Horne MC, Dickson EJ, Dixon RE. 14-3-3 promotes sarcolemmal expression of cardiac Ca V1.2 and nucleates isoproterenol-triggered channel superclustering. Proc Natl Acad Sci U S A 2025; 122:e2413308122. [PMID: 39869803 PMCID: PMC11804677 DOI: 10.1073/pnas.2413308122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/16/2024] [Indexed: 01/29/2025] Open
Abstract
The L-type Ca2+ channel (CaV1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca2+ flux that drives Ca2+-induced-Ca2+-release, CaV1.2 channels must be expressed on the sarcolemma; thus the regulatory mechanisms that tune CaV1.2 expression to meet contractile demand are an emerging area of research. A ubiquitously expressed protein called 14-3-3 has been proposed to affect Ca2+ channel trafficking in nonmyocytes; however, whether 14-3-3 has similar effects on CaV1.2 in cardiomyocytes is unknown. 14-3-3 preferentially binds phospho-serine/threonine residues to affect many cellular processes and is known to regulate cardiac ion channels including NaV1.5 and the human ether-à-go-go-related gene (hERG) potassium channel. Altered 14-3-3 expression and function have been implicated in cardiac pathologies including hypertrophy. Accordingly, we tested the hypothesis that 14-3-3 interacts with CaV1.2 in a phosphorylation-dependent manner and regulates cardiac CaV1.2 trafficking and recycling. Confocal imaging, proximity ligation assays, superresolution imaging, and coimmunoprecipitation revealed a population of 14-3-3 colocalized and closely associated with CaV1.2. The degree of 14-3-3/CaV1.2 colocalization increased upon stimulation of β-adrenergic receptors with isoproterenol. Notably, only the 14-3-3-associated CaV1.2 population displayed increased cluster size with isoproterenol, revealing a role for 14-3-3 as a nucleation factor that directs CaV1.2 superclustering. Isoproterenol-stimulated augmentation of sarcolemmal CaV1.2 expression, Ca2+ currents, and Ca2+ transients in ventricular myocytes were strengthened by 14-3-3 overexpression and attenuated by 14-3-3 inhibition. These data support a model where 14-3-3 interacts with CaV1.2 in a phosphorylation-dependent manner to promote enhanced trafficking/recycling, clustering, and activity during β-adrenergic stimulation.
Collapse
Affiliation(s)
- Heather C. Spooner
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | - Alexandre D. Costa
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | - Maartje Westhoff
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | | | - Husna Ibrahimkhail
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
- Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA95616
| | - Mary C. Horne
- Department of Pharmacology, University of California Davis, Davis, CA95616
| | - Eamonn J. Dickson
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| |
Collapse
|
2
|
Han Z, Wang R, Chi P, Zhang Z, Min L, Jiao H, Ou G, Zhou D, Qin D, Xu C, Gao Z, Qi Q, Li J, Lu Y, Wang X, Chen J, Yu X, Hu H, Li L, Deng D. The subcortical maternal complex modulates the cell cycle during early mammalian embryogenesis via 14-3-3. Nat Commun 2024; 15:8887. [PMID: 39406751 PMCID: PMC11480350 DOI: 10.1038/s41467-024-53277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The subcortical maternal complex (SCMC) is essential for safeguarding female fertility in mammals. Assembled in oocytes, the SCMC maintains the cleavage of early embryos, but the underlying mechanism remains unclear. Here, we report that 14-3-3, a multifunctional protein, is a component of the SCMC. By resolving the structure of the 14-3-3-containing SCMC, we discover that phosphorylation of TLE6 contributes to the recruitment of 14-3-3. Mechanistically, during maternal-to-embryo transition, the SCMC stabilizes 14-3-3 protein and contributes to the proper control of CDC25B, thus ensuring the activation of the maturation-promoting factor and mitotic entry in mouse zygotes. Notably, the SCMC establishes a conserved molecular link with 14-3-3 and CDC25B in human oocytes/embryos. This study discloses the molecular mechanism through which the SCMC regulates the cell cycle in early embryos and elucidates the function of the SCMC in mammalian early embryogenesis.
Collapse
Affiliation(s)
- Zhuo Han
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China
| | - Pengliang Chi
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zihan Zhang
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ling Min
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Haizhan Jiao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Guojin Ou
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- Clinical laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dan Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianqian Qi
- Clinical laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jialu Li
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuechao Lu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiang Wang
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jing Chen
- Laboratory of Pediatric Surgery, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xingjiang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China.
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China.
| | - Dong Deng
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
- NHC key Laboratory of Chronobiology, Sichuan University, Chengdu, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Spooner HC, Costa AD, González AH, Ibrahimkhail H, Yarov-Yarovoy V, Horne M, Dickson EJ, Dixon RE. 14-3-3 promotes sarcolemmal expression of cardiac Ca V 1.2 and nucleates isoproterenol-triggered channel super-clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607987. [PMID: 39229175 PMCID: PMC11370440 DOI: 10.1101/2024.08.16.607987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The L-type Ca 2+ channel (Ca V 1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca 2+ flux that drives Ca 2+ -induced-Ca 2+ -release, Ca V 1.2 channels must be expressed on the sarcolemma; thus the regulatory mechanisms that tune Ca V 1.2 expression to meet contractile demand are an emerging area of research. A ubiquitously expressed protein called 14-3-3 has been proposed to affect Ca 2+ channel trafficking in non-myocytes, however whether 14-3-3 has similar effects on Ca V 1.2 in cardiomyocytes is unknown. 14-3-3 preferentially binds phospho-serine/threonine residues to affect many cellular processes and is known to regulate cardiac ion channels including Na V 1.5 and hERG. Altered 14-3-3 expression and function have been implicated in cardiac pathologies including hypertrophy. Accordingly, we tested the hypothesis that 14-3-3 interacts with Ca V 1.2 in a phosphorylation-dependent manner and regulates cardiac Ca V 1.2 trafficking and recycling. Confocal imaging, proximity ligation assays, super-resolution imaging, and co-immunoprecipitation revealed a population of 14-3-3 colocalized and closely associated with Ca V 1.2. The degree of 14-3-3/Ca V 1.2 colocalization increased upon stimulation of β -adrenergic receptors with isoproterenol. Notably, only the 14-3-3-associated Ca V 1.2 population displayed increased cluster size with isoproterenol, revealing a role for 14-3-3 as a nucleation factor that directs Ca V 1.2 super-clustering. 14-3-3 overexpression increased basal Ca V 1.2 cluster size and Ca 2+ currents in ventricular myocytes, with maintained channel responsivity to isoproterenol. In contrast, isoproterenol-stimulated augmentation of sarcolemmal Ca V 1.2 expression and currents in ventricular myocytes were abrogated by 14-3-3 inhibition. These data support a model where 14-3-3 interacts with Ca V 1.2 in a phosphorylation-dependent manner to promote enhanced trafficking/recycling, clustering, and activity during β -adrenergic stimulation. Significance Statement The L-type Ca 2+ channel, Ca V 1.2, plays an essential role in excitation-contraction coupling in the heart and in part regulates the overall strength of contraction during basal and fight- or-flight β -adrenergic signaling conditions. Proteins that modulate the trafficking and/or activity of Ca V 1.2 are interesting both from a physiological and pathological perspective, since alterations in Ca V 1.2 can impact action potential duration and cause arrythmias. A small protein called 14-3-3 regulates other ion channels in the heart and other Ca 2+ channels, but how it may interact with Ca V 1.2 in the heart has never been studied. Examining factors that affect Ca V 1.2 at rest and during β -adrenergic stimulation is crucial for our ability to understand and treat disease and aging conditions where these pathways are altered.
Collapse
|
4
|
Sha X, Zou X, Liu S, Guan C, Shi W, Gao J, Zhong X, Jiang X. Forkhead box O1 in metabolic dysfunction-associated fatty liver disease: molecular mechanisms and drug research. Front Nutr 2024; 11:1426780. [PMID: 39021599 PMCID: PMC11253077 DOI: 10.3389/fnut.2024.1426780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic liver disease that progresses from hepatic steatosis to non-alcoholic steatohepatitis, cirrhosis, and liver cancer, posing a huge burden on human health. Existing research has confirmed that forkhead box O1 (FOXO1), as a member of the FOXO transcription factor family, is upregulated in MAFLD. Its activity is closely related to nuclear-cytoplasmic shuttling and various post-translational modifications including phosphorylation, acetylation, and methylation. FOXO1 mediates the progression of MAFLD by regulating glucose metabolism, lipid metabolism, insulin resistance, oxidative stress, hepatic fibrosis, hepatocyte autophagy, apoptosis, and immune inflammation. This article elaborates on the regulatory role of FOXO1 in MAFLD, providing a summary and new insights for the current status of drug research and targeted therapies for MAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangyu Zhong
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingming Jiang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Jiang Y, Chen M, Xu N, Li Z, Li X, Yu H, Sun J, Wang A, Huang Y, Wang L. Adaptor protein 14-3-3zeta promotes corneal wound healing via regulating cell homeostasis, a potential novel therapy for corneal injury. Exp Eye Res 2024; 244:109948. [PMID: 38815790 DOI: 10.1016/j.exer.2024.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Severe corneal injury can lead to blindness even after prompt treatment. 14-3-3zeta, a member of an adaptor protein family, contributes to tissue repair by enhancing cellular viability and inhibiting fibrosis and inflammation in renal disease or arthritis. However, its role in corneal regeneration is less studied. In this study, filter disc of 2-mm diameter soaked in sodium hydroxide with a concentration of 0.5 N was placed at the center of the cornea for 30 s to establish a mouse model of corneal alkali injury. We found that 14-3-3zeta, which is mainly expressed in the epithelial layer, was upregulated following injury. Overexpression of 14-3-3zeta in ocular tissues via adeno-associated virus-mediated subconjunctival delivery promoted corneal wound healing, showing improved corneal structure and transparency. In vitro studies on human corneal epithelial cells showed that 14-3-3zeta was critical for cell proliferation and migration. mRNA-sequencing in conjunction with KEGG analysis and validation experiments revealed that 14-3-3zeta regulated the mRNA levels of ITGB1, PIK3R1, FGF5, PRKAA1 and the phosphorylation level of Akt, suggesting the involvement of the PI3K-Akt pathway in 14-3-3zeta-mediated tissue repair. 14-3-3zeta is a potential novel therapeutic candidate for treating severe corneal injury.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- 14-3-3 Proteins/metabolism
- 14-3-3 Proteins/genetics
- 14-3-3 Proteins/biosynthesis
- Blotting, Western
- Burns, Chemical/metabolism
- Burns, Chemical/pathology
- Burns, Chemical/drug therapy
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Corneal Injuries/metabolism
- Corneal Injuries/pathology
- Corneal Injuries/genetics
- Disease Models, Animal
- Epithelium, Corneal/metabolism
- Epithelium, Corneal/drug effects
- Epithelium, Corneal/injuries
- Eye Burns/chemically induced
- Gene Expression Regulation
- Homeostasis
- Mice, Inbred C57BL
- Sodium Hydroxide
- Wound Healing/drug effects
- Wound Healing/physiology
Collapse
Affiliation(s)
- Yilin Jiang
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Mingxiong Chen
- School of Medicine, Nankai University, Tianjin, 300071, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Ning Xu
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Zongyuan Li
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Xiaoqi Li
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Hanrui Yu
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Jiaying Sun
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - An Wang
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China
| | - Liqiang Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; School of Medicine, Nankai University, Tianjin, 300071, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China.
