1
|
Acharya B, Saha D, Garcia Garcia N, Armstrong D, Jabali B, Hanafi M, Frett B, Ryan KR. Discovery of 9H-pyrimido[4,5-b]indole derivatives as dual RET/TRKA inhibitors. Bioorg Med Chem 2024; 106:117749. [PMID: 38744018 PMCID: PMC11144469 DOI: 10.1016/j.bmc.2024.117749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/14/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Aberrant RET kinase signaling is activated in numerous cancers including lung, thyroid, breast, pancreatic, and prostate. Recent approvals of selective RET inhibitors, pralsetinib and selpercatinib, has shifted the focus of RET kinase drug discovery programs towards the development of selective inhibitors. However, selective inhibitors invariably lose efficacy as the selective nature of the inhibitor places Darwinian-like pressure on the tumor to bypass treatment through the selection of novel oncogenic drivers. Further, selective inhibitors are restricted for use in tumors with specific genetic backgrounds that do not encompass diverse patient classes. Here we report the identification of a pyrimido indole RET inhibitor found to also have activity against TRK. This selective dual RET/TRK inhibitor can be utilized in tumors with both RET and TRK genetic backgrounds and can also provide blockade of NTRK-fusions that are selected for from RET inhibitor treatments. Efforts towards developing dual RET/TRK inhibitors can be beneficial in terms of encompassing more diverse patient classes while also achieving blockade against emerging resistance mechanisms.
Collapse
Affiliation(s)
- Baku Acharya
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Conrad Prebys Centre for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Noemi Garcia Garcia
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daniel Armstrong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Baha'a Jabali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maha Hanafi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11526, Egypt
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Katie Rose Ryan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
2
|
Katic L, Priscan A. Multifaceted Roles of ALK Family Receptors and Augmentor Ligands in Health and Disease: A Comprehensive Review. Biomolecules 2023; 13:1490. [PMID: 37892172 PMCID: PMC10605310 DOI: 10.3390/biom13101490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
This review commemorates the 10-year anniversary of the discovery of physiological ligands Augα (Augmentor α; ALKAL2; Fam150b) and Augβ (Augmentor β; ALKAL1; Fam150a) for anaplastic lymphoma kinase (ALK) and leukocyte tyrosine kinase (LTK), previously considered orphan receptors. This manuscript provides an in-depth review of the biophysical and cellular properties of ALK family receptors and their roles in cancer, metabolism, pain, ophthalmology, pigmentation, central nervous system (CNS) function, and reproduction. ALK and LTK receptors are implicated in the development of numerous cancers, and targeted inhibition of their signaling pathways can offer therapeutic benefits. Additionally, ALK family receptors are involved in regulating body weight and metabolism, modulating pain signaling, and contributing to eye development and pigmentation. In the CNS, these receptors play a role in synapse modulation, neurogenesis, and various psychiatric pathologies. Lastly, ALK expression is linked to reproductive functions, with potential implications for patients undergoing ALK inhibitor therapy. Further research is needed to better understand the complex interactions of ALK family receptors and Aug ligands and to repurpose targeted therapy for a wide range of human diseases.
Collapse
Affiliation(s)
- Luka Katic
- Department of Medicine, Icahn School of Medicine at Mount Sinai Morningside/West, 1000 Tenth Avenue, New York, NY 10019, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anamarija Priscan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
3
|
Zage PE, Huo Y, Subramonian D, Le Clorennec C, Ghosh P, Sahoo D. Identification of a novel gene signature for neuroblastoma differentiation using a Boolean implication network. Genes Chromosomes Cancer 2023; 62:313-331. [PMID: 36680522 PMCID: PMC10257350 DOI: 10.1002/gcc.23124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Although induction of differentiation represents an effective strategy for neuroblastoma treatment, the mechanisms underlying neuroblastoma differentiation are poorly understood. We generated a computational model of neuroblastoma differentiation consisting of interconnected gene clusters identified based on symmetric and asymmetric gene expression relationships. We identified a differentiation signature consisting of series of gene clusters comprised of 1251 independent genes that predicted neuroblastoma differentiation in independent datasets and in neuroblastoma cell lines treated with agents known to induce differentiation. This differentiation signature was associated with patient outcomes in multiple independent patient cohorts and validated the role of MYCN expression as a marker of neuroblastoma differentiation. Our results further identified novel genes associated with MYCN via asymmetric Boolean implication relationships that would not have been identified using symmetric computational approaches and that were associated with both neuroblastoma differentiation and patient outcomes. Our differentiation signature included a cluster of genes involved in intracellular signaling and growth factor receptor trafficking pathways that is strongly associated with neuroblastoma differentiation, and we validated the associations of UBE4B, a gene within this cluster, with neuroblastoma cell and tumor differentiation. Our findings demonstrate that Boolean network analyses of symmetric and asymmetric gene expression relationships can identify novel genes and pathways relevant for neuroblastoma tumor differentiation that could represent potential therapeutic targets.
Collapse
Affiliation(s)
- Peter E. Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
| | - Divya Subramonian
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
| | - Christophe Le Clorennec
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
| | - Pradipta Ghosh
- Department of Medicine, UCSD, La Jolla, CA
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA
- Veterans Affairs Medical Center, La Jolla, CA
| | - Debashis Sahoo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
- Department of Computer Science and Engineering, Jacobs School of Engineering, UCSD, La Jolla, CA
| |
Collapse
|
4
|
Addeo A, Miranda-Morales E, den Hollander P, Friedlaender A, O Sintim H, Wu J, Mani SA, Subbiah V. RET aberrant cancers and RET inhibitor therapies: Current state-of-the-art and future perspectives. Pharmacol Ther 2023; 242:108344. [PMID: 36632846 PMCID: PMC10141525 DOI: 10.1016/j.pharmthera.2023.108344] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Abstract
Precision oncology informed by genomic information has evolved in leaps and bounds over the last decade. Although non-small cell lung cancer (NSCLC) has moved to center-stage as the poster child of precision oncology, multiple targetable genomic alterations have been identified in various cancer types. RET alterations occur in roughly 2% of all human cancers. The role of RET as oncogenic driver was initially identified in 1985 after the discovery that transfection with human lymphoma DNA transforms NIH-3T3 fibroblasts. Germline RET mutations are causative of multiple endocrine neoplasia type 2 syndrome, and RET fusions are found in 10-20% of papillary thyroid cases and are detected in most patients with advanced sporadic medullary thyroid cancer. RET fusions are oncogenic drivers in 2% of Non-small cell lung cancer. Rapid translation and regulatory approval of selective RET inhibitors, selpercatinib and pralsetinib, have opened up the field of RET precision oncology. This review provides an update on RET precision oncology from bench to bedside and back. We explore the impact of selective RET inhibitor in patients with advanced NSCLC, thyroid cancer, and other cancers in a tissue-agnostic fashion, resistance mechanisms, and future directions.
Collapse
Affiliation(s)
- Alfredo Addeo
- Oncology Department, University Hospital Geneva (HUG), Geneva, Switzerland
| | - Ernesto Miranda-Morales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; Legorreta Cancer Center, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Alex Friedlaender
- Oncology Department, University Hospital Geneva (HUG), Geneva, Switzerland
| | - Herman O Sintim
- Purdue Institute for Cancer Research, Institute for Drug Discovery and Department of Chemistry, West Lafayette, IN, USA
| | - Jie Wu
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; Legorreta Cancer Center, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics(,) Division of Cancer Medicine, Unit 455, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
SOX4 Mediates ATRA-Induced Differentiation in Neuroblastoma Cells. Cancers (Basel) 2022; 14:cancers14225642. [PMID: 36428735 PMCID: PMC9688885 DOI: 10.3390/cancers14225642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Neuroblastoma (NB), which is considered to be caused by the differentiation failure of neural crest cells, is the most common extracranial malignant solid tumor in children. The degree of tumor differentiation in patients with NB is closely correlated with the survival rate. To explore the potential targets that mediate NB cell differentiation, we analyzed four microarray datasets from GEO, and the overlapping down- or upregulated DEGs were displayed using Venn diagrams. SOX4 was one of the overlapping upregulated DEGs and was confirmed by RT-qPCR and Western blot in ATRA-treated NGP, SY5Y, and BE2 cells. To clarify whether SOX4 was the target gene regulating NB cell differentiation, the correlation between the expression of SOX4 and the survival of clinical patients was analyzed via the R2 database, SOX4 overexpression plasmids and siRNAs were generated to change the expression of SOX4, RT-qPCR and Western blot were performed to detect SOX4 expression, cell confluence or cell survival was detected by IncuCyte Zoom or CCK8 assay, immunocytochemistry staining was performed to detect cells' neurites, and a cell cycle analysis was implemented using Flow cytometry after PI staining. The results showed that the survival probabilities were positively correlated with SOX4 expression, in which overexpressing SOX4 inhibited NB cell proliferation, elongated the cells' neurite, and blocked the cell cycle in G1 phase, and that knockdown of the expression of SOX4 partially reversed the ATRA-induced inhibition of NB cell proliferation, the elongation of the cells' neurites, and the blocking of the cell cycle in the G1 phase. These indicate that SOX4 may be a target to induce NB cell differentiation.
Collapse
|
6
|
Rozen EJ, Shohet JM. Systematic review of the receptor tyrosine kinase superfamily in neuroblastoma pathophysiology. Cancer Metastasis Rev 2022; 41:33-52. [PMID: 34716856 PMCID: PMC8924100 DOI: 10.1007/s10555-021-10001-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neuroblastoma is a devastating disease accounting for 15% of all childhood cancer deaths. Yet, our understanding of key molecular drivers such as receptor tyrosine kinases (RTKs) in this pathology remains poorly clarified. Here, we provide a systematic analysis of the RTK superfamily in the context of neuroblastoma pathogenesis. METHODS Statistical correlations for all RTK family members' expression to neuroblastoma patient survival across 10 independent patient cohorts were annotated, synthesized, and ranked using the R2: Genomics Analysis and Visualization Platform. Gene expression of selected members across different cancer cell lines was further analyzed in the Cancer Cell Line Encyclopedia, part of the Cancer Dependency Map portal (depmap portal ( http://depmap.org )). Finally, we provide a detailed literature review for highly ranked candidates. RESULTS Our analysis defined two subsets of RTKs showing robust associations with either better or worse survival, constituting potential novel players in neuroblastoma pathophysiology, diagnosis, and therapy. We review the available literature regarding the oncogenic functions of these RTKs, their roles in neuroblastoma pathophysiology, and potential utility as therapeutic targets. CONCLUSIONS Our systematic analysis and review of the RTK superfamily in neuroblastoma pathogenesis provides a new resource to guide the research community towards focused efforts investigating signaling pathways that contribute to neuroblastoma tumor establishment, growth, and/or aggressiveness and targeting these druggable molecules in novel therapeutic strategies.
Collapse
Affiliation(s)
- Esteban Javier Rozen
- Department of Pediatrics, UMass Chan Medical School, Lazare Research Building LRB603, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Jason Matthew Shohet
- Division of Hematology/Oncology, Department of Pediatrics, UMass Chan Medical School, Lazare Research Building LRB603, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
7
|
Siaw JT, Gabre JL, Uçkun E, Vigny M, Zhang W, Van den Eynden J, Hallberg B, Palmer RH, Guan J. Loss of RET Promotes Mesenchymal Identity in Neuroblastoma Cells. Cancers (Basel) 2021; 13:cancers13081909. [PMID: 33921066 PMCID: PMC8071449 DOI: 10.3390/cancers13081909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Aberrant activation of anaplastic lymphoma kinase (ALK) drives neuroblastoma (NB). Previous work identified the RET receptor tyrosine kinase (RTK) as a downstream target of ALK activity in NB models. We show here that ALK activation in response to ALKAL2 ligand results in the rapid phosphorylation of RET in NB cells, providing additional insight into the contribution of RET to the ALK-driven gene signature in NB. To further address the role of RET in NB, RET knockout (KO) SK-N-AS cells were generated by CRISPR/Cas9 genome engineering. Gene expression analysis of RET KO NB cells identified a reprogramming of NB cells to a mesenchymal (MES) phenotype that was characterized by increased migration and upregulation of the AXL and MNNG HOS transforming gene (MET) RTKs, as well as integrins and extracellular matrix components. Strikingly, the upregulation of AXL in the absence of RET reflects the development timeline observed in the neural crest as progenitor cells undergo differentiation during embryonic development. Together, these findings suggest that a MES phenotype is promoted in mesenchymal NB cells in the absence of RET, reflective of a less differentiated developmental status.
Collapse
Affiliation(s)
- Joachim T. Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Jonatan L. Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
- Anatomy and Embryology Unit, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
| | - Ezgi Uçkun
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Marc Vigny
- Université Pierre et Marie Curie, UPMC, INSERM UMRS-839, 75005 Paris, France;
| | - Wancun Zhang
- Department of Pediatric Oncology Surgery, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China;
| | - Jimmy Van den Eynden
- Anatomy and Embryology Unit, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
- Department of Pediatric Oncology Surgery, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China;
- Correspondence:
| |
Collapse
|
8
|
Halakos EG, Connell AJ, Glazewski L, Wei S, Mason RW. Bottom up proteomics identifies neuronal differentiation pathway networks activated by cathepsin inhibition treatment in neuroblastoma cells that are enhanced by concurrent 13-cis retinoic acid treatment. J Proteomics 2020; 232:104068. [PMID: 33278663 DOI: 10.1016/j.jprot.2020.104068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Neuroblastoma is the second most common pediatric cancer involving the peripheral nervous system in which stage IVS metastatic tumors regress due to spontaneous differentiation. 13-cis retinoic acid (13-cis RA) is currently used in the clinic for its differentiation effects and although it improves outcomes, relapse is seen in half of high-risk patients. Combinatorial therapies have been shown to be more effective in oncotherapy and since cathepsin inhibition reduces tumor growth, we explored the potential of coupling 13-cis RA with a cathepsin inhibitor (K777) to enhance therapeutic efficacy against neuroblastoma. Shotgun proteomics was used to identify proteins affected by K777 and dual (13-cis RA/K777) treatment in neuroblastoma SK-N-SH cells. Cathepsin inhibition was more effective in increasing proteins involved in neuronal differentiation and neurite outgrowth than 13-cis RA alone, but the combination of both treatments enhanced the neuronal differentiation effect. SIGNIFICANCE: As neuroblastoma can spontaneously differentiate, determining which proteins are involved in differentiation can guide development of more accurate diagnostic markers and more effective treatments. In this study, we established a differentiation proteomic map of SK-N-SH cells treated with a cathepsin inhibitor (K777) and K777/13-cis RA (dual). Bioinformatic analysis revealed these treatments enhanced neuronal differentiation and axonogenesis pathways. The most affected proteins in these pathways may become valuable biomarkers of efficacy of drugs designed to enhance differentiation of neuroblastoma [1].
Collapse
Affiliation(s)
- Effie G Halakos
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Andrew J Connell
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lisa Glazewski
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Robert W Mason
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
9
|
Frick C, Fink S, Schmidbauer D, Rousset F, Eickhoff H, Tropitzsch A, Kramer B, Senn P, Glueckert R, Rask-Andersen H, Wiesmüller KH, Löwenheim H, Müller M. Age-Dependency of Neurite Outgrowth in Postnatal Mouse Cochlear Spiral Ganglion Explants. Brain Sci 2020; 10:E580. [PMID: 32839381 PMCID: PMC7564056 DOI: 10.3390/brainsci10090580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The spatial gap between cochlear implants (CIs) and the auditory nerve limits frequency selectivity as large populations of spiral ganglion neurons (SGNs) are electrically stimulated synchronously. To improve CI performance, a possible strategy is to promote neurite outgrowth toward the CI, thereby allowing a discrete stimulation of small SGN subpopulations. Brain-derived neurotrophic factor (BDNF) is effective to stimulate neurite outgrowth from SGNs. METHOD TrkB (tropomyosin receptor kinase B) agonists, BDNF, and five known small-molecule BDNF mimetics were tested for their efficacy in stimulating neurite outgrowth in postnatal SGN explants. To modulate Trk receptor-mediated effects, TrkB and TrkC ligands were scavenged by an excess of recombinant receptor proteins. The pan-Trk inhibitor K252a was used to block Trk receptor actions. RESULTS THF (7,8,3'-trihydroxyflavone) partly reproduced the BDNF effect in postnatal day 7 (P7) mouse cochlear spiral ganglion explants (SGEs), but failed to show effectiveness in P4 SGEs. During the same postnatal period, spontaneous and BDNF-stimulated neurite outgrowth increased. The increased neurite outgrowth in P7 SGEs was not caused by the TrkB/TrkC ligands, BDNF and neurotrophin-3 (NT-3). CONCLUSIONS The age-dependency of induction of neurite outgrowth in SGEs was very likely dependent on presently unidentified factors and/or molecular mechanisms which may also be decisive for the age-dependent efficacy of the small-molecule TrkB receptor agonist THF.
Collapse
Affiliation(s)
- Claudia Frick
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Stefan Fink
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
| | - Dominik Schmidbauer
- Inner Ear Laboratory Innsbruck, Medical University Innsbruck, 6020 Innsbruck, Austria; (D.S.); (R.G.)
| | - Francis Rousset
- The Inner Ear & Olfaction Lab, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.R.); (P.S.)
| | - Holger Eickhoff
- EMC Microcollections GmbH, 72070 Tübingen, Germany; (H.E.); (K.-H.W.)
| | - Anke Tropitzsch
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
| | - Benedikt Kramer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Mannheim, 68167 Mannheim, Germany
| | - Pascal Senn
- The Inner Ear & Olfaction Lab, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.R.); (P.S.)
| | - Rudolf Glueckert
- Inner Ear Laboratory Innsbruck, Medical University Innsbruck, 6020 Innsbruck, Austria; (D.S.); (R.G.)
- Tirol Kliniken Innsbruck, University Clinic of Otolaryngology, 6020 Innsbruck, Austria
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, University of Uppsala, 751 85 Uppsala, Sweden;
| | | | - Hubert Löwenheim
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
| | - Marcus Müller
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
| |
Collapse
|
10
|
Cangelosi D, Morini M, Zanardi N, Sementa AR, Muselli M, Conte M, Garaventa A, Pfeffer U, Bosco MC, Varesio L, Eva A. Hypoxia Predicts Poor Prognosis in Neuroblastoma Patients and Associates with Biological Mechanisms Involved in Telomerase Activation and Tumor Microenvironment Reprogramming. Cancers (Basel) 2020; 12:E2343. [PMID: 32825087 PMCID: PMC7563184 DOI: 10.3390/cancers12092343] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
The biological and clinical heterogeneity of neuroblastoma (NB) demands novel biomarkers and therapeutic targets in order to drive the most appropriate treatment for each patient. Hypoxia is a condition of low-oxygen tension occurring in poorly vascularized tumor tissues. In this study, we aimed to assess the role of hypoxia in the pathogenesis of NB and at developing a new clinically relevant hypoxia-based predictor of outcome. We analyzed the gene expression profiles of 1882 untreated NB primary tumors collected at diagnosis and belonging to four existing data sets. Analyses took advantage of machine learning methods. We identified NB-hop, a seven-gene hypoxia biomarker, as a predictor of NB patient prognosis, which is able to discriminate between two populations of patients with unfavorable or favorable outcome on a molecular basis. NB-hop retained its prognostic value in a multivariate model adjusted for established risk factors and was able to additionally stratify clinically relevant groups of patients. Tumors with an unfavorable NB-hop expression showed a significant association with telomerase activation and a hypoxic, immunosuppressive, poorly differentiated, and apoptosis-resistant tumor microenvironment. NB-hop defines a new population of NB patients with hypoxic tumors and unfavorable prognosis and it represents a critical factor for the stratification and treatment of NB patients.
Collapse
Affiliation(s)
- Davide Cangelosi
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Nicolò Zanardi
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Angela Rita Sementa
- Laboratory of Pathology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Marco Muselli
- Institute of Electronics, Computer and Telecommunication Engineering, Italian National Research Council, 16149 Genova, Italy;
| | - Massimo Conte
- Pediatric Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.C.); (A.G.)
| | - Alberto Garaventa
- Pediatric Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.C.); (A.G.)
| | - Ulrich Pfeffer
- Integrated Oncology Therapies Department, Molecular Pathology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Luigi Varesio
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| |
Collapse
|
11
|
Maeshima R, Moulding D, Stoker AW, Hart SL. MYCN Silencing by RNAi Induces Neurogenesis and Suppresses Proliferation in Models of Neuroblastoma with Resistance to Retinoic Acid. Nucleic Acid Ther 2020; 30:237-248. [PMID: 32240058 PMCID: PMC7415885 DOI: 10.1089/nat.2019.0831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is the most common solid tumor in childhood. Twenty percent of patients display MYCN amplification, which indicates a very poor prognosis. MYCN is a highly specific target for an NB tumor therapy as MYCN expression is absent or very low in most normal cells, while, as a transcription factor, it regulates many essential cell activities in tumor cells. We aim to develop a therapy for NB based on MYCN silencing by short interfering RNA (siRNA) molecules, which can silence target genes by RNA interference (RNAi), a naturally occurring method of gene silencing. It has been shown previously that MYCN silencing can induce apoptosis and differentiation in MYCN amplified NB. In this article, we have demonstrated that siRNA-mediated silencing of MYCN in MYCN-amplified NB cells induced neurogenesis in NB cells, whereas retinoic acid (RA) treatment did not. RA can differentiate NB cells and is used for treatment of residual disease after surgery or chemotherapy, but resistance can develop. In addition, MYCN siRNA treatment suppressed growth in a MYCN-amplified NB cell line more than that by RA. Our result suggests that gene therapy using RNAi targeting MYCN can be a novel therapy toward MYCN-amplified NB that have complete or partial resistance toward RA.
Collapse
Affiliation(s)
- Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dale Moulding
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Andrew W. Stoker
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stephen L. Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
12
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
13
|
Bhujbal SP, Balasubramanian PK, Keretsu S, Cho SJ. Receptor‐guided 3D‐QSAR Study of Anilinoquinazolines as RET Receptor Tyrosine Kinase Antagonists. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Swapnil Pandurang Bhujbal
- Department of Biomedical Sciences, College of MedicineChosun University Gwangju 501‐759 Republic of Korea
| | | | - Seketoulie Keretsu
- Department of Biomedical Sciences, College of MedicineChosun University Gwangju 501‐759 Republic of Korea
| | - Seung Joo Cho
- Department of Biomedical Sciences, College of MedicineChosun University Gwangju 501‐759 Republic of Korea
- Department of Cellular·Molecular Medicine, College of MedicineChosun University Gwangju 501‐759 Republic of Korea
| |
Collapse
|
14
|
Chen Z, Zhao Y, Yu Y, Pang JC, Woodfield SE, Tao L, Guan S, Zhang H, Bieerkehazhi S, Shi Y, Patel R, Vasudevan SA, Yi JS, Muscal JA, Xu GT, Yang J. Small molecule inhibitor regorafenib inhibits RET signaling in neuroblastoma cells and effectively suppresses tumor growth in vivo. Oncotarget 2017; 8:104090-104103. [PMID: 29262623 PMCID: PMC5732789 DOI: 10.18632/oncotarget.22011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma (NB), the most common extracranial pediatric solid tumor, continues to cause significant cancer-related morbidity and mortality in children. Dysregulation of oncogenic receptor tyrosine kinases (RTKs) has been shown to contribute to tumorigenesis in various human cancers and targeting these RTKs has had therapeutic benefit. RET is an RTK which is commonly expressed in NB, and high expression of RET correlates with poor outcomes in patients with NB. Herein we report that RET is required for NB cell proliferation and that the small molecule inhibitor regorafenib (BAY 73-4506) blocks glial cell derived neurotrophic factor (GDNF)-induced RET signaling in NB cells and inhibits NB growth both in vitro and in vivo. We found that regorafenib significantly inhibited cell proliferation and colony formation ability of NB cells. Moreover, regorafenib suppressed tumor growth in both an orthotopic xenograft NB mouse model and a TH-MYCN transgenic NB mouse model. Finally, regorafenib markedly improved the overall survival of TH-MYCN transgenic tumor-bearing mice. In summary, our study suggests that RET is a potential therapeutic target in NB, and that using a novel RET inhibitor, like regorafenib, should be investigated as a therapeutic treatment option for children with NB.
Collapse
Affiliation(s)
- Zhenghu Chen
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yanling Zhao
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yang Yu
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jonathan C. Pang
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Biosciences, Weiss School of Natural Sciences, Rice University, Houston, Texas 77005, USA
| | - Sarah E. Woodfield
- Division of Pediatric Surgery, Texas Children’s Hospital Department of Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ling Tao
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shan Guan
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huiyuan Zhang
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shayahati Bieerkehazhi
- Department of Labour Hygiene and Sanitary Science, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yan Shi
- Division of Pediatric Surgery, Texas Children’s Hospital Department of Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Roma Patel
- Division of Pediatric Surgery, Texas Children’s Hospital Department of Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sanjeev A. Vasudevan
- Division of Pediatric Surgery, Texas Children’s Hospital Department of Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joanna S. Yi
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jodi A. Muscal
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Guo-Tong Xu
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Jianhua Yang
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
15
|
Cortés D, Carballo-Molina OA, Castellanos-Montiel MJ, Velasco I. The Non-Survival Effects of Glial Cell Line-Derived Neurotrophic Factor on Neural Cells. Front Mol Neurosci 2017; 10:258. [PMID: 28878618 PMCID: PMC5572274 DOI: 10.3389/fnmol.2017.00258] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/31/2017] [Indexed: 01/23/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) was first characterized as a survival-promoting molecule for dopaminergic neurons (DANs). Afterwards, other cells were also discovered to respond to GDNF not only as a survival factor but also as a protein supporting other cellular functions, such as proliferation, differentiation, maturation, neurite outgrowth and other phenomena that have been less studied than survival and are now more extendedly described here in this review article. During development, GDNF favors the commitment of neural precursors towards dopaminergic, motor, enteric and adrenal neurons; in addition, it enhances the axonal growth of some of these neurons. GDNF also induces the acquisition of a dopaminergic phenotype by increasing the expression of Tyrosine Hydroxylase (TH), Nurr1 and other proteins that confer this identity and promote further dendritic and electrical maturation. In motor neurons (MNs), GDNF not only promotes proliferation and maturation but also participates in regenerating damaged axons and modulates the neuromuscular junction (NMJ) at both presynaptic and postsynaptic levels. Moreover, GDNF modulates the rate of neuroblastoma (NB) and glioblastoma cancer cell proliferation. Additionally, the presence or absence of GDNF has been correlated with conditions such as depression, pain, muscular soreness, etc. Although, the precise role of GDNF is unknown, it extends beyond a survival effect. The understanding of the complete range of properties of this trophic molecule will allow us to investigate its broad mechanisms of action to accelerate and/or improve therapies for the aforementioned pathological conditions.
Collapse
Affiliation(s)
- Daniel Cortés
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - Oscar A. Carballo-Molina
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - María José Castellanos-Montiel
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| |
Collapse
|
16
|
ZAR1 knockdown promotes the differentiation of human neuroblastoma cells by suppression of MYCN expression. Med Oncol 2017; 34:158. [PMID: 28791558 DOI: 10.1007/s12032-017-0999-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
Although DNA hypermethylation at non-promoter region of the Zygote arrest 1 (ZAR1) gene has been observed in many types of tumor, including neuroblastoma (NB), the role of this gene in tumor development and/or progression is unclear. One reason is that knowledge about the function of ZAR1 protein is limited. Although it has been reported that ZAR1 plays a crucial role in early embryogenesis and may act as a transcriptional repressor for some transcripts, the detailed mechanism is still elusive. In the present study, we analyzed public data of NB patients and found that higher expression levels of ZAR1 were significantly associated with a shorter survival period. Consistent with this result, ZAR1-depleted NB cells showed well-differentiated phenotypes with elongated neurites and upregulated expression of TRKA and RET, which are markers for differentiated NB. Moreover, the expression level of MYCN protein was markedly suppressed in ZAR1-depleted NB cells. MYCN-depleted cells showed similar phenotypes to ZAR1-depleted cells. The present findings indicate that ZAR1 has oncogenic effects in NB by suppressing cell differentiation via regulation of MYCN expression.
Collapse
|
17
|
Vitale G, Dicitore A, Pepe D, Gentilini D, Grassi ES, Borghi MO, Gelmini G, Cantone MC, Gaudenzi G, Misso G, Di Blasio AM, Hofland LJ, Caraglia M, Persani L. Synergistic activity of everolimus and 5-aza-2'-deoxycytidine in medullary thyroid carcinoma cell lines. Mol Oncol 2017; 11:1007-1022. [PMID: 28453190 PMCID: PMC5537710 DOI: 10.1002/1878-0261.12070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Medullary thyroid cancer (MTC) is a tumor highly resistant to chemo‐ and radiotherapy. Drug resistance can be induced by epigenetic changes such as aberrant DNA methylation. To overcome drug resistance, we explored a promising approach based on the use of 5‐aza‐2′‐deoxycytidine (AZA), a demethylating agent, in combination with the mTOR inhibitor everolimus in MTC cells (MZ‐CRC‐1 and TT). This combined treatment showed a strong synergistic antiproliferative activity through the induction of apoptosis. The effect of everolimus and/or AZA on genome‐wide expression profiling was evaluated by Illumina BeadChip in MZ‐CRC‐1 cells. An innovative bioinformatic pipeline identified four potential molecular pathways implicated in the synergy between AZA and everolimus: PI3K‐Akt signaling, the neurotrophin pathway, ECM/receptor interaction, and focal adhesion. Among these, the neurotrophin signaling pathway was most directly involved in apoptosis, through the overexpression of NGFR and Bax genes. The increased expression of genes involved in the NGFR‐MAPK10‐TP53‐Bax/Bcl2 pathway during incubation with AZA plus everolimus was validated by western blotting in MZ‐CRC‐1 cells. Interestingly, addition of a neutralizing anti‐NGFR antibody inhibited the synergistic cytotoxic activity between AZA and everolimus. These results open a new therapeutic scenario for MTC and potentially other neuroendocrine tumors, where therapy with mTOR inhibitors is currently approved.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Alessandra Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | | | - Davide Gentilini
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Elisa S Grassi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Maria O Borghi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Experimental Laboratory of Immuno-rheumatologic Researches, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Giulia Gelmini
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Maria C Cantone
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Germano Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Gabriella Misso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Italy
| | - Anna M Di Blasio
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Leo J Hofland
- Section Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
18
|
Weng WC, Lin KH, Wu PY, Lu YC, Weng YC, Wang BJ, Liao YF, Hsu WM, Lee WT, Lee H. Calreticulin Regulates VEGF-A in Neuroblastoma Cells. Mol Neurobiol 2014; 52:758-70. [PMID: 25288151 DOI: 10.1007/s12035-014-8901-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/24/2014] [Indexed: 01/06/2023]
Abstract
Calreticulin (CRT) has been previously correlated with the differentiation of neuroblastoma (NB), implying a favorable prognostic factor. Vascular endothelial growth factor (VEGF) has been reported to participate in the behavior of NB. This study investigated the association of CRT and VEGF-A in NB cells. The expressions of VEGF-A and HIF-1α, with overexpression or knockdown of CRT, were measured in three NB cells (SH-SY5Y, SK-N-DZ, and stNB-V1). An inducible CRT NB cell line and knockdown CRT stable cell lines were also established. The impacts of CRT overexpression on NB cell apoptosis, proliferation, and differentiation were also evaluated. We further examined the role of VEGF-A in the NB cell differentiation via VEGF receptor blockade. Constitutive overexpression of CRT led to NB cell differentiation without proliferation. Thus, an inducible CRT stNB-V1 cell line was generated by a tetracycline-regulated gene system. CRT overexpression increased VEGF-A and HIF-1α messenger RNA (mRNA) expressions in SH-SY5Y, SK-N-DZ, and stNB-V1 cells. CRT overexpression also enhanced VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. Knockdown of CRT decreased VEGF-A and HIF-1α mRNA expressions and lowered VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. We further demonstrated that NB cell apoptosis was not affected by CRT overexpression in stNB-V1 cells. Nevertheless, overexpression of CRT suppressed cell proliferation and enhanced cell differentiation in stNB-V1 cells, whereas blockage of VEGFR-1 markedly suppressed the expression of neuron-specific markers including GAP43, NSE2, and NFH, as well as TrkA, a molecular marker indicative of NB cell differentiation. Our findings suggest that VEGF-A is involved in CRT-related neuronal differentiation in NB. Our work may provide important information for developing a new therapeutic strategy to improve the outcome of NB patients.
Collapse
Affiliation(s)
- Wen-Chin Weng
- Department of Pediatrics, College of Medicine, National Taiwan University Hospital and National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liao W, Zhang H, Feng C, Wang T, Zhang Y, Tang S. Downregulation of TrkA protein expression by miRNA‑92a promotes the proliferation and migration of human neuroblastoma cells. Mol Med Rep 2014; 10:778-84. [PMID: 24839961 DOI: 10.3892/mmr.2014.2235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 03/18/2014] [Indexed: 11/05/2022] Open
Abstract
The aims of this study were to investigate the regulation of TrkA protein by micro (mi)RNA‑92a and its effect on the proliferation and migration of human neuroblastoma cells. The BE(2)‑M17 human neuroblastoma cell line was cultured and transfected with either miRNA‑92a mimics or miRNA‑92a inhibitors. The expression levels of miRNA‑92a and TrkA mRNA were detected by quantitative polymerase chain reaction prior and subsequent to transfection. TrkA protein was quantitatively detected by flow cytometry. The proliferation and migration of neuroblastoma cells were examined in vitro by Cell Counting Kit‑8 and Transwell assays. Transfection of BE(2)‑M17 cells with miRNA‑92a mimics produced significantly higher expression levels of miRNA‑92a compared with those in the same cells transfected with negative controls (NCs). Increased proliferation and migration of the cells was also observed. Transfection of BE(2)‑M17 cells with miRNA‑92a inhibitors resulted in significantly lower expression levels of miRNA‑92a when compared with those of the same cells transfected with NCs (P<0.01). This reduction in the miRNA‑92a expression levels was accompanied by reduced proliferation and migration of the cells. The expression levels of TrkA mRNA and protein after 24 h transfection with the miRNA‑92a mimics were significantly reduced when compared with the control (P<0.01). However, the expression levels of TrkA were significantly higher (P<0.01) after 48 h transfection with miRNA‑92a inhibitors when compared with the control. In conclusion, miRNA‑92a promoted the proliferation and migration of human neuroblastoma cells through downregulation of TrkA, which suggested that miRNA‑92a may be a potential target for human neuroblastoma treatment in the future.
Collapse
Affiliation(s)
- Weiwei Liao
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hao Zhang
- Department of Pediatrics, The Central Hospital of China Aerospace Corporation, Beijing 100049, P.R. China
| | - Chen Feng
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Tianyou Wang
- Department of Hematology‑Oncology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Yan Zhang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Suoqin Tang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
20
|
Müller CM, Haase MG, Kemnitz I, Fitze G. Genetic mosaicism of a frameshift mutation in the RET gene in a family with Hirschsprung disease. Gene 2014; 541:51-4. [DOI: 10.1016/j.gene.2014.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/14/2014] [Indexed: 12/26/2022]
|
21
|
Abstract
The RET receptor tyrosine kinase is crucial for normal development but also contributes to pathologies that reflect both the loss and the gain of RET function. Activation of RET occurs via oncogenic mutations in familial and sporadic cancers - most notably, those of the thyroid and the lung. RET has also recently been implicated in the progression of breast and pancreatic tumours, among others, which makes it an attractive target for small-molecule kinase inhibitors as therapeutics. However, the complex roles of RET in homeostasis and survival of neural lineages and in tumour-associated inflammation might also suggest potential long-term pitfalls of broadly targeting RET.
Collapse
Affiliation(s)
- Lois M Mulligan
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
22
|
Richter S, Qin N, Pacak K, Eisenhofer G. Role of hypoxia and HIF2α in development of the sympathoadrenal cell lineage and chromaffin cell tumors with distinct catecholamine phenotypic features. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:285-317. [PMID: 24054150 PMCID: PMC3785008 DOI: 10.1016/b978-0-12-411512-5.00014-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypoxia has wide-ranging impact in normal physiology and disease processes. This stimulus evokes changes in gene expression mediated by transcription factors termed hypoxia-inducible factors (HIFs) that affect numerous processes: angiogenesis, cell survival, cellular metabolism, stem cell self-renewal and multipotency, migration, invasiveness, and metastatic progression in tumor cells. Over the past decade, increasing numbers of reports have emerged documenting differential roles of HIF1α and HIF2α in these processes. In cells of the sympathoadrenal lineage, both HIFs differentially mediate influences of hypoxia on catecholamine synthesis and secretion, but HIF2α signaling has particularly prominent functions in regulating developmental processes of growth and differentiation. This chapter discusses the role of HIF2α and HIF1α in the context of the development, phenotypic features, and functions of chromaffin cells. Moreover, current knowledge about tumor formation in cells of the sympathoadrenal lineage, leading to catecholamine-producing pheochromocytomas and paragangliomas, is analyzed in the light of the HIF2α signaling network.
Collapse
Affiliation(s)
- Susan Richter
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus Dresden, Dresden University of Technology, Dresden, Germany.
| | | | | | | |
Collapse
|
23
|
Krüppel-like factor 4 (KLF4) suppresses neuroblastoma cell growth and determines non-tumorigenic lineage differentiation. Oncogene 2012; 32:4086-99. [PMID: 23045286 DOI: 10.1038/onc.2012.437] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 06/27/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023]
Abstract
Neuroblastoma (NB) is an embryonal tumor and possesses a unique propensity to exhibit either a spontaneous regression or an unrestrained growth. However, the underlying mechanism for this paradoxical clinical outcome remains largely unclear. Quantitative RT-PCR analysis on 102 primary NB tumors revealed that lower Krüppel-like factor 4 (KLF4) expression is frequently found in the unfavorable NB (Mann-Whitney test, P=0.027). In particular with the high-risk factors such as age of patient >1 year, MYCN amplification and low TRKA expression, the decreased expression of KLF4 was significantly associated with an unfavorable NB outcome. Despite knockdown of KLF4 alone is not sufficient to increase tumorigenicity of NB cells in vivo, stable expression of KLF4 short hairpin RNA in Be(2)-C cells significantly promoted growth of NB cells and inhibited cell differentiation toward fibromuscular lineage. In concordant with these observations, overexpression of KLF4 in SH-SY-5Y cells profoundly suppressed cell proliferation by direct upregulation of cell-cycle inhibitor protein p21(WAF1/CIP1), and knocking down p21(WAF1/CIP1) could partially rescue the suppressive effect of KLF4. Importantly, KLF4 overexpressing cells have lost their neuroblastic phenotypes, they were epithelial-like, strongly substrate-adherent, expressing smooth muscle marker and became non-tumorigenic, suggesting that KLF4 expression is crucial for lineage determination of NB cells, probably, favoring spontaneous tumor regression. Subsequent global gene expression profiling further revealed that transforming growth factor beta (TGFβ) and cell-cycle pathways are highly dysregulated upon KLF4 overexpression, and myogenic modulators, MEF2A and MYOD1 were found significantly upregulated. Taken together, we have demonstrated that KLF4 contributes to the favorable disease outcome by directly mediating the growth and lineage determination of NB cells.
Collapse
|
24
|
Control of Aβ release from human neurons by differentiation status and RET signaling. Neurobiol Aging 2012; 34:184-99. [PMID: 22534065 DOI: 10.1016/j.neurobiolaging.2012.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 02/14/2012] [Accepted: 03/24/2012] [Indexed: 12/28/2022]
Abstract
Few studies have compared the processing of endogenous human amyloid precursor protein (APP) in younger and older neurons. Here, we characterized LUHMES cells as a human model to study Alzheimer's disease-related processes during neuronal maturation and aging. Differentiated LUHMES expressed and spontaneously processed APP via the secretase pathways, and they secreted amyloid β (Aβ) peptide. This was inhibited by cholesterol depletion or secretase inhibition, but not by block of tau phosphorylation. In vitro aged cells increased Aβ secretion without upregulation of APP or secretases. We identified the medium constituent glial cell line-derived neurotrophic factor (GDNF) as responsible for this effect. GDNF-triggered Aβ release was associated with rapid upregulation of the GDNF coreceptor "rearranged during transfection" (RET). Other direct (neurturin) or indirect (nerve growth factor) RET activators also increased Aβ, whereas different neurotrophins were ineffective. Downstream of RET, we found activation of protein kinase B (AKT) to be involved. Accordingly, inhibitors of the AKT regulator phosphatidylinositol-3-kinase completely blocked GDNF-triggered AKT phosphorylation and Aβ increase. This suggests that RET signaling affects Aβ release from aging neurons.
Collapse
|
25
|
Welander J, Söderkvist P, Gimm O. Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer 2011; 18:R253-76. [PMID: 22041710 DOI: 10.1530/erc-11-0170] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare neuroendocrine tumors of the adrenal glands and the sympathetic and parasympathetic paraganglia. They can occur sporadically or as a part of different hereditary tumor syndromes. About 30% of PCCs and PGLs are currently believed to be caused by germline mutations and several novel susceptibility genes have recently been discovered. The clinical presentation, including localization, malignant potential, and age of onset, varies depending on the genetic background of the tumors. By reviewing more than 1700 reported cases of hereditary PCC and PGL, a thorough summary of the genetics and clinical features of these tumors is given, both as part of the classical syndromes such as multiple endocrine neoplasia type 2 (MEN2), von Hippel-Lindau disease, neurofibromatosis type 1, and succinate dehydrogenase-related PCC-PGL and within syndromes associated with a smaller fraction of PCCs/PGLs, such as Carney triad, Carney-Stratakis syndrome, and MEN1. The review also covers the most recently discovered susceptibility genes including KIF1Bβ, EGLN1/PHD2, SDHAF2, TMEM127, SDHA, and MAX, as well as a comparison with the sporadic form. Further, the latest advances in elucidating the cellular pathways involved in PCC and PGL development are discussed in detail. Finally, an algorithm for genetic testing in patients with PCC and PGL is proposed.
Collapse
Affiliation(s)
- Jenny Welander
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden
| | | | | |
Collapse
|
26
|
Pharmacophore modeling and virtual screening to identify potential RET kinase inhibitors. Bioorg Med Chem Lett 2011; 21:4490-7. [DOI: 10.1016/j.bmcl.2011.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 11/23/2022]
|
27
|
Miyamoto R, Jijiwa M, Asai M, Kawai K, Ishida-Takagishi M, Mii S, Asai N, Enomoto A, Murakumo Y, Yoshimura A, Takahashi M. Loss of Sprouty2 partially rescues renal hypoplasia and stomach hypoganglionosis but not intestinal aganglionosis in Ret Y1062F mutant mice. Dev Biol 2010; 349:160-8. [PMID: 21070764 DOI: 10.1016/j.ydbio.2010.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 12/21/2022]
Abstract
The glial cell line-derived neurotrophic factor (GDNF)/RET tyrosine kinase signaling pathway plays crucial roles in the development of the enteric nervous system (ENS) and the kidney. Tyrosine 1062 (Y1062) in RET is an autophosphorylation residue that is responsible for the activation of the PI3K/AKT and RAS/MAPK signaling pathways. Mice lacking signaling via Ret Y1062 show renal hypoplasia and hypoganglionosis of the ENS although the phenotype is milder than the Gdnf- or Ret-deficient mice. Sprouty2 (Spry2) was found to be an antagonist for fibroblast growth factor receptor (FGFR) and acts as an inhibitory regulator of ERK activation. Spry2-deficient mice exhibit hearing loss and enteric nerve hyperplasia. In the present study, we generated Spry2-deficient and Ret Y1062F knock-in (tyrosine 1062 is replaced with phenylalanine) double mutant mice to see if abnormalities of the ENS and kidney, caused by loss of signaling via Ret Y1062, are rescued by a deficiency of Spry2. Double mutant mice showed significant recovery of ureteric bud branching and ENS development in the stomach. These results indicate that Spry2 regulates downstream signaling mediated by GDNF/RET signaling complex in vivo.
Collapse
Affiliation(s)
- Rieko Miyamoto
- Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
CD133 (prominin-1) is a transmembrane glycoprotein expressed on the surface of normal and cancer stem cells (tumor-initiating cells), progenitor cells, rod photoreceptor cells and a variety of epithelial cells. Although CD133 is widely used as a marker of various somatic and putative cancer stem cells, its contribution to the fundamental properties of cancer cells, such as tumorigenesis and differentiation, remains to be elucidated. In the present report, we found that CD133 was expressed in several neuroblastoma (NB) cell lines/tumor samples. Intriguingly, CD133 repressed NB cell differentiation, for example neurite extension and the expression of differentiation marker proteins, and was decreased by several differentiation stimuli, but accelerated cell proliferation, anchorage-independent colony formation and in vivo tumor formation of NB cells. NB cell line and primary tumor-sphere experiments indicated that the molecular mechanism of CD133-related differentiation suppression in NB was in part dependent on neurotrophic receptor RET tyrosine kinase regulation. RET transcription was suppressed by CD133 in NB cells and glial cell line-derived neurotrophic factor treatment failed to induce RET in CD133-expressing cells; RET overexpression rescued CD133-related inhibition of neurite elongation. Of note, CD133-related NB cell differentiation and RET repression were mainly dependent on p38MAPK and PI3K/Akt pathways. Furthermore, CD133 has a function in growth and RET expression in NB cell line- and primary tumor cell-derived tumor spheres. To the best of our knowledge, this is the first report of the function of CD133 in cancer cells and our findings may be applied to improve differentiation induction therapy for NB patients.
Collapse
|
29
|
Ohshima Y, Yajima I, Takeda K, Iida M, Kumasaka M, Matsumoto Y, Kato M. c-RET molecule in malignant melanoma from oncogenic RET-carrying transgenic mice and human cell lines. PLoS One 2010; 5:e10279. [PMID: 20422010 PMCID: PMC2858158 DOI: 10.1371/journal.pone.0010279] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 03/19/2010] [Indexed: 12/19/2022] Open
Abstract
Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma.
Collapse
Affiliation(s)
- Yuichiro Ohshima
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai-shi, Aichi, Japan
- Department of Dermatology, Aichi Medical University School of Medicine, Nagakute-cho, Aichi-gun, Aichi, Japan
| | - Ichiro Yajima
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai-shi, Aichi, Japan
| | - Kozue Takeda
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai-shi, Aichi, Japan
| | - Machiko Iida
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai-shi, Aichi, Japan
| | - Mayuko Kumasaka
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai-shi, Aichi, Japan
| | - Yoshinari Matsumoto
- Department of Dermatology, Aichi Medical University School of Medicine, Nagakute-cho, Aichi-gun, Aichi, Japan
| | - Masashi Kato
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai-shi, Aichi, Japan
- * E-mail:
| |
Collapse
|
30
|
Li C, Macdonald JIS, Hryciw T, Meakin SO. Nerve growth factor activation of the TrkA receptor induces cell death, by macropinocytosis, in medulloblastoma Daoy cells. J Neurochem 2010; 112:882-99. [PMID: 19943845 DOI: 10.1111/j.1471-4159.2009.06507.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ectopic expression of the TrkA receptor tyrosine kinase in tumors of the nervous system can mediate nerve growth factor (NGF)-dependent cell death by apoptosis and /or autophagy. Herein, we demonstrate that TrkA can also induce cell death in medulloblastoma Daoy cells by a caspase-independent mechanism that involves the hyperstimulation of macropinocytosis. Specifically, NGF-stimulates the uptake of AlexaFluor546-dextran into lysosome-associated membrane protein-1 positive vacuoles which fuse with microtubule associated protein light chain 3 (LC3) positive autophagosomes, to form large intracellular vacuoles (> 1 mum), which then fuse with lysotracker positive lysosomes. While LC3 cleavage and the appearance of LC3 positive vacuoles suggest the induction of autophagy, siRNA reduced expression of four proteins essential to autophagy (beclin-1, Atg5, LC3 and Atg9) neither blocks NGF-induced vacuole formation nor cell death. TrkA activated cell death does not require p38, JNK or Erk1/2 kinases but does require activation of class III PI-3 kinase and is blocked by the casein kinase 1 (CK1) inhibitor, D4476. This inhibitor does not interfere with TrkA activation but does block NGF-dependent AlexaFluor546-dextran uptake and CK1 dependent phosphorylation of beta-catenin. Collectively, these data demonstrate that TrkA stimulates cell death by a novel mechanism involving CK1-dependent hyperstimulation of macropinocytosis.
Collapse
Affiliation(s)
- Chunhui Li
- Laboratory of Neural Signalling, The Robarts Research Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene 2009; 29:1394-404. [PMID: 19946337 DOI: 10.1038/onc.2009.429] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increased activity of MYC protein-family members is a common feature in many cancers. Using neuroblastoma as a tumor model, we established a microRNA (miRNA) signature for activated MYCN/c-MYC signaling in two independent primary neuroblastoma tumor cohorts and provide evidence that c-MYC and MYCN have overlapping functions. On the basis of an integrated approach including miRNA and messenger RNA (mRNA) gene expression data we show that miRNA activation contributes to widespread mRNA repression, both in c-MYC- and MYCN-activated tumors. c-MYC/MYCN-induced miRNA activation was shown to be dependent on c-MYC/MYCN promoter binding as evidenced by chromatin immunoprecipitation. Finally, we show that pathways, repressed through c-MYC/MYCN miRNA activation, are highly correlated to tumor aggressiveness and are conserved across different tumor entities suggesting that c-MYC/MYCN activate a core set of miRNAs for cooperative repression of common transcriptional programs related to disease aggressiveness. Our results uncover a widespread correlation between miRNA activation and c-MYC/MYCN-mediated coding gene expression modulation and further substantiate the overlapping functions of c-MYC and MYCN in the process of tumorigenesis.
Collapse
|
32
|
Epping MT, Meijer LAT, Bos JL, Bernards R. UNC45A confers resistance to histone deacetylase inhibitors and retinoic acid. Mol Cancer Res 2009; 7:1861-70. [PMID: 19843631 DOI: 10.1158/1541-7786.mcr-09-0187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To identify potential biomarkers of therapy response, we have previously done a large-scale gain-of-function genetic screen to identify genes whose expression confers resistance to histone deacetylase inhibitors (HDACI). This genetic screen identified two genes with a role in retinoic acid signaling, suggesting that HDACIs target retinoic acid signaling as part of their anticancer effect. We study here a third gene identified in this genetic screen, UNC45A, and assess its role in retinoic acid signaling and responses to HDACIs using cell-based proliferation and differentiation assays and transcriptional reporter gene assays. The vertebrate Unc45 genes are known for their roles in muscle development and the assembly and cochaperoning of the muscle motor protein myosin. Here, we report that human UNC45A (GCUNC45) can render transformed cells resistant to treatment with HDACIs. We show that UNC45A also inhibits signaling through the retinoic acid receptor alpha. Expression of UNC45A inhibits retinoic acid-induced proliferation arrest and differentiation of human neuroblastoma cells and inhibits the induction of endogenous retinoic acid receptor target genes. These data establish an unexpected role for UNC45A in causing resistance to both HDACI drugs and retinoic acid. Moreover, our data lend further support to the notion that HDACIs exert their anticancer effect, at least in part, through an effect on retinoic acid signaling.
Collapse
Affiliation(s)
- Mirjam T Epping
- Netherlands Cancer Institute, Division of Molecular Carcinogenesis, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
33
|
Huang S, Laoukili J, Epping MT, Koster J, Hölzel M, Westerman BA, Nijkamp W, Hata A, Asgharzadeh S, Seeger RC, Versteeg R, Beijersbergen RL, Bernards R. ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell 2009; 15:328-40. [PMID: 19345331 PMCID: PMC2693316 DOI: 10.1016/j.ccr.2009.02.023] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 01/20/2009] [Accepted: 02/25/2009] [Indexed: 02/03/2023]
Abstract
Retinoids play key roles in differentiation, growth arrest, and apoptosis and are increasingly being used in the clinic for the treatment of a variety of cancers, including neuroblastoma. Here, using a large-scale RNA interference-based genetic screen, we identify ZNF423 (also known as Ebfaz, OAZ, or Zfp423) as a component critically required for retinoic acid (RA)-induced differentiation. ZNF423 associates with the RARalpha/RXRalpha nuclear receptor complex and is essential for transactivation in response to retinoids. Downregulation of ZNF423 expression by RNA interference in neuroblastoma cells results in a growth advantage and resistance to RA-induced differentiation, whereas overexpression of ZNF423 leads to growth inhibition and enhanced differentiation. Finally, we show that low ZNF423 expression is associated with poor disease outcome in neuroblastoma patients.
Collapse
Affiliation(s)
- Sidong Huang
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Jamila Laoukili
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Mirjam T. Epping
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Jan Koster
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Michael Hölzel
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Bart A. Westerman
- Division of Molecular Genetics, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Wouter Nijkamp
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Akiko Hata
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Shahab Asgharzadeh
- Department of Pediatrics, Division of Hematology-Oncology, Childrens Hospital Los Angeles and Saban Research Institute, University of Southern California, Los Angeles, CA 90027, USA
| | - Robert C. Seeger
- Department of Pediatrics, Division of Hematology-Oncology, Childrens Hospital Los Angeles and Saban Research Institute, University of Southern California, Los Angeles, CA 90027, USA
| | - Rogier Versteeg
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - René Bernards
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
- Corresponding author;
| |
Collapse
|
34
|
Elitt CM, Malin SA, Koerber HR, Davis BM, Albers KM. Overexpression of artemin in the tongue increases expression of TRPV1 and TRPA1 in trigeminal afferents and causes oral sensitivity to capsaicin and mustard oil. Brain Res 2008; 1230:80-90. [PMID: 18652806 DOI: 10.1016/j.brainres.2008.06.119] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/19/2008] [Accepted: 06/25/2008] [Indexed: 01/08/2023]
Abstract
Artemin, a member of the glial cell line-derived neurotrophic factor (GDNF) family, supports a subpopulation of trigeminal sensory neurons through activation of the Ret/GFRalpha3 receptor tyrosine kinase complex. In a previous study we showed that artemin is increased in inflamed skin of wildtype mice and that transgenic overexpression of artemin in skin increases TRPV1 and TRPA1 expression in dorsal root ganglia neurons. In this study we examined how transgenic overexpression of artemin in tongue epithelium affects the anatomy, gene expression and calcium handling properties of trigeminal sensory afferents. At the RNA level, trigeminal ganglia of artemin overexpresser mice (ART-OEs) had an 81% increase in GFRalpha3, a 190% increase in TRPV1 and a 403% increase in TRPA1 compared to wildtype (WT) controls. Myelinated and unmyelinated fibers of the lingual nerve were increased in diameter, as was the density of GFRalpha3 and TRPV1-positive innervation to the dorsal anterior tongue and fungiform papilla. Retrograde labeling of trigeminal afferents by WGA injection into the tip of the tongue showed an increased percentage of GFRalpha3, TRPV1 and isolectin B4 afferents in ART-OE mice. ART-OE afferents had larger calcium transients in response to ligands of TRPV1 (capsaicin) and TRPA1 (mustard oil). Behavioral sensitivity was also exhibited by ART-OE mice to capsaicin and mustard oil, measured using a two-choice drinking test. These results suggest a potential role for artemin-responsive GFRalpha3/TRPV1/TRPA1 sensory afferents in mediating sensitivity associated with tissue injury, chemical sensitivity or disease states such as burning mouth syndrome.
Collapse
Affiliation(s)
- Christopher M Elitt
- Department of Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
35
|
Jijiwa M, Kawai K, Fukihara J, Nakamura A, Hasegawa M, Suzuki C, Sato T, Enomoto A, Asai N, Murakumo Y, Takahashi M. GDNF-mediated signaling via RET tyrosine 1062 is essential for maintenance of spermatogonial stem cells. Genes Cells 2008; 13:365-74. [PMID: 18363967 DOI: 10.1111/j.1365-2443.2008.01171.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Well-organized spermatogenesis, including the maintenance of spermatogonial stem cells (SSCs), is indispensable for continuous male fertility. Signaling by glial cell line-derived neurotrophic factor (GDNF) via the RET/GDNF family receptor alpha1 (GFRalpha1) receptor complex is essential for self-renewal of murine SSCs and may also regulate their differentiation. When phosphorylated, tyrosine 1062 in RET presents a binding site for the phosphotyrosine-binding domains of several adaptor and effector proteins that are important for activation of a variety of intracellular signaling pathways. In this study, we investigated the role of signaling via RET tyrosine 1062 in spermatogenesis using RET Y1062F knockin mice (Y1062F mice), in which tyrosine 1062 was replaced with phenylalanine. Homozygous Y1062F mice showed marked atrophy of testes due to reduced production of germ cells. RET-expressing spermatogonia in seminiferous tubules of homozygous Y1062F mice decreased after postnatal day (P) 7 and germ cells were almost undetectable by P21. These phenomena appeared to be due to a lack of SSC self-renewal and inability to maintain the undifferentiated state. Our findings suggest that RET signaling via tyrosine 1062 is essential for self-renewal of SSCs and regulation of their differentiation.
Collapse
Affiliation(s)
- Mayumi Jijiwa
- Department of Pathology, Nagoya University Graduate School of Medicine 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Esposito CL, D'Alessio A, de Franciscis V, Cerchia L. A cross-talk between TrkB and Ret tyrosine kinases receptors mediates neuroblastoma cells differentiation. PLoS One 2008; 3:e1643. [PMID: 18286198 PMCID: PMC2242850 DOI: 10.1371/journal.pone.0001643] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 01/24/2008] [Indexed: 11/18/2022] Open
Abstract
Understanding the interplay between intracellular signals initiated by multiple receptor tyrosine kinases (RTKs) to give the final cell phenotype is a major pharmacological challenge. Retinoic acid (RA)-treatment of neuroblastoma (NB) cells implicates activation of Ret and TrkB RTKs as critical step to induce cell differentiation. By studying the signaling interplay between TrkB and Ret as paradigmatic example, here we demonstrate the existence of a cross-talk mechanism between the two unrelated receptors that is needed to induce the cell differentiation. Indeed, we show that TrkB receptor promotes Ret phosphorylation by a mechanism that does not require GDNF. This reveals to be a key mechanism, since blocking either TrkB or Ret by small interfering RNA causes a failure in NB biochemical and morphological differentiation. Our results provide the first evidence that a functional transactivation between distinct tyrosine kinases receptors is required for an important physiological process.
Collapse
Affiliation(s)
- Carla Lucia Esposito
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
- Dipartimento di Biologia e Patologia Cellulare e Molecolare “L. Califano”, Università di Napoli “Federico II”, Naples, Italy
| | - Amelia D'Alessio
- Cell Biology and Preclinical Models Unit, INT-Fondazione Pascale, Naples, Italy
| | - Vittorio de Franciscis
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Laura Cerchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
- *E-mail:
| |
Collapse
|
37
|
Shimada A, Hirato J, Kuroiwa M, Kikuchi A, Hanada R, Wakai K, Hayashi Y. Expression of KIT and PDGFR is associated with a good prognosis in neuroblastoma. Pediatr Blood Cancer 2008; 50:213-7. [PMID: 17941064 DOI: 10.1002/pbc.21288] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The clinical outcome of neuroblastoma (NB) depends on age, stage, and MYCN amplification. Receptor tyrosine kinases (RTKs) promote cell growth, migration, and metastasis in cancer cells, including NB. However, the correlation of the expression profile of RTKs with prognosis in NB remains controversial. PROCEDURE Expression and mutation analysis of KIT, PDGFR, FLT3, RET, and TRKA mRNAs were performed in 24 NB cell lines and 40 tumor samples using RT-PCR followed by direct sequencing. Immunohistochemical analysis of KIT and PDGFR protein expression was also examined in 38 paraffin sections of NB tumor samples. RESULTS The expression of KIT, PDGFRbeta, and FLT3 mRNA was associated with NB in patients under 1 year (P < 0.02) and TRKA expression (P < 0.001). The loss of expression of these kinases was associated with MYCN amplification (P < 0.02) and advanced stages of disease in patients over 1 year of age (P < 0.005). PDGFRalpha mRNA expression was detected in all cell lines and tumor samples, and RET mRNA expression was not associated with any clinical parameters. Immunohistochemistry results showed the similar findings. We did not find any activating mutations in KIT, PDGFR, FLT3, or RET. Notably, the GNNK(-) isoform of KIT was predominant in all cell lines and clinical samples. CONCLUSION Expression of KIT, PDGFRbeta, and FLT3 was associated with a good prognosis in NB. The loss of expression of these RTKs might correlate to the disease progression of NB.
Collapse
Affiliation(s)
- Akira Shimada
- Department of Hematology/Oncology, Gunma Children's Medical Center, Gunma, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Ghzili H, Grumolato L, Thouënnon E, Tanguy Y, Turquier V, Vaudry H, Anouar Y. Role of PACAP in the physiology and pathology of the sympathoadrenal system. Front Neuroendocrinol 2008; 29:128-41. [PMID: 18048093 DOI: 10.1016/j.yfrne.2007.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/24/2007] [Accepted: 10/01/2007] [Indexed: 01/09/2023]
Abstract
Sympathetic neurons and chromaffin cells derive from common sympathoadrenal precursors which arise from the neural crest. Cells from this lineage migrate to their final destination and differentiate by acquiring a catecholaminergic phenotype in response to different environmental factors. It has been shown that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its PAC1 receptor are expressed at early stages of sympathetic development, and participate to the control of neuroblast proliferation and differentiation. PACAP also acts as a neurotransmitter to stimulate catecholamine and neuropeptide biosynthesis and release from sympathetic neurons and chromaffin cells, during development and in adulthood. In addition, PACAP and its receptors have been described in neuroblastoma and pheochromocytoma, and the neuropeptide regulates the differentiation and activity of sympathoadrenal-derived tumoral cell lines, suggestive of an important role in the pathophysiology of the sympathoadrenal lineage. Transcriptome studies uncovered genes and pathways of known and unknown roles that underlie the effects of PACAP in the sympathoadrenal system.
Collapse
Affiliation(s)
- Hafida Ghzili
- INSERM, U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP23), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Damon DH, Teriele JA, Marko SB. Vascular-derived artemin: a determinant of vascular sympathetic innervation? Am J Physiol Heart Circ Physiol 2007; 293:H266-73. [PMID: 17337595 DOI: 10.1152/ajpheart.00859.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular sympathetic innervation is an important determinant of blood pressure and blood flow. The mechanisms that determine vascular sympathetic innervation are not well understood. The present study tests the hypothesis that vascular-derived artemin promotes the development of sympathetic innervation to blood vessels by promoting sympathetic axon growth. RT-PCR and Western analyses indicate that artemin is expressed by cultured vascular smooth muscle and arteries, and artemin coreceptors, glial cell-derived neurotrophic factor family receptor alpha3 and ret, are expressed by postganglionic sympathetic neurons. The effects of artemin on axon growth were assessed on explants of neonatal rat sympathetic ganglia. In the presence, but not in the absence, of nerve growth factor, exogenous artemin stimulated neurite growth. Femoral arteries (FA) from adult rats contain artemin, and these arteries stimulated sympathetic neurite growth. Growth in the presence of FA was 92.2 +/- 11.9 mm, and that in the absence of FA was 26.3 +/- 5.4 mm (P < 0.05). FA stimulation of axon growth was reduced by an antibody that neutralized the activity of artemin (P < 0.05). These data indicate that artemin is expressed in arteries, and its receptors are expressed and functional in the postganglionic sympathetic neurons that innervate them. This suggests that artemin may be a determinant of vascular sympathetic innervation.
Collapse
Affiliation(s)
- Deborah H Damon
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
40
|
Cerchia L, D'Alessio A, Amabile G, Duconge F, Pestourie C, Tavitian B, Libri D, de Franciscis V. An autocrine loop involving ret and glial cell-derived neurotrophic factor mediates retinoic acid-induced neuroblastoma cell differentiation. Mol Cancer Res 2006; 4:481-8. [PMID: 16849523 DOI: 10.1158/1541-7786.mcr-06-0050] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In several neuroblastoma cell lines, retinoic acid (RA)-induced differentiation is coupled to increased expression of functional neurotrophic factor receptors, including Trk family receptors and the glial cell-derived neurotrophic factor receptor, Ret. In several cases, increased expression is dependent on signaling through TrkB. Unlike TrkA and TrkB, Ret has never been implicated as a prognostic marker for neuroblastomas. SK-N-BE(2) cells do not express any of Trk family receptors; therefore, they are a choice system to study the specific role of Ret in RA-induced differentiation. Using a 2'-fluoro-RNA aptamer and a truncated Ret protein as specific inhibitors of Ret, we show that RA-induced differentiation is mediated by a positive autocrine loop that sustains Ret downstream signaling and depends on glial cell-derived neurotrophic factor expression and release. This report shows that in SK-N-BE(2) cells, stimulation of Ret is a major upstream mechanism needed to mediate RA-induced differentiation. These results provide important insights on the molecular mechanism of RA action, which might be relevant for the development of biologically based therapeutic strategies.
Collapse
Affiliation(s)
- Laura Cerchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale del Consiglio Nazionale delle Ricerche G. Salvatore, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Most neurotrophic factors are members of one of three families: the neurotrophins, the glial cell-line derived neurotrophic factor family ligands (GFLs) and the neuropoietic cytokines. Each family activates distinct but overlapping cellular pathways. Several studies have shown additive or synergistic interactions between neurotrophic factors from different families, though generally only a single combination has been studied. Because of possible interactions between the neurotrophic factors, the optimum concentration of a factor in a mixture may differ from the optimum when applied individually. Additionally, the effect of combinations of neurotrophic factors from each of the three families on neurite extension is unclear. This study examines the effects of several combinations of the neurotrophin nerve growth factor (NGF), the GFL glial cell-line derived neurotrophic factor (GDNF) and the neuropoietic cytokine ciliary neurotrophic factor (CNTF) on neurite outgrowth from young rat dorsal root ganglion (DRG) explants. The combination of 50 ng ml(-1) NGF and 10 ng ml(-1) of each GDNF and CNTF induced the highest level of neurite outgrowth at a 752 +/- 53% increase over untreated DRGs and increased the longest neurite length to 2031 +/- 97 microm compared to 916 +/- 64 microm for untreated DRGs. The optimum concentrations of the three factors applied in combination corresponded to the optimum concentration of each factor when applied individually. These results indicate that the efficacy of future therapies for nerve repair would be enhanced by the controlled release of a combination of neurotrophins, GFLs and neuropoietic cytokines at higher concentrations than used in previous conduit designs.
Collapse
Affiliation(s)
- C Deister
- Department of Chemical Engineering, The University of Texas at Austin, 78712, USA
| | | |
Collapse
|
42
|
Adaletli I, Kurugoglu S, Aki H, Mihmanli I. Simultaneous Presentation of Congenital Neuroblastoma in Monozygotic Twins: A Case of Possible Twin-to-Twin Metastasis. AJR Am J Roentgenol 2006; 186:1172-5. [PMID: 16554599 DOI: 10.2214/ajr.04.1934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ibrahim Adaletli
- Department of Radiology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey 34300.
| | | | | | | |
Collapse
|
43
|
Oh JE, Karlmark KR, Shin JH, Pollak A, Freilinger A, Hengstschläger M, Lubec G. Differentiation of neuroblastoma cell line N1E-115 involves several signaling cascades. Neurochem Res 2005; 30:333-48. [PMID: 16018577 DOI: 10.1007/s11064-005-2607-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
No systematic searches for differential expression of signaling proteins (SP) in undifferentiated vs. differentiated cell lineages were published and herein we used protein profiling for this purpose. The NIE-115 cell line was cultivated and an aliquot was differentiated with dimethylsulfoxide (DMSO), that is known to lead to a neuronal phenotype. Cell lysates were prepared, run on two-dimensional gel electrophoresis followed by MALDI-TOF-TOF identification of proteins and maps of identified SPs were generated. Seven SPs were comparable, 27 SPs: GTP-binding/Ras-related proteins, kinases, growth factors, calcium binding proteins, phosphatase-related proteins were observed in differentiated NIE-115 cells and eight SPs of the groups mentioned above were observed in undifferentiated cells only. Switching-on/off of several individual SPs from different signaling cascades during the differentiation process is a key to understand mechanisms involved. The findings reported herein are challenging in vitro and in vivo studies to confirm a functional role for deranged SPs.
Collapse
Affiliation(s)
- Ji-eun Oh
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, A 1090, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
44
|
Lee S, Nakamura E, Yang H, Wei W, Linggi MS, Sajan MP, Farese RV, Freeman RS, Carter BD, Kaelin WG, Schlisio S. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 2005; 8:155-67. [PMID: 16098468 DOI: 10.1016/j.ccr.2005.06.015] [Citation(s) in RCA: 400] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 04/29/2005] [Accepted: 06/07/2005] [Indexed: 01/11/2023]
Abstract
Germline NF1, c-RET, SDH, and VHL mutations cause familial pheochromocytoma. Pheochromocytomas derive from sympathetic neuronal precursor cells. Many of these cells undergo c-Jun-dependent apoptosis during normal development as NGF becomes limiting. NF1 encodes a GAP for the NGF receptor TrkA, and NF1 mutations promote survival after NGF withdrawal. We found that pheochromocytoma-associated c-RET and VHL mutations lead to increased JunB, which blunts neuronal apoptosis after NGF withdrawal. We also found that the prolyl hydroxylase EglN3 acts downstream of c-Jun and is specifically required among the three EglN family members for apoptosis in this setting. Moreover, EglN3 proapoptotic activity requires SDH activity because EglN3 is feedback inhibited by succinate. These studies suggest that failure of developmental apoptosis plays a role in pheochromocytoma pathogenesis.
Collapse
Affiliation(s)
- Sungwoo Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Badawi RA, Birns J, Watson T, Kalra L. Growth factors and their relationship to neoplastic and paraneoplastic disease. Eur J Intern Med 2005; 16:83-94. [PMID: 15833673 DOI: 10.1016/j.ejim.2004.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 09/30/2004] [Accepted: 10/05/2004] [Indexed: 12/15/2022]
Abstract
Growth factors are extracellular signaling molecules that act in an autocrine and paracrine fashion to regulate growth, proliferation, differentiation, and survival of cells. Dysregulation of the growth factor networks is intimately related to the molecular pathogenesis of neoplastic and paraneoplastic disease. Increasing knowledge of the molecular mechanisms underlying growth factors and their actions on cell cycling, cell division, and cell death is shedding light on new therapeutic avenues for molecular targeting of tumors. Epidermal growth factor and vascular endothelial growth factor both offer examples of how growth factor biology and its relationship to cancer can be harnessed to create effective clinical therapeutic tools such as monoclonal antibodies. This approach heralds a future in which rational molecular oncological therapy may increasingly become the norm.
Collapse
Affiliation(s)
- R A Badawi
- Department of Medicine, King's College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
| | | | | | | |
Collapse
|