1
|
Li YL, Zhang YY, Song QX, Liu F, Liu YJ, Li YK, Zhou C, Shen JF. N-methyl-D-aspartate Receptor Subunits 2A and 2B Mediate Connexins and Pannexins in the Trigeminal Ganglion Involved in Orofacial Inflammatory Allodynia during Temporomandibular Joint Inflammation. Mol Neurobiol 2024:10.1007/s12035-024-04291-5. [PMID: 38976127 DOI: 10.1007/s12035-024-04291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a severe form of temporomandibular joint disorders (TMD), and orofacial inflammatory allodynia is one of its common symptoms which lacks effective treatment. N-methyl-D-aspartate receptor (NMDAR), particularly its subtypes GluN2A and GluN2B, along with gap junctions (GJs), are key players in the mediation of inflammatory pain. However, the precise regulatory mechanisms of GluN2A, GluN2B, and GJs in orofacial inflammatory allodynia during TMJ inflammation still remain unclear. Here, we established the TMJ inflammation model by injecting Complete Freund's adjuvant (CFA) into the TMJ and used Cre/loxp site-specific recombination system to conditionally knock out (CKO) GluN2A and GluN2B in the trigeminal ganglion (TG). Von-frey test results indicated that CFA-induced mechanical allodynia in the TMJ region was relieved in GluN2A and GluN2B deficient mice. In vivo, CFA significantly up-regulated the expression of GluN2A and GluN2B, Gjb1, Gjb2, Gjc2 and Panx3 in the TG, and GluN2A and GluN2B CKO played different roles in mediating the expression of Gjb1, Gjb2, Gjc2 and Panx3. In vitro, NMDA up-regulated the expression of Gjb1, Gjb2, Gjc2 and Panx3 in satellite glial cells (SGCs) as well as promoted the intercellular communication between SGCs, and GluN2A and GluN2B knocking down (KD) altered the expression and function differently. NMDAR regulated Gjb1 and Panx3 through ERK1/2 pathway, and mediated Gjb2 and Gjc2 through MAPK, PKA, and PKC intracellular signaling pathways. These findings shed light on the distinct functions of GluN2A and GluN2B in mediating peripheral sensitization induced by TMJ inflammation in the TG, offering potential therapeutic targets for managing orofacial inflammatory allodynia.
Collapse
Affiliation(s)
- Yue-Ling Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Qin-Xuan Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Yi-Ke Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China.
| |
Collapse
|
2
|
Hanafy MS, Cui Z. Connexin-Containing Vesicles for Drug Delivery. AAPS J 2024; 26:20. [PMID: 38267725 DOI: 10.1208/s12248-024-00889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Connexin is a transmembrane protein present on the cell membrane of most cell types. Connexins assemble into a hexameric hemichannel known as connexon that pairs with another hemichannel present on a neighboring cell to form gap junction that acts as a channel or pore for the transport of ions and small molecules between the cytoplasm of the two cells. Extracellular vesicles released from connexin-expressing cells could carry connexin hemichannels on their surface and couple with another connexin hemichannel on a distant recipient cell to allow the transfer of the intravesicular content directly into the cytoplasm. Connexin-containing vesicles can be potentially utilized for intracellular drug delivery. In this review, we introduced cell-derived, connexin-containing extracellular vesicles and cell-free connexin-containing liposomes, methods of preparing them, procedures to load cargos in them, factors regulating the connexin hemichannel activity, (potential) applications of connexin-containing vesicles in drug delivery, and finally the challenges and future directions in realizing the promises of this platform delivery system for (intracellular) drug delivery.
Collapse
Affiliation(s)
- Mahmoud S Hanafy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
3
|
Zhu L, Tang Q, Mao Z, Chen H, Wu L, Qin Y. Microfluidic-based platforms for cell-to-cell communication studies. Biofabrication 2023; 16:012005. [PMID: 38035370 DOI: 10.1088/1758-5090/ad1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Intercellular communication is critical to the understanding of human health and disease progression. However, compared to traditional methods with inefficient analysis, microfluidic co-culture technologies developed for cell-cell communication research can reliably analyze crucial biological processes, such as cell signaling, and monitor dynamic intercellular interactions under reproducible physiological cell co-culture conditions. Moreover, microfluidic-based technologies can achieve precise spatial control of two cell types at the single-cell level with high throughput. Herein, this review focuses on recent advances in microfluidic-based 2D and 3D devices developed to confine two or more heterogeneous cells in the study of intercellular communication and decipher the advantages and limitations of these models in specific cellular research scenarios. This review will stimulate the development of more functionalized microfluidic platforms for biomedical research, inspiring broader interests across various disciplines to better comprehend cell-cell communication and other fields, such as tumor heterogeneity and drug screening.
Collapse
Affiliation(s)
- Lvyang Zhu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Zhenzhen Mao
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Huanhuan Chen
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Zhang S, Guo S, Yu M, Wang Y, Tao L, Zhang X. Analgesics can affect the sensitivity of temozolomide to glioma chemotherapy through gap junction. Med Oncol 2023; 40:162. [PMID: 37100898 DOI: 10.1007/s12032-023-01998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 04/28/2023]
Abstract
This study investigated the effect of frequently used analgesics in cancer pain management (flurbiprofen (FLU), tramadol (TRA), and morphine (MOR)) and a novel α2-adrenergic agonist (dexmedetomidine, DEX) on temozolomide (TMZ) sensitivity in glioma cells. Cell counting kit-8 and colony-formation assays were performed to analyze the viability of U87 and SHG-44 cell lines. A high and low cell density of colony method, pharmacological methods, and connexin43 mimetic peptide GAP27 were used to manipulate the function of gap junctions; "Parachute" dye coupling and western blot were employed to determine junctional channel transfer ability and connexin expression. The results showed that DEX (in the concentration range of 0.1 to 5.0 ng/ml) and TRA (in the concentration range of 1.0 to 10.0 µg/ml) reduced the TMZ cytotoxicity in a concentration-dependent manner but was only observed with high cell density (having formed gap junction). The cell viability percentage was 71.3 to 86.8% when DEX was applied at 5.0 ng/ml, while tramadol showed 69.6 to 83.7% viability at 5.0 μg/ml in U87 cells. Similarly, 5.0 ng/ml of DEX resulted in 62.6 to 80.5%, and 5.0 μg/ml TRA showed 63.5 to 77.3% viability in SHG-44 cells. Further investigating the impact of analgesics on gap junctions, only DEX and TRA were found to decrease channel dye transfer through connexin phosphorylation and ERK pathway, while no such effect was observed for FLU and MOR. Analgesics that can affect junctional communication may compromise the effectiveness of TMZ when used simultaneously.
Collapse
Affiliation(s)
- Suzhi Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Sanxing Guo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Meiling Yu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Yu Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| |
Collapse
|
5
|
Carvalho J. A computational model of cell membrane bioelectric polarization and depolarization, connected with cell proliferation, in different tissue geometries. J Theor Biol 2023; 557:111338. [PMID: 36343668 DOI: 10.1016/j.jtbi.2022.111338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A reliable theory of biological tissues growth and organization, a fundamental tool for a comprehensive interpretation of experimental observations and a guide to progress in life sciences, is definitively missing. This would support the advancement of knowledge for both normal and pathological expansion and regulation of tissues and organisms. In this work is presented a computational model of cell culture that describes its growth and organization using cell proliferation as its default state, constrained by contact inhibition, closely connected to the cell bioelectric state. The model results describe in a correct way the reported experimental results, involving contact inhibition due to the presence of other cells, and gap junctions for signaling, molecules exchange and extracellular environment sensing. Starting from depolarized cells (in this model considered tantamount to proliferative), the cell culture grows until it fills the available domain and, due to the contact inhibition constraint, it turns into quiescence (a consequence of cell polarization), except on the periphery. Using drugs or via protein expression manipulation, it is possible to change the final tissue state, to fully polarized or depolarized. Other experimental tests are proposed and the expected results simulated. This model can be extended to pathological events, such as carcinogenesis, with cells homeostasis perturbed by a cell depolarizing (carcinogenic) event and express its default proliferative state without adequate control. This simplified model of tissue organization, regulated by the cell's bioelectric state and their interaction with vicinity, is an alternative to the description of the experimental results by mechanical stress, and can be further tested and extended in dedicated experiments.
Collapse
Affiliation(s)
- Joao Carvalho
- CFisUC, Department of Physics, University of Coimbra, Portugal.
| |
Collapse
|
6
|
Aghighi Z, Ghorbani Z, Moghaddam MH, Fathi M, Abdollahifar MA, Soleimani M, Karimzadeh F, Rasoolijazi H, Aliaghaei A. Melittin ameliorates motor function and prevents autophagy-induced cell death and astrogliosis in rat models of cerebellar ataxia induced by 3-acetylpyridine. Neuropeptides 2022; 96:102295. [PMID: 36280441 DOI: 10.1016/j.npep.2022.102295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cerebellar ataxia (CA) is a form of ataxia that adversely affects the cerebellum. This study aims to investigate the therapeutic effects of melittin (MEL) on a 3-acetylpyridine-induced (3-AP) cerebellar ataxia (CA) rat model. METHODS Initially, CA rat models were generated by 3-AP administration followed by the subcutaneous injection of MEL. The open-field test was used for the evaluation of locomotion and anxiety. Immunohistochemistry was also conducted for the autophagy markers of LC3 and Beclin1. In the next step, the morphology of the astrocyte, the cell responsible for maintaining homeostasis in the CNS, was evaluated by the Sholl analysis. RESULTS The findings suggested that the administration of MEL in a 3-AP model of ataxia improved locomotion and anxiety (P < 0.001), decreased the expression of LC3 (P < 0.01) and Beclin1 (P < 0.05), increased astrocyte complexity (P < 0.05) and reduced astrocyte cell soma size (P < 0.001). CONCLUSIONS Overall, the findings imply that the MEL attenuates the 3-AP-induced autophagy, causes cell death and improves motor function. As such, it could be used as a therapeutic procedure for CA due to its neuroprotective effects.