| |
Collapse
|
6
|
Tao W, Li X, Fu X, Shao Y, Guo M, Li C. Akirin2 enhances antibacterial ability via interacting with 14-3-3ζ in V. splendidus-challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109592. [PMID: 38685443 DOI: 10.1016/j.fsi.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Akirin2 is pivotal for regulating host immunological responses in vertebrates, including antibacterial immunity and inflammation. However, the functional significance of Akirin2 in invertebrates remains largely unexplored. In this study, we cloned the complete cDNA sequence of Akirin2 from A. japonicus (AjAkirin2) and elucidated its immunological mechanism upon pathogen infection. The whole AjAkirin2 cDNA sequence spanned 1014 bp, which comprised a 630 bp open reading frame encoding 209 amino acids, a 230 bp 5'-untranslated region (UTR), and a 154 bp 3'-UTR. Spatial expression analysis displayed constitutive expression of AjAkirin2 in all examined tissues. Both mRNA and protein expression abundance of the AjAkirin2 showed considerably high in coelomocytes of sea cucumbers challenged with Vibrio splendidus or stimulated with lipopolysaccharide. In addition, we found that sea cucumbers with 107 CFU/mL V. splendidus infection had a lower survival rate upon AjAkirin2 knockdown. Mechanistically, the result of GST-pull down and co-IP assays indicated that AjAkirin2 directly interacted with Aj14-3-3ζ. Moreover, we also detected that AjAkirin2 positively regulated Aj14-3-3ζ expression in sea cucumber coelomocytes. Furthermore, the knockdown of AjAkirin2 or Aj14-3-3ζ resulted in increasing intracellular bacteria load and suppressed the expression of key genes of the NF-κB signaling pathway (p65 and p105) and inflammatory cytokines including IL-17, VEGF, and MMP-1. In summary, these results confirmed the critical role of AjAkirin2 in mediating innate immune responses against V. splendidus infection via interaction with Aj14-3-3ζ and thereby exerting antibacterial function.
Collapse
Affiliation(s)
- Wenjun Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xianmu Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
7
|
Wang Q, Peng W, Rong J, Zhang M, Jia W, Lei X, Wang Y. Molecular analysis of the 14-3-3 genes in Panax ginseng and their responses to heat stress. PeerJ 2023; 11:e15331. [PMID: 37187526 PMCID: PMC10178371 DOI: 10.7717/peerj.15331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Background Panax Ginseng is a perennial and semi-shady herb with tremendous medicinal value. Due to its unique botanical characteristics, ginseng is vulnerable to various abiotic factors during its growth and development, especially in high temperatures. Proteins encoded by 14-3-3 genes form a highly conserved protein family that widely exists in eukaryotes. The 14-3-3 family regulates the vital movement of cells and plays an essential role in the response of plants to abiotic stresses, including high temperatures. Currently, there is no relevant research on the 14-3-3 genes of ginseng. Methods The identification of the ginseng 14-3-3 gene family was mainly based on ginseng genomic data and Hidden Markov Models (HMM). We used bioinformatics-related databases and tools to analyze the gene structure, physicochemical properties, cis-acting elements, gene ontology (GO), phylogenetic tree, interacting proteins, and transcription factor regulatory networks. We analyzed the transcriptome data of different ginseng tissues to clarify the expression pattern of the 14-3-3 gene family in ginseng. The expression level and modes of 14-3-3 genes under heat stress were analyzed by quantitative real-time PCR (qRT-PCR) technology to determine the genes in the 14-3-3 gene family responding to high-temperature stress. Results In this study, 42 14-3-3 genes were identified from the ginseng genome and renamed PgGF14-1 to PgGF14-42. Gene structure and evolutionary relationship research divided PgGF14s into epsilon (ε) and non-epsilon (non-ε) groups, mainly located in four evolutionary branches. The gene structure and motif remained highly consistent within a subgroup. The physicochemical properties and structure of the predicted PgGF14 proteins conformed to the essential characteristics of 14-3-3 proteins. RNA-seq results indicated that the detected PgGF14s existed in different organs and tissues but differed in abundance; their expression was higher in roots, stems, leaves, and fruits but lower in seeds. The analysis of GO, cis-acting elements, interacting proteins, and regulatory networks of transcription factors indicated that PgGF14s might participate in physiological processes, such as response to stress, signal transduction, material synthesis-metabolism, and cell development. The qRT-PCR results indicated PgGF14s had multiple expression patterns under high-temperature stress with different change trends in several treatment times, and 38 of them had an apparent response to high-temperature stress. Furthermore, PgGF14-5 was significantly upregulated, and PgGF14-4 was significantly downregulated in all treatment times. This research lays a foundation for further study on the function of 14-3-3 genes and provides theoretical guidance for investigating abiotic stresses in ginseng.
Collapse
Affiliation(s)
- Qi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyue Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Junbo Rong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Mengyang Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenhao Jia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiujuan Lei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Yingping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
8
|
Bastian PE, Daca A, Płoska A, Kuban-Jankowska A, Kalinowski L, Gorska-Ponikowska M. 2-Methoxyestradiol Damages DNA in Glioblastoma Cells by Regulating nNOS and Heat Shock Proteins. Antioxidants (Basel) 2022; 11:2013. [PMID: 36290736 PMCID: PMC9598669 DOI: 10.3390/antiox11102013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 08/18/2023] Open
Abstract
Gliomas are the most prevalent primary tumors of the central nervous system (CNS), accounting for over fifty percent of all primary intracranial neoplasms. Glioblastoma (GBM) is the most prevalent form of malignant glioma and is often incurable. The main distinguishing trait of GBM is the presence of hypoxic regions accompanied by enhanced angiogenesis. 2-Methoxyestradiol (2-ME) is a well-established antiangiogenic and antiproliferative drug. In current clinical studies, 2-ME, known as Panzem, was examined for breast, ovarian, prostate, and multiple myeloma. The SW1088 grade III glioma cell line was treated with pharmacological and physiological doses of 2-ME. The induction of apoptosis and necrosis, oxidative stress, cell cycle arrest, and mitochondrial membrane potential were established by flow cytometry. Confocal microscopy was used to detect DNA damage. The Western blot technique determined the level of nitric oxide synthase and heat shock proteins. Here, for the first time, 2-ME is shown to induce nitro-oxidative stress with the concomitant modulation of heat shock proteins (HSPs) in the SW1088 grade III glioma cell line. Crucial therapeutic strategies for GMB should address both cell proliferation and angiogenesis, and due to the above, 2-ME seems to be a perfect candidate for GBM therapy.
Collapse
Affiliation(s)
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland
| | | | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, D-70569 Stuttgart, Germany
- Euro-Mediterranean Institute of Science and Technology, 90139 Palermo, Italy
| |
Collapse
|
9
|
Dwyer ME, Hangarter RP. Light-induced displacement of PLASTID MOVEMENT IMPAIRED1 precedes light-dependent chloroplast movements. PLANT PHYSIOLOGY 2022; 189:1866-1880. [PMID: 35477788 PMCID: PMC9237684 DOI: 10.1093/plphys/kiac193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Light-dependent chloroplast movements are an actin-dependent cellular response to changes in the light environment that help plants maximize photosynthetic potential and reduce photodamage. Over a dozen proteins are known to be required for normal chloroplast movements, but the molecular mechanisms regulating the transformation of light perception into chloroplast motility are not fully understood. Here, we show that in Arabidopsis (Arabidopsis thaliana) the actin-bundling plasma membrane-associated proteins THRUMIN1, PLASTID MOVEMENT IMPAIRED1 (PMI1), and KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT1 (KAC1) interact through the 14-3-3 proteins KAPPA and OMEGA. We also show that the interaction of PMI1 with 14-3-3 KAPPA and OMEGA is regulated by blue light activation of the Phototropin2 photoreceptor. Live-cell confocal microscopy revealed light-induced dynamic changes in the cellular localizations of PMI1 and KAC1. In particular, PMI1 was relocated away from irradiated areas of the plasma membrane in less than a minute after blue light exposure, consistent with PMI1 playing a critical role in initiating light-dependent chloroplast movements. We present a modified conceptual model for high light-dependent chloroplast movements in which PMI1 acts as the mobile signal that initiates a coordinated sequence of changes in protein-protein and protein-plasma membrane interactions that initiate the chloroplast movement response and determine where in the cell chloroplasts are able to anchor to the plasma membrane.
Collapse
Affiliation(s)
- Matthew E Dwyer
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | | |
Collapse
|
10
|
Wahaab A, Mustafa BE, Hameed M, Stevenson NJ, Anwar MN, Liu K, Wei J, Qiu Y, Ma Z. Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-flavivirus Drug Discovery Employing Animal Cells and Models: A Review. Viruses 2021; 14:44. [PMID: 35062249 PMCID: PMC8781031 DOI: 10.3390/v14010044] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Flaviviruses are known to cause a variety of diseases in humans in different parts of the world. There are very limited numbers of antivirals to combat flavivirus infection, and therefore new drug targets must be explored. The flavivirus NS2B-NS3 proteases are responsible for the cleavage of the flavivirus polyprotein, which is necessary for productive viral infection and for causing clinical infections; therefore, they are a promising drug target for devising novel drugs against different flaviviruses. This review highlights the structural details of the NS2B-NS3 proteases of different flaviviruses, and also describes potential antiviral drugs that can interfere with the viral protease activity, as determined by various studies. Moreover, optimized in vitro reaction conditions for studying the NS2B-NS3 proteases of different flaviviruses may vary and have been incorporated in this review. The increasing availability of the in silico and crystallographic/structural details of flavivirus NS2B-NS3 proteases in free and drug-bound states can pave the path for the development of promising antiflavivirus drugs to be used in clinics. However, there is a paucity of information available on using animal cells and models for studying flavivirus NS2B-NS3 proteases, as well as on the testing of the antiviral drug efficacy against NS2B-NS3 proteases. Therefore, on the basis of recent studies, an effort has also been made to propose potential cellular and animal models for the study of flavivirus NS2B-NS3 proteases for the purposes of exploring flavivirus pathogenesis and for testing the efficacy of possible drugs targets, in vitro and in vivo.
Collapse
Affiliation(s)
- Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Bahar E Mustafa
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute, State University, Fralin Life Sciences Building, 360 W Campus Blacksburg, Blacksburg, VA 24061, USA
| | - Nigel J. Stevenson
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Adliya 15503, Bahrain;
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| |
Collapse
|
11
|
Chen Y, Xu W, Yu S, Ni K, She G, Ye X, Xing Q, Zhao J, Huang C. Assembly status transition offers an avenue for activity modulation of a supramolecular enzyme. eLife 2021; 10:72535. [PMID: 34898426 PMCID: PMC8668187 DOI: 10.7554/elife.72535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Nature has evolved many supramolecular proteins assembled in certain, sometimes even seemingly oversophisticated, morphological manners. The rationale behind such evolutionary efforts is often poorly understood. Here, we provide atomic-resolution insights into how the dynamic building of a structurally complex enzyme with higher order symmetry offers amenability to intricate regulation. We have established the functional coupling between enzymatic activity and protein morphological states of glutamine synthetase (GS), an old multi-subunit enzyme essential for cellular nitrogen metabolism. Cryo-EM structure determination of GS in both the catalytically active and inactive assembly states allows us to reveal an unanticipated self-assembly-induced disorder-order transition paradigm, in which the remote interactions between two subcomplex entities significantly rigidify the otherwise structurally fluctuating active sites, thereby regulating activity. We further show in vivo evidences that how the enzyme morphology transitions could be modulated by cellular factors on demand. Collectively, our data present an example of how assembly status transition offers an avenue for activity modulation, and sharpens our mechanistic understanding of the complex functional and regulatory properties of supramolecular enzymes.
Collapse
Affiliation(s)
- Yao Chen
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiya Xu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuwei Yu
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Kang Ni
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaodong Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Qiong Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chengdong Huang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
Dwyer ME, Hangarter RP. Light-dependent phosphorylation of THRUMIN1 regulates its association with actin filaments and 14-3-3 proteins. PLANT PHYSIOLOGY 2021; 187:1445-1461. [PMID: 34618069 PMCID: PMC8566215 DOI: 10.1093/plphys/kiab374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Light-dependent chloroplast movements in leaf cells contribute to the optimization of photosynthesis. Low-light conditions induce chloroplast accumulation along periclinal cell surfaces, providing greater access to available light, whereas high light induces movement of chloroplasts to anticlinal cell surfaces, providing photodamage protection and allowing more light to reach underlying cell layers. The THRUMIN1 protein is required for normal chloroplast movements in Arabidopsis (Arabidopsis thaliana) and has been shown to localize at the plasma membrane and to undergo rapid light-dependent interactions with actin filaments through the N-terminal intrinsically disordered region (IDR). A predicted WASP-Homology 2 domain was found in the IDR but mutations in this domain did not disrupt localization of THRUMIN1:YFP to actin filaments. A series of other protein truncations and site-directed mutations of known and putative phosphorylation sites indicated that a phosphomimetic mutation (serine to aspartic acid) at position 170 disrupted localization of THRUMIN1 to actin filaments. However, the phosphomimetic mutant rescued the thrumin1-2 mutant phenotype for chloroplast movement and raises questions about the role of THRUMIN1's interaction with actin. Mutation of serine 146 to aspartic acid also resulted in cytoplasmic localization of THRUMIN1:YFP in Nicotiana benthamiana. Mutations to a group of putative zinc-binding cysteine clusters implicate the C-terminus of THRUMIN1 in chloroplast movement. Phosphorylation-dependent association of THRUMIN1 with 14-3-3 KAPPA and OMEGA were also identified. Together, these studies provide insights into the mechanistic role of THRUMIN1 in light-dependent chloroplast movements.
Collapse
Affiliation(s)
- Matthew E Dwyer
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Roger P Hangarter
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
13
|
Usman S, Waseem NH, Nguyen TKN, Mohsin S, Jamal A, Teh MT, Waseem A. Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis. Cancers (Basel) 2021; 13:4985. [PMID: 34638469 PMCID: PMC8507690 DOI: 10.3390/cancers13194985] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible plethora of molecular events where epithelial cells gain the phenotype of mesenchymal cells to invade the surrounding tissues. EMT is a physiological event during embryogenesis (type I) but also happens during fibrosis (type II) and cancer metastasis (type III). It is a multifaceted phenomenon governed by the activation of genes associated with cell migration, extracellular matrix degradation, DNA repair, and angiogenesis. The cancer cells employ EMT to acquire the ability to migrate, resist therapeutic agents and escape immunity. One of the key biomarkers of EMT is vimentin, a type III intermediate filament that is normally expressed in mesenchymal cells but is upregulated during cancer metastasis. This review highlights the pivotal role of vimentin in the key events during EMT and explains its role as a downstream as well as an upstream regulator in this highly complex process. This review also highlights the areas that require further research in exploring the role of vimentin in EMT. As a cytoskeletal protein, vimentin filaments support mechanical integrity of the migratory machinery, generation of directional force, focal adhesion modulation and extracellular attachment. As a viscoelastic scaffold, it gives stress-bearing ability and flexible support to the cell and its organelles. However, during EMT it modulates genes for EMT inducers such as Snail, Slug, Twist and ZEB1/2, as well as the key epigenetic factors. In addition, it suppresses cellular differentiation and upregulates their pluripotent potential by inducing genes associated with self-renewability, thus increasing the stemness of cancer stem cells, facilitating the tumour spread and making them more resistant to treatments. Several missense and frameshift mutations reported in vimentin in human cancers may also contribute towards the metastatic spread. Therefore, we propose that vimentin should be a therapeutic target using molecular technologies that will curb cancer growth and spread with reduced mortality and morbidity.
Collapse
Affiliation(s)
- Saima Usman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Naushin H. Waseem
- UCL Institute of Ophthalmology, 11-43 Bath Str., London EC1V 9EL, UK;
| | - Thuan Khanh Ngoc Nguyen
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Ahmad Jamal
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| |
Collapse
|
14
|
Wen J, Wang D. Deciphering the PTM codes of the tumor suppressor p53. J Mol Cell Biol 2021; 13:774-785. [PMID: 34289043 PMCID: PMC8782589 DOI: 10.1093/jmcb/mjab047] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/14/2022] Open
Abstract
The genome guardian p53 functions as a transcription factor that senses numerous cellular stresses and orchestrates the corresponding transcriptional events involved in determining various cellular outcomes, including cell cycle arrest, apoptosis, senescence, DNA repair, and metabolic regulation. In response to diverse stresses, p53 undergoes multiple posttranslational modifications (PTMs) that coordinate with intimate interdependencies to precisely modulate its diverse properties in given biological contexts. Notably, PTMs can recruit ‘reader’ proteins that exclusively recognize specific modifications and facilitate the functional readout of p53. Targeting PTM–reader interplay has been developing into a promising cancer therapeutic strategy. In this review, we summarize the advances in deciphering the ‘PTM codes’ of p53, focusing particularly on the mechanisms by which the specific reader proteins functionally decipher the information harbored within these PTMs of p53. We also highlight the potential applications of intervention with p53 PTM–reader interactions in cancer therapy and discuss perspectives on the ‘PTMomic’ study of p53 and other proteins.
Collapse
Affiliation(s)
- Jia Wen
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
15
|
Zhang X, Jiang L, Liu H. Forkhead Box Protein O1: Functional Diversity and Post-Translational Modification, a New Therapeutic Target? DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1851-1860. [PMID: 33976536 PMCID: PMC8106445 DOI: 10.2147/dddt.s305016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022]
Abstract
Forkhead box protein O1 (FoXO1) is a transcription factor involved in the regulation of a wide variety of physiological process including glucose metabolism, lipogenesis, bone mass, apoptosis, and autophagy. FoXO1 dysfunction is involved in the pathophysiology of various diseases including metabolic diseases, atherosclerosis, and tumors. FoXO1 activity is regulated in response to different physiological or pathogenic conditions by changes in protein expression and post-translational modifications. Various modifications cooperate to regulate FoXO1 activity and FoXO1 target gene transcription. In this review, we summarize how different post-translational modifications regulate FoXO1 physiological function, which may provide new insights for drug design and development.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Cardiology, Shandong Rongjun General Hospital, Jinan, 250013, People's Republic of China
| | - Lusheng Jiang
- Department of Emergency, Shandong Rongjun General Hospital, Jinan, 250013, People's Republic of China
| | - Huimin Liu
- Blood Purification Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| |
Collapse
|
16
|
Tavčar P, Potokar M, Kolenc M, Korva M, Avšič-Županc T, Zorec R, Jorgačevski J. Neurotropic Viruses, Astrocytes, and COVID-19. Front Cell Neurosci 2021; 15:662578. [PMID: 33897376 PMCID: PMC8062881 DOI: 10.3389/fncel.2021.662578] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in China, causing a new coronavirus disease, termed COVID-19 by the WHO on February 11, 2020. At the time of this paper (January 31, 2021), more than 100 million cases have been recorded, which have claimed over 2 million lives worldwide. The most important clinical presentation of COVID-19 is severe pneumonia; however, many patients present various neurological symptoms, ranging from loss of olfaction, nausea, dizziness, and headache to encephalopathy and stroke, with a high prevalence of inflammatory central nervous system (CNS) syndromes. SARS-CoV-2 may also target the respiratory center in the brainstem and cause silent hypoxemia. However, the neurotropic mechanism(s) by which SARS-CoV-2 affects the CNS remain(s) unclear. In this paper, we first address the involvement of astrocytes in COVID-19 and then elucidate the present knowledge on SARS-CoV-2 as a neurotropic virus as well as several other neurotropic flaviviruses (with a particular emphasis on the West Nile virus, tick-borne encephalitis virus, and Zika virus) to highlight the neurotropic mechanisms that target astroglial cells in the CNS. These key homeostasis-providing cells in the CNS exhibit many functions that act as a favorable milieu for virus replication and possibly a favorable environment for SARS-CoV-2 as well. The role of astrocytes in COVID-19 pathology, related to aging and neurodegenerative disorders, and environmental factors, is discussed. Understanding these mechanisms is key to better understanding the pathophysiology of COVID-19 and for developing new strategies to mitigate the neurotropic manifestations of COVID-19.
Collapse
Affiliation(s)
- Petra Tavčar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Marko Kolenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
17
|
Cao Y, Gao A, Li X, Min H, He C, Sun X, Ding WQ, Zhou J. Elevated TAB182 enhances the radioresistance of esophageal squamous cell carcinoma through G2-M checkpoint modulation. Cancer Med 2021; 10:3101-3112. [PMID: 33787085 PMCID: PMC8085956 DOI: 10.1002/cam4.3879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
Background Radiotherapy is one of the main strategies for the treatment of esophageal squamous cell carcinoma (ESCC). However, treatment failure often occurs due to the emergence of radioresistance. In this study, we report a key regulator of radiation sensitivity, termed TAB182 that may become an ideal biomarker and therapeutic target to overcome radioresistance. Materials and Methods By applying qRT‐PCR and immunohistochemical staining, the expression of TAB182 was detected in patient tissues. We next assessed the influence of TAB182 downregulation to radiosensitivity using clonogenic survival assay and γ‐H2A.X foci analysis in TE‐1, TE‐10, and radioresistant TE‐1R cell lines after ionizing radiation. To unveil the mechanism underlying, TAB182 interacting proteins were identified by mass spectrometry following co‐immunoprecipitation. Furthermore, flow cytometry and western blot assay were applied to validate the identified proteins. Results Our results demonstrated that the expression of TAB182 is higher in cancer tissues than normal tissues and elevated expression of TAB182 correlates with poor outcomes of postoperative radiotherapy. Downregulation of TAB182 sensitized cancer cells to ionizing radiation, particularly in radioresistant TE‐1R cells that spontaneously overexpress TAB182. Mechanically, TAB182 interacts with FHL2 to induce G2‐M arrest through wiring the CHK2/CDC25C/CDC2 signaling pathway. Finally, overexpression of shRNA‐resistant TAB182 restored the checkpoint and radioresistance. Conclusion TAB182 potentiates the radioresistance of ESCC cells by modulating the G2‐M checkpoint through its interaction with FHL2. Thus, TAB182 may become an ideal biomarker and therapeutic target of ESCC radiotherapy.
Collapse
Affiliation(s)
- Yuandong Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Aidi Gao
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Xiaoqing Li
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Han Min
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Chao He
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
18
|
Ye XG, Liu ZG, Wang J, Dai JM, Qiao PX, Gao PM, Liao WP. YWHAG Mutations Cause Childhood Myoclonic Epilepsy and Febrile Seizures: Molecular Sub-regional Effect and Mechanism. Front Genet 2021; 12:632466. [PMID: 33767733 PMCID: PMC7985244 DOI: 10.3389/fgene.2021.632466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 01/27/2023] Open
Abstract
YWHAG, which encodes an adapter protein 14-3-3γ, is highly expressed in the brain and regulates a diverse range of cell signaling pathways. Previously, eight YWHAG mutations have been identified in patients with epileptic encephalopathy (EE). In this study, using trios-based whole exome sequencing, we identified two novel YWHAG mutations in two unrelated families with childhood myoclonic epilepsy and/or febrile seizures (FS). The identified mutations included a heterozygous truncating mutation (c.124C>T/p.Arg42Ter) and a de novo missense mutation (c.373A>G/p.Lys125Glu). The two probands experienced daily myoclonic seizures that were recorded with ictal generalized polyspike-slow waves, but became seizure-free with simple valproate treatment. The other affected individuals presented FS. The truncating mutation was identified in the family with six individuals of mild phenotype, suggesting that YWHAG mutations of haploinsufficiency are relatively less pathogenic. Analysis on all missense mutations showed that nine mutations were located within 14-3-3γ binding groove and another mutation was located at residues critical for dimerization, indicating a molecular sub-regional effect. Mutation Arg132Cys, which was identified recurrently in five patients with EE, would have the strongest influence on binding affinity. 14-3-3γ dimers supports target proteins activity. Thus, a heterozygous missense mutation would lead to majority dimers being mutants; whereas a heterozygous truncating mutation would lead to only decreasing the number of wild-type dimer, being one of the explanations for phenotypical variation. This study suggests that YWHAG is potentially a candidate pathogenic gene of childhood myoclonic epilepsy and FS. The spectrum of epilepsy caused by YWHAG mutations potentially range from mild myoclonic epilepsy and FS to severe EE.
Collapse
Affiliation(s)
- Xing-Guang Ye
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jie-Min Dai
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Pei-Xiu Qiao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Ping-Ming Gao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
19
|
Gandini MA, Zamponi GW. Voltage‐gated calcium channel nanodomains: molecular composition and function. FEBS J 2021; 289:614-633. [DOI: 10.1111/febs.15759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Maria A. Gandini
- Department of Physiology and Pharmacology Alberta Children’s Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary AB Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology Alberta Children’s Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary AB Canada
| |
Collapse
|
20
|
Molecular dynamics simulations and biochemical characterization of Pf14-3-3 and PfCDPK1 interaction towards its role in growth of human malaria parasite. Biochem J 2020; 477:2153-2177. [PMID: 32484216 DOI: 10.1042/bcj20200145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022]
Abstract
Scaffold proteins play pivotal role as modulators of cellular processes by operating as multipurpose conformation clamps. 14-3-3 proteins are gold-standard scaffold modules that recognize phosphoSer/Thr (pS/pT) containing conserved motifs, and confer conformational changes leading to modulation of functional parameters of their target proteins. Modulation in functional activity of kinases has been attributed to their interaction with 14-3-3 proteins. Herein, we have annotated and characterized PF3D7_0818200 as 14-3-3 isoform I in Plasmodium falciparum 3D7, and its interaction with one of the key kinases of the parasite, Calcium-Dependent Protein Kinase 1 (CDPK1) by performing various analytical biochemistry and biophysical assays. Molecular dynamics simulation studies indicated that CDPK1 polypeptide sequence (61KLGpS64) behaves as canonical Mode I-type (RXXpS/pT) consensus 14-3-3 binding motif, mediating the interaction. The 14-3-3I/CDPK1 interaction was validated in vitro with ELISA and SPR, which confirmed that the interaction is phosphorylation dependent, with binding affinity constant of 670 ± 3.6 nM. The interaction of 14-3-3I with CDPK1 was validated with well characterized optimal 14-3-3 recognition motifs: Mode I-type ARSHpSYPA and Mode II-type RLYHpSLPA, by simulation studies and ITC. This interaction was found to marginally enhance CDPK1 functional activity. Furthermore, interaction antagonizing peptidomimetics showed growth inhibitory impact on the parasite indicating crucial physiological role of 14-3-3/CDPK1 interaction. Overall, this study characterizes 14-3-3I as a scaffold protein in the malaria parasite and unveils CDPK1 as its previously unidentified target. This sets a precedent for the rational design of 14-3-3 based PPI inhibitors by utilizing 14-3-3 recognition motif peptides, as a potential antimalarial strategy.
Collapse
|
21
|
Kiehstaller S, Ottmann C, Hennig S. MMP activation-associated aminopeptidase N reveals a bivalent 14-3-3 binding motif. J Biol Chem 2020; 295:18266-18275. [PMID: 33109610 PMCID: PMC7939381 DOI: 10.1074/jbc.ra120.014708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Aminopeptidase N (APN, CD13) is a transmembrane ectopeptidase involved in many crucial cellular functions. Besides its role as a peptidase, APN also mediates signal transduction and is involved in the activation of matrix metalloproteinases (MMPs). MMPs function in tissue remodeling within the extracellular space and are therefore involved in many human diseases, such as fibrosis, rheumatoid arthritis, tumor angiogenesis, and metastasis, as well as viral infections. However, the exact mechanism that leads to APN-driven MMP activation is unclear. It was previously shown that extracellular 14-3-3 adapter proteins bind to APN and thereby induce the transcription of MMPs. As a first step, we sought to identify potential 14-3-3-binding sites in the APN sequence. We constructed a set of phosphorylated peptides derived from APN to probe for interactions. We identified and characterized a canonical 14-3-3-binding site (site 1) within the flexible, structurally unresolved N-terminal APN region using direct binding fluorescence polarization assays and thermodynamic analysis. In addition, we identified a secondary, noncanonical binding site (site 2), which enhances the binding affinity in combination with site 1 by many orders of magnitude. Finally, we solved crystal structures of 14-3-3σ bound to mono- and bis-phosphorylated APN-derived peptides, which revealed atomic details of the binding mode of mono- and bivalent 14-3-3 interactions. Therefore, our findings shed some light on the first steps of APN-mediated MMP activation and open the field for further investigation of this important signaling pathway.
Collapse
Affiliation(s)
- Sebastian Kiehstaller
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, Amsterdam, Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
22
|
Huang S, Zheng F, Liu L, Meng S, Cai W, Zhang C, Dai W, Liu D, Hong X, Tang D, Dai Y. Integrated proteome and phosphoproteome analyses of peripheral blood mononuclear cells in primary Sjögren syndrome patients. Aging (Albany NY) 2020; 13:1071-1095. [PMID: 33290261 PMCID: PMC7835054 DOI: 10.18632/aging.202233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Primary Sjögren syndrome (pSS) is a common autoimmune disease. Here, we performed the first proteome and phosphoproteome analyses of peripheral blood mononuclear cells in pSS patients to obtain a comprehensive profile and identify the potential crucial proteins and pathways for the screening and evaluation of pSS patients. Peripheral blood mononuclear cells from 8 pSS-confirmed patients (American-European Consensus Group Criteria, 2002) and 10 normal controls were selected. Label-free quantitative proteomics was utilized to obtain quantitative information. In total, 787 proteins were identified as differentially expressed proteins, and 175 phosphosites on 123 proteins were identified as differentially phosphorylated proteins. We performed functional enrichment analyses with these proteins and phosphoproteins based on public database. Furthermore, protein-protein interaction network analyses were performed by using multiple algorithms. Using module and hub protein analyses, we identified 16 modules for the proteins, 2 clusters for the phosphoproteins and selected the top 10 hub proteins. Finally, we identified 22 motifs using motif analysis of the phosphosites and found 17 newly identified motifs, while 6 motifs were experimentally verified for known protein kinases. The findings distinguished pSS patients from normal controls at the peripheral blood mononuclear cells level and revealed potential candidates for use in pSS diagnosis.
Collapse
Affiliation(s)
- Shaoying Huang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People’s Hospital, The First Affiliated Hospital Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, China
| | - Fengping Zheng
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People’s Hospital, The First Affiliated Hospital Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, China
| | - Lixiong Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China
| | - Shuhui Meng
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People’s Hospital, The First Affiliated Hospital Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, China
| | - Wanxia Cai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People’s Hospital, The First Affiliated Hospital Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, China
| | - Cantong Zhang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People’s Hospital, The First Affiliated Hospital Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX 78712, USA
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China
| | - Donge Tang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People’s Hospital, The First Affiliated Hospital Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, China
| | - Yong Dai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People’s Hospital, The First Affiliated Hospital Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, China.,Guangxi Key Laboratory of Metabolic Disease Research, Nephrology Department of Guilin, Guilin 541002, China
| |
Collapse
|
23
|
Principal Postulates of Centrosomal Biology. Version 2020. Cells 2020; 9:cells9102156. [PMID: 32987651 PMCID: PMC7598677 DOI: 10.3390/cells9102156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The centrosome, which consists of two centrioles surrounded by pericentriolar material, is a unique structure that has retained its main features in organisms of various taxonomic groups from unicellular algae to mammals over one billion years of evolution. In addition to the most noticeable function of organizing the microtubule system in mitosis and interphase, the centrosome performs many other cell functions. In particular, centrioles are the basis for the formation of sensitive primary cilia and motile cilia and flagella. Another principal function of centrosomes is the concentration in one place of regulatory proteins responsible for the cell's progression along the cell cycle. Despite the existing exceptions, the functioning of the centrosome is subject to general principles, which are discussed in this review.
Collapse
|
24
|
Immunization with a Recombinant Protein of Trichinella britovi 14-3-3 Triggers an Immune Response but No Protection in Mice. Vaccines (Basel) 2020; 8:vaccines8030515. [PMID: 32916868 PMCID: PMC7564242 DOI: 10.3390/vaccines8030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022] Open
Abstract
14-3-3 proteins are present in all eukaryotic organisms and are ubiquitously expressed in a broad range of tissues and cellular compartments. They are regulatory adapter proteins that play key roles in a variety of signaling pathways, and have been proposed as suitable targets for the control and detection of certain parasites. Trichinella britovi is a widely-distributed parasitic nematode, transmitted through ingestion of meat products containing invasive larvae. The present study describes the cloning and expression of Tb14-3-3, and investigates the immunological and protective potential of the recombinant protein. Immunization of mice with rTb14-3-3 triggered an IgG response, and significant differences, in the profiles of secreted cytokines observed in vitro, between experimental groups. Nonetheless, neither specific antibodies, nor increased secretion of IFNγ, IL-4, and IL-10 cytokines, conferred greater protection against infection. No reduction in larval burden was observed during recovery at 48 dpi. Additionally, rTb14-3-3 was not recognized by sera from the infected control mice, except for one, suggesting some mismatch between native and recombinant Tb14-3-3 antigenic sites. Therefore, before 14-3-3 can be considered a potential tool for Trichinella detection and vaccination, more research regarding its target proteins, and actual specific function, is needed.
Collapse
|
25
|
Endo H, Inoue I, Masunaka K, Tanaka M, Yano M. Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad. Biosci Biotechnol Biochem 2020; 84:2440-2447. [PMID: 32841581 DOI: 10.1080/09168451.2020.1808443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The anticancer effects of curcumin are based on the induction of apoptosis, but the specific mechanisms have not yet been fully elucidated. To address this issue, we investigated the effects of curcumin on the intrinsic apoptosis pathway using mitochondria from A549 cells. Curcumin decreased the levels of 14-3-3 proteins, key molecules that inhibit the activation of proapoptotic factors known as BH3-only proteins (e.g. Bad). Curcumin-induced suppression of 14-3-3 protein levels was associated with reduced cytosolic Bad and elevation of mitochondrial Bad, leading to a drop in the mitochondrial membrane potential. 14-3-3 proteins generally interact with Bad phosphorylated by AKT, thus preventing its translocation to the mitochondria where it can promote cell death. Curcumin not only decreased the expression of 14-3-3 proteins but also promoted Bad dephosphorylation in an AKT-dependent fashion. Our results provide novel evidence for the induction of apoptosis by curcumin at multiple stages of the mitochondrial cascade.
Collapse
Affiliation(s)
- Hiroshi Endo
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Izumi Inoue
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Kimiko Masunaka
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Masaya Tanaka
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Mihiro Yano
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| |
Collapse
|
26
|
The Intrinsically Disordered W Protein Is Multifunctional during Henipavirus Infection, Disrupting Host Signalling Pathways and Nuclear Import. Cells 2020; 9:cells9081913. [PMID: 32824665 PMCID: PMC7465373 DOI: 10.3390/cells9081913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022] Open
Abstract
Nipah and Hendra viruses are highly pathogenic, zoonotic henipaviruses that encode proteins that inhibit the host’s innate immune response. The W protein is one of four products encoded from the P gene and binds a number of host proteins to regulate signalling pathways. The W protein is intrinsically disordered, a structural attribute that contributes to its diverse host protein interactions. Here, we review the role of W in innate immune suppression through inhibition of both pattern recognition receptor (PRR) pathways and interferon (IFN)-responsive signalling. PRR stimulation leading to activation of IRF-3 and IFN release is blocked by henipavirus W, and unphosphorylated STAT proteins are sequestered within the nucleus of host cells by W, thereby inhibiting the induction of IFN stimulated genes. We examine the critical role of nuclear transport in multiple functions of W and how specific binding of importin-alpha (Impα) isoforms, and the 14-3-3 group of regulatory proteins suggests further modulation of these processes. Overall, the disordered nature and multiple functions of W warrant further investigation to understand henipavirus pathogenesis and may reveal insights aiding the development of novel therapeutics.
Collapse
|
27
|
Ahmad F, Kumar R, Gupta S, Rathaur S. Identification of a HSP14-3-3 in Setaria cervi and its cross-reactivity with W bancrofti-infected human sera. Parasite Immunol 2020; 42:e12777. [PMID: 32681576 DOI: 10.1111/pim.12777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 11/29/2022]
Abstract
AIM Identification of a 29 kDa heat stress protein in filarial parasite Setaria cervi and evaluation of its diagnostic potential against lymphatic filariasis. METHODS AND RESULTS The Heat shock proteins (HSPs) were induced in filarial parasite S cervi by incubated at 42°C for 2 hours. The 10% SDS-PAGE of cytosolic extract showed several over-expressed bands. The MALDI-LC/MS analysis of 29 kDa band showed 100% similarity with Bm14-3-3 like protein 2. Multiple sequence alignment of Bm14-3-3 like protein 2 sequence with W bancrofti, Caenorhabditis elegans; Loa loa and Homo sapiens showed 100%, 86%, 83% and 78%, sequence similarity respectively. The antigenic efficacy of Sc14-3-3 protein was evaluated with different filarial sera using ELISA which showed cross-reactivity in order to Endemic Normal (EN) < Microfilaraemic (MF) < Chronic(CH) with IgG1 and EN < CH < MF in IgG4 ELISA. IgG1- and IgG4-specific immunoblotting with CH and MF sera further explicated its specific antigenic cross-reactivity. CONCLUSION A 29 kDa heat shock protein of S cervi was identified as 14-3-3 protein having 100% homology to human filarial parasite B malayi. It showed strong reactivity with IgG1 and IgG4 subclass antibodies of W bancrofti-infected human sera suggesting that 14-3-3 protein could be used as a vaccine/ diagnostic marker.
Collapse
Affiliation(s)
- Faiyaz Ahmad
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ranjeet Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sarika Gupta
- National institute of Immunology, New Delhi, India
| | - Sushma Rathaur
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
28
|
Wu Q, Fan H, Lang R, Li X, Zhang X, Lv S, He Q. Overexpression of 14-3-3 δ Predicts Poor Prognosis in Extrahepatic Cholangiocarcinoma Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8435420. [PMID: 32685532 PMCID: PMC7321506 DOI: 10.1155/2020/8435420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022]
Abstract
The protein 14-3-3δ interacts with Trp53 to maintain G2 arrest and thus regulates the cell cycle. Though dysfunction of 14-3-3δ caused by hyper-methylation of CpG islands was reported in several carcinomas, the exact role of this protein in the development of extrahepatic cholangiocarcinoma has not been fully elucidated. Here, we aim at investigating the clinical relevance between 14-3-3δ and human extrahepatic cholangiocarcinoma. We collected extrahepatic cholangiocarcinoma specimens of 65 patients in Beijing Chao Yang Hospital and evaluated their 14-3-3δ expression using immunohistochemistry. We categorized the patients into different subgroups according to clinic pathological factors, such as sex, age, tumor size, pathological classification, lymph node metastasis status, tumor stage, and serum markers including CEA, CA-242, or CA19-9, and further evaluated the correlation between 14-3-3δ expression and these potential prognostic factors. As a result, we detected 14-3-3δ expression in 53 out of 65 specimens (81.5%), and the expression was positively correlated with TNM stage, lymph node metastasis, and overall survival. Our results suggest that 14-3-3δ serves as an oncogenic driver in extrahepatic cholangiocarcinoma tumorigenesis rather than a cell cycle regulator; the overexpression of 14-3-3δ might be frequently acquired by tumor cells to escape appropriate cell cycle regulation. Thus, 14-3-3δ could be a potential target for extrahepatic cholangiocarcinoma diagnosis and therapy.
Collapse
Affiliation(s)
- Qiao Wu
- Department of Hepatobiliary Surgery, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Hua Fan
- Department of Hepatobiliary Surgery, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xianliang Li
- Department of Hepatobiliary Surgery, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xingmao Zhang
- Department of Hepatobiliary Surgery, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Shaocheng Lv
- Department of Hepatobiliary Surgery, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
29
|
Nathan KG, Lal SK. The Multifarious Role of 14-3-3 Family of Proteins in Viral Replication. Viruses 2020; 12:E436. [PMID: 32294919 PMCID: PMC7232403 DOI: 10.3390/v12040436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The 14-3-3 proteins are a family of ubiquitous and exclusively eukaryotic proteins with an astoundingly significant number of binding partners. Their binding alters the activity, stability, localization, and phosphorylation state of a target protein. The association of 14-3-3 proteins with the regulation of a wide range of general and specific signaling pathways suggests their crucial role in health and disease. Recent studies have linked 14-3-3 to several RNA and DNA viruses that may contribute to the pathogenesis and progression of infections. Therefore, comprehensive knowledge of host-virus interactions is vital for understanding the viral life cycle and developing effective therapeutic strategies. Moreover, pharmaceutical research is already moving towards targeting host proteins in the control of virus pathogenesis. As such, targeting the right host protein to interrupt host-virus interactions could be an effective therapeutic strategy. In this review, we generated a 14-3-3 protein interactions roadmap in viruses, using the freely available Virusmentha network, an online virus-virus or virus-host interaction tool. Furthermore, we summarize the role of the 14-3-3 family in RNA and DNA viruses. The participation of 14-3-3 in viral infections underlines its significance as a key regulator for the expression of host and viral proteins.
Collapse
Affiliation(s)
- Kavitha Ganesan Nathan
- School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia;
| | - Sunil K. Lal
- School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia;
- Tropical Medicine & Biology Platform, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
30
|
Zhan Y, Liu L, Zhao T, Sun J, Cui D, Li Y, Chang Y. MicroRNAs involved in innate immunity regulation in the sea cucumber: A review. FISH & SHELLFISH IMMUNOLOGY 2019; 95:297-304. [PMID: 31669896 DOI: 10.1016/j.fsi.2019.10.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
The sea cucumber is one of the most economically significant echinoderms. The immunity against exogenous stimulation of sea cucumber is of great academic and economic importance. MicroRNAs (miRNAs) are a class of short endogenous non-coding RNAs (ncRNAs) that are considered as vital regulators of both innate and adaptive immune responses in most eukaryotes. In sea cucumbers, some miRNAs (such as miR-133, miR-137, and miR-2008, among others) that participate in the regulation of innate immunity have been recently identified and characterized. This review focuses on those known miRNAs and their corresponding target genes that participate in the regulation of the complement system, Toll-like receptor (TLR) pathway, reactive oxygen species (ROS) production and apoptosis pathways in sea cucumbers. Moreover, we cover immune-related miRNA investigations in sea cucumbers that provide insights into developing more miRNA-based biomarkers and therapeutic strategies for sea cucumber diseases.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Li Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yingying Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
31
|
Riedl W, Acharya D, Lee JH, Liu G, Serman T, Chiang C, Chan YK, Diamond MS, Gack MU. Zika Virus NS3 Mimics a Cellular 14-3-3-Binding Motif to Antagonize RIG-I- and MDA5-Mediated Innate Immunity. Cell Host Microbe 2019; 26:493-503.e6. [PMID: 31600501 PMCID: PMC6922055 DOI: 10.1016/j.chom.2019.09.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
Abstract
14-3-3 protein family members facilitate the translocation of RIG-I-like receptors (RLRs) to organelles that mediate downstream RLR signaling, leading to interferon production. 14-3-3ϵ promotes the cytosolic-to-mitochondrial translocation of RIG-I, while 14-3-3η facilitates MDA5 translocation to mitochondria. We show that the NS3 protein of Zika virus (ZIKV) antagonizes antiviral gene induction by RIG-I and MDA5 by binding to and sequestering the scaffold proteins 14-3-3ϵ and 14-3-3η. 14-3-3-binding is mediated by a negatively charged RLDP motif in NS3 that is conserved in ZIKV strains of African and Asian lineages and is similar to the one found in dengue and West Nile viruses. ZIKV NS3 is sufficient to inhibit the RLR-14-3-3ϵ/η interaction and to suppress antiviral signaling. Mutational perturbation of 14-3-3ϵ/η binding in a recombinant ZIKV leads to enhanced innate immune responses and impaired growth kinetics. Our study provides molecular understanding of immune evasion functions of ZIKV, which may guide vaccine and anti-flaviviral therapy development.
Collapse
Affiliation(s)
- William Riedl
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Dhiraj Acharya
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Jung-Hyun Lee
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Guanqun Liu
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Taryn Serman
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Ying Kai Chan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
32
|
Capitanchik C, Dixon CR, Swanson SK, Florens L, Kerr ARW, Schirmer EC. Analysis of RNA-Seq datasets reveals enrichment of tissue-specific splice variants for nuclear envelope proteins. Nucleus 2019; 9:410-430. [PMID: 29912636 PMCID: PMC7000147 DOI: 10.1080/19491034.2018.1469351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Laminopathies yield tissue-specific pathologies, yet arise from mutation of ubiquitously-expressed genes. A little investigated hypothesis to explain this is that the mutated proteins or their partners have tissue-specific splice variants. To test this, we analyzed RNA-Seq datasets, finding novel isoforms or isoform tissue-specificity for: Lap2, linked to cardiomyopathy; Nesprin 2, linked to Emery-Dreifuss muscular dystrophy and Lmo7, that regulates the Emery-Dreifuss muscular dystrophy linked emerin gene. Interestingly, the muscle-specific Lmo7 exon is rich in serine phosphorylation motifs, suggesting regulatory function. Muscle-specific splice variants in non-nuclear envelope proteins linked to other muscular dystrophies were also found. Nucleoporins tissue-specific variants were found for Nup54, Nup133, Nup153 and Nup358/RanBP2. RT-PCR confirmed novel Lmo7 and RanBP2 variants and specific knockdown of the Lmo7 variantreduced myogenic index. Nuclear envelope proteins were enriched for tissue-specific splice variants compared to the rest of the genome, suggesting that splice variants contribute to its tissue-specific functions.
Collapse
Affiliation(s)
- Charlotte Capitanchik
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Charles R Dixon
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Selene K Swanson
- b Stowers Institute for Medical Research , Kansas City , MO , USA
| | - Laurence Florens
- b Stowers Institute for Medical Research , Kansas City , MO , USA
| | - Alastair R W Kerr
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Eric C Schirmer
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
33
|
Chiu SC, Chen KC, Hsia JY, Chuang CY, Wan CX, Wei TYW, Huang YRJ, Chen JMM, Liao YTA, Yu CTR. Overexpression of Aurora-A bypasses cytokinesis through phosphorylation of suppressed in lung cancer. Am J Physiol Cell Physiol 2019; 317:C600-C612. [PMID: 31314582 DOI: 10.1152/ajpcell.00032.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitosis is a complicated process by which eukaryotic cells segregate duplicated genomes into two daughter cells. To achieve the goal, numerous regulators have been revealed to control mitosis. The oncogenic Aurora-A is a versatile kinase responsible for the regulation of mitosis including chromosome condensation, spindle assembly, and centrosome maturation through phosphorylating a range of substrates. However, overexpression of Aurora-A bypasses cytokinesis, thereby generating multiple nuclei by unknown the mechanisms. To explore the underlying mechanisms, we found that SLAN, a potential tumor suppressor, served as a substrate of Aurora-A and knockdown of SLAN induced immature cytokinesis. Aurora-A phosphorylates SLAN at T573 under the help of the scaffold protein 14-3-3η. The SLAN phosphorylation-mimicking mutants T573D or T573E, in contrast to the phosphorylation-deficiency mutant T573A, induced higher level of multinucleated cells, and the endogenous SLAN p573 resided at spindle midzone and midbody with the help of the microtubule motor MKLP1. The Aurora-A- or SLAN-induced multiple nuclei was prevented by the knockdown of 14-3-3η or Aurora-A respectively, thereby revealing a 14-3-3η/Aurora-A/SLAN cascade negatively controlling cytokinesis. Intriguingly, SLAN T573D or T573E inactivated and T573A activated the key cytokinesis regulator RhoA. RhoA interacted with SLAN np573, i.e., the nonphosphorylated form of SLAN at T573, which localized to the spindle midzone dictated by RhoA and ECT2. Therefore, we report here that SLAN mediates the Aurora-A-triggered cytokinesis bypass and SLAN plays dual roles in that process depending on its phosphorylation status.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Center for Cell Therapy, China Medical University Hospital, Taichung, Taiwan, Republic of China.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, Republic of China
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Jiun-Yi Hsia
- Department of Surgery, Chung Shan Hospital, Taichung, Taiwan, Republic of China.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Cheng-Yen Chuang
- Division of Thoracic Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China.,Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Chang-Xin Wan
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Tong-You Wade Wei
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan, Republic of China.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yun-Ru Jaoying Huang
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Yu-Ting Amber Liao
- Center for Cell Therapy, China Medical University Hospital, Taichung, Taiwan, Republic of China.,Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China.,Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan, Republic of China
| |
Collapse
|
34
|
McGowan J, Peter C, Chattopadhyay S, Chakravarti R. 14-3-3ζ-A Novel Immunogen Promotes Inflammatory Cytokine Production. Front Immunol 2019; 10:1553. [PMID: 31396202 PMCID: PMC6667649 DOI: 10.3389/fimmu.2019.01553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/21/2019] [Indexed: 01/13/2023] Open
Abstract
The presence of autoantibodies against 14-3-3ζ in human autoimmune diseases indicates its antigenic function. However, neither the cause nor the consequence of this newly-identified antigenic function of 14-3-3ζ protein is known. To address this, we investigated the immunological functions of 14-3-3ζ by studying ex vivo effects on human peripheral blood mononuclear cells (PBMC) proliferation, polarization, and cytokine production. Exogenous 14-3-3ζ promoted PBMC proliferation and T cell polarization toward Th1 and Th17 populations. Significant increases in IFN-γ and IL-17 levels were observed in the presence of 14-3-3ζ. A specific increase in Th1 cells and IFN-γ production provided strong evidence for MHC class II presentation of 14-3-3ζ antigen. Particularly HLA-DRB1*0401 allele strongly promoted 14-3-3ζ-induced IFN-γ producing cells. In contrast, prednisolone treatment suppressed both 14-3-3ζ-induced T cell polarization and cytokine production. Overall, we show that MHC presentation and the adaptor functions of 14-3-3ζ participate in promoting IFN-γ and IL-17 production, two of the cytokines commonly associated with autoimmune diseases. To the best of our knowledge, this is the first report describing the ex vivo antigenic function of 14-3-3ζ with human PBMC, thereby providing the basis of its immunological role in human diseases.
Collapse
Affiliation(s)
- Jenna McGowan
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Cara Peter
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
35
|
Agarwal S, Anand G, Sharma S, Parimita Rath P, Gourinath S, Bhattacharya A. EhP3, a homolog of 14-3-3 family of protein participates in actin reorganization and phagocytosis in Entamoeba histolytica. PLoS Pathog 2019; 15:e1007789. [PMID: 31095644 PMCID: PMC6541287 DOI: 10.1371/journal.ppat.1007789] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/29/2019] [Accepted: 04/24/2019] [Indexed: 11/19/2022] Open
Abstract
The highly conserved proteins of the 14-3-3 family are universal adaptors known to regulate an enormous range of cellular processes in eukaryotes. However, their biological functions remain largely uncharacterized in pathogenic protists comprising of several 14-3-3 protein isoforms. In this study, we report the role of 14-3-3 in coordinating cytoskeletal dynamics during phagocytosis in a professional phagocytic protist Entamoeba histolytica, the etiological agent of human amebiasis. There are three isoforms of 14-3-3 protein in amoeba and here we have investigated Eh14-3-3 Protein 3 (EhP3). Live and fixed cell imaging studies revealed the presence of this protein throughout the parasite phagocytosis process, with high rate of accumulation at the phagocytic cups and closed phagosomes. Conditional suppression of EhP3 expression caused significant defects in phagocytosis accompanied by extensive diminution of F-actin at the site of cup formation. Downregulated cells also exhibited defective recruitment of an F-actin stabilizing protein, EhCoactosin at the phagocytic cups. In addition, mass spectrometry based analysis further revealed a large group of EhP3-associated proteins, many of these proteins are known to regulate cytoskeletal architecture in E histolytica. The dynamics of these proteins may also be controlled by EhP3. Taken together, our findings strongly suggest that EhP3 is a novel and a key regulatory element of actin dynamics and phagocytosis in E. histolytica. Phagocytosis of host cells is central to pathogenesis of protist parasite Entamoeba histolytica, the etiological agent of human amebiasis. It is a complex and multistep process that requires dynamic remodelling of the actin cytoskeleton by a large number of scaffolding, signaling and actin-binding proteins (ABPs). Although several parasite ligands such as EhC2PK, EhCaBP1, EhCaBP3, EhAK1, Arp2/3 complex and EhCoactosin that participate in the phagocytic machinery have been identified, the mechanistic insights to their regulation process remain largely elusive. We have in this study identified and characterized the important role of scaffolding protein EhP3 in modulating cytoskeletal dynamics and regulating phagocytosis in E. histolytica. Expression knockdown, imaging and interaction studies suggest that EhP3 function as an adaptor molecule that controls the localization of an F-actin stabilizing protein EhCoactosin and thus the dynamics of F-actin rearrangement during phagocytosis. EhP3 also interact with other actin dynamics regulating proteins that may in coordination regulate cytoskeletal dynamics and thereby phagocytosis in Entamoeba.
Collapse
Affiliation(s)
- Shalini Agarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| | - Gaurav Anand
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shalini Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Ashoka University, P.O. Rai, Sonepat, Haryana, India
| |
Collapse
|
36
|
Shi M, Xu D. Molecular Dynamics Investigations Suggest a Non-specific Recognition Strategy of 14-3-3σ Protein by Tweezer: Implication for the Inhibition Mechanism. Front Chem 2019; 7:237. [PMID: 31058132 PMCID: PMC6478809 DOI: 10.3389/fchem.2019.00237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/26/2019] [Indexed: 02/04/2023] Open
Abstract
The supramolecular complex formed between protein and designed molecule has become one of the most efficient ways to modify protein functions. As one of the more well-studied model systems, 14-3-3 family proteins play an important role in regulating intracellular signaling pathways via protein-protein interactions. In this work, we selected 14-3-3σ as the target protein. Molecular dynamics simulations and binding free energy calculations were applied to identify the possible binding sites and understand its recognition ability of the supramolecular inhibitor, the tweezer molecule (CLR01). On the basis of our simulation, major interactions between lysine residues and CLR01 come from the van der Waals interactions between the long alkyl chain of lysine and the cavity formed by the norbornadiene and benzene rings of the inhibitor. Apart from K214, which was found to be crystallized with this inhibitor, other lysine sites have also shown their abilities to form inclusion complexes with the inhibitor. Such non-specific recognition features of CLR01 against 14-3-3σ can be used in the modification of protein functions via supramolecular chemistry.
