1
|
Tang Z, Chen G, Chen S, Yao J, You L, Chen CYC. Modal-nexus auto-encoder for multi-modality cellular data integration and imputation. Nat Commun 2024; 15:9021. [PMID: 39424861 PMCID: PMC11489673 DOI: 10.1038/s41467-024-53355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
Heterogeneous feature spaces and technical noise hinder the cellular data integration and imputation. The high cost of obtaining matched data across modalities further restricts analysis. Thus, there's a critical need for deep learning approaches to effectively integrate and impute unpaired multi-modality single-cell data, enabling deeper insights into cellular behaviors. To address these issues, we introduce the Modal-Nexus Auto-Encoder (Monae). Leveraging regulatory relationships between modalities and employing contrastive learning within modality-specific auto-encoders, Monae enhances cell representations in the unified space. The integration capability of Monae furnishes it with modality-complementary cellular representations, enabling the generation of precise intra-modal and cross-modal imputation counts for extensive and complex downstream tasks. In addition, we develop Monae-E (Monae-Extension), a variant of Monae that can converge rapidly and support biological discoveries. Evaluations on various datasets have validated Monae and Monae-E's accuracy and robustness in multi-modality cellular data integration and imputation.
Collapse
Affiliation(s)
- Zhenchao Tang
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shouzhi Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | | | - Linlin You
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Calvin Yu-Chian Chen
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan.
- Guangdong L-Med Biotechnology Co., Ltd., Meizhou, 514699, China.
| |
Collapse
|
2
|
Li X, Zhang X, Wang S, Li Y, Meng C, Wang J, Chang B, Yang J. Simultaneous detection of multiple urinary biomarkers in patients with early-stage diabetic kidney disease using Luminex liquid suspension chip technology. Front Endocrinol (Lausanne) 2024; 15:1443573. [PMID: 39229378 PMCID: PMC11369644 DOI: 10.3389/fendo.2024.1443573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Background Several urinary biomarkers have good diagnostic value for diabetic kidney disease (DKD); however, the predictive value is limited with the use of single biomarkers. We investigated the clinical value of Luminex liquid suspension chip detection of several urinary biomarkers simultaneously. Methods The study included 737 patients: 585 with diabetes mellitus (DM) and 152 with DKD. Propensity score matching (PSM) of demographic and medical characteristics identified a subset of 78 patients (DM = 39, DKD = 39). Two Luminex liquid suspension chips were used to detect 11 urinary biomarkers according to their molecular weight and concentration. The biomarkers, including cystatin C (CysC), nephrin, epidermal growth factor (EGF), kidney injury molecule-1 (KIM-1), retinol-binding protein4 (RBP4), α1-microglobulin (α1-MG), β2-microglobulin (β2-MG), vitamin D binding protein (VDBP), tissue inhibitor of metalloproteinases-1 (TIMP-1), tumor necrosis factor receptor-1 (TNFR-1), and tumor necrosis factor receptor-2 (TNFR-2) were compared in the DM and DKD groups. The diagnostic values of single biomarkers and various biomarker combinations for early diagnosis of DKD were assessed using receiver operating characteristic (ROC) curve analysis. Results Urinary levels of VDBP, RBP4, and KIM-1 were markedly higher in the DKD group than in the DM group (p < 0.05), whereas the TIMP-1, TNFR-1, TNFR-2, α1-MG, β2-MG, CysC, nephrin, and EGF levels were not significantly different between the groups. RBP4, KIM-1, TNFR-2, and VDBP reached p < 0.01 in univariate analysis and were entered into the final analysis. VDBP had the highest AUC (0.780, p < 0.01), followed by RBP4 (0.711, p < 0.01), KIM-1 (0.640, p = 0.044), and TNFR-2 (0.615, p = 0.081). However, a combination of these four urinary biomarkers had the highest AUC (0.812), with a sensitivity of 0.742 and a specificity of 0.760. Conclusions The urinary levels of VDBP, RBP4, KIM-1, and TNFR-2 can be detected simultaneously using Luminex liquid suspension chip technology. The combination of these biomarkers, which reflect different mechanisms of kidney damage, had the highest diagnostic value for DKD. However, this finding should be explored further to understand the synergistic effects of these biomarkers.
Collapse
Affiliation(s)
- Xinran Li
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xinxin Zhang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shenglan Wang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yuan Li
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Cheng Meng
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Baocheng Chang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
3
|
Tsagiopoulou M, Rashmi S, Aguilar-Fernandez S, Nieto J, Gut IG. Multi-organ single-cell transcriptomics of immune cells uncovered organ-specific gene expression and functions. Sci Data 2024; 11:316. [PMID: 38538617 PMCID: PMC10973478 DOI: 10.1038/s41597-024-03152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Despite the wealth of publicly available single-cell datasets, our understanding of distinct resident immune cells and their unique features in diverse human organs remains limited. To address this, we compiled a meta-analysis dataset of 114,275 CD45+ immune cells sourced from 14 organs in healthy donors. While the transcriptome of immune cells remains relatively consistent across organs, our analysis has unveiled organ-specific gene expression differences (GTPX3 in kidney, DNTT and ACVR2B in thymus). These alterations are linked to different transcriptional factor activities and pathways including metabolism. TNF-α signaling through the NFkB pathway was found in several organs and immune compartments. The presence of distinct expression profiles for NFkB family genes and their target genes, including cytokines, underscores their pivotal role in cell positioning. Taken together, immune cells serve a dual role: safeguarding the organs and dynamically adjusting to the intricacies of the host organ environment, thereby actively contributing to its functionality and overall homeostasis.
Collapse
Affiliation(s)
| | - Sonal Rashmi
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain
| | | | - Juan Nieto
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain
| | - Ivo G Gut
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain.
- Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
4
|
Zhang Y, Shen L, Wang B, Wu X. Ethanolamine-phosphate phospho-lyase (ETNPPL) contributes to the diagnosis, prognosis, and therapy of hepatocellular carcinoma. PeerJ 2023; 11:e15834. [PMID: 37637156 PMCID: PMC10448887 DOI: 10.7717/peerj.15834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 08/29/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is characterized by high mortality, difficulty in early screening, relapse, and poor prognosis. This study aimed to explore the expression of ethanolamine-phosphate phospho-lyase (ETNPPL) and its clinical significance in HCC. Methods Differentially expressed mRNAs were screened using microarray analysis. Functional enrichment was performed using GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. We used qRT-PCR to measure the expression of ETNPPL in HCC tissues and paired paracarcinoma tissues. A receiver operating characteristic (ROC) curve and Kaplan-Meier curve were conducted to assess the diagnostic and prognostic values. Cell behaviors were evaluated using a scratch test and transwell assay. Results The results showed that numerous mRNAs are abnormally expressed in HCC. ETNPPL was decreased in HCC tissues and cells. The area under curve (AUC) of ETNPPL was 0.9089, demonstrating that ETNPPL had diagnostic value. Low expression of ETNPPL was related to poor prognosis for patients with HCC. Moreover, the over-expression of ETNPPL inhibited HCC cell migration and invasion. Conclusions In conclusion, downregulated ETNPPL was found in HCC and is related to poor patient prognosis and the promotion of cell metastasis. This suggests that ETNPPL serves both as a promising diagnosis and prognosis biomarker, and a therapy target of HCC.
Collapse
Affiliation(s)
- Yun Zhang
- Department of General Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Li Shen
- Disinfection Supply Center, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Bojun Wang
- Department of General Surgery, Yixing Fourth People’s Hospital, Yixing, Jiangsu, China
| | - Xiaohong Wu
- Department of General Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| |
Collapse
|
5
|
Meng K, Hu Y, Wang D, Li Y, Shi F, Lu J, Wang Y, Cao Y, Zhang CZ, He QY. EFHD1, a novel mitochondrial regulator of tumor metastasis in clear cell renal cell carcinoma. Cancer Sci 2023; 114:2029-2040. [PMID: 36747492 PMCID: PMC10154798 DOI: 10.1111/cas.15749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The biological function of many mitochondrial proteins in mechanistic detail has not been well investigated in clear cell renal cell carcinoma (ccRCC). A seven-mitochondrial-gene signature was generated by Lasso regression analysis to improve the prediction of prognosis of patients with ccRCC, using The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium cohort. Among those seven genes, EFHD1 is less studied and its role in the progression of ccRCC remains unknown. The decreased expression of EFHD1 was validated in clinical samples and was correlated with unfavorable outcome. Overexpression of EFHD1 in ccRCC cells resulted in the reduction of mitochondrial Ca2+ , and the inhibition of cell migration and invasion in vitro and tumor metastasis in vivo. Mechanistically, EFHD1 physically bound to the core mitochondrial calcium transporter (mitochondrial calcium uniporter, MCU) through its N-terminal domain. The interaction between EFHD1 and MCU suppressed the uptake of Ca2+ into mitochondria, and deactivated the Hippo/YAP signaling pathway. Further data revealed that the ectopic expression of EFHD1 upregulated STARD13 to enhance the phosphorylation of YAP protein at Ser-127. The knockdown of STARD13 or the overexpression of MCU partly abrogated the EFHD1-mediated induction of phosphorylation of YAP at Ser-127 and suppression of cell migration. Taken together, the newly identified EFHD1-MCU-STARD13 axis participates in the modulation of the Hippo/YAP pathway and serves as a novel regulator in the progression of ccRCC.