Collapse
Affiliation(s)
- Zahra Aghighi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zeynab Ghorbani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Homa Rasoolijazi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Oliveira MC, Verswyvel H, Smits E, Cordeiro RM, Bogaerts A, Lin A. The pro- and anti-tumoral properties of gap junctions in cancer and their role in therapeutic strategies. Redox Biol 2022; 57:102503. [PMID: 36228438 PMCID: PMC9557036 DOI: 10.1016/j.redox.2022.102503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Gap junctions (GJs), essential structures for cell-cell communication, are made of two hemichannels (commonly called connexons), one on each adjacent cell. Found in almost all cells, GJs play a pivotal role in many physiological and cellular processes, and have even been linked to the progression of diseases, such as cancer. Modulation of GJs is under investigation as a therapeutic strategy to kill tumor cells. Furthermore, GJs have also been studied for their key role in activating anti-cancer immunity and propagating radiation- and oxidative stress-induced cell death to neighboring cells, a process known as the bystander effect. While, gap junction (GJ)-based therapeutic strategies are being developed, one major challenge has been the paradoxical role of GJs in both tumor progression and suppression, based on GJ composition, cancer factors, and tumoral context. Therefore, understanding the mechanisms of action, regulation, and the dual characteristics of GJs in cancer is critical for developing effective therapeutics. In this review, we provide an overview of the current understanding of GJs structure, function, and paradoxical pro- and anti-tumoral role in cancer. We also discuss the treatment strategies to target these GJs properties for anti-cancer responses, via modulation of GJ function.
Collapse
Affiliation(s)
- Maria C Oliveira
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil.
| | - Hanne Verswyvel
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Abraham Lin
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| |
Collapse
|
8
|
Yu F, Yan L, Sun J, Zhao Y, Yuan Y, Gu J, Bian J, Zou H, Liu Z. Gap junction intercellular communication mediates cadmium-induced apoptosis in hepatocytes via the Fas/FasL pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2692-2702. [PMID: 35920667 DOI: 10.1002/tox.23629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
As a common environmental pollutant, cadmium (Cd) causes damage to many organs of the body. Gap junction intercellular communication (GJIC) represents one of the most important routes of rapid signaling between cells. However, the mechanisms underlying GJIC's role in hepatotoxicity induced by Cd remain unknown. We established a Cd poisoning model in vitro by co-culturing Cd-exposed and unexposed hepatocytes and found that 18β-glycyrrhetinic acid (GA), a GJIC inhibitor, can effectively reduce the apoptosis rate of healthy cells co-cultured with apoptotic cells treated with Cd. We also found that anti-FasL antibody had the same effect. However, in mono-cultured cells, GA treatment in combination with Cd was found to aggravate the damage induced by Cd exposure, increase the level of oxidative stress and protein expression of HO-1, decrease the mitochondrial membrane potential, incur more serious morphological damage to mitochondria than Cd treatment alone. Moreover, compared with Cd-only exposure, GA and Cd co-treatment further increased the expression levels of the apoptosis-related proteins Fas, FasL, FADD and the ratio of Bax/Bcl-2, inhibited the protein expression of ASK1 and Daxx. We also found that the protein expression of Daxx in siFADD + Cd hepatocytes was significantly higher than in Cd-treated cells. Thus, our study suggests that gap junction inhibition may play a dual role in Cd-induced cell damage by inhibiting the transmission of death signals from damaged cells to healthy cells but also aggravating the transmission of death signals between damaged cells, and that the Fas/FasL-mediated death receptor pathway may play an important role in this process.
Collapse
Affiliation(s)
- Fan Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Lianqi Yan
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, Jiangsu, People's Republic of China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Yumeng Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Exploring the fuzzy border between senolytics and senomorphics with chemoinformatics and systems pharmacology. Biogerontology 2022; 23:453-471. [PMID: 35781578 DOI: 10.1007/s10522-022-09974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Senescent cells accumulate within tissues during aging and secrete an array of pro-inflammatory molecules known as senescent-associated secretory phenotype (SASP), which contribute to the appearance and progression of various chronic degenerative diseases. Novel pharmacological approaches aimed at modulating or eliminating senescent cells´ harmful effects have recently emerged: Senolytics are molecules that selectively eliminate senescent cells, while senomorphics modulate or decrease the inflammatory response to specific SASP. So far, the physicochemical, structural, and pharmacological properties that define these two kinds of pharmacological approaches remain unclear. Therefore, the identification and correct choice of molecules, based on their physicochemical, structural, and pharmacological properties, likely to exhibit the desired senotherapeutic activity is crucial for developing effective, selective, and safe senotherapies. Here we compared the physicochemical, structural, and pharmacological properties of 84 senolytics and 79 senomorphics using a chemoinformatic and systems pharmacology approach. We found great physicochemical, structural, and pharmacological similarities between them, also reflected in their cellular responses measured through transcriptome perturbations. The identified similarities between senolytics and senomorphics might explain the dual activity of some of those molecules. These findings will help design and discover new, more effective, and highly selective senotherapeutic agents.
Collapse
|
10
|
Carvalho J. A computational model of organism development and carcinogenesis resulting from cells' bioelectric properties and communication. Sci Rep 2022; 12:9206. [PMID: 35654933 PMCID: PMC9163332 DOI: 10.1038/s41598-022-13281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/23/2022] [Indexed: 11/15/2022] Open
Abstract
A sound theory of biological organization is clearly missing for a better interpretation of observational results and faster progress in understanding life complexity. The availability of such a theory represents a fundamental progress in explaining both normal and pathological organism development. The present work introduces a computational implementation of some principles of a theory of organism development, namely that the default state of cells is proliferation and motility, and includes the principle of variation and organization by closure of constraints. In the present model, the bioelectric context of cells and tissue is the field responsible for organization, as it regulates cell proliferation and the level of communication driving the system's evolution. Starting from a depolarized (proliferative) cell, the organism grows to a certain size, limited by the increasingly polarized state after successive proliferation events. The system reaches homeostasis, with a depolarized core (proliferative cells) surrounded by a rim of polarized cells (non-proliferative in this condition). This state is resilient to cell death (random or due to injure) and to limited depolarization (potentially carcinogenic) events. Carcinogenesis is introduced through a localized event (a spot of depolarized cells) or by random depolarization of cells in the tissue, which returns cells to their initial proliferative state. The normalization of the bioelectric condition can reverse this out-of-equilibrium state to a new homeostatic one. This simplified model of embryogenesis, tissue organization and carcinogenesis, based on non-excitable cells' bioelectric properties, can be made more realistic with the introduction of other components, like biochemical fields and mechanical interactions, which are fundamental for a more faithful representation of reality. However, even a simple model can give insight for new approaches in complex systems and suggest new experimental tests, focused in its predictions and interpreted under a new paradigm.
Collapse
Affiliation(s)
- Joao Carvalho
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
11
|
Akbar A, Malekian F, Baghban N, Kodam SP, Ullah M. Methodologies to Isolate and Purify Clinical Grade Extracellular Vesicles for Medical Applications. Cells 2022; 11:186. [PMID: 35053301 PMCID: PMC8774122 DOI: 10.3390/cells11020186] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The use of extracellular vesicles (EV) in nano drug delivery has been demonstrated in many previous studies. In this study, we discuss the sources of extracellular vesicles, including plant, salivary and urinary sources which are easily available but less sought after compared with blood and tissue. Extensive research in the past decade has established that the breadth of EV applications is wide. However, the efforts on standardizing the isolation and purification methods have not brought us to a point that can match the potential of extracellular vesicles for clinical use. The standardization can open doors for many researchers and clinicians alike to experiment with the proposed clinical uses with lesser concerns regarding untraceable side effects. It can make it easier to identify the mechanism of therapeutic benefits and to track the mechanism of any unforeseen effects observed.
Collapse
Affiliation(s)
- Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Farzaneh Malekian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Neda Baghban
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
12
|
Gap Junctions and Hemichannels Composed of Connexins and Pannexins Mediate the Secondary Brain Injury Following Intracerebral Hemorrhage. BIOLOGY 2021; 11:biology11010027. [PMID: 35053024 PMCID: PMC8772966 DOI: 10.3390/biology11010027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Intracerebral hemorrhage (ICH) is a leading medical problem without effective treatment options. The poor prognosis is attributed to the primary brain injury of the mechanical compression caused by hematoma, and secondary brain injury (SBI) that includes inflammation, glutamate excitotoxicity, oxidative stress and disruption of the blood brain barrier (BBB). Evidences suggests that gap junctions and hemichannels composed of connexins and pannexins regulate the inflammation and excitotoxicity insult in the pathological process of central nervous system disease, such as cerebral ischemia and neurodegeneration disease. In this manuscript, we discuss the fact that connexins- and pannexins-based channels could be involved in secondary brain injury of ICH, particularly through mediating inflammation, oxidative stress, BBB disruption and cell death. The details provided in this manuscript may help develop potential targets for therapeutic intervention of ICH. Abstract Intracerebral hemorrhage (ICH) is a devastating disease with high mortality and morbidity; the mortality rate ranges from 40% at 1 month to 54% at 1 year; only 12–39% achieve good outcomes and functional independence. ICH affects nearly 2 million patients worldwide annually. In ICH development, the blood leakage from ruptured vessels generates sequelae of secondary brain injury (SBI). This mechanism involves activated astrocytes and microglia, generation of reactive oxygen species (ROS), the release of reactive nitrogen species (RNS), and disrupted blood brain barrier (BBB). In addition, inflammatory cytokines and chemokines, heme compounds, and products of hematoma are accumulated in the extracellular spaces, thereby resulting in the death of brain cells. Recent evidence indicates that connexins regulate microglial activation and their phenotypic transformation. Moreover, communications between neurons and glia via gap junctions have crucial roles in neuroinflammation and cell death. A growing body of evidence suggests that, in addition to gap junctions, hemichannels (composed of connexins and pannexins) play a key role in ICH pathogenesis. However, the precise connection between connexin and pannexin channels and ICH remains to be resolved. This review discusses the pathological roles of gap junctions and hemichannels in SBI following ICH, with the intent of discovering effective therapeutic options of strategies to treat ICH.
Collapse
|
13
|
Turovsky EA, Varlamova EG. Mechanism of Ca 2+-Dependent Pro-Apoptotic Action of Selenium Nanoparticles, Mediated by Activation of Cx43 Hemichannels. BIOLOGY 2021; 10:biology10080743. [PMID: 34439975 PMCID: PMC8389560 DOI: 10.3390/biology10080743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022]
Abstract
To date, there are practically no data on the mechanisms of the selenium nanoparticles action on calcium homeostasis, intracellular signaling in cancer cells, and on the relationship of signaling pathways activated by an increase in Ca2+ in the cytosol with the induction of apoptosis, which is of great importance. The study of these mechanisms is important for understanding the cytotoxic effect of selenium nanoparticles and the role of this microelement in the regulation of carcinogenesis. The work is devoted to the study of the role of selenium nanoparticles obtained by laser ablation in the activation of the calcium signaling system and the induction of apoptosis in human glioblastoma cells (A-172 cell line). In this work, it was shown for the first time that the generation of Ca2+ signals in A-172 cells occurs in response to the application of various concentrations of selenium nanoparticles. The intracellular mechanism responsible for the generation of these Ca2+ signals has also been established. It was found that nanoparticles promote the mobilization of Ca2+ ions from the endoplasmic reticulum through the IP3-receptor. This leads to the activation of vesicular release of ATP through connexin hemichannels (Cx43) and paracrine cell activation through purinergic receptors (mainly P2Y). In addition, it was shown that the activation of this signaling pathway is accompanied by an increase in the expression of pro-apoptotic genes and the induction of apoptosis. For the first time, the role of Cx43 in the regulation of apoptosis caused by selenium nanoparticles in glioblastoma cells has been shown. It was found that inhibition of Cx43 leads to a significant suppression of the induction of apoptosis in these cells after 24 h treatment of cells with selenium nanoparticles at a concentration of 5 µg/mL.
Collapse
|
14
|
Slaats J, Dieteren CE, Wagena E, Wolf L, Raaijmakers TK, van der Laak JA, Figdor CG, Weigelin B, Friedl P. Metabolic Screening of Cytotoxic T-cell Effector Function Reveals the Role of CRAC Channels in Regulating Lethal Hit Delivery. Cancer Immunol Res 2021; 9:926-938. [PMID: 34226201 DOI: 10.1158/2326-6066.cir-20-0741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/24/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022]
Abstract
Cytotoxic T lymphocytes (CTL) mediate cytotoxicity toward tumor cells by multistep cell-cell interactions. However, the tumor microenvironment can metabolically perturb local CTL effector function. CTL activity is typically studied in two-dimensional (2D) liquid coculture, which is limited in recapitulating the mechanisms and efficacy of the multistep CTL effector response. We here developed a microscopy-based, automated three-dimensional (3D) interface coculture model suitable for medium-throughput screening to delineate the steps and CTL effector mechanisms affected by microenvironmental perturbation. CTL effector function was compromised by deregulated redox homeostasis, deficient mitochondrial respiration, as well as dysfunctional Ca2+ release-activated Ca2+ (CRAC) channels. Perturbation of CRAC channel function dampened calcium influx into CTLs, delayed CTL degranulation, and lowered the frequency of sublethal hits (i.e., additive cytotoxicity) delivered to the target cell. Thus, CRAC channel activity controls both individual contact efficacy and CTL cooperativity required for serial killing of target cells. The multistep analysis of CTL effector responses in 3D coculture will facilitate the identification of immune-suppressive mechanisms and guide the rational design of targeted intervention strategies to restore CTL effector function.
Collapse
Affiliation(s)
- Jeroen Slaats
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cindy E Dieteren
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, the Netherlands.,Protinhi Therapeutics, Noviotech Campus, Nijmegen, the Netherlands
| | - Esther Wagena
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Louis Wolf
- Microscopic Imaging Center, RIMLS, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tonke K Raaijmakers
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, the Netherlands.,Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen A van der Laak
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, RIMLS, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bettina Weigelin
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Peter Friedl
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, the Netherlands. .,Department of Genitourinary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Cancer Genomics Center, Utrecht, the Netherlands
| |
Collapse
|
15
|
Yang BA, Westerhof TM, Sabin K, Merajver SD, Aguilar CA. Engineered Tools to Study Intercellular Communication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002825. [PMID: 33552865 PMCID: PMC7856891 DOI: 10.1002/advs.202002825] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Indexed: 05/08/2023]
Abstract
All multicellular organisms rely on intercellular communication networks to coordinate physiological functions. As members of a dynamic social network, each cell receives, processes, and redistributes biological information to define and maintain tissue homeostasis. Uncovering the molecular programs underlying these processes is critical for prevention of disease and aging and development of therapeutics. The study of intercellular communication requires techniques that reduce the scale and complexity of in vivo biological networks while resolving the molecular heterogeneity in "omic" layers that contribute to cell state and function. Recent advances in microengineering and high-throughput genomics offer unprecedented spatiotemporal control over cellular interactions and the ability to study intercellular communication in a high-throughput and mechanistic manner. Herein, this review discusses how salient engineered approaches and sequencing techniques can be applied to understand collective cell behavior and tissue functions.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| | - Trisha M. Westerhof
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
- Department of Internal MedicineDivision of Hematology/Oncology and Rogel Cancer Center1500 East Medical Center Drive, Rogel Cancer CenterAnn ArborMI7314USA
| | - Kaitlyn Sabin
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| | - Sofia D. Merajver
- Department of Internal MedicineDivision of Hematology/Oncology and Rogel Cancer Center1500 East Medical Center Drive, Rogel Cancer CenterAnn ArborMI7314USA
| | - Carlos A. Aguilar
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
- Program in Cellular and Molecular Biology2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| |
Collapse
|
16
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
17
|
Subramaniam MD, Iyer M, Nair AP, Venkatesan D, Mathavan S, Eruppakotte N, Kizhakkillach S, Chandran MK, Roy A, Gopalakrishnan AV, Vellingiri B. Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes Dis 2020; 9:610-637. [PMID: 35782976 PMCID: PMC9243399 DOI: 10.1016/j.gendis.2020.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/18/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Ocular cells like, retinal pigment epithelium (RPE) is a highly specialized pigmented monolayer of post-mitotic cells, which is located in the posterior segment of the eye between neuro sensory retina and vascular choroid. It functions as a selective barrier and nourishes retinal visual cells. As a result of high-level oxygen consumption of retinal cells, RPE cells are vulnerable to chronic oxidative stress and an increased level of reactive oxygen species (ROS) generated from mitochondria. These oxidative stress and ROS generation in retinal cells lead to RPE degeneration. Various sources including mtDNA damage could be an important factor of oxidative stress in RPE. Gene therapy and mitochondrial transfer studies are emerging fields in ocular disease research. For retinal degenerative diseases stem cell-based transplantation methods are developed from basic research to preclinical and clinical trials. Translational research contributions of gene and cell therapy would be a new strategy to prevent, treat and cure various ocular diseases. This review focuses on the effect of oxidative stress in ocular cell degeneration and recent translational researches on retinal degenerative diseases to cure blindness.
Collapse
Affiliation(s)
- Mohana Devi Subramaniam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
- Corresponding author.
| | - Mahalaxmi Iyer
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Aswathy P. Nair
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sinnakaruppan Mathavan
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
| | - Nimmisha Eruppakotte
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Soumya Kizhakkillach
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Manoj kumar Chandran
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Punjab 144411, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 600127, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
- Corresponding author. Human Molecular Cytogenetics and Stem Cell, Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.Fax: +91 422 2422387.
| |
Collapse
|
18
|
Gässler A, Quiclet C, Kluth O, Gottmann P, Schwerbel K, Helms A, Stadion M, Wilhelmi I, Jonas W, Ouni M, Mayer F, Spranger J, Schürmann A, Vogel H. Overexpression of Gjb4 impairs cell proliferation and insulin secretion in primary islet cells. Mol Metab 2020; 41:101042. [PMID: 32565358 PMCID: PMC7365933 DOI: 10.1016/j.molmet.2020.101042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Altered gene expression contributes to the development of type 2 diabetes (T2D); thus, the analysis of differentially expressed genes between diabetes-susceptible and diabetes-resistant mouse models is an important tool for the determination of candidate genes that participate in the pathology. Based on RNA-seq and array data comparing pancreatic gene expression of diabetes-prone New Zealand Obese (NZO) mice and diabetes-resistant B6.V-ob/ob (B6-ob/ob) mice, the gap junction protein beta 4 (Gjb4) was identified as a putative novel T2D candidate gene. METHODS Gjb4 was overexpressed in primary islet cells derived from C57BL/6 (B6) mice and INS-1 cells via adenoviral-mediated infection. The proliferation rate of cells was assessed by BrdU incorporation, and insulin secretion was measured under low (2.8 mM) and high (20 mM) glucose concentration. INS-1 cell apoptosis rate was determined by Western blotting assessing cleaved caspase 3 levels. RESULTS Overexpression of Gjb4 in primary islet cells significantly inhibited the proliferation by 47%, reduced insulin secretion of primary islets (46%) and INS-1 cells (51%), and enhanced the rate of apoptosis by 63% in INS-1 cells. Moreover, an altered expression of the miR-341-3p contributes to the Gjb4 expression difference between diabetes-prone and diabetes-resistant mice. CONCLUSIONS The gap junction protein Gjb4 is highly expressed in islets of diabetes-prone NZO mice and may play a role in the development of T2D by altering islet cell function, inducing apoptosis and inhibiting proliferation.
Collapse
Affiliation(s)
- Anneke Gässler
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Charline Quiclet
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Oliver Kluth
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Kristin Schwerbel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Anett Helms
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Ilka Wilhelmi
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Meriem Ouni
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Frank Mayer
- University Outpatient Clinic, Centre of Sports Medicine, University of Potsdam, Am Neuen Palais 10, D-14469, Potsdam, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; Institute of Nutritional Sciences, University of Potsdam, D-14558, Nuthetal, Germany
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; Molecular and Clinical Life Science of Metabolic Diseases, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany.
| |
Collapse
|
19
|
Catanzaro E, Bishayee A, Fimognari C. On a Beam of Light: Photoprotective Activities of the Marine Carotenoids Astaxanthin and Fucoxanthin in Suppression of Inflammation and Cancer. Mar Drugs 2020; 18:E544. [PMID: 33143013 PMCID: PMC7692561 DOI: 10.3390/md18110544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Every day, we come into contact with ultraviolet radiation (UVR). If under medical supervision, small amounts of UVR could be beneficial, the detrimental and hazardous effects of UVR exposure dictate an unbalance towards the risks on the risk-benefit ratio. Acute and chronic effects of ultraviolet-A and ultraviolet-B involve mainly the skin, the immune system, and the eyes. Photodamage is an umbrella term that includes general phototoxicity, photoaging, and cancer caused by UVR. All these phenomena are mediated by direct or indirect oxidative stress and inflammation and are strictly connected one to the other. Astaxanthin (ASX) and fucoxanthin (FX) are peculiar marine carotenoids characterized by outstanding antioxidant properties. In particular, ASX showed exceptional efficacy in counteracting all categories of photodamages, in vitro and in vivo, thanks to both antioxidant potential and activation of alternative pathways. Less evidence has been produced about FX, but it still represents an interesting promise to prevent the detrimental effect of UVR. Altogether, these results highlight the importance of digging into the marine ecosystem to look for new compounds that could be beneficial for human health and confirm that the marine environment is as much as full of active compounds as the terrestrial one, it just needs to be more explored.
Collapse
Affiliation(s)
- Elena Catanzaro
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
20
|
Li Q, Wang YQ, Chu YX. The role of connexins and pannexins in orofacial pain. Life Sci 2020; 258:118198. [PMID: 32758624 DOI: 10.1016/j.lfs.2020.118198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Trigeminal neuralgia is characterized by extensive spreading of pain, referred to as ectopic pain, which describes the phenomenon of the pain passing from the injured regions to uninjured regions. Patients with orofacial pain often show no response to commonly used analgesics, and the exact mechanism of ectopic pain remains unclear, which restricts the development of specific drugs. The present review aims to summarize the contribution of the two families of transmembrane proteins, connexins (Cxs) and pannexins (Panxs), to the induction and spreading of orofacial pain and to provide potential targets for orofacial pain treatment. Cxs and Panxs have recently been shown to play essential roles in intercellular signal propagation in sensory ganglia, and previous studies have provided evidence for the contribution of several subtypes of Cxs and Panxs in various orofacial pain models. Upregulation of the expression of Cxs and Panxs in the trigeminal ganglia is observed in most cases after trigeminal injury, and regulating their expression or activity can improve pain-like behaviors in animals. It is speculated that after trigeminal injury, pain-related signals are transmitted to adjacent neurons and satellite glial cells in the trigeminal ganglia directly through gap junctions and simultaneously through hemichannels and pannexons through both autocrine and paracrine mechanisms. This review highlights recent discoveries in the regulation of Cxs and Panxs in different orofacial pain models and presents a hypothetical mechanism of ectopic pain in trigeminal neuralgia. In addition, the existing problems in current research are discussed.
Collapse
Affiliation(s)
- Qian Li
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Ge Z, Liu J, Guo L, Yao G, Li Q, Wang L, Li J, Fan C. Programming Cell–Cell Communications with Engineered Cell Origami Clusters. J Am Chem Soc 2020; 142:8800-8808. [DOI: 10.1021/jacs.0c01580] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhilei Ge
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200024, China
| | - Jiangbo Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200024, China
| | - Linjie Guo
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Guangbao Yao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200024, China
| | - Qian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200024, China
| | - Lihua Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200024, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiang Li
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200024, China
| |
Collapse
|
22
|
Dydowiczová A, Brózman O, Babica P, Sovadinová I. Improved multiparametric scrape loading-dye transfer assay for a simultaneous high-throughput analysis of gap junctional intercellular communication, cell density and viability. Sci Rep 2020; 10:730. [PMID: 31959888 PMCID: PMC6971000 DOI: 10.1038/s41598-020-57536-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/31/2019] [Indexed: 12/28/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) is a vital cellular process required for maintenance of tissue homeostasis. In vitro assessment of GJIC represents valuable phenotypic endpoint that could be effectively utilized as an integral component in modern toxicity testing, drug screening or biomedical in vitro research. However, currently available methods for quantifying GJIC with higher-throughputs typically require specialized equipment, proprietary software and/or genetically engineered cell models. To overcome these limitations, we present here an innovative adaptation of traditional, fluorescence microscopy-based scrape loading-dye transfer (SL-DT) assay, which has been optimized to simultaneously evaluate GJIC, cell density and viability. This multiparametric method was demonstrated to be suitable for various multiwell microplate formats, which facilitates an automatized image acquisition. The assay workflow is further assisted by an open source-based software tools for batch image processing, analysis and evaluation of GJIC, cell density and viability. Our results suggest that this approach provides a simple, fast, versatile and cost effective way for in vitro high-throughput assessment of GJIC and other related phenotypic cellular events, which could be included into in vitro screening and assessment of pharmacologically and toxicologically relevant compounds.
Collapse
Affiliation(s)
- Aneta Dydowiczová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Ondřej Brózman
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic.
| |
Collapse
|
23
|
Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments. Cancers (Basel) 2019; 11:cancers11121920. [PMID: 31810265 PMCID: PMC6966454 DOI: 10.3390/cancers11121920] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours.
Collapse
|
24
|
Rafikova O, Al Ghouleh I, Rafikov R. Focus on Early Events: Pathogenesis of Pulmonary Arterial Hypertension Development. Antioxid Redox Signal 2019; 31:933-953. [PMID: 31169021 PMCID: PMC6765063 DOI: 10.1089/ars.2018.7673] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Abstract
Significance: Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature characterized by the proliferation of all vascular wall cell types, including endothelial, smooth muscle, and fibroblasts. The disease rapidly advances into a form with extensive pulmonary vascular remodeling, leading to a rapid increase in pulmonary vascular resistance, which results in right heart failure. Recent Advances: Most current research in the PAH field has been focused on the late stage of the disease, largely due to an urgent need for patient treatment options in clinics. Further, the pathobiology of PAH is multifaceted in the advanced disease, and there has been promising recent progress in identifying various pathological pathways related to the late clinical picture. Critical Issues: Early stage PAH still requires additional attention from the scientific community, and although the survival of patients with early diagnosis is comparatively higher, the disease develops in patients asymptomatically, making it difficult to identify and treat early. Future Directions: There are several reasons to focus on the early stage of PAH. First, the complexity of late stage disease, owing to multiple pathways being activated in a complex system with intra- and intercellular signaling, leads to an unclear picture of the key contributors to the pathobiology. Second, an understanding of early pathophysiological events can increase the ability to identify PAH patients earlier than what is currently possible. Third, the prompt diagnosis of PAH would allow for the therapy to start earlier, which has proved to be a more successful strategy, and it ensures better survival in PAH patients.
Collapse
Affiliation(s)
- Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Imad Al Ghouleh
- Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
25
|
Li H, Xu CX, Gong RJ, Chi JS, Liu P, Liu XM. How does Helicobacter pylori cause gastric cancer through connexins: An opinion review. World J Gastroenterol 2019; 25:5220-5232. [PMID: 31558869 PMCID: PMC6761244 DOI: 10.3748/wjg.v25.i35.5220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium with a number of virulence factors, such as cytotoxin-associated gene A, vacuolating cytotoxin A, its pathogenicity island, and lipopolysaccharide, which cause gastrointestinal diseases. Connexins function in gap junctional homeostasis, and their downregulation is closely related to gastric carcinogenesis. Investigations into H. pylori infection and the fine-tuning of connexins in cells or tissues have been reported in previous studies. Therefore, in this review, the potential mechanisms of H. pylori-induced gastric cancer through connexins are summarized in detail.
Collapse
Affiliation(s)
- Huan Li
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Can-Xia Xu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Ren-Jie Gong
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Jing-Shu Chi
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Peng Liu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Ming Liu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
26
|
Li H, Xu CX, Gong RJ, Chi JS, Liu P, Liu XM. How does Helicobacter pyloricause gastric cancer through connexins: An opinion review. World J Gastroenterol 2019. [DOI: 10.3748/wjg.v25.i355220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
27
|
Pro-Apoptotic Effect of Grape Seed Extract on MCF-7 Involves Transient Increase of Gap Junction Intercellular Communication and Cx43 Up-Regulation: A Mechanism of Chemoprevention. Int J Mol Sci 2019; 20:ijms20133244. [PMID: 31269652 PMCID: PMC6651466 DOI: 10.3390/ijms20133244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Growing evidence suggests dietary antioxidants reduce the risk of several cancers. Grape seeds extracts (GSE) are a rich source of polyphenols known to have antioxidant, chemopreventive and anticancer properties. Herein, we investigated the in vitro effects and putative action mechanisms of a grape seed extract (GSE) on human breast cancer cells (MCF-7). The effects of GSE were evaluated on cell proliferation, apoptosis and gap-junction-mediated cell-cell communications (GJIC), as basal mechanism involved in the promotion stage of carcinogenesis. GSE (0.05-100 μg/mL) caused a significant dose- and time-dependent inhibition of MCF-7 viability and induced apoptotic cell death, as detected by Annexin-V/Propidium Iodide. Concurrently, GSE induced transient but significant enhancement of GJIC in non-communicating MCF-7 cells, as demonstrated by the scrape-loading/dye-transfer (SL/DT) assay and an early and dose-dependent re-localization of the connexin-43 (Cx43) proteins on plasma membranes, as assayed by immunocytochemistry. Finally, real-time-PCR has evidenced a significant increase in cx43 mRNA expression. The results support the hypothesis that the proliferation inhibition and pro-apoptotic effect of GSE against this breast cancer cell model are mediated by the GJIC improvement via re-localization of Cx43 proteins and up-regulation of cx43 gene, and provide further insight into the action mechanisms underlying the health-promoting action of dietary components.
Collapse
|
28
|
Aasen T, Leithe E, Graham SV, Kameritsch P, Mayán MD, Mesnil M, Pogoda K, Tabernero A. Connexins in cancer: bridging the gap to the clinic. Oncogene 2019; 38:4429-4451. [PMID: 30814684 PMCID: PMC6555763 DOI: 10.1038/s41388-019-0741-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 01/26/2019] [Indexed: 02/08/2023]
Abstract
Gap junctions comprise arrays of intercellular channels formed by connexin proteins and provide for the direct communication between adjacent cells. This type of intercellular communication permits the coordination of cellular activities and plays key roles in the control of cell growth and differentiation and in the maintenance of tissue homoeostasis. After more than 50 years, deciphering the links among connexins, gap junctions and cancer, researchers are now beginning to translate this knowledge to the clinic. The emergence of new strategies for connexin targeting, combined with an improved understanding of the molecular bases underlying the dysregulation of connexins during cancer development, offers novel opportunities for clinical applications. However, different connexin isoforms have diverse channel-dependent and -independent functions that are tissue and stage specific. This can elicit both pro- and anti-tumorigenic effects that engender significant challenges in the path towards personalised medicine. Here, we review the current understanding of the role of connexins and gap junctions in cancer, with particular focus on the recent progress made in determining their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, Barcelona, Spain.
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital and K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), University of A Coruña, A Coruña, Spain
| | - Marc Mesnil
- STIM Laboratory, Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers, France
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany
| | - Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
29
|
Chen C, Yao W, Wu S, Zhou S, Ge M, Gu Y, Li X, Chen G, Bellanti JA, Zheng SG, Yuan D, Hei Z. Crosstalk Between Connexin32 and Mitochondrial Apoptotic Signaling Pathway Plays a Pivotal Role in Renal Ischemia Reperfusion-Induced Acute Kidney Injury. Antioxid Redox Signal 2019; 30:1521-1538. [PMID: 29790387 PMCID: PMC7364332 DOI: 10.1089/ars.2017.7375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 04/30/2018] [Accepted: 05/22/2018] [Indexed: 12/23/2022]
Abstract
Aims: Perioperative acute kidney injury (AKI) resulting from renal ischemia reperfusion (IR) is not conducive to the postoperative surgical recovery. Our previous study demonstrated that reactive oxygen species (ROS) transmitted by gap junction (GJ) composed of connexin32 (Cx32) contributed to AKI. However, the precise underlying pathophysiologic mechanisms were largely unknown. This study focuses on the underlying mechanisms related to ROS transmitted by Cx32 responsible for AKI aggravation. Results: In a set of in vivo studies, renal IR was found to cause severe impairment in renal tissues with massive ROS generation, which occurred contemporaneously with activation of NF-κB/p53/p53 upregulated modulator of apoptosis (PUMA)-mediated mitochondrial apoptosis pathways. Cx32 deficiency alleviated renal IR-induced AKI, and simultaneously attenuated ROS generation and distribution in renal tissues, which further inhibited NF-κB/p53/PUMA-mediated mitochondrial apoptotic pathways. Correspondingly, in a set of in vitro studies, hypoxia reoxygenation (HR)-induced cellular injury, and cell apoptosis in both human kidney tubular epithelial cells (HK-2s) and rat kidney tubular epithelial cells (NRK52Es) were significantly attenuated by Cx32 inhibitors or Cx32 gene knockdown. More importantly, Cx32 inhibition not only decreased ROS generation and distribution in human or rat kidney tubular epithelial cells but also inhibited its downstream NF-κB/p53/PUMA-mediated mitochondrial apoptotic pathway activation. Innovation and Conclusion: This is the first identification of the underlying mechanisms of IR-induced renal injury integrally which demonstrates the critical role played by Cx32 in IR-induced AKI. Moreover, GJ composed of Cx32 manipulates ROS generation and distribution between neighboring cells, and alters activation of NF-κB/p53/PUMA-mediated mitochondrial apoptotic pathways. Both inhibiting Cx32 function and scavenging ROS effectively reduce mitochondrial apoptosis and subsequently attenuate AKI, providing effective strategies for kidney protection.
Collapse
Affiliation(s)
- Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shan Wu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mian Ge
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu Gu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guihua Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Joseph A. Bellanti
- Departments of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, District of Columbia
| | - Song Guo Zheng
- Department of Medicine, Milton S Hershey Medical Center, Penn State University, State College, Pennsylvania
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Anesthesiology, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, People's Republic of China
| |
Collapse
|
30
|
Nishiyama N, Yamaguchi T, Yoneyama M, Onaka Y, Ogita K. Disruption of Gap Junction-Mediated Intercellular Communication in the Spiral Ligament Causes Hearing and Outer Hair Cell Loss in the Cochlea of Mice. Biol Pharm Bull 2019; 42:73-80. [PMID: 30606991 DOI: 10.1248/bpb.b18-00559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well-known that outer hair cell (OHC) loss occurs in the cochlea of animal models of permanent hearing loss induced by intense noise exposure. Our earlier studies demonstrated the production of hydroxynonenal and peroxynitrite, as well as the disruption of gap junction-mediated intercellular communication (GJIC), in the cochlear spiral ligament prior to noise-induced sudden hearing loss. The goal of the present study was to evaluate the mechanism underlying cochlear OHC loss after sudden hearing loss induced by intense noise exposure. In organ of Corti explant cultures from mice, no significant OHC loss was observed after in vitro exposure to 4-hydroxynonenal (a product of lipid peroxidation), H2O2, SIN-1 (peroxynitrite generator), and carbenoxolone (a gap junction inhibitor). Interestingly, in vivo intracochlear carbenoxolone injection through the posterior semicircular canal caused marked OHC and hearing loss, as well as the disruption of gap junction-mediated intercellular communication in the cochlear spiral ligament. However, no significant OHC loss was observed in vivo in animals treated with 4-hydroxynonenal and SIN-1. Taken together, our data suggest that disruption of GJIC in the cochlear lateral wall structures is an important cause of cochlear OHC loss in models of hearing loss, including those induced by noise.
Collapse
Affiliation(s)
- Norito Nishiyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Yusuke Onaka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Kiyokazu Ogita
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
31
|
Hernández-Guerra M, Hadjihambi A, Jalan R. Gap junctions in liver disease: Implications for pathogenesis and therapy. J Hepatol 2019; 70:759-772. [PMID: 30599172 DOI: 10.1016/j.jhep.2018.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
In the normal liver, cells interact closely through gap junctions. By providing a pathway for the trafficking of low molecular mass molecules, these channels contribute to tissue homeostasis and maintenance of hepatic function. Thus, dysfunction of gap junctions affects a wide variety of liver processes, such as differentiation, cell death, inflammation and fibrosis. In fact, dysfunctional gap junctions have been implicated, for more than a decade, in cholestatic disease, hepatic cancer and cirrhosis. Additionally, in recent years there is an increasing body of evidence that these channels are also involved in other relevant and prevalent liver pathological processes, such as non-alcoholic fatty liver disease, acute liver injury and portal hypertension. In parallel to these new clinical implications the available data include controversial observations. Thus, a comprehensive overview is required to better understand the functional complexity of these pores. This paper will review the most recent knowledge concerning gap junction dysfunction, with a special focus on the role of these channels in the pathogenesis of relevant clinical entities and on potential therapeutic targets that are amenable to modification by drugs.
Collapse
Affiliation(s)
| | | | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Royal Free Medical School, London, UK
| |
Collapse
|
32
|
Tang N, Cai Z, Chen H, Cao L, Chen B, Lin B. Involvement of gap junctions in propylthiouracil-induced cytotoxicity in BRL-3A cells. Exp Ther Med 2019; 17:2799-2806. [PMID: 30906468 DOI: 10.3892/etm.2019.7244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Gap junctions (GJs), which are important plasma membrane channels for the transfer of signaling molecules between adjacent cells, have been implicated in drug-induced liver injury. However, the influence and the underlying mechanisms of GJs in propylthiouracil (PTU)-induced hepatotoxicity are unclear. In the present study, distinct manipulations were performed to regulate GJ function in the BRL-3A rat liver cell line. The results indicated that the toxic effect of PTU in BRL-3A cells was mediated by GJ intercellular communication, as cell death was significantly attenuated in the absence of functional GJ channels. Furthermore, the specific knockdown of connexin-32 (Cx32; a major GJ component protein in hepatocytes) using small interfering RNA was observed to decrease necrosis, intracellular PTU content and the level of reactive oxygen species (ROS) following PTU exposure. These observations demonstrated that suppressing GJ Cx32 could confer protection against PTU-induced cytotoxicity through decreasing the accumulation of PTU and ROS. To the best of our knowledge, the present study is the first to demonstrate the role and possible underlying mechanisms of GJs in the regulation of PTU-induced toxicity in BRL-3A rat liver cells.
Collapse
Affiliation(s)
- Nan Tang
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Ziqing Cai
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Hongpeng Chen
- School of Information Engineering, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Longbin Cao
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Bo Chen
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Bihua Lin
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
33
|
Phosphorylation-Dependent Intra-Domain Interaction of the Cx37 Carboxyl-Terminus Controls Cell Survival. Cancers (Basel) 2019; 11:cancers11020188. [PMID: 30736283 PMCID: PMC6406260 DOI: 10.3390/cancers11020188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 02/07/2023] Open
Abstract
Differential phosphorylation of the carboxyl-terminus of connexin 37 (Cx37-CT) regulates phenotypic switching between cell growth phenotypes (cell death, cell cycle arrest, proliferation). The specific phosphorylation events in the Cx37-CT that are necessary for these growth regulatory effects are currently unknown. Through the combined use of deletion and site specific (de)phospho-mimetic Cx37-CT mutants, our data suggest a phosphorylation-dependent interaction between the mid-tail (aa 273⁻317) and end-tail (aa 318⁻333) portions of the Cx37-CT that regulates cell survival. As detected by mass spectrometry, Cx37 was phosphorylated at serines 275, 321, and 328; phosphomimetic mutations of these sites resulted in cell death when expressed in rat insulinoma cells. Alanine substitution at S328, but not at S275 or S321, also triggered cell death. Cx37-S275D uniquely induced the death of only low density, non-contact forming cells, but neither hemichannel open probability nor channel conductance distinguished death-inducing mutants. As channel function is necessary for cell death, together the data suggest that the phosphorylation state of the Cx37-CT controls an intra-domain interaction within the CT that modifies channel function and induces cell death.
Collapse
|
34
|
Hughes BR, Mirbagheri M, Waldman SD, Hwang DK. Direct cell-cell communication with three-dimensional cell morphology on wrinkled microposts. Acta Biomater 2018; 78:89-97. [PMID: 30092377 DOI: 10.1016/j.actbio.2018.07.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/23/2018] [Accepted: 07/29/2018] [Indexed: 01/09/2023]
Abstract
Cell-cell communication plays a critical role in a myriad of processes, such as homeostasis, angiogenesis, and carcinogenesis, in multi-cellular organisms. Monolayer cell models have notably improved our understanding of cellular interactions. However, the cultured cells on the planar surfaces adopt a two-dimensional morphology, which poorly imitates cellular organization in vivo, providing physiologically-irrelevant cell responses. Non-planar surfaces comprising various patterns have demonstrated great abilities in directing cellular growth and producing different cell morphologies. In recent years, a few topographical substrates have provided valuable information about cell-cell signalling, however, none of these studies have reported a three-dimensional (3D) cell morphology. Here, we introduce a structurally tunable topographical platform that can maintain cell coupling while inducing a true 3D cell morphology. Optical imaging and fluorescence recovery after photobleaching are used to illustrate these capabilities. Our analyses suggest that the intercellular signalling on the present platform, which we propose is mainly through gap junctions, is comparable to that in natural tissue. STATEMENT OF SIGNIFICANCE A better understanding of direct cellular communication can help treating neurological diseases and cancers, which may be caused by dysfunctional intercellular signaling. To investigate cell-cell contact, cells are conventionally plated onto planar surfaces, where they flatten and adopt a two-dimensional cell morphology. These unrealistic models are physiologically-irrelevant since cells exhibit a three-dimensional (3D) shape in the body. Therefore, porous scaffolds and topographical surfaces, capable of inducing various cell morphologies, have been introduced, in which the latter is more desirable for sample imaging and screening. However, the few non-planar substrates used to study cell coupling have not produced a 3D cell shape. Here, we present a tunable culture platform that can control direct cell-cell communication while maintaining true 3D cell morphologies.
Collapse
|
35
|
Wang X, Zhao Q, Wang L, Liu J, Pu H, Xie S, Ru C, Sun Y. Effect of Cell Inner Pressure on Deposition Volume in Microinjection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10287-10292. [PMID: 30095920 DOI: 10.1021/acs.langmuir.8b02102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microinjection is a widely used technique for introducing exogenous materials into cells. Many applications of microinjection, such as gene editing and drug testing, rely on the accurate control of the deposition volume. However, the deposition volume in microinjection is presently calibrated in an open medium without considering the cell inner pressure effect, which we experimentally show in this paper that it can induce an error as large as 30% between the actual deposition volume and the set volume. In this work, the relationship between the cell inner pressure and the deposition volume was analytically modeled and experimentally validated. On the basis of the developed model, the cell inner pressure of a given cell type can be well estimated from the injection pressure and the resulting deposition volume. The quantitated cell inner pressure is then used to reduce the error between the set volume and the actual deposition volume. Experiments conducted on human bladder cancer cells (T24 and RT4) showed that T24 cells have a higher inner pressure than RT4 cells (405 ± 45 Pa vs 341 ± 34 Pa), and after compensating for the cell inner pressure, the error between the intended set volume and the actual deposition volume into a cell became less than 3%.
Collapse
Affiliation(s)
- Xian Wang
- Department of Mechanical and Industrial Engineering , University of Toronto , Toronto M5S 3G8 , Canada
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , Toronto M5S 3G9 , Canada
| | - Qili Zhao
- Department of Mechanical and Industrial Engineering , University of Toronto , Toronto M5S 3G8 , Canada
| | - Li Wang
- Department of Mechanical and Industrial Engineering , University of Toronto , Toronto M5S 3G8 , Canada
| | - Jun Liu
- Department of Mechanical and Industrial Engineering , University of Toronto , Toronto M5S 3G8 , Canada
| | - Huayan Pu
- School of Mechatronic Engineering and Automation , Shanghai University , Shanghai 200072 , China
| | - Shaorong Xie
- School of Mechatronic Engineering and Automation , Shanghai University , Shanghai 200072 , China
| | - Changhai Ru
- Research Center of Robotics and Micro System & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou , Jiangsu 215021 , China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering , University of Toronto , Toronto M5S 3G8 , Canada
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , Toronto M5S 3G9 , Canada
- Department of Electrical and Computer Engineering , University of Toronto , Toronto M5S 3G4 , Canada
| |
Collapse
|
36
|
Gu Y, Huang F, Wang Y, Chen C, Wu S, Zhou S, Hei Z, Yuan D. Connexin32 plays a crucial role in ROS-mediated endoplasmic reticulum stress apoptosis signaling pathway in ischemia reperfusion-induced acute kidney injury. J Transl Med 2018; 16:117. [PMID: 29728112 PMCID: PMC5935959 DOI: 10.1186/s12967-018-1493-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion (I/R)-induced acute kidney injury (AKI) not only prolongs the length of hospital stay, but also seriously affects the patient's survival rate. Although our previous investigation has verified that reactive oxygen species (ROS) transferred through gap junction composed of connexin32 (Cx32) contributed to AKI, its underlying mechanisms were not fully understood and viable preventive or therapeutic regimens were still lacking. Among various mechanisms involved in organs I/R-induced injuries, endoplasmic reticulum stress (ERS)-related apoptosis is currently considered to be an important participant. Thus, in present study, we focused on the underlying mechanisms of I/R-induced AKI, and postulated that Cx32 mediated ROS/ERS/apoptosis signal pathway activation played an important part in I/R-induced AKI. METHODS We established renal I/R models with Cx32+/+ and Cx32-/- mice, which underwent double kidneys clamping and recanalization. ROS scavenger (N-acetylcysteine, NAC) and ERS inhibitors (4-phenyl butyric acid, 4-PBA, and tauroursodeoxycholic acid, TUDCA) were used to decrease the content of ROS and attenuate ERS activation, respectively. RESULTS Renal damage was progressively exacerbated in a time-dependent manner at the reperfusion stage, that was consistent with the alternation of ERS activation, including glucose regulated protein 78 (BiP/GRP78), X box-binding protein1, and C/EBP homologous protein expression. TUDCA or 4-PBA application attenuated I/R-induced ERS activation and protected against renal tubular epithelial cells apoptosis and renal damage. Cx32 deficiency decreased ROS generation and distribution between the neighboring cells, which attenuated I/R-induced ERS activation, and improved cell apoptosis and renal damage. CONCLUSION Cx32 mediated ROS/ERS/apoptosis signal pathway activation played an important part in I/R-induced AKI. Cx32 deficiency, ROS elimination, and ERS inhibition all could protect against I/R-induced AKI.
Collapse
Affiliation(s)
- Yu Gu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| | - Fei Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| | - Shan Wu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| |
Collapse
|
37
|
Schultze E, Collares T, Lucas CG, Seixas FK. Synergistic and additive effects of ATRA in combination with different anti-tumor compounds. Chem Biol Interact 2018; 285:69-75. [DOI: 10.1016/j.cbi.2018.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/26/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
|
38
|
Jayaraman A, Kumar P, Marin S, de Atauri P, Mateo F, M. Thomson T, J. Centelles J, F. Graham S, Cascante M. Untargeted metabolomics reveals distinct metabolic reprogramming in endothelial cells co-cultured with CSC and non-CSC prostate cancer cell subpopulations. PLoS One 2018; 13:e0192175. [PMID: 29466368 PMCID: PMC5821452 DOI: 10.1371/journal.pone.0192175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
Tumour angiogenesis is an important hallmark of cancer and the study of its metabolic adaptations, downstream to any cellular change, can reveal attractive targets for inhibiting cancer growth. In the tumour microenvironment, endothelial cells (ECs) interact with heterogeneous tumour cell types that drive angiogenesis and metastasis. In this study we aim to characterize the metabolic alterations in ECs influenced by the presence of tumour cells with extreme metastatic abilities. Human umbilical vein endothelial cells (HUVECs) were subjected to different microenvironmental conditions, such as the presence of highly metastatic PC-3M and highly invasive PC-3S prostate cancer cell lines, in addition to the angiogenic activator vascular endothelial growth factor (VEGF), under normoxia. Untargeted high resolution liquid chromatography-mass spectrometry (LC-MS) based metabolomics revealed significant metabolite differences among the various conditions and a total of 25 significantly altered metabolites were identified including acetyl L-carnitine, NAD+, hypoxanthine, guanine and oleamide, with profile changes unique to each of the experimental conditions. Biochemical pathway analysis revealed the importance of fatty acid oxidation and nucleotide salvage pathways. These results provide a global metabolic preview that could help in selectively targeting the ECs aiding in either cancer cell invasion or metastasis in the heterogeneous tumour microenvironment.
Collapse
Affiliation(s)
- Anusha Jayaraman
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Praveen Kumar
- Beaumont Health System, Beaumont Research Institute, Royal Oak, Michigan, United States of America
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pedro de Atauri
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francesca Mateo
- Department of Cell Biology, Molecular Biology Institute of Barcelona, National Research Council (IBMB-CSIC), Barcelona, Spain
| | - Timothy M. Thomson
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Cell Biology, Molecular Biology Institute of Barcelona, National Research Council (IBMB-CSIC), Barcelona, Spain
| | - Josep J. Centelles
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Stewart F. Graham
- Beaumont Health System, Beaumont Research Institute, Royal Oak, Michigan, United States of America
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- * E-mail:
| |
Collapse
|
39
|
Qin Y, Han L, Yang D, Wei H, Liu Y, Xu J, Autrup H, Deng F, Guo X. Silver nanoparticles increase connexin43-mediated gap junctional intercellular communication in HaCaT cells through activation of reactive oxygen species and mitogen-activated protein kinase signal pathway. J Appl Toxicol 2017; 38:564-574. [PMID: 29235124 DOI: 10.1002/jat.3563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 01/17/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in health and consumer products that routinely contact skin. However, the biological effects and possible mechanisms of AgNPs on skin remain unclear. Gap junctional intercellular communication (GJIC) plays a critical role in multicellular organisms to maintain tissue homeostasis. The aim of this study is to examine if non-coated AgNPs affect GJIC in human keratinocytes (HaCaT cells), and to identify the possible molecular mechanisms responsible for the effects. GJIC, connexin (Cx)43 protein and mRNA expression, and the effect of siRNA-mediated knockdown of Cx43 on GJIC were assessed. HaCaT cells exposed to non-coated AgNPs at different doses after a 24 hour exposure. To explore further the underlying mechanism, reactive oxygen species and mitogen-activated protein kinase pathway were evaluated after 2, 6, 12 and 24 hours. Our results revealed that non-coated AgNP exposure at subcytotoxic doses increase GJIC partially via Cx43 upregulation. Reactive oxygen species and extracellular signal-regulated kinase and activation of c-Jun N-terminal kinase were involved in the AgNP-induced upregulation of Cx43. This study provides new insight into the potential mechanism of AgNP biological activity.
Collapse
Affiliation(s)
- Yu Qin
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Limin Han
- Department of Biochemistry and Molecular Biology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Hongying Wei
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Yue Liu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Herman Autrup
- Department of Environmental and Occupational Medicine, Aarhus University Institute of Public Health, Aarhus, Denmark
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| |
Collapse
|
40
|
Roussakow SV. Clinical and economic evaluation of modulated electrohyperthermia concurrent to dose-dense temozolomide 21/28 days regimen in the treatment of recurrent glioblastoma: a retrospective analysis of a two-centre German cohort trial with systematic comparison and effect-to-treatment analysis. BMJ Open 2017; 7:e017387. [PMID: 29102988 PMCID: PMC5722101 DOI: 10.1136/bmjopen-2017-017387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE To assess the efficacy and cost-effectiveness of modulated electrohyperthermia (mEHT) concurrent to dose-dense temozolomide (ddTMZ) 21/28 days regimen versus ddTMZ 21/28 days alone in patients with recurrent glioblastoma (GBM). DESIGN A cohort of 54 patients with recurrent GBM treated with ddTMZ+mEHT in 2000-2005 was systematically retrospectively compared with five pooled ddTMZ 21/28 days cohorts (114 patients) enrolled in 2008-2013. RESULTS The ddTMZ+mEHT cohort had a not significantly improved mean survival time (mST) versus the comparator (p=0.531) after a significantly less mean number of cycles (1.56 vs 3.98, p<0.001). Effect-to-treatment analysis (ETA) suggests that mEHT significantly enhances the efficacy of the ddTMZ 21/28 days regimen (p=0.011), with significantly less toxicity (no grade III-IV toxicity vs 45%-92%, p<0.0001). An estimated maximal attainable median survival time is 10.10 months (9.10-11.10). Cost-effectiveness analysis suggests that, unlike ddTMZ 21/28 days alone, ddTMZ+mEHT is cost-effective versus the applicable cost-effectiveness thresholds €US$25 000-50 000/quality-adjusted life year (QALY). Budget impact analysis suggests a significant saving of €8 577 947/$11 201 761 with 29.1-38.5 QALY gained per 1000 patients per year. Cost-benefit analysis suggests that mEHT is profitable and will generate revenues between €3 124 574 and $6 458 400, with a total economic effect (saving+revenues) of €5 700 034 to $8 237 432 per mEHT device over an 8-year period. CONCLUSIONS Our ETA suggests that mEHT significantly improves survival of patients receiving the ddTMZ 21/28 days regimen. Economic evaluation suggests that ddTMZ+mEHT is cost-effective, budget-saving and profitable. After confirmation of the results, mEHT could be recommended for the treatment of recurrent GBM as a cost-effective enhancer of ddTMZ regimens, and, probably, of the regular 5/28 days regimen. mEHT is applicable also as a single treatment if chemotherapy is impossible, and as a salvage treatment after the failure of chemotherapy.
Collapse
|
41
|
Phillips SL, Williams CB, Zambrano JN, Williams CJ, Yeh ES. Connexin 43 in the development and progression of breast cancer: What's the connection? (Review). Int J Oncol 2017; 51:1005-1013. [PMID: 28902343 PMCID: PMC5592860 DOI: 10.3892/ijo.2017.4114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022] Open
Abstract
Connexin 43 is a prominent gap junction protein within normal human breast tissue. Thus far, there have been a number of research studies performed to determine the function of connexin 43 in breast tumor formation and progression. Within primary tumors, research suggests that the level of connexin 43 expression in breast tumors is altered when compared to normal human breast tissue. While some reports indicate that connexin 43 levels decrease, other evidence suggests that connexin 43 levels are increased and protein localization shifts from the plasma membrane to the cytoplasm. In either case, the prevailing theory is that breast tumor cells have reduced gap junction intercellular communication within primary tumors. The current consensus appears to be that the loss of connexin 43 gap junction intercellular communication is an early event in malignancy, with the possibility of gap junction restoration in the event of metastasis. However, additional evidence is needed to support the latter claim. The purpose of this report is to review the connexin 43 literature that describes studies using human tissue samples, in order to evaluate the function of connexin 43 protein in normal human breast tissue as well as the role of connexin 43 in human breast tumor formation and metastatic progression.
Collapse
Affiliation(s)
- Stephanie L Phillips
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Carly Bess Williams
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Joelle N Zambrano
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Christina J Williams
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
42
|
Raza A, Ghoshal A, Chockalingam S, Ghosh SS. Connexin-43 enhances tumor suppressing activity of artesunate via gap junction-dependent as well as independent pathways in human breast cancer cells. Sci Rep 2017; 7:7580. [PMID: 28790385 PMCID: PMC5548912 DOI: 10.1038/s41598-017-08058-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/26/2017] [Indexed: 12/02/2022] Open
Abstract
The gap junction (GJ) protein connexin-43 (Cx43) is considered as a tumour suppressor protein for its role in reversing the phenotype of the cancer cells. In this study, we exploited the antitumor property of Cx43 in conjunction with the artesunate (ART), a plant-based active anti-malarial compound. The reactive oxygen species (ROS) generated by ART resulted in DNA damage, which in turn led to DNA damage response by activation of DNA damage repair proteins. GJ deficient MCF-7 cells transfected with Cx43 gene showed an increased sensitivity towards dose-dependent ART treatment and required a significantly lower dose of ART to attain its IC50, as compared to parental cells. This would ultimately result in reduced dose-dependent side effects of ART. The Co-culture experiments involving GJ intercellular communication (GJIC) deficient and GJIC enabled cells, established the transfer of ROS to the neighbouring cancer cells not exposed to ART. The ROS accumulated in the ART-treated cells induced the oxidative damage in neighbouring cells, leading to bystander cell death and inhibition of bystander cell proliferation. Thus, our study revealed that expression of Cx43 helped in reducing the dose-dependent cytotoxicity of ART as well as enhanced the bystander apoptosis of the neighbouring cells.
Collapse
Affiliation(s)
- Asif Raza
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India
| | - Archita Ghoshal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India
| | - S Chockalingam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India.
| |
Collapse
|
43
|
Multiple and complex influences of connexins and pannexins on cell death. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [PMID: 28625689 DOI: 10.1016/j.bbamem.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell death is a fundamental process for organogenesis, immunity and cell renewal. During the last decades a broad range of molecular tools were identified as important players for several different cell death pathways (apoptosis, pyroptosis, necrosis, autosis…). Aside from these direct regulators of cell death programs, several lines of evidence proposed connexins and pannexins as potent effectors of cell death. In the present review we discussed the potential roles played by connexins, pannexins and innexins in the different cell death programs at different scales from gap junction intercellular communication to protein-protein interactions. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
|
44
|
Kitazawa M, Hida S, Fujii C, Taniguchi S, Ito K, Matsumura T, Okada N, Sakaizawa T, Kobayashi A, Takeoka M, Miyagawa SI. ASC Induces Apoptosis via Activation of Caspase-9 by Enhancing Gap Junction-Mediated Intercellular Communication. PLoS One 2017; 12:e0169340. [PMID: 28056049 PMCID: PMC5215782 DOI: 10.1371/journal.pone.0169340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
ASC (apoptosis-associated speck-like protein containing a CARD) is a key adaptor molecule of inflammasomes that mediates inflammatory and apoptotic signals. Aberrant methylation-induced silencing of ASC has been observed in a variety of cancer cells, thus implicating ASC in tumor suppression, although this role remains incompletely defined especially in the context of closely neighboring cell proliferation. As ASC has been confirmed to be silenced by abnormal methylation in HT1080 fibrosarcoma cells as well, this cell line was investigated to characterize the precise role and mechanism of ASC in tumor progression. The effects of ASC were examined using in vitro cell cultures based on comparisons between low and high cell density conditions as well as in a xenograft murine model. ASC overexpression was established by insertion of the ASC gene into pcDNA3 and pMX-IRES-GFP vectors, the latter being packed into a retrovirus and subjected to reproducible competitive assays using parental cells as an internal control, for evaluation of cell viability. p21 and p53 were silenced using shRNA. Cell viability was suppressed in ASC-expressing transfectants as compared with control cells at high cell density conditions in in vitro culture and colony formation assays and in in vivo ectopic tumor formation trials. This suppression was not detected in low cell density conditions. Furthermore, remarkable progression of apoptosis was observed in ASC-introduced cells at a high cell density, but not at a low one. ASC-dependent apoptosis was mediated not by p21, p53, or caspase-1, but rather by cleavage of caspase-9 as well as by suppression of the NF-κB-related X-linked inhibitor-of-apoptosis protein. Caspase-9 cleavage was observed to be dependent on gap junction formation. The remarkable effect of ASC on the induction of apoptosis through caspase-9 and gap junctions revealed in this study may lead to promising new approaches in anticancer therapy.
Collapse
Affiliation(s)
- Masato Kitazawa
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Molecular Oncology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- * E-mail:
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Science, Nagoya City University Graduate School of Pharmaceutical Sciences, Mizuho-ku, Nagoya, Japan
| | - Chifumi Fujii
- Department of Molecular Oncology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Shun’ichiro Taniguchi
- Department of Molecular Oncology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Kensuke Ito
- Department of Molecular Oncology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Tomio Matsumura
- Department of Molecular Oncology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Nagisa Okada
- Department of Molecular Oncology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Takashi Sakaizawa
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akira Kobayashi
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Michiko Takeoka
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-ichi Miyagawa
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
45
|
Gerardi C, Frassinetti S, Caltavuturo L, Leone A, Lecci R, Calabriso N, Carluccio MA, Blando F, Mita G. Anti-proliferative, anti-inflammatory and anti-mutagenic activities of a Prunus mahaleb L. anthocyanin-rich fruit extract. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
46
|
Malekian N, Habibi J, Zangooei MH, Aghakhani H. Integrating evolutionary game theory into an agent-based model of ductal carcinoma in situ: Role of gap junctions in cancer progression. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 136:107-117. [PMID: 27686708 DOI: 10.1016/j.cmpb.2016.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/18/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVE There are many cells with various phenotypic behaviors in cancer interacting with each other. For example, an apoptotic cell may induce apoptosis in adjacent cells. A living cell can also protect cells from undergoing apoptosis and necrosis. These survival and death signals are propagated through interaction pathways between adjacent cells called gap junctions. The function of these signals depends on the cellular context of the cell receiving them. For instance, a receiver cell experiencing a low level of oxygen may interpret a received survival signal as an apoptosis signal. In this study, we examine the effect of these signals on tumor growth. METHODS We make an evolutionary game theory component in order to model the signal propagation through gap junctions. The game payoffs are defined as a function of cellular context. Then, the game theory component is integrated into an agent-based model of tumor growth. After that, the integrated model is applied to ductal carcinoma in situ, a type of early stage breast cancer. Different scenarios are explored to observe the impact of the gap junction communication and parameters of the game theory component on cancer progression. We compare these scenarios by using the Wilcoxon signed-rank test. RESULTS The Wilcoxon signed-rank test succeeds in proving a significant difference between the tumor growth of the model before and after considering the gap junction communication. The Wilcoxon signed-rank test also proves that the tumor growth significantly depends on the oxygen threshold of turning survival signals into apoptosis. CONCLUSIONS In this study, the gap junction communication is modeled by using evolutionary game theory to illustrate its role at early stage cancers such as ductal carcinoma in situ. This work indicates that the gap junction communication and the oxygen threshold of turning survival signals into apoptosis can notably affect cancer progression.
Collapse
Affiliation(s)
- Negin Malekian
- Software Engineering, Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran.
| | - Jafar Habibi
- Software Engineering, Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
| | - Mohammad Hossein Zangooei
- Software Engineering, Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
| | - Hojjat Aghakhani
- Software Engineering, Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
| |
Collapse
|
47
|
Connexin43 hemichannels contributes to the disassembly of cell junctions through modulation of intracellular oxidative status. Redox Biol 2016; 9:198-209. [PMID: 27567473 PMCID: PMC5007435 DOI: 10.1016/j.redox.2016.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/28/2016] [Accepted: 08/18/2016] [Indexed: 12/25/2022] Open
Abstract
Connexin (Cx) hemichannels regulate many cellular processes with little information available regarding their mechanisms. Given that many pathological factors that activate hemichannels also disrupts the integrity of cellular junctions, we speculated a potential participation of hemichannels in the regulation of cell junctions. Here we tested this hypothesis. Exposure of renal tubular epithelial cells to Ca2+-free medium led to disassembly of tight and adherens junctions, as indicated by the reduced level of ZO-1 and cadherin, disorganization of F-actin, and severe drop in transepithelial electric resistance. These changes were preceded by an activation of Cx43 hemichannels, as revealed by extracellular efflux of ATP and intracellular influx of Lucifer Yellow. Inhibition of hemichannels with chemical inhibitors or Cx43 siRNA greatly attenuated the disassembly of cell junctions. Further analysis using fetal fibroblasts derived from Cx43 wide-type (Cx43+/+), heterozygous (Cx43+/-) and knockout (Cx43-/-) littermates showed that Cx43-positive cells (Cx43+/+) exhibited more dramatic changes in cell shape, F-actin, and cadherin in response to Ca2+ depletion, as compared to Cx43-null cells (Cx43-/-). Consistently, these cells had higher level of protein carbonyl modification and phosphorylation, and much stronger activation of P38 and JNK. Hemichannel opening led to extracellular loss of the major antioxidant glutathione (GSH). Supplement of cells with exogenous GSH or inhibition of oxidative sensitive kinases largely prevented the above-mentioned changes. Taken together, our study indicates that Cx43 hemichannels promote the disassembly of cell junctions through regulation of intracellular oxidative status. The mechanisms about the coordinated regulation of cell junctions are obscure. Ca2+ depletion activates hemichannels and disrupts cell junctions. Hemichannel opening exaggerates oxidative stress via efflux of GSH. Blocking hemichannels attenuates oxidative stress and cell junction disassembly. Hemichannels regulate cell junctions via modulation of intracellular redox status.
Collapse
|
48
|
Yuan D, Su G, Liu Y, Chi X, Feng J, Zhu Q, Cai J, Luo G, Hei Z. Propofol attenuated liver transplantation-induced acute lung injury via connexin43 gap junction inhibition. J Transl Med 2016; 14:194. [PMID: 27364362 PMCID: PMC4929774 DOI: 10.1186/s12967-016-0954-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/21/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Postoperative acute lung injury (ALI) is a severe complication after liver transplantation, which influences patient survival rate obviously. However, its mechanisms are unclear and effective therapies are still lacking. The current study focused on effects of propofol on liver transplantation-induced ALI and whether its underlying mechanism was relative with connexin43 (Cx43) alternation. The authors postulated that endotoxin induced enhancement of Cx43 gap junction (GJ) plays a critical role in mediating post liver transplantation ALI and that pretreatment with the anesthetic propofol, known to inhibit gap junction, can confer effective protection. METHODS Male Sprague-Dawley rats underwent autologous orthotopic liver transplantation (AOLT) in the absence or presence of treatments with the selective Cx43 inhibitor, enanthol (0.1 mg/kg) and propofol (50 mg/kg), a commonly used anesthetic in clinical anesthesia. In vitro study, BEAS-2B cells, a kind of lung epithelial cell line expressing Cx43, exposed to lipopolysaccharide (LPS), which mainly contributed to ALI. Function of Cx43 GJ was regulated by Cx43 specific inhibitors, gap26 (300 μM) or enhancer, retinoic acid (10 μM) and two specific siRNAs. RESULTS Compared with the sham group, AOLT results in ALI obviously with plasma endotoxin increase. Cx43 inhibition decreased ALI through inflammatory reaction reduction. In vitro studies, LPS-induced BEAS-2B cells damage was attenuated by Cx43 function inhibition, but amplified by enhancement. Another important finding was propofol reduced Cx43 function and protected against LPS-mediated BEAS-2B cells damage or AOLT-induced ALI, mechanisms of which were also associated with inflammatory reaction decrease. CONCLUSION Cx43 plays a vital role in liver transplantation-induced ALI. Propofol decreased Cx43 function and protected against ALI in vivo and in vitro. This finding provide a new basis for targeted intervention of organ protection in liver transplantation, even in other kinds of operations.
Collapse
Affiliation(s)
- Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, People’s Republic of China
| | - Guangjie Su
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, People’s Republic of China
| | - Yue Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, People’s Republic of China
| | - Xinjin Chi
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, People’s Republic of China
| | - Jiayu Feng
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, People’s Republic of China
| | - Qianqian Zhu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, People’s Republic of China
| | - Jun Cai
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, People’s Republic of China
| | - Gangjian Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, People’s Republic of China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, People’s Republic of China
| |
Collapse
|
49
|
Zhang Y, Wang X, Wang Q, Ge H, Tao L. Propofol depresses cisplatin cytotoxicity via the inhibition of gap junctions. Mol Med Rep 2016; 13:4715-20. [PMID: 27082707 DOI: 10.3892/mmr.2016.5119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 02/15/2016] [Indexed: 11/05/2022] Open
Abstract
The general anesthetic, propofol, affects chemotherapeutic activity, however, the mechanism underlying its effects remains to be fully elucidated. Our previous study showed that tramadol and flurbiprofen depressed the cytotoxicity of cisplatin via the inhibition of gap junction (GJ) intercellular communication (GJIC) in connexin (Cx)32 HeLa cells. The present study investigated whether the effects of propofol on the cytotoxicity of cisplatin were mediated by GJ in U87 glioma cells and Cx26‑transfected HeLa cells. Standard colony formation assay was used to determine the cytotoxicity of cisplatin. Parachute dye coupling assay was used to measure GJ function, and western blot analysis was used to determine the expression levels of Cx32. The results revealed that exposure of the U87 glioma cells and the Cx26-transfected HeLa cells to cisplatin for 1 h reduced clonogenic survival in low density cultures (without GJs) and high density cultures (with GJs). However, the toxic effect was higher in the high density culture. In addition, pretreatment of the cells with propofol significantly reduced cisplatin‑induced cytotoxicity, but only in the presence of functional GJs. Furthermore, propofol significantly inhibited dye coupling through junctional channels, and a long duration of exposure of the cells to propofol downregulated the expression levels of Cx43 and Cx26. These results demonstrated that the inhibition of GJIC by propofol affected the therapeutic efficacy of chemotherapeutic drugs. The present study provides evidence of a novel mechanism underlying the effects of analgesics in counteracting chemotherapeutic efficiency.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiyan Wang
- Tumor Research Institute, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui Ge
- Tumor Research Institute, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
50
|
Willebrords J, Crespo Yanguas S, Maes M, Decrock E, Wang N, Leybaert L, da Silva TC, Veloso Alves Pereira I, Jaeschke H, Cogliati B, Vinken M. Structure, Regulation and Function of Gap Junctions in Liver. ACTA ACUST UNITED AC 2016; 22:29-37. [PMID: 27001459 DOI: 10.3109/15419061.2016.1151875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gap junctions are a specialized group of cell-to-cell junctions that mediate direct intercellular communication between cells. They arise from the interaction of two hemichannels of adjacent cells, which in turn are composed of six connexin proteins. In liver, gap junctions are predominantly found in hepatocytes and play critical roles in virtually all phases of the hepatic life cycle, including cell growth, differentiation, liver-specific functionality and cell death. Liver gap junctions are directed through a broad variety of mechanisms ranging from epigenetic control of connexin expression to post-translational regulation of gap junction activity. This paper reviews established and novel aspects regarding the architecture, control and functional relevance of liver gap junctions.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|