Collapse
Affiliation(s)
- Mingsong Shi
- College of Chemistry, Sichuan University, Chengdu, China
| | - Dingguo Xu
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
|
38
|
Gerber KJ, Squires KE, Hepler JR. 14-3-3γ binds regulator of G protein signaling 14 (RGS14) at distinct sites to inhibit the RGS14:Gα i-AlF 4- signaling complex and RGS14 nuclear localization. J Biol Chem 2018; 293:14616-14631. [PMID: 30093406 DOI: 10.1074/jbc.ra118.002816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/23/2018] [Indexed: 11/06/2022] Open
Abstract
Regulator of G protein signaling 14 (RGS14) is a multifunctional brain scaffolding protein that integrates G protein and Ras/ERK signaling pathways. It is also a nucleocytoplasmic shuttling protein. RGS14 binds active Gαi/o via its RGS domain, Raf and active H-Ras-GTP via its R1 Ras-binding domain (RBD), and inactive Gαi1/3 via its G protein regulatory (GPR) domain. RGS14 suppresses long-term potentiation (LTP) in the CA2 region of the hippocampus, thereby regulating hippocampally based learning and memory. The 14-3-3 family of proteins is necessary for hippocampal LTP and associative learning and memory. Here, we show direct interaction between RGS14 and 14-3-3γ at two distinct sties, one phosphorylation-independent and the other phosphorylation-dependent at Ser-218 that is markedly potentiated by signaling downstream of active H-Ras. Using bioluminescence resonance energy transfer (BRET), we show that the pSer-218-dependent RGS14/14-3-3γ interaction inhibits active Gαi1-AlF4- binding to the RGS domain of RGS14 but has no effect on active H-Ras and inactive Gαi1-GDP binding to RGS14. By contrast, the phosphorylation-independent binding of 14-3-3 has no effect on RGS14/Gαi interactions but, instead, inhibits (directly or indirectly) RGS14 nuclear import and nucleocytoplasmic shuttling. Together, our findings describe a novel mechanism of negative regulation of RGS14 functions, specifically interactions with active Gαi and nuclear import, while leaving the function of other RGS14 domains intact. Ongoing studies will further elucidate the physiological function of this interaction between RGS14 and 14-3-3γ, providing insight into the functions of both RGS14 and 14-3-3 in their roles in modulating synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Kyle J Gerber
- From the Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Katherine E Squires
- From the Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - John R Hepler
- From the Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
39
|
Huang LY, Wang X, Cui XF, Li H, Zhao J, Wu CC, Min L, Zhou Z, Wan L, Wang YP, Zhang C, Gao WQ, Sun Y, Han ZG. IRTKS is correlated with progression and survival time of patients with gastric cancer. Gut 2018. [PMID: 28647685 DOI: 10.1136/gutjnl-2016-313478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES IRTKS functions as a novel regulator of tumour suppressor p53; however, the role of IRTKS in pathogenesis of gastric cancer is unclear. DESIGN We used immunohistochemistry to detect IRTKS levels in 527 human gastric cancer specimens. We generated both IRTKS-deficient and p53-deficient mice to observe survival time of these mice and to isolate mouse embryonic fibroblasts (MEFs) for evaluating in vivo tumorigenicity. Co-immunoprecipitation was used to study the interaction among p53, MDM2 and IRTKS, as well as the ubiquitination of p53. RESULTS IRTKS was significantly overexpressed in human gastric cancer, which was conversely associated with wild-type p53 expression. Among patients with wild-type p53 (n=206), those with high IRTKS expression (n=141) had a shorter survival time than those with low IRTKS (n=65) (p=0.0153). Heterozygous p53+/- mice with IRTKS deficiency exhibited significantly delayed tumorigenesis and an extended tumour-free survival time. p53+/- MEFs without IRTKS exhibited attenuated in vivo tumorigenicity. IRTKS depletion upregulated p53 and its target genes, such as BAX and p21. Intriguingly, IRTKS overexpression promoted p53 ubiquitination and degradation in MEFs and gastric cancer cells. Under DNA damage conditions, IRTKS was phosphorylated at Ser331 by the activated Chk2 kinase and then dissociated from p53, along with the p53-specific E3 ubiquitin ligase MDM2, resulting in attenuated p53 ubiquitination and degradation. CONCLUSION IRTKS overexpression is negatively correlated with progression and overall survival time of patients with gastric cancer with wild-type p53 through promotion of p53 degradation via the ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- Li-Yu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital, General Surgery Research Institute, Fudan University, Shanghai, China
| | - Xiao-Fang Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital, General Surgery Research Institute, Fudan University, Shanghai, China
| | - Junjie Zhao
- Department of General Surgery, Zhongshan Hospital, General Surgery Research Institute, Fudan University, Shanghai, China
| | - Chong-Chao Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingqiang Min
- Department of General Surgery, Zhongshan Hospital, General Surgery Research Institute, Fudan University, Shanghai, China
| | - Zhicheng Zhou
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Yu-Ping Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, USA.,Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College of Cornell University, New York, USA
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, General Surgery Research Institute, Fudan University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Salman OF, El-Rayess HM, Abi Khalil C, Nemer G, Refaat MM. Inherited Cardiomyopathies and the Role of Mutations in Non-coding Regions of the Genome. Front Cardiovasc Med 2018; 5:77. [PMID: 29998127 PMCID: PMC6028572 DOI: 10.3389/fcvm.2018.00077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/04/2018] [Indexed: 01/16/2023] Open
Abstract
Cardiomyopathies (CMs) are a group of cardiac pathologies caused by an intrinsic defect within the myocardium. The relative contribution of genetic mutations in the pathogenesis of certain CMs, such as hypertrophic cardiomyopathy (HCM), arrythmogenic right/left ventricular cardiomyopathy (ARVC) and left ventricular non-compacted cardiomyopathy (LVNC) has been established in comparison to dilated cardiomyopathy (DCM) and restrictive cardiomyopathy (RCM). The aim of this article is to review mutations in the non-coding parts of the genome, namely, microRNA, promoter elements, enhancer/silencer elements, 3′/5′UTRs and introns, that are involved in the pathogenesis CMs. Additionally, we will explore the role of some long non-coding RNAs in the pathogenesis of CMs.
Collapse
Affiliation(s)
- Oday F Salman
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hebah M El-Rayess
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Charbel Abi Khalil
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marwan M Refaat
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
41
|
Wakabayashi K, Umahara T, Hirokawa K, Hanyu H, Uchihara T. 14-3-3 protein sigma isoform co-localizes with phosphorylated α-synuclein in Lewy bodies and Lewy neurites in patients with Lewy body disease. Neurosci Lett 2018; 674:171-175. [DOI: 10.1016/j.neulet.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 01/12/2023]
|
42
|
14-3-3 proteins in platelet biology and glycoprotein Ib-IX signaling. Blood 2018; 131:2436-2448. [PMID: 29622550 DOI: 10.1182/blood-2017-09-742650] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/25/2018] [Indexed: 12/16/2022] Open
Abstract
Members of the 14-3-3 family of proteins function as adapters/modulators that recognize phosphoserine/phosphothreonine-based binding motifs in many intracellular proteins and play fundamental roles in signal transduction pathways of eukaryotic cells. In platelets, 14-3-3 plays a wide range of regulatory roles in phosphorylation-dependent signaling pathways, including G-protein signaling, cAMP signaling, agonist-induced phosphatidylserine exposure, and regulation of mitochondrial function. In particular, 14-3-3 interacts with several phosphoserine-dependent binding sites in the major platelet adhesion receptor, the glycoprotein Ib-IX complex (GPIb-IX), regulating its interaction with von Willebrand factor (VWF) and mediating VWF/GPIb-IX-dependent mechanosignal transduction, leading to platelet activation. The interaction of 14-3-3 with GPIb-IX also plays a critical role in enabling the platelet response to low concentrations of thrombin through cooperative signaling mediated by protease-activated receptors and GPIb-IX. The various functions of 14-3-3 in platelets suggest that it is a possible target for the treatment of thrombosis and inflammation.
Collapse
|
43
|
Liu L, Liu Z, Wang H, Chen L, Ruan F, Zhang J, Hu Y, Luo H, Wen S. 14-3-3β exerts glioma-promoting effects and is associated with malignant progression and poor prognosis in patients with glioma. Exp Ther Med 2018; 15:2381-2387. [PMID: 29467845 PMCID: PMC5792794 DOI: 10.3892/etm.2017.5664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/29/2017] [Indexed: 12/13/2022] Open
Abstract
Glioma is a type of tumor that affects the central nervous system. It has been demonstrated that 14-3-3β, a protein that is mainly concentrated in the brain, serves an important role in tumor regulation. However, the mechanism of action of 14-3-3β that underlies the pathogenesis of glioma remains to be elucidated. In the present study, 14-3-3β was silenced by RNA interference in the human glioma cell line U373-MG. Following knockdown of 14-3-3β, the proliferation, colony formation, cell cycle progression, migration and invasion of U373-MG cells were significantly decreased (P<0.01), whereas cell apoptosis was increased (P<0.01). Furthermore, in a tumor xenograft experiment, silencing 14-3-3β significantly inhibited the in vivo tumor growth of U373-MG cells (P<0.01). The results demonstrated that 14-3-3β levels were significantly higher in human glioma tissues compared with normal brain tissues (P<0.01) and high 14-3-3β expression was significantly associated with advanced pathological grade (P<0.03) and low Karnofsky performance scale (P<0.003). Patients with glioma who had high 14-3-3β levels had a significantly shorter survival time compared with those with low expression of 14-3-3β (P=0.031), suggesting that 14-3-3β may be an effective predictor of the prognosis of patients with glioma. The results of the present study indicate that 14-3-3β serves an oncogenic role in glioma, suggesting that 14-3-3β may have potential as a promising therapeutic target for glioma.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Hao Wang
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
| | - Long Chen
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
| | - Fuqiang Ruan
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
| | - Jihui Zhang
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
| | - Yi Hu
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
| | - Hengshan Luo
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
| | - Shuai Wen
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
| |
Collapse
|
44
|
Zhang Z, Zou Y, Liang M, Chen Y, Luo Y, Yang B, Liu F, Qin Y, He D, Wang F, Huang O. Suppressor of fused (Sufu) promotes epithelial-mesenchymal transition (EMT) in cervical squamous cell carcinoma. Oncotarget 2017; 8:114226-114238. [PMID: 29371981 PMCID: PMC5768398 DOI: 10.18632/oncotarget.23176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 11/13/2017] [Indexed: 12/01/2022] Open
Abstract
Suppressor of fused is essential for the maximal activation of Sonic Hedgehog signaling in development and tumorigenesis. However, the role of Sufu in cervical carcinoma remains unknown. Here, we report new findings of Sufu in regulating the epithelial-to-mesenchymal transition through the FoxM1 transcriptional modulation by 14-3-3ζ protein in cervical carcinoma. Sufu is overexpressed in cervical squamous cell carcinoma and its level in clinical tumor tissues is positively correlated with 14-3-3ζ. Functionanlly, siSufu remarkably prevents the cancer cell migration and invasion. We further demonstrate that the transcriptional activity of Sufu is increased by FoxM1, of which stability is promoted by 14-3-3ζ. Knockdown FoxM1 decreases the invasion of SiHa cells and reconstitution of Sufu rescues the invasion of these cells.Finally, overexpression of Sufu is significantly associated with differentiation grade, FIGO stage, Depth of stromal invasion and vascular cancer embolus. Our findings highlight a novel role for Sufu in cervical carcinogenesis.
Collapse
Affiliation(s)
- Ziyu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Meirong Liang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yuanting Chen
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
- Graduate School of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Yong Luo
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Bicheng Yang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Faying Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yunna Qin
- Department of Pathology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Deming He
- Department of Pathology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Feng Wang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Ouping Huang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
45
|
Vishal SS, Tilwani S, Dalal SN. Plakoglobin localization to the cell border restores desmosome function in cells lacking 14-3-3γ. Biochem Biophys Res Commun 2017; 495:1998-2003. [PMID: 29253567 DOI: 10.1016/j.bbrc.2017.12.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022]
Abstract
Desmosomes are cell-cell adhesion junctions that anchor intermediate filaments. Loss of 14-3-3γ in HCT116 cells led to defects in desmosome assembly due to a decrease in the transport of Plakoglobin (PG) to the cell border thus disrupting desmosome formation. Desmosome formation in cells lacking 14-3-3γ was restored by artificially localizing PG to the cell border by fusing it to EGFP-f (PG-EGFP-f). These results suggest that a major role of 14-3-3γ in desmosome assembly is to transport PG to the cell border leading to the initiation of desmosome formation.
Collapse
Affiliation(s)
- Sonali S Vishal
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar Node, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Sarika Tilwani
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar Node, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Sorab N Dalal
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar Node, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India.
| |
Collapse
|
46
|
McGowan JE, Kratch J, Chattopadhyay S, Joe B, Conti HR, Chakravarti R. Bioinformatic analysis reveals new determinants of antigenic 14-3-3 proteins and a novel antifungal strategy. PLoS One 2017; 12:e0189503. [PMID: 29232712 PMCID: PMC5726717 DOI: 10.1371/journal.pone.0189503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023] Open
Abstract
The ubiquitously expressed 14-3-3 family of proteins is evolutionarily conserved from yeast to mammals. Their involvement in humoral and cellular immune responses is emerging through studies in drosophila and humans. In humans, a select group of 14-3-3 isoforms are antigenic; however the determinants of their antigenicity are not known. Here, we show that although mammalian 14-3-3 proteins are mostly conserved, subtle differences between their isoforms may give rise to their antigenicity. We observed syntenic relations among all the isoforms of 14-3-3 for mammals, but not with that of birds or amphibians. However, the parasitic 14-3-3 isoforms, which have known antigenic properties, show unique sequence, structure and evolution compared to the human 14-3-3. Moreover we report, for the first time the existence of a bacterial 14-3-3 protein. Contrary to the parasitic isoforms, both bacterial and yeast 14-3-3 exhibited significant homology with mammalian 14-3-3 in protein sequence as well as structure. Furthermore, a human 14-3-3 inhibitor caused significant killing of Candida albicans, which could be due to the inhibition of the structurally similar yeast homologue of 14-3-3, BMH, which is essential for its life cycle. Overall, our bioinformatic analysis combined with the demonstration of a novel antifungal role of a peptide inhibitor of human 14-3-3 indicates that the sequences and structural similarities between the mammalian, bacterial and fungal proteins are likely determinants of the antigenic nature of these proteins. Further, we propose that molecular mimicry triggered by microbial infections with either yeast or bacteria may contribute to the antigenic role of human 14-3-3.
Collapse
Affiliation(s)
- Jenna E. McGowan
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States of America
| | - Jacqueline Kratch
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States of America
| | - Bina Joe
- Department of Physiology & Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States of America
| | - Heather R. Conti
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Ritu Chakravarti
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
47
|
Jandova Z, Trosanova Z, Weisova V, Oostenbrink C, Hritz J. Free energy calculations on the stability of the 14-3-3ζ protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:442-450. [PMID: 29203375 DOI: 10.1016/j.bbapap.2017.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/31/2017] [Accepted: 11/25/2017] [Indexed: 01/08/2023]
Abstract
Mutations of cysteine are often introduced to e.g. avoid formation of non-physiological inter-molecular disulfide bridges in in-vitro experiments, or to maintain specificity in labeling experiments. Alanine or serine is typically preferred, which usually do not alter the overall protein stability, when the original cysteine was surface exposed. However, selecting the optimal mutation for cysteines in the hydrophobic core of the protein is more challenging. In this work, the stability of selected Cys mutants of 14-3-3ζ was predicted by free-energy calculations and the obtained data were compared with experimentally determined stabilities. Both the computational predictions as well as the experimental validation point at a significant destabilization of mutants C94A and C94S. This destabilization could be attributed to the formation of hydrophobic cavities and a polar solvation of a hydrophilic side chain. A L12E, M78K double mutant was further studied in terms of its reduced dimerization propensity. In contrast to naïve expectations, this double mutant did not lead to the formation of strong salt bridges, which was rationalized in terms of a preferred solvation of the ionic species. Again, experiments agreed with the calculations by confirming the monomerization of the double mutants. Overall, the simulation data is in good agreement with experiments and offers additional insight into the stability and dimerization of this important family of regulatory proteins.
Collapse
Affiliation(s)
- Zuzana Jandova
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Zuzana Trosanova
- CEITEC-MU, Masaryk University, Kamenice 753/5, Bohunice, Brno, Czech Republic
| | - Veronika Weisova
- CEITEC-MU, Masaryk University, Kamenice 753/5, Bohunice, Brno, Czech Republic
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Jozef Hritz
- CEITEC-MU, Masaryk University, Kamenice 753/5, Bohunice, Brno, Czech Republic.
| |
Collapse
|
48
|
14-3-3z sequesters cytosolic T-bet, upregulating IL-13 levels in T C2 and CD8 + lymphocytes from patients with scleroderma. J Allergy Clin Immunol 2017; 142:109-119.e6. [PMID: 29155097 DOI: 10.1016/j.jaci.2017.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/27/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND IL-13-producing CD8+ T cells have been implicated in the pathogenesis of type 2-driven inflammatory human conditions. We have shown that CD8+IL-13+ cells play a critical role in cutaneous fibrosis, the most characteristic feature of systemic sclerosis (SSc; scleroderma). However, the molecular mechanisms underlying production of IL-13 and other type 2 cytokines by CD8+ T cells remain unclear. OBJECTIVE We sought to establish the molecular basis of IL-13 overproduction by CD8+ T cells from patients with SSc, focusing on T-bet modulation of GATA-3 activity, which we showed to underlie IL-13 overproduction in CD8+IL-13+ cells from patients with SSc. METHODS Biochemical and biophysical methods were used to determine the expression and association of T-bet, GATA-3, and regulatory factors in CD8+ T cells isolated from the blood and lesional skin of patients with SSc with severe skin thickening. Chromatin immunoprecipitation analysis determined GATA-3 binding to the IL-13 promoter. ImageStream analysis and confocal microscopy visualized the subcellular localization of T-bet and GATA-3. Transcript levels were decreased by small interfering RNAs. RESULTS Interaction of T-bet with the adaptor protein 14-3-3z in the cytosol of CD8+ T cells from patients with SSc reduces T-bet translocation into the nucleus and its ability to associate with GATA-3, allowing more GATA-3 to bind to the IL-13 promoter and inducing IL-13 upregulation. Strikingly, we show that this mechanism is also found during type 2 polarization of CD8+ T cells (TC2) from healthy donors. CONCLUSIONS We identified a novel molecular mechanism underlying type 2 cytokine production by CD8+ T cells, revealing a more complete picture of the complex pathway leading to SSc disease pathogenesis.
Collapse
|
49
|
Kim M, Morales LD, Baek M, Slaga TJ, DiGiovanni J, Kim DJ. UVB-induced nuclear translocation of TC-PTP by AKT/14-3-3σ axis inhibits keratinocyte survival and proliferation. Oncotarget 2017; 8:90674-90692. [PMID: 29207596 PMCID: PMC5710877 DOI: 10.18632/oncotarget.21794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/15/2017] [Indexed: 12/28/2022] Open
Abstract
Understanding protein subcellular localization is important to determining the functional role of specific proteins. T-cell protein tyrosine phosphatase (TC-PTP) contains bipartite nuclear localization signals (NLSI and NLSII) in its C-terminus. We previously have demonstrated that the nuclear form of TC-PTP (TC45) is mainly localized to the cytoplasm in keratinocytes and it is translocated to the nucleus following UVB irradiation. Here, we report that TC45 is translocated by an AKT/14-3-3σ-mediated mechanism in response to UVB exposure, resulting in increased apoptosis and decreased keratinocyte proliferation. We demonstrate that UVB irradiation increased phosphorylation of AKT and induced nuclear translocation of 14-3-3σ and TC45. However, inhibition of AKT blocked nuclear translocation of TC45 and 14-3-3σ. Site-directed mutagenesis of 14-3-3σ binding sites within TC45 showed that a substitution at Threonine 179 (TC45/T179A) effectively blocked UVB-induced nuclear translocation of ectopic TC45 due to the disruption of the direct binding between TC45 and 14-3-3σ. Overexpression of TC45/T179A in keratinocytes resulted in a decrease of UVB-induced apoptosis which corresponded to an increase in nuclear phosphorylated STAT3, and cell proliferation was higher in TC45/T179A-overexpressing keratinocytes compared to control keratinocytes following UVB irradiation. Furthermore, deletion of TC45 NLSII blocked its UVB-induced nuclear translocation, indicating that both T179 and NLSII are required. Taken together, our findings suggest that AKT and 14-3-3σ cooperatively regulate TC45 nuclear translocation in a critical step of an early protective mechanism against UVB exposure that signals the deactivation of STAT3 in order to promote keratinocyte cell death and inhibit keratinocyte proliferation.
Collapse
Affiliation(s)
- Mihwa Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Liza D Morales
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA.,South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Minwoo Baek
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Thomas J Slaga
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - John DiGiovanni
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Dae Joon Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| |
Collapse
|
50
|
Hellinger R, Thell K, Vasileva M, Muhammad T, Gunasekera S, Kümmel D, Göransson U, Becker CW, Gruber CW. Chemical Proteomics for Target Discovery of Head-to-Tail Cyclized Mini-Proteins. Front Chem 2017; 5:73. [PMID: 29075625 PMCID: PMC5641551 DOI: 10.3389/fchem.2017.00073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022] Open
Abstract
Target deconvolution is one of the most challenging tasks in drug discovery, but a key step in drug development. In contrast to small molecules, there is a lack of validated and robust methodologies for target elucidation of peptides. In particular, it is difficult to apply these methods to cyclic and cysteine-stabilized peptides since they exhibit reduced amenability to chemical modification and affinity capture; however, such ribosomally synthesized and post-translationally modified peptide natural products are rich sources of promising drug candidates. For example, plant-derived circular peptides called cyclotides have recently attracted much attention due to their immunosuppressive effects and oral activity in the treatment of multiple sclerosis in mice, but their molecular target has hitherto not been reported. In this study, a chemical proteomics approach using photo-affinity crosslinking was developed to determine a target for the circular peptide [T20K]kalata B1. Using this prototypic nature-derived peptide enabled the identification of a possible functional modulation of 14-3-3 proteins. This biochemical interaction was validated via competition pull down assays as well as a cellular reporter assay indicating an effect on 14-3-3-dependent transcriptional activity. As proof of concept, the presented approach may be applicable for target elucidation of various cyclic peptides and mini-proteins, in particular cyclotides, which represent a promising class of molecules in drug discovery and development.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Kathrin Thell
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Mina Vasileva
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Taj Muhammad
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Sunithi Gunasekera
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Daniel Kümmel
- School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Ulf Göransson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Christian W. Becker
- Department of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
| | - Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|