Collapse
Affiliation(s)
- Kun Meng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.,The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuyu Hu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Dingkang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yuying Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Fujin Shi
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jiangli Lu
- Department of Pathology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yun Cao
- Department of Pathology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.,The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Zhang Y, He Q. The role of SELENBP1 and its epigenetic regulation in carcinogenic progression. Front Genet 2022; 13:1027726. [PMID: 36386843 PMCID: PMC9663989 DOI: 10.3389/fgene.2022.1027726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
The initiation and progression of cancer is modulated through diverse genetic and epigenetic modifications. The epigenetic machinery regulates gene expression through intertwined DNA methylation, histone modifications, and miRNAs without affecting their genome sequences. SELENBP1 belongs to selenium-binding proteins and functions as a tumor suppressor. Its expression is significantly downregulated and correlates with carcinogenic progression and poor survival in various cancers. The role of SELENBP1 in carcinogenesis has not been fully elucidated, and its epigenetic regulation remains poorly understood. In this review, we summarize recent findings on the function and regulatory mechanisms of SELENBP1 during carcinogenic progression, with an emphasis on epigenetic mechanisms. We also discuss the potential cancer treatment targeting epigenetic modification of SELENBP1, either alone or in combination with selenium-containing compounds or dietary selenium.
Collapse
|
7
|
Yang J, Bai X, Liu G, Li X. A transcriptional regulatory network of HNF4α and HNF1α involved in human diseases and drug metabolism. Drug Metab Rev 2022; 54:361-385. [PMID: 35892182 DOI: 10.1080/03602532.2022.2103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HNF4α and HNF1α are core transcription factors involved in the development and progression of a variety of human diseases and drug metabolism. They play critical roles in maintaining the normal growth and function of multiple organs, mainly the liver, and in the metabolism of endogenous and exogenous substances. The twelve isoforms of HNF4α may exhibit different physiological functions, and HNF4α and HNF1α show varying or even opposing effects in different types of diseases, particularly cancer. Additionally, the regulation of CYP450, phase II drug-metabolizing enzymes, and drug transporters is affected by several factors. This article aims to review the role of HNF4α and HNF1α in human diseases and drug metabolism, including their structures and physiological functions, affected diseases, regulated drug metabolism genes, influencing factors, and related mechanisms. We also propose a transcriptional regulatory network of HNF4α and HNF1α that regulates the expression of target genes related to disease and drug metabolism.
Collapse
Affiliation(s)
- Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
8
|
An X, Liu Y. HOTAIR in solid tumors: Emerging mechanisms and clinical strategies. Biomed Pharmacother 2022; 154:113594. [DOI: 10.1016/j.biopha.2022.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
|
9
|
Eberhardt DR, Lee SH, Yin X, Balynas AM, Rekate EC, Kraiss JN, Lang MJ, Walsh MA, Streiff ME, Corbin AC, Li Y, Funai K, Sachse FB, Chaudhuri D. EFHD1 ablation inhibits cardiac mitoflash activation and protects cardiomyocytes from ischemia. J Mol Cell Cardiol 2022; 167:1-14. [PMID: 35304170 PMCID: PMC9107497 DOI: 10.1016/j.yjmcc.2022.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 12/07/2022]
Abstract
Altered levels of intracellular calcium (Ca2+) are a highly prevalent feature in different forms of cardiac injury, producing changes in contractility, arrhythmias, and mitochondrial dysfunction. In cardiac ischemia-reperfusion injury, mitochondrial Ca2+ overload leads to pathological production of reactive oxygen species (ROS), activates the permeability transition, and cardiomyocyte death. Here we investigated the cardiac phenotype caused by deletion of EF-hand domain-containing protein D1 (Efhd1-/-), a Ca2+-binding mitochondrial protein whose function is poorly understood. Efhd1-/- mice are viable and have no adverse cardiac phenotypes. They feature reductions in basal ROS levels and mitoflash events, both important precursors for mitochondrial injury, though cardiac mitochondria have normal susceptibility to Ca2+ overload. Notably, we also find that Efhd1-/- mice and their cardiomyocytes are resistant to hypoxic injury.
Collapse
Affiliation(s)
- David R Eberhardt
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, United States of America
| | - Sandra H Lee
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, United States of America
| | - Xue Yin
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, United States of America
| | - Anthony M Balynas
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, United States of America
| | - Emma C Rekate
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, United States of America
| | - Jackie N Kraiss
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, United States of America
| | - Marisa J Lang
- Diabetes & Metabolism Research Center, University of Utah, United States of America
| | - Maureen A Walsh
- Diabetes & Metabolism Research Center, University of Utah, United States of America
| | - Molly E Streiff
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, United States of America; Department of Biomedical Engineering, University of Utah, United States of America
| | - Andrea C Corbin
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, United States of America; Department of Biomedical Engineering, University of Utah, United States of America
| | - Ying Li
- Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States of America
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, United States of America
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, United States of America; Department of Biomedical Engineering, University of Utah, United States of America
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, United States of America; Department of Biomedical Engineering, University of Utah, United States of America; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, United States of America.
| |
Collapse
|
10
|
Thylur Puttalingaiah R. Role of Swiprosin-1/EFHD2 as a biomarker in the development of chronic diseases. Life Sci 2022; 297:120462. [PMID: 35276221 DOI: 10.1016/j.lfs.2022.120462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
Swiprosin-1 or EFHD2, is a Ca2+ binding actin protein and its expression has been shown to be distinct in various cell types. The expression of swiprosin-1 is upregulated during the activation of immune cells, epithelial and endothelial cells. The expression of swiprosin-1 is regulated by diverse signaling pathways that are contingent upon the specific type of cells. The aim of this review is to summarize and provide an overview of the role of swiprosin-1 in pathophysiological conditions of cancers, cardiovascular diseases, diabetic nephropathy, neuropsychiatric diseases, and in the process of inflammation, immune response, and inflammatory diseases. Novel approaches for the targeting of swiprosin-1 as a biomarker in the early detection and prevention of various development of chronic diseases are also explored.
Collapse
Affiliation(s)
- Ramesh Thylur Puttalingaiah
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, Room 945-B1, New Orleans, LA 70112, USA..
| |
Collapse
|
11
|
PBRM1 loss in kidney cancer unbalances the proximal tubule master transcription factor hub to repress proximal tubule differentiation. Cell Rep 2021; 36:109747. [PMID: 34551289 PMCID: PMC8561673 DOI: 10.1016/j.celrep.2021.109747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
PBRM1, a subunit of the PBAF coactivator complex that transcription factors use to activate target genes, is genetically inactivated in almost all clear cell renal cell cancers (RCCs). Using unbiased proteomic analyses, we find that PAX8, a master transcription factor driver of proximal tubule epithelial fates, recruits PBRM1/PBAF. Reverse analyses of the PAX8 interactome confirm recruitment specifically of PBRM1/PBAF and not functionally similar BAF. More conspicuous in the PAX8 hub in RCC cells, however, are corepressors, which functionally oppose coactivators. Accordingly, key PAX8 target genes are repressed in RCC versus normal kidneys, with the loss of histone lysine-27 acetylation, but intact lysine-4 trimethylation, activation marks. Re-introduction of PBRM1, or depletion of opposing corepressors using siRNA or drugs, redress coregulator imbalance and release RCC cells to terminal epithelial fates. These mechanisms thus explain RCC resemblance to the proximal tubule lineage but with suppression of the late-epithelial program that normally terminates lineage-precursor proliferation. Gu et al. identify that transcription factor PAX8 needs the PBRM1/PBAF coactivator to activate proximal tubule genes. PBRM1 mutation/deletion thus explains the resemblance of clear cell kidney cancer to proximal tubule tissue but with suppressed terminal epithelial markers. This oncogenic mechanism could be repaired using drugs to inhibit corepressors.
Collapse
|
12
|
Szeliga M, Albrecht J. Roles of nitric oxide and polyamines in brain tumor growth. Adv Med Sci 2021; 66:199-205. [PMID: 33711670 DOI: 10.1016/j.advms.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO) and polyamines: putrescine, spermidine and spermine, are key arginine metabolites in mammalian tissues that play critical roles i.a. in regulation of vascular tone (NO), and cell cycle regulation (polyamines). In the brain, both classes of molecules additionally have neuromodulatory and neuroprotective potential, and NO also a neurotoxic potential. Here we review evidence that brain tumors use the NO- and polyamine-synthesizing machineries to the benefit of their differentiation and growth from healthy glia and neurons. With a few exceptions, brain tumors show increased activities of one or all of the three arginine (Arg) to NO-converting nitric oxide synthase (NOS) isoforms (iNOS, eNOS, nNOS), but also elevated activities of polyamines-generating and modifying enzymes: arginase I/II, ornithine decarboxylase and spermidine/spermine N1-acetyltransferase. The degree of stimulation of NO- and polyamine synthesis often correlates with brain tumor malignancy. Excess NO, but also spermine, spermidine and their N1-acetylated forms, are tumor- and context-dependently involved in angiogenesis, tumor initiation and growth, and resistance to chemo- or radiotherapy. Hypothetically, increased demand for NO and/or polyamines is likely to contribute to Arg auxotrophy of malignant brain tumors, albeit the causal nexus awaits experimental verification.
Collapse
|
13
|
Thomas ZV, Wang Z, Zang C. BART Cancer: a web resource for transcriptional regulators in cancer genomes. NAR Cancer 2021; 3:zcab011. [PMID: 33778495 PMCID: PMC7984808 DOI: 10.1093/narcan/zcab011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of gene expression plays an important role in cancer development. Identifying transcriptional regulators, including transcription factors and chromatin regulators, that drive the oncogenic gene expression program is a critical task in cancer research. Genomic profiles of active transcriptional regulators from primary cancer samples are limited in the public domain. Here we present BART Cancer (bartcancer.org), an interactive web resource database to display the putative transcriptional regulators that are responsible for differentially regulated genes in 15 different cancer types in The Cancer Genome Atlas (TCGA). BART Cancer integrates over 10000 gene expression profiling RNA-seq datasets from TCGA with over 7000 ChIP-seq datasets from the Cistrome Data Browser database and the Gene Expression Omnibus (GEO). BART Cancer uses Binding Analysis for Regulation of Transcription (BART) for predicting the transcriptional regulators from the differentially expressed genes in cancer samples compared to normal samples. BART Cancer also displays the activities of over 900 transcriptional regulators across cancer types, by integrating computational prediction results from BART and the Cistrome Cancer database. Focusing on transcriptional regulator activities in human cancers, BART Cancer can provide unique insights into epigenetics and transcriptional regulation in cancer, and is a useful data resource for genomics and cancer research communities.
Collapse
Affiliation(s)
- Zachary V Thomas
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
14
|
LncRNA HOTAIR recruits SNAIL to inhibit the transcription of HNF4α and promote the viability, migration, invasion and EMT of colorectal cancer. Transl Oncol 2021; 14:101036. [PMID: 33588137 PMCID: PMC7901038 DOI: 10.1016/j.tranon.2021.101036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
HOTAIR recruited SNAIL and reduced the expression of HNF4α to promote EMT of colorectal cancer. Provided potential novel long non-coding RNA-directed early diagnosis and therapy for colorectal cancer. Provided further insight into the regulatory mechanism of HOTAIR in colorectal cancer.
Colorectal cancer causes severe burdensome on the health by its high fatality and poor prognosis. Hox transcript antisense intergenic RNA (HOTAIR) was believed closely related with the genesis and development of colorectal cancer, but the regulatory mechanism is still to be investigated. The expression of HOTAIR was analyzed in colorectal cancer using both qRT-PCR and ISH assay. The cell viability, migration, invasion and apoptosis rate were evaluated using MTT, BrdU,Transwell and flow cytometryexperiments. The interaction between HOTAIR and SNAIL was detected using RIP and RNA pull-down. The binding of SNAIL to HNF4α promoter was assessed by ChIP. The cell lines that knock down HOTAIR, SNAIL or overexpress HNF4α were constructed using retroviral vector system. The tumorigenic and metastatic capacity of colorectal cancer cells after knocking down HOTAIR were evaluated based on xenograft assay and liver metastases model. HOTAIR was highly expressed in both tissue and cell lines of colorectal cancer, indicated a regulatory function in colorectal cancer. Knock-down of HOTAIR suppressed cell viability, migration, invasion and epithelial-mesenchymal transition (EMT) of colorectal cancer cells in vitro, and inhibited the growth and metastasis of colorectal tumor in nude mice. We further found that HOTAIR suppressed HNF4α via recruiting SNAIL, and the overexpression of HNF4α inhibited cell viability, migration, invasion and EMT of colorectal cancer cells. We demonstrated that HOTAIR regulates the level of HNF4α via recruiting SNAIL, knocking down HOTAIR repressed the cell viability and metestasis of colorectal cancer cell line in vitro, and suppressed the tomorgenesis and migration/invasion of colorectal cancer in vivo.
Collapse
|
15
|
Ultimate Precision: Targeting Cancer But Not Normal Self-Replication. Lung Cancer 2021. [DOI: 10.1007/978-3-030-74028-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Dugourd A, Kuppe C, Sciacovelli M, Gjerga E, Gabor A, Emdal KB, Vieira V, Bekker‐Jensen DB, Kranz J, Bindels E, Costa AS, Sousa A, Beltrao P, Rocha M, Olsen JV, Frezza C, Kramann R, Saez‐Rodriguez J. Causal integration of multi-omics data with prior knowledge to generate mechanistic hypotheses. Mol Syst Biol 2021; 17:e9730. [PMID: 33502086 PMCID: PMC7838823 DOI: 10.15252/msb.20209730] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/07/2023] Open
Abstract
Multi-omics datasets can provide molecular insights beyond the sum of individual omics. Various tools have been recently developed to integrate such datasets, but there are limited strategies to systematically extract mechanistic hypotheses from them. Here, we present COSMOS (Causal Oriented Search of Multi-Omics Space), a method that integrates phosphoproteomics, transcriptomics, and metabolomics datasets. COSMOS combines extensive prior knowledge of signaling, metabolic, and gene regulatory networks with computational methods to estimate activities of transcription factors and kinases as well as network-level causal reasoning. COSMOS provides mechanistic hypotheses for experimental observations across multi-omics datasets. We applied COSMOS to a dataset comprising transcriptomics, phosphoproteomics, and metabolomics data from healthy and cancerous tissue from eleven clear cell renal cell carcinoma (ccRCC) patients. COSMOS was able to capture relevant crosstalks within and between multiple omics layers, such as known ccRCC drug targets. We expect that our freely available method will be broadly useful to extract mechanistic insights from multi-omics studies.
Collapse
Affiliation(s)
- Aurelien Dugourd
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Division of Nephrology and Clinical ImmunologyFaculty of MedicineRWTH Aachen UniversityAachenGermany
| | - Christoph Kuppe
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Division of Nephrology and Clinical ImmunologyFaculty of MedicineRWTH Aachen UniversityAachenGermany
- Department of Internal Medicine, Nephrology and TransplantationErasmus Medical CenterRotterdamThe Netherlands
| | - Marco Sciacovelli
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Enio Gjerga
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
| | - Attila Gabor
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Kristina B. Emdal
- Faculty of Health and Medical SciencesProteomics ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Vitor Vieira
- Centre of Biological EngineeringUniversity of Minho ‐ Campus de GualtarBragaPortugal
| | - Dorte B. Bekker‐Jensen
- Faculty of Health and Medical SciencesProteomics ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Jennifer Kranz
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Department of Urology and Pediatric UrologySt. Antonius Hospital EschweilerAcademic Teaching Hospital of RWTH AachenEschweilerGermany
- Department of Urology and Kidney TransplantationMartin Luther UniversityHalle (Saale)Germany
| | | | - Ana S.H. Costa
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
- Present address:
Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - Abel Sousa
- Institute for Research and Innovation in Health (i3s)PortoPortugal
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Pedro Beltrao
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Miguel Rocha
- Centre of Biological EngineeringUniversity of Minho ‐ Campus de GualtarBragaPortugal
| | - Jesper V. Olsen
- Faculty of Health and Medical SciencesProteomics ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Christian Frezza
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Rafael Kramann
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Division of Nephrology and Clinical ImmunologyFaculty of MedicineRWTH Aachen UniversityAachenGermany
- Department of Internal Medicine, Nephrology and TransplantationErasmus Medical CenterRotterdamThe Netherlands
| | - Julio Saez‐Rodriguez
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
- Molecular Medicine Partnership Unit, European Molecular Biology LaboratoryHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
17
|
Qiu MJ, Zhang L, Fang XF, Li QT, Zhu LS, Zhang B, Yang SL, Xiong ZF. Research on the circadian clock gene HNF4a in different malignant tumors. Int J Med Sci 2021; 18:1339-1347. [PMID: 33628089 PMCID: PMC7893568 DOI: 10.7150/ijms.49997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022] Open
Abstract
Background: The circadian rhythm is produced by multiple feedback loops formed by the core clock genes after transcription and translation, thus regulating various metabolic and physiological functions of the human body. We have shown previously that the abnormal expression of 14 clock genes is related closely to the occurrence and development of different malignant tumors, and these genes may play an anti-cancer or pro-cancer role in different tumors. HNF4a has many typical properties of clock proteins involved in the clock gene negative feedback loop regulation process. We need to explore the function of HNF4a as a circadian clock gene in malignant tumors further. Methods: We used The Cancer Genome Atlas (TCGA) database to download the clinicopathological information of twenty malignant tumors and the corresponding RNA-seq data. The HNF4a RNA-seq data standardized by R language and clinical information were integrated to reveal the relationship between HNF4a and prognosis of patients. Results: Analysis of TCGA data showed that the prognosis of HNF4a was significantly different in BLCA, KIRC, LUSC, and READ. High HNF4a expression is correlated with good prognosis in BLCA, KIRC, and READ but poor prognosis in LUSC. However, HNF4a was associated with the stages, T stages, and lymph node status only in BLCA. Conclusions: HNF4a plays different roles in different malignancies, and the abnormal expression of HNF4a has a great correlation with the biological characteristics of BLCA. The low expression of HNF4a could be a reference index for the metastasis, recurrence, and prognosis of BLCA.
Collapse
Affiliation(s)
- Meng-Jun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Li Zhang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Xie-Fan Fang
- Charles River Laboratories, Inc., 6995 Longley Lane, Reno NV 89511
| | - Qiu-Ting Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Li-Sheng Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng-Li Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi-Fan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| |
Collapse
|
18
|
Lv DD, Zhou LY, Tang H. Hepatocyte nuclear factor 4α and cancer-related cell signaling pathways: a promising insight into cancer treatment. Exp Mol Med 2021; 53:8-18. [PMID: 33462379 PMCID: PMC8080681 DOI: 10.1038/s12276-020-00551-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/23/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α), a member of the nuclear receptor superfamily, is described as a protein that binds to the promoters of specific genes. It controls the expression of functional genes and is also involved in the regulation of numerous cellular processes. A large number of studies have demonstrated that HNF4α is involved in many human malignancies. Abnormal expression of HNF4α is emerging as a critical factor in cancer cell proliferation, apoptosis, invasion, dedifferentiation, and metastasis. In this review, we present emerging insights into the roles of HNF4α in the occurrence, progression, and treatment of cancer; reveal various mechanisms of HNF4α in cancer (e.g., the Wnt/β-catenin, nuclear factor-κB, signal transducer and activator of transcription 3, and transforming growth factor β signaling pathways); and highlight potential clinical uses of HNF4α as a biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Duo-Duo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ling-Yun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Computational Identification of Tumor Suppressor Genes Based on Gene Expression Profiles in Normal and Cancerous Gastrointestinal Tissues. JOURNAL OF ONCOLOGY 2020; 2020:2503790. [PMID: 32774369 PMCID: PMC7396062 DOI: 10.1155/2020/2503790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Cancer prevails in various gastrointestinal (GI) organs, such as esophagus, stomach, and colon. However, the small intestine has an extremely low cancer risk. It is interesting to investigate the molecular cues that could explain the significant difference in cancer incidence rates among different GI tissues. Using several large-scale normal and cancer tissue genomics datasets, we compared the gene expression profiling between small intestine and other GI tissues and between GI cancers and normal tissues. We identified 17 tumor suppressor genes (TSGs) which showed significantly higher expression levels in small intestine than in other GI tissues and significantly lower expression levels in GI cancers than in normal tissues. These TSGs were mainly involved in metabolism, immune, and cell growth signaling-associated pathways. Many TSGs had a positive expression correlation with survival prognosis in various cancers, confirming their tumor suppressive function. We demonstrated that the downregulation of many TSGs was associated with their hypermethylation in cancer. Moreover, we showed that the expression of many TSGs inversely correlated with tumor purity and positively correlated with antitumor immune response in various cancers, suggesting that these TSGs may exert their tumor suppressive function by promoting antitumor immunity. Furthermore, we identified a transcriptional regulatory network of the TSGs and their master transcriptional regulators (MTRs). Many of MTRs have been recognized as tumor suppressors, such as HNF4A, ZBTB7A, p53, and RUNX3. The TSGs could provide new molecular cues associated with tumorigenesis and tumor development and have potential clinical implications for cancer diagnosis, prognosis, and treatment.
Collapse
|
20
|
Zhou H, Guo L, Yao W, Shi R, Yu G, Xu H, Ye Z. Silencing of tumor-suppressive NR_023387 in renal cell carcinoma via promoter hypermethylation and HNF4A deficiency. J Cell Physiol 2020; 235:2113-2128. [PMID: 31432508 DOI: 10.1002/jcp.29115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/08/2019] [Indexed: 01/17/2023]
Abstract
Dysregulation of the epigenetic status of long noncoding RNAs (lncRNAs) has been linked to diverse human diseases including human cancers. However, the landscape of the whole-genome methylation profile of lncRNAs and the precise roles of these lncRNAs remain elusive in renal cell carcinoma (RCC). We first examined lncRNA expression profiles in RCC tissues and corresponding adjacent normal tissues (NTs) to identify the lncRNA signature of RCC, then lncRNA Promoter Microarray was performed to depict the whole-genome methylation profile of lncRNAs in RCC. Combined analysis of the lncRNAs expression profiles and lncRNAs Promoter Microarray identified a series of downregulated lncRNAs with hypermethylated promoter regions, including NR_023387. Quantitative real-time polymerase chain reaction (RT-PCR) implied that NR_023387 was significantly downregulated in RCC tissues and cell lines, and lower expression of NR_023387 was correlated with shorter overall survival. Methylation-specific PCR, MassARRAY, and demethylation drug treatment indicated that hypermethylation in the NR_023387 promoter contributed to its silencing in RCC. Besides, HNF4A regulated the expression of NR_023387 via transcriptional activation. Functional experiments demonstrated NR_023387 exerted tumor-suppressive roles in RCC via suppressing the proliferation, migration, invasion, tumor growth, and metastasis of RCC. Furthermore, we identified MGP as a putative downstream molecule of NR_023387, which promoted the epithelial-mesenchymal transition of RCC cells. Our study provides the first whole-genome lncRNA methylation profile in RCC. Our combined analysis identifies a tumor-suppressive and prognosis-related lncRNA NR_023387, which is silenced in RCC via promoter hypermethylation and HNF4A deficiency, and may exert its tumor-suppressive roles by downregulating the oncogenic MGP.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan, China
| | - Liang Guo
- Lu'an People's Hospital, Anhui Medical University, Lu'an, China
| | - Weimin Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan, China
| | - Runlin Shi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan, China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan, China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan, China
| |
Collapse
|
21
|
Wang W, Xie G, Ren Z, Xie T, Li J. Gene Selection for the Discrimination of Colorectal Cancer. Curr Mol Med 2019; 20:415-428. [PMID: 31746296 DOI: 10.2174/1566524019666191119105209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide. Cancer discrimination is a typical application of gene expression analysis using a microarray technique. However, microarray data suffer from the curse of dimensionality and usual imbalanced class distribution between the majority (tumor samples) and minority (normal samples) classes. Feature gene selection is necessary and important for cancer discrimination. OBJECTIVES To select feature genes for the discrimination of CRC. METHODS We improve the feature selection algorithm based on differential evolution, DEFSw by using RUSBoost classifier and weight accuracy instead of the common classifier and evaluation measure for selecting feature genes from imbalance data. We firstly extract differently expressed genes (DEGs) from the CRC dataset of the TCGA and then select the feature genes from the DEGs using the improved DEFSw algorithm. Finally, we validate the selected feature gene sets using independent datasets and retrieve the cancer related information for these genes based on text mining through the Coremine Medical online database. RESULTS We select out 16 single-gene feature sets for colorectal cancer discrimination and 19 single-gene feature sets only for colon cancer discrimination. CONCLUSIONS In summary, we find a series of high potential candidate biomarkers or signatures, which can discriminate either or both of colon cancer and rectal cancer with high sensitivity and specificity.
Collapse
Affiliation(s)
- Wenhui Wang
- Network Information Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,National Engineering Research Center of Digital Life, Sun Yat-sen University, Guangzhou, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanglei Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhonglu Ren
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tingyan Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinming Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Nuclear receptor HNF4α performs a tumor suppressor function in prostate cancer via its induction of p21-driven cellular senescence. Oncogene 2019; 39:1572-1589. [PMID: 31695151 PMCID: PMC7018660 DOI: 10.1038/s41388-019-1080-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Abstract
Hepatocyte nuclear factor 4α (HNF4α, NR2A1) is a highly conserved member of the nuclear receptor superfamily. Recent advances reveal that it is a key transcriptional regulator of genes, broadly involved in xenobiotic and drug metabolism and also cancers of gastrointestinal tract. However, the exact functional roles of HNF4α in prostate cancer progression are still not fully understood. In this study, we determined the functional significance of HNF4α in prostate cancer. Our results showed that HNF4α exhibited a reduced expression pattern in clinical prostate cancer tissues, prostate cancer cell lines and xenograft model of castration-relapse prostate cancer. Stable HNF4α knockdown not only could promote cell proliferation and suppress doxorubicin (Dox)-induced cellular senescence in prostate cancer cells, but also confer resistance to paclitaxel treatment and enhance colony formation capacity and in vivo tumorigenicity of prostate cancer cells. On the contrary, ectopic overexpression of HNF4α could significantly inhibit the cell proliferation of prostate cancer cells, induce cell-cycle arrest at G2/M phase and trigger the cellular senescence in prostate cancer cells by activation of p21 signal pathway in a p53-independent manner via its direct transactivation of CDKN1A. Together, our results show that HNF4α performs a tumor suppressor function in prostate cancer via a mechanism of p21-driven cellular senescence.
Collapse
|
23
|
Chen YR, Huang HC, Lin CC. Regulatory feedback loops bridge the human gene regulatory network and regulate carcinogenesis. Brief Bioinform 2019; 20:976-984. [PMID: 29194477 DOI: 10.1093/bib/bbx166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
The development of disease involves a systematic disturbance inside cells and is associated with changes in the interactions or regulations among genes forming biological networks. The bridges inside a network are critical in shortening the distances between nodes. We observed that, inside the human gene regulatory network, one strongly connected core bridged the whole network. Other regulations outside the core formed a weakly connected component surrounding the core like a peripheral structure. Furthermore, the regulatory feedback loops (FBLs) inside the core compose an interface-like structure between the core and periphery. We then denoted the regulatory FBLs as the interface core. Notably, both the cancer-associated and essential biomolecules and regulations were significantly overrepresented in the interface core. These results implied that the interface core is not only critical for the network structure but central in cellular systems. Furthermore, the enrichment of the cancer-associated and essential regulations in the interface core might be attributed to its bridgeness in the network. More importantly, we identified one regulatory FBL between HNF4A and NR2F2 that possesses the highest bridgeness in the interface core. Further investigation suggested that the disturbance of the HNF4A-NR2F2 FBL might protect tumor cells from apoptotic processes. Our results emphasize the relevance of the regulatory network properties to cellular systems and might reveal a critical role of the interface core in cancer.
Collapse
Affiliation(s)
- Yun-Ru Chen
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei
| |
Collapse
|
24
|
Steuernagel L, Meckbach C, Heinrich F, Zeidler S, Schmitt AO, Gültas M. Computational identification of tissue-specific transcription factor cooperation in ten cattle tissues. PLoS One 2019; 14:e0216475. [PMID: 31095599 PMCID: PMC6522001 DOI: 10.1371/journal.pone.0216475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/22/2019] [Indexed: 01/01/2023] Open
Abstract
Transcription factors (TFs) are a special class of DNA-binding proteins that orchestrate gene transcription by recruiting other TFs, co-activators or co-repressors. Their combinatorial interplay in higher organisms maintains homeostasis and governs cell identity by finely controlling and regulating tissue-specific gene expression. Despite the rich literature on the importance of cooperative TFs for deciphering the mechanisms of individual regulatory programs that control tissue specificity in several organisms such as human, mouse, or Drosophila melanogaster, to date, there is still need for a comprehensive study to detect specific TF cooperations in regulatory processes of cattle tissues. To address the needs of knowledge about specific combinatorial gene regulation in cattle tissues, we made use of three publicly available RNA-seq datasets and obtained tissue-specific gene (TSG) sets for ten tissues (heart, lung, liver, kidney, duodenum, muscle tissue, adipose tissue, colon, spleen and testis). By analyzing these TSG-sets, tissue-specific TF cooperations of each tissue have been identified. The results reveal that similar to the combinatorial regulatory events of model organisms, TFs change their partners depending on their biological functions in different tissues. Particularly with regard to preferential partner choice of the transcription factors STAT3 and NR2C2, this phenomenon has been highlighted with their five different specific cooperation partners in multiple tissues. The information about cooperative TFs could be promising: i) to understand the molecular mechanisms of regulating processes; and ii) to extend the existing knowledge on the importance of single TFs in cattle tissues.
Collapse
Affiliation(s)
- Lukas Steuernagel
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
| | - Cornelia Meckbach
- Institute of Medical Bioinformatics, Goldschmidtstraße 1, University Medical Center Göttingen, Georg-August-University, 37077 Göttingen, Germany
| | - Felix Heinrich
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
| | - Sebastian Zeidler
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
| | - Armin O. Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075, Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075, Göttingen, Germany
- * E-mail:
| |
Collapse
|
25
|
Zhang K, Wang M, Zhao Y, Wang W. Taiji: System-level identification of key transcription factors reveals transcriptional waves in mouse embryonic development. SCIENCE ADVANCES 2019; 5:eaav3262. [PMID: 30944857 PMCID: PMC6436936 DOI: 10.1126/sciadv.aav3262] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/30/2019] [Indexed: 05/20/2023]
Abstract
Transcriptional regulation is pivotal to the specification of distinct cell types during embryonic development. However, it still lacks a systematic way to identify key transcription factors (TFs) orchestrating the temporal and tissue specificity of gene expression. Here, we integrated epigenomic and transcriptomic data to reveal key regulators from two cells to postnatal day 0 in mouse embryogenesis. We predicted three-dimensional chromatin interactions in 12 tissues across eight developmental stages, which facilitates linking TFs to their target genes for constructing transcriptional regulatory networks. To identify driver TFs, we developed a new algorithm, dubbed Taiji, to assess the global influence of each TF and systematically uncovered TFs critical for lineage-specific and stage-dependent tissue specification. We have also identified TF combinations that function in spatiotemporal order to form transcriptional waves regulating developmental progress. Furthermore, lacking stage-specific TF combinations suggests a distributed timing strategy to orchestrate the coordination between tissues during embryonic development.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Mengchi Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Ying Zhao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Corresponding author.
| |
Collapse
|
26
|
Vassalli G. Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem Cells Int 2019; 2019:3904645. [PMID: 30733805 PMCID: PMC6348814 DOI: 10.1155/2019/3904645] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022] Open
Abstract
Aldehyde dehydrogenase (ALDH) is a superfamily of enzymes that detoxify a variety of endogenous and exogenous aldehydes and are required for the biosynthesis of retinoic acid (RA) and other molecular regulators of cellular function. Over the past decade, high ALDH activity has been increasingly used as a selectable marker for normal cell populations enriched in stem and progenitor cells, as well as for cell populations from cancer tissues enriched in tumor-initiating stem-like cells. Mounting evidence suggests that ALDH not only may be used as a marker for stem cells but also may well regulate cellular functions related to self-renewal, expansion, differentiation, and resistance to drugs and radiation. ALDH exerts its functional actions partly through RA biosynthesis, as all-trans RA reverses the functional effects of pharmacological inhibition or genetic suppression of ALDH activity in many cell types in vitro. There is substantial evidence to suggest that the role of ALDH as a stem cell marker comes down to the specific isoform(s) expressed in a particular tissue. Much emphasis has been placed on the ALDH1A1 and ALDH1A3 members of the ALDH1 family of cytosolic enzymes required for RA biosynthesis. ALDH1A1 and ALDH1A3 regulate cellular function in both normal stem cells and tumor-initiating stem-like cells, promoting tumor growth and resistance to drugs and radiation. An improved understanding of the molecular mechanisms by which ALDH regulates cellular function will likely open new avenues in many fields, especially in tissue regeneration and oncology.
Collapse
Affiliation(s)
- Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Center for Molecular Cardiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
27
|
Qu M, Duffy T, Hirota T, Kay SA. Nuclear receptor HNF4A transrepresses CLOCK:BMAL1 and modulates tissue-specific circadian networks. Proc Natl Acad Sci U S A 2018; 115:E12305-E12312. [PMID: 30530698 PMCID: PMC6310821 DOI: 10.1073/pnas.1816411115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Either expression level or transcriptional activity of various nuclear receptors (NRs) have been demonstrated to be under circadian control. With a few exceptions, little is known about the roles of NRs as direct regulators of the circadian circuitry. Here we show that the nuclear receptor HNF4A strongly transrepresses the transcriptional activity of the CLOCK:BMAL1 heterodimer. We define a central role for HNF4A in maintaining cell-autonomous circadian oscillations in a tissue-specific manner in liver and colon cells. Not only transcript level but also genome-wide chromosome binding of HNF4A is rhythmically regulated in the mouse liver. ChIP-seq analyses revealed cooccupancy of HNF4A and CLOCK:BMAL1 at a wide array of metabolic genes involved in lipid, glucose, and amino acid homeostasis. Taken together, we establish that HNF4A defines a feedback loop in tissue-specific mammalian oscillators and demonstrate its recruitment in the circadian regulation of metabolic pathways.
Collapse
Affiliation(s)
- Meng Qu
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089
| | - Tomas Duffy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, 464-8602 Nagoya, Japan
| | - Steve A Kay
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089;
| |
Collapse
|
28
|
Velcheti V, Schrump D, Saunthararajah Y. Ultimate Precision: Targeting Cancer but Not Normal Self-replication. Am Soc Clin Oncol Educ Book 2018; 38:950-963. [PMID: 30231326 DOI: 10.1200/edbk_199753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-replication is the engine that drives all biologic evolution, including neoplastic evolution. A key oncotherapy challenge is to target this, the heart of malignancy, while sparing the normal self-replication mandatory for health and life. Self-replication can be demystified: it is activation of replication, the most ancient of cell programs, uncoupled from activation of lineage-differentiation, metazoan programs more recent in origin. The uncoupling can be physiologic, as in normal tissue stem cells, or pathologic, as in cancer. Neoplastic evolution selects to disengage replication from forward-differentiation where intrinsic replication rates are the highest, in committed progenitors that have division times measured in hours versus weeks for tissue stem cells, via partial loss of function in master transcription factors that activate terminal-differentiation programs (e.g., GATA4) or in the coactivators they use for this purpose (e.g., ARID1A). These loss-of-function mutations bias master transcription factor circuits, which normally regulate corepressor versus coactivator recruitment, toward corepressors (e.g., DNMT1) that repress rather than activate terminal-differentiation genes. Pharmacologic inhibition of the corepressors rebalances to coactivator function, activating lineage-differentiation genes that dominantly antagonize MYC (the master transcription factor coordinator of replication) to terminate malignant self-replication. Physiologic self-replication continues, because the master transcription factors in tissue stem cells activate stem cell, not terminal-differentiation, programs. Druggable corepressor proteins are thus the barriers between self-replicating cancer cells and the terminal-differentiation fates intended by their master transcription factor content. This final common pathway to oncogenic self-replication, being separate and distinct from the normal, offers the favorable therapeutic indices needed for clinical progress.
Collapse
Affiliation(s)
- Vamsidhar Velcheti
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| | - David Schrump
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| | - Yogen Saunthararajah
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| |
Collapse
|
29
|
Enane FO, Saunthararajah Y, Korc M. Differentiation therapy and the mechanisms that terminate cancer cell proliferation without harming normal cells. Cell Death Dis 2018; 9:912. [PMID: 30190481 PMCID: PMC6127320 DOI: 10.1038/s41419-018-0919-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022]
Abstract
Chemotherapeutic drugs have a common intent to activate apoptosis in tumor cells. However, master regulators of apoptosis (e.g., p53, p16/CDKN2A) are frequently genetically inactivated in cancers, resulting in multidrug resistance. An alternative, p53-independent method for terminating malignant proliferation is to engage terminal-differentiation. Normally, the exponential proliferation of lineage-committed progenitors, coordinated by the master transcription factor (TF) MYC, is self-limited by forward-differentiation to terminal lineage-fates. In cancers, however, this exponential proliferation is disengaged from terminal-differentiation. The mechanisms underlying this decoupling are mostly unknown. We performed a systematic review of published literature (January 2007-June 2018) to identify gene pathways linked to differentiation-failure in three treatment-recalcitrant cancers: hepatocellular carcinoma (HCC), ovarian cancer (OVC), and pancreatic ductal adenocarcinoma (PDAC). We analyzed key gene alterations in various apoptosis, proliferation and differentiation pathways to determine whether it is possible to predict treatment outcomes and suggest novel therapies. Poorly differentiated tumors were linked to poorer survival across histologies. Our analyses suggested loss-of-function events to master TF drivers of lineage-fates and their cofactors as being linked to differentiation-failure: genomic data in TCGA and ICGC databases demonstrated frequent haploinsufficiency of lineage master TFs (e.g., GATA4/6) in poorly differentiated tumors; the coactivators that these TFs use to activate genes (e.g. ARID1A, PBRM1) were also frequently inactivated by genetic mutation and/or deletion. By contrast, corepressor components (e.g., DNMT1, EED, UHRF1, and BAZ1A/B), that oppose coactivators to repress or turn off genes, were frequently amplified instead, and the level of amplification was highest in poorly differentiated lesions. This selection by neoplastic evolution towards unbalanced activity of transcriptional corepressors suggests these enzymes as candidate targets for inhibition aiming to re-engage forward-differentiation. This notion is supported by both pre-clinical and clinical trial literature.
Collapse
Affiliation(s)
- Francis O Enane
- Department of Medicine, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, USA.
| | - Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Translational Hematology and Oncology Research, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Murray Korc
- Department of Medicine, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- The Pancreatic Cancer Signature Center at Indiana University Purdue University Indianapolis and Indiana University Simon Cancer, Indianapolis, IN, 46202, USA.
| |
Collapse
|
30
|
Velcheti V, Radivoyevitch T, Saunthararajah Y. Higher-Level Pathway Objectives of Epigenetic Therapy: A Solution to the p53 Problem in Cancer. Am Soc Clin Oncol Educ Book 2017; 37:812-824. [PMID: 28561650 DOI: 10.1200/edbk_174175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Searches for effective yet nontoxic oncotherapies are searches for exploitable differences between cancer and normal cells. In its core of cell division, cancer resembles normal life, coordinated by the master transcription factor MYC. Outside of this core, apoptosis and differentiation programs, which dominantly antagonize MYC to terminate cell division, necessarily differ between cancer and normal cells, as apoptosis is suppressed by biallelic inactivation of the master regulator of apoptosis, p53, or its cofactor p16/CDKN2A in approximately 80% of cancers. These genetic alterations impact therapy: conventional oncotherapy applies stress upstream of p53 to upregulate it and causes apoptosis (cytotoxicity)-a toxic, futile intent when it is absent or nonfunctional. Differentiation, on the other hand, cannot be completely suppressed because it is a continuum along which all cells exist. Neoplastic evolution stalls advances along this continuum at its most proliferative points-in lineage-committed progenitors that have division times measured in hours compared with weeks for tissue stem cells. This differentiation arrest is by mutations/deletions in differentiation-driving transcription factors or their coactivators that shift balances of gene-regulating protein complexes toward corepressors that repress instead of activate hundreds of terminal differentiation genes. That is, malignant proliferation without differentiation, also referred to as cancer "stem" cell self-renewal, hinges on druggable corepressors. Inhibiting these corepressors (e.g., DNMT1) releases p53-independent terminal differentiation in cancer stem cells but preserves self-renewal of normal stem cells that express stem cell transcription factors. Thus, epigenetic-differentiation therapies exploit a fundamental distinction between cancer and normal stem cell self-renewal and have a pathway of action downstream of genetic defects in cancer, affording favorable therapeutic indices needed for clinical progress.
Collapse
Affiliation(s)
- Vamsidhar Velcheti
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Tomas Radivoyevitch
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Yogen Saunthararajah
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
31
|
Enane FO, Shuen WH, Gu X, Quteba E, Przychodzen B, Makishima H, Bodo J, Ng J, Chee CL, Ba R, Seng Koh L, Lim J, Cheong R, Teo M, Hu Z, Ng KP, Maciejewski J, Radivoyevitch T, Chung A, Ooi LL, Tan YM, Cheow PC, Chow P, Chan CY, Lim KH, Yerian L, Hsi E, Toh HC, Saunthararajah Y. GATA4 loss of function in liver cancer impedes precursor to hepatocyte transition. J Clin Invest 2017; 127:3527-3542. [PMID: 28758902 DOI: 10.1172/jci93488] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022] Open
Abstract
The most frequent chromosomal structural loss in hepatocellular carcinoma (HCC) is of the short arm of chromosome 8 (8p). Genes on the remaining homologous chromosome, however, are not recurrently mutated, and the identity of key 8p tumor-suppressor genes (TSG) is unknown. In this work, analysis of minimal commonly deleted 8p segments to identify candidate TSG implicated GATA4, a master transcription factor driver of hepatocyte epithelial lineage fate. In a murine model, liver-conditional deletion of 1 Gata4 allele to model the haploinsufficiency seen in HCC produced enlarged livers with a gene expression profile of persistent precursor proliferation and failed hepatocyte epithelial differentiation. HCC mimicked this gene expression profile, even in cases that were morphologically classified as well differentiated. HCC with intact chromosome 8p also featured GATA4 loss of function via GATA4 germline mutations that abrogated GATA4 interactions with a coactivator, MED12, or by inactivating mutations directly in GATA4 coactivators, including ARID1A. GATA4 reintroduction into GATA4-haploinsufficient HCC cells or ARID1A reintroduction into ARID1A-mutant/GATA4-intact HCC cells activated hundreds of hepatocyte genes and quenched the proliferative precursor program. Thus, disruption of GATA4-mediated transactivation in HCC suppresses hepatocyte epithelial differentiation to sustain replicative precursor phenotype.
Collapse
Affiliation(s)
- Francis O Enane
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Wai Ho Shuen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Xiaorong Gu
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ebrahem Quteba
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bartlomiej Przychodzen
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hideki Makishima
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Juraj Bodo
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joanna Ng
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Chit Lai Chee
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rebecca Ba
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Lip Seng Koh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Janice Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rachael Cheong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Marissa Teo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Zhenbo Hu
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kwok Peng Ng
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jaroslaw Maciejewski
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alexander Chung
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | | | - Yu Meng Tan
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | - Peng-Chung Cheow
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | - Pierce Chow
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | - Chung Yip Chan
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | - Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore
| | - Lisa Yerian
- Clinical Pathology, Pathology Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eric Hsi
- Clinical Pathology, Pathology Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Yogen Saunthararajah
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
32
|
Ancey PB, Ecsedi S, Lambert MP, Talukdar FR, Cros MP, Glaise D, Narvaez DM, Chauvet V, Herceg Z, Corlu A, Hernandez-Vargas H. TET-Catalyzed 5-Hydroxymethylation Precedes HNF4A Promoter Choice during Differentiation of Bipotent Liver Progenitors. Stem Cell Reports 2017; 9:264-278. [PMID: 28648900 PMCID: PMC5511103 DOI: 10.1016/j.stemcr.2017.05.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022] Open
Abstract
Understanding the processes that govern liver progenitor cell differentiation has important implications for the design of strategies targeting chronic liver diseases, whereby regeneration of liver tissue is critical. Although DNA methylation (5mC) and hydroxymethylation (5hmC) are highly dynamic during early embryonic development, less is known about their roles at later stages of differentiation. Using an in vitro model of hepatocyte differentiation, we show here that 5hmC precedes the expression of promoter 1 (P1)-dependent isoforms of HNF4A, a master transcription factor of hepatocyte identity. 5hmC and HNF4A expression from P1 are dependent on ten-eleven translocation (TET) dioxygenases. In turn, the liver pioneer factor FOXA2 is necessary for TET1 binding to the P1 locus. Both FOXA2 and TETs are required for the 5hmC-related switch in HNF4A expression. The epigenetic event identified here may be a key step for the establishment of the hepatocyte program by HNF4A.
Collapse
Affiliation(s)
- Pierre-Benoit Ancey
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France
| | - Szilvia Ecsedi
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France; MTA-DE Public Health Research Group, University of Debrecen, 4028 Debrecen, Hungary
| | - Marie-Pierre Lambert
- Epissage alternatif et progression tumorale, Centre de Recherche en Cancérologie de Lyon (CRCL), 28 rue Laennec, 69008 Lyon, France
| | - Fazlur Rahman Talukdar
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France
| | - Marie-Pierre Cros
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France
| | - Denise Glaise
- Inserm, Inra, UBL, Nutrition Metabolism and Cancer (NuMeCan), 35033 Rennes Cedex 9, France
| | - Diana Maria Narvaez
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France; Human Genetics Laboratory, Department of Biological Sciences, Universidad de Los Andes, Cr. 1 No. 18A-10 Building M1-2 Floor, Bogotá 110321, Colombia
| | - Veronique Chauvet
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France
| | - Anne Corlu
- Inserm, Inra, UBL, Nutrition Metabolism and Cancer (NuMeCan), 35033 Rennes Cedex 9, France
| | - Hector Hernandez-Vargas
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France.
| |
Collapse
|
33
|
Aschenbrenner AC, Bassler K, Brondolin M, Bonaguro L, Carrera P, Klee K, Ulas T, Schultze JL, Hoch M. A cross-species approach to identify transcriptional regulators exemplified for Dnajc22 and Hnf4a. Sci Rep 2017; 7:4056. [PMID: 28642491 PMCID: PMC5481429 DOI: 10.1038/s41598-017-04370-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/05/2017] [Indexed: 12/03/2022] Open
Abstract
There is an enormous need to make better use of the ever increasing wealth of publicly available genomic information and to utilize the tremendous progress in computational approaches in the life sciences. Transcriptional regulation of protein-coding genes is a major mechanism of controlling cellular functions. However, the myriad of transcription factors potentially controlling transcription of any given gene makes it often difficult to quickly identify the biological relevant transcription factors. Here, we report on the identification of Hnf4a as a major transcription factor of the so far unstudied DnaJ heat shock protein family (Hsp40) member C22 (Dnajc22). We propose an approach utilizing recent advances in computational biology and the wealth of publicly available genomic information guiding the identification of potential transcription factor candidates together with wet-lab experiments validating computational models. More specifically, the combined use of co-expression analyses based on self-organizing maps with sequence-based transcription factor binding prediction led to the identification of Hnf4a as the potential transcriptional regulator for Dnajc22 which was further corroborated using publicly available datasets on Hnf4a. Following this procedure, we determined its functional binding site in the murine Dnajc22 locus using ChIP-qPCR and luciferase assays and verified this regulatory loop in fruitfly, zebrafish, and humans.
Collapse
Affiliation(s)
- A C Aschenbrenner
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| | - K Bassler
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - M Brondolin
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, SE1 9RT, London, United Kingdom
| | - L Bonaguro
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - P Carrera
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - K Klee
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - T Ulas
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - J L Schultze
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
- Single Cell Genomics and Epigenomics Unit at the German Center for Neurodegenerative Diseases and the University of Bonn, 53175, Bonn, Germany
| | - M Hoch
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
34
|
Forman K, Martínez F, Cifuentes M, Bertinat R, Salazar K, Nualart F. Aging Selectively Modulates Vitamin C Transporter Expression Patterns in the Kidney. J Cell Physiol 2017; 232:2418-2426. [DOI: 10.1002/jcp.25504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Katherine Forman
- Centro de Microscopía Avanzada, CMA BIO BIO; Facultad de Ciencias Biológicas, Universidad de Concepción; Concepción Chile
- Departamento de Nutrición y Dietética, Facultad de Farmacia; Universidad de Concepción; Concepción Chile
| | - Fernando Martínez
- Centro de Microscopía Avanzada, CMA BIO BIO; Facultad de Ciencias Biológicas, Universidad de Concepción; Concepción Chile
| | - Manuel Cifuentes
- Departamento de Biología Celular, Génetica y Fisiología, Laboratorio de Fisiología Animal; Facultad de Ciencias, Centro de Investigaciones Biomédicas en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universidad de Málaga; Málaga España
| | - Romina Bertinat
- Centro de Microscopía Avanzada, CMA BIO BIO; Facultad de Ciencias Biológicas, Universidad de Concepción; Concepción Chile
| | - Katterine Salazar
- Centro de Microscopía Avanzada, CMA BIO BIO; Facultad de Ciencias Biológicas, Universidad de Concepción; Concepción Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA BIO BIO; Facultad de Ciencias Biológicas, Universidad de Concepción; Concepción Chile
| |
Collapse
|
35
|
Angelici B, Mailand E, Haefliger B, Benenson Y. Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells. Cell Rep 2016; 16:2525-37. [PMID: 27545896 PMCID: PMC5009115 DOI: 10.1016/j.celrep.2016.07.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 06/19/2016] [Accepted: 07/22/2016] [Indexed: 11/02/2022] Open
Abstract
One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with endogenous mammalian transcription factors has been particularly difficult. Here, we describe a systematic approach that enables integration and transduction of multiple mammalian transcription factor inputs by a synthetic network. The approach is facilitated by a proportional amplifier sensor based on synergistic positive autoregulation. The circuits efficiently transduce endogenous transcription factor levels into RNAi, transcriptional transactivation, and site-specific recombination. They also enable AND logic between pairs of arbitrary transcription factors. The results establish a framework for developing synthetic gene networks that interface with cellular processes through transcriptional regulators.
Collapse
Affiliation(s)
- Bartolomeo Angelici
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich), Mattenstrasse 26, 4058 Basel, Switzerland
| | - Erik Mailand
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich), Mattenstrasse 26, 4058 Basel, Switzerland
| | - Benjamin Haefliger
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich), Mattenstrasse 26, 4058 Basel, Switzerland
| | - Yaakov Benenson
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich), Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
36
|
Wang Y, Chaudhari S, Ren Y, Ma R. Impairment of hepatic nuclear factor-4α binding to the Stim1 promoter contributes to high glucose-induced upregulation of STIM1 expression in glomerular mesangial cells. Am J Physiol Renal Physiol 2015; 308:F1135-45. [PMID: 25786776 PMCID: PMC4437002 DOI: 10.1152/ajprenal.00563.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/16/2015] [Indexed: 11/22/2022] Open
Abstract
The present study was carried out to investigate if hepatic nuclear factor (HNF)4α contributed to the high glucose-induced increase in stromal interacting molecule (STIM)1 protein abundance in glomerular mesangial cells (MCs). Western blot and immunofluorescence experiments showed HNF4α expression in MCs. Knockdown of HNF4α using a small interfering RNA approach significantly increased mRNA expression levels of both STIM1 and Orai1 and protein expression levels of STIM1 in cultured human MCs. Consistently, overexpression of HNF4α reduced expressed STIM1 protein expression in human embryonic kidney-293 cells. Furthermore, high glucose treatment did not significantly change the abundance of HNF4α protein in MCs but significantly attenuated HNF4α binding activity to the Stim1 promoter. Moreover, knockdown of HNF4α significantly augmented store-operated Ca(2+) entry, which is known to be gated by STIM1 and has recently been found to be antifibrotic in MCs. In agreement with those results, knockdown of HNF4α significantly attenuated the fibrotic response of high glucose. These results suggest that HNF4α negatively regulates STIM1 transcription in MCs. High glucose increases STIM1 expression levels by impairing HNF4α binding activity to the Stim1 promoter, which subsequently releases Stim1 transcription from HNF4α repression. Since the STIM1-gated store-operated Ca(2+) entry pathway in MCs has an antifibrotic effect, inhibition of HNF4α in MCs might be a potential therapeutic option for diabetic kidney disease.
Collapse
Affiliation(s)
- Yanxia Wang
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - Sarika Chaudhari
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - Yuezhong Ren
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Rong Ma
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| |
Collapse
|
37
|
Reznik E, Sander C. Extensive decoupling of metabolic genes in cancer. PLoS Comput Biol 2015; 11:e1004176. [PMID: 25961905 PMCID: PMC4427321 DOI: 10.1371/journal.pcbi.1004176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/04/2015] [Indexed: 12/21/2022] Open
Abstract
Tumorigenesis requires the re-organization of metabolism to support malignant proliferation. We examine how the altered metabolism of cancer cells is reflected in the rewiring of co-expression patterns among metabolic genes. Focusing on breast and clear-cell kidney tumors, we report the existence of key metabolic genes which act as hubs of differential co-expression, showing significantly different co-regulation patterns between normal and tumor states. We compare our findings to those from classical differential expression analysis, and counterintuitively observe that the extent of a gene's differential co-expression only weakly correlates with its differential expression, suggesting that the two measures probe different features of metabolism. Focusing on this discrepancy, we use changes in co-expression patterns to highlight the apparent loss of regulation by the transcription factor HNF4A in clear cell renal cell carcinoma, despite no differential expression of HNF4A. Finally, we aggregate the results of differential co-expression analysis into a Pan-Cancer analysis across seven distinct cancer types to identify pairs of metabolic genes which may be recurrently dysregulated. Among our results is a cluster of four genes, all components of the mitochondrial electron transport chain, which show significant loss of co-expression in tumor tissue, pointing to potential mitochondrial dysfunction in these tumor types.
Collapse
Affiliation(s)
- Ed Reznik
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| | - Chris Sander
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
38
|
Yao HS, Wang J, Zhang XP, Wang LZ, Wang Y, Li XX, Jin KZ, Hu ZQ, Wang WJ. Hepatocyte nuclear factor 4α suppresses the aggravation of colon carcinoma. Mol Carcinog 2015; 55:458-72. [PMID: 25808746 DOI: 10.1002/mc.22294] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/19/2014] [Accepted: 01/14/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Hou Shan Yao
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Juan Wang
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Xiao Ping Zhang
- Medical Intervention Engineering; Tongji University; North Zhongshan Road; Shanghai China
| | - Liang Zhe Wang
- Department of pathology; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Yi Wang
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Xin Xing Li
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Kai Zhou Jin
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Zhi Qian Hu
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Wei Jun Wang
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| |
Collapse
|
39
|
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is an orphan nuclear receptor commonly known as the master regulator of hepatic differentiation, owing to the large number of hepatocyte-specific genes it regulates. Whereas the role of HNF4α in hepatocyte differentiation is well recognized and extensively studied, its role in regulation of cell proliferation is relatively less known. Recent studies have revealed that HNF4α inhibits proliferation not only of hepatocytes but also cells in colon and kidney. Further, a growing number of studies have demonstrated that inhibition or loss of HNF4α promotes tumorigenesis in the liver and colon, and reexpression of HNF4α results in decreased cancer growth. Studies using tissue-specific conditional knockout mice, knock-in studies, and combinatorial bioinformatics of RNA/ChIP-sequencing data indicate that the mechanisms of HNF4α-mediated inhibition of cell proliferation are multifold, involving epigenetic repression of promitogenic genes, significant cross talk with other cell cycle regulators including c-Myc and cyclin D1, and regulation of miRNAs. Furthermore, studies indicate that posttranslational modifications of HNF4α may change its activity and may be at the core of its dual role as a differentiation factor and repressor of proliferation. This review summarizes recent findings on the role of HNF4α in cell proliferation and highlights the newly understood function of this old receptor.
Collapse
Affiliation(s)
- Chad Walesky
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- †Department of Medicine – Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Udayan Apte
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
40
|
Hagos Y, Wegner W, Kuehne A, Floerl S, Marada VV, Burckhardt G, Henjakovic M. HNF4α Induced Chemosensitivity to Oxaliplatin and 5-FU Mediated by OCT1 and CNT3 in Renal Cell Carcinoma. J Pharm Sci 2014; 103:3326-34. [DOI: 10.1002/jps.24128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/11/2014] [Accepted: 07/31/2014] [Indexed: 12/16/2022]
|
41
|
Pors K, Moreb JS. Aldehyde dehydrogenases in cancer: an opportunity for biomarker and drug development? Drug Discov Today 2014; 19:1953-63. [PMID: 25256776 DOI: 10.1016/j.drudis.2014.09.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/31/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) belong to a superfamily of 19 isozymes that are known to participate in many physiologically important biosynthetic processes including detoxification of specific endogenous and exogenous aldehyde substrates. The high expression levels of an emerging number of ALDHs in various cancer tissues suggest that these enzymes have pivotal roles in cancer cell survival and progression. Mapping out the heterogeneity of tumours and their cancer stem cell (CSC) component will be key to successful design of strategies involving therapeutics that are targeted against specific ALDH isozymes. This review summarises recent progress in ALDH-focused cancer research and discovery of small-molecule-based inhibitors.
Collapse
Affiliation(s)
- Klaus Pors
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK.
| | - Jan S Moreb
- Hematological Malignancies, PO Box 100278, Gainesville, FL 32610-0277, USA.
| |
Collapse
|
42
|
Ha YS, Lee GT, Kim YH, Kwon SY, Choi SH, Kim TH, Kwon TG, Yun SJ, Kim IY, Kim WJ. Decreased selenium-binding protein 1 mRNA expression is associated with poor prognosis in renal cell carcinoma. World J Surg Oncol 2014; 12:288. [PMID: 25227434 PMCID: PMC4176564 DOI: 10.1186/1477-7819-12-288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/02/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The anticancer effects of selenium may be mediated by selenium-binding proteins, such as SELENBP1. The association between SELENBP1 expression levels and clinicopathologic parameters was assessed in renal cell carcinoma (RCC). METHODS SELENBP1 mRNA expression was measured with real-time quantitative polymerase chain reaction (qPCR) in 139 specimens of primary RCC and 59 specimens of donor-matched normal-appearing kidney tissues. The prognostic effect of SELENBP1 levels was evaluated with Kaplan-Meier and multivariate Cox regression analyses. RESULTS SELENBP1 mRNA levels were significantly lower in tumor tissues than in matched normal kidney tissues (P < 0.001) and significantly inversely correlated with pathologic (T-stage and Fuhrman grade) and prognostic variables (progression and cancer-specific death). Kaplan-Meier estimates showed that low SELENBP1 expression was significantly correlated with cancer-specific death (log-rank test, P = 0.014), and a multivariate Cox regression model revealed that SELENBP1 expression was an independent predictor of cancer-specific death (HR, 0.111; P = 0.006). CONCLUSIONS SELENBP1 might play a role in tumor suppression and could be a useful prognostic factor in RCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea.
| |
Collapse
|
43
|
Prestin K, Wolf S, Feldtmann R, Hussner J, Geissler I, Rimmbach C, Kroemer HK, Zimmermann U, Meyer zu Schwabedissen HE. Transcriptional regulation of urate transportosome member SLC2A9 by nuclear receptor HNF4α. Am J Physiol Renal Physiol 2014; 307:F1041-51. [PMID: 25209865 DOI: 10.1152/ajprenal.00640.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal tubular handling of urate is realized by a network of uptake and efflux transporters, including members of drug transporter families such as solute carrier proteins and ATP-binding cassette transporters. Solute carrier family 2, member 9 (SLC2A9), is one key factor of this so called "urate transportosome." The aim of the present study was to understand the transcriptional regulation of SLC2A9 and to test whether identified factors might contribute to a coordinated transcriptional regulation of the transporters involved in urate handling. In silico analysis and cell-based reporter gene assays identified a hepatocyte nuclear factor (HNF)4α-binding site in the promoter of SLC2A9 isoform 1, whose activity was enhanced by transient HNF4α overexpression, whereas mutation of the binding site diminished activation. HNF4α overexpression induced endogenous SLC2A9 expression in vitro. The in vivo role of HNF4α in the modulation of renal SLC2A9 gene expression was supported by findings of quantitative real-time RT-PCR analyses and chromatin immunoprecipitation assays. Indeed, mRNA expression of SLC2A9 and HNF4α in human kidney samples was significantly correlated. We also showed that in renal clear cell carcinoma, downregulation of HNF4α mRNA and protein expression was associated with a significant decline in expression of the transporter. Taken together, our data suggest that nuclear receptor family member HNF4α contributes to the transcriptional regulation of SLC2A9 isoform 1. Since HNF4α has previously been assumed to be a modulator of several urate transporters, our findings support the notion that there could be a transcriptional network providing synchronized regulation of the functional network of the urate transportosome.
Collapse
Affiliation(s)
- Katharina Prestin
- University of Basel, Department of Pharmaceutical Sciences, Biopharmacy, Basel, Switzerland
| | - Stephanie Wolf
- University Medicine, Ernst Moritz Arndt University Greifswald, Center of Drug Absorption and Transport, Institute of Pharmacology, Greifswald, Germany
| | - Rico Feldtmann
- University Medicine, Ernst Moritz Arndt University Greifswald, Center of Drug Absorption and Transport, Institute of Pharmacology, Greifswald, Germany
| | - Janine Hussner
- University of Basel, Department of Pharmaceutical Sciences, Biopharmacy, Basel, Switzerland
| | - Ingrid Geissler
- University Medicine, Ernst Moritz Arndt University Greifswald, Center of Drug Absorption and Transport, Institute of Pharmacology, Greifswald, Germany
| | - Christian Rimmbach
- University Medicine, Ernst Moritz Arndt University Greifswald, Center of Drug Absorption and Transport, Institute of Pharmacology, Greifswald, Germany
| | - Heyo K Kroemer
- University of Goettingen, Medical Faculty, Goettingen, Germany; and
| | - Uwe Zimmermann
- University Medicine, Ernst Moritz Arndt University Greifswald, Department of Urology, Greifswald, Germany
| | | |
Collapse
|
44
|
Simeone P, Trerotola M, Urbanella A, Lattanzio R, Ciavardelli D, Di Giuseppe F, Eleuterio E, Sulpizio M, Eusebi V, Pession A, Piantelli M, Alberti S. A unique four-hub protein cluster associates to glioblastoma progression. PLoS One 2014; 9:e103030. [PMID: 25050814 PMCID: PMC4106866 DOI: 10.1371/journal.pone.0103030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/25/2014] [Indexed: 01/09/2023] Open
Abstract
Gliomas are the most frequent brain tumors. Among them, glioblastomas are malignant and largely resistant to available treatments. Histopathology is the gold standard for classification and grading of brain tumors. However, brain tumor heterogeneity is remarkable and histopathology procedures for glioma classification remain unsatisfactory for predicting disease course as well as response to treatment. Proteins that tightly associate with cancer differentiation and progression, can bear important prognostic information. Here, we describe the identification of protein clusters differentially expressed in high-grade versus low-grade gliomas. Tissue samples from 25 high-grade tumors, 10 low-grade tumors and 5 normal brain cortices were analyzed by 2D-PAGE and proteomic profiling by mass spectrometry. This led to identify 48 differentially expressed protein markers between tumors and normal samples. Protein clustering by multivariate analyses (PCA and PLS-DA) provided discrimination between pathological samples to an unprecedented extent, and revealed a unique network of deranged proteins. We discovered a novel glioblastoma control module centered on four major network hubs: Huntingtin, HNF4α, c-Myc and 14-3-3ζ. Immunohistochemistry, western blotting and unbiased proteome-wide meta-analysis revealed altered expression of this glioblastoma control module in human glioma samples as compared with normal controls. Moreover, the four-hub network was found to cross-talk with both p53 and EGFR pathways. In summary, the findings of this study indicate the existence of a unifying signaling module controlling glioblastoma pathogenesis and malignant progression, and suggest novel targets for development of diagnostic and therapeutic procedures.
Collapse
Affiliation(s)
- Pasquale Simeone
- Unit of Cancer Pathology, Ce.S.I., Foundation University “G. d'Annunzio,” Chieti, Italy
| | - Marco Trerotola
- Unit of Cancer Pathology, Ce.S.I., Foundation University “G. d'Annunzio,” Chieti, Italy
| | - Andrea Urbanella
- Unit of Cancer Pathology, Ce.S.I., Foundation University “G. d'Annunzio,” Chieti, Italy
| | - Rossano Lattanzio
- Unit of Cancer Pathology, Ce.S.I., Foundation University “G. d'Annunzio,” Chieti, Italy
- Department of Experimental and Clinical Sciences, School of Medicine and Health Science, University “G. d'Annunzio,” Chieti, Italy
| | - Domenico Ciavardelli
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Molecular Neurology Unit, Ce.S.I., University “G. d'Annunzio,” Chieti, Italy
| | - Fabrizio Di Giuseppe
- Aging Research Center, Ce.S.I., University “G. d'Annunzio” Foundation, Chieti, Italy
- Department of Experimental and Clinical Sciences, School of Medicine and Health Science, University “G. d'Annunzio,” Chieti, Italy
- StemTeCh Group, Chieti, Italy
| | - Enrica Eleuterio
- Aging Research Center, Ce.S.I., University “G. d'Annunzio” Foundation, Chieti, Italy
- Department of Experimental and Clinical Sciences, School of Medicine and Health Science, University “G. d'Annunzio,” Chieti, Italy
- StemTeCh Group, Chieti, Italy
| | - Marilisa Sulpizio
- Aging Research Center, Ce.S.I., University “G. d'Annunzio” Foundation, Chieti, Italy
- Department of Experimental and Clinical Sciences, School of Medicine and Health Science, University “G. d'Annunzio,” Chieti, Italy
- StemTeCh Group, Chieti, Italy
| | - Vincenzo Eusebi
- Department of “Tutela Salute Donna, Vita nascente, Bambino e Adolescente,” Catholic University of the Sacred Heart, Policlinico Universitario “Agostino Gemelli,” Roma, Italy
| | - Annalisa Pession
- Section of Surgical Pathology, “M. Malpighi,” Bellaria Hospital, Bologna, Italy
| | - Mauro Piantelli
- Unit of Cancer Pathology, Ce.S.I., Foundation University “G. d'Annunzio,” Chieti, Italy
- Department of Experimental and Clinical Sciences, School of Medicine and Health Science, University “G. d'Annunzio,” Chieti, Italy
| | - Saverio Alberti
- Unit of Cancer Pathology, Ce.S.I., Foundation University “G. d'Annunzio,” Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d'Annunzio,” Chieti, Italy
| |
Collapse
|
45
|
Zhong S, He X, Bar-Joseph Z. Predicting tissue specific transcription factor binding sites. BMC Genomics 2013; 14:796. [PMID: 24238150 PMCID: PMC3898213 DOI: 10.1186/1471-2164-14-796] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. RESULTS We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. CONCLUSIONS We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation.
Collapse
Affiliation(s)
| | | | - Ziv Bar-Joseph
- Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
46
|
Strong MJ, Xu G, Coco J, Baribault C, Vinay DS, Lacey MR, Strong AL, Lehman TA, Seddon MB, Lin Z, Concha M, Baddoo M, Ferris M, Swan KF, Sullivan DE, Burow ME, Taylor CM, Flemington EK. Differences in gastric carcinoma microenvironment stratify according to EBV infection intensity: implications for possible immune adjuvant therapy. PLoS Pathog 2013; 9:e1003341. [PMID: 23671415 PMCID: PMC3649992 DOI: 10.1371/journal.ppat.1003341] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 03/20/2013] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with roughly 10% of gastric carcinomas worldwide (EBVaGC). Although previous investigations provide a strong link between EBV and gastric carcinomas, these studies were performed using selected EBV gene probes. Using a cohort of gastric carcinoma RNA-seq data sets from The Cancer Genome Atlas (TCGA), we performed a quantitative and global assessment of EBV gene expression in gastric carcinomas and assessed EBV associated cellular pathway alterations. EBV transcripts were detected in 17% of samples but these samples varied significantly in EBV coverage depth. In four samples with the highest EBV coverage (hiEBVaGC – high EBV associated gastric carcinoma), transcripts from the BamHI A region comprised the majority of EBV reads. Expression of LMP2, and to a lesser extent, LMP1 were also observed as was evidence of abortive lytic replication. Analysis of cellular gene expression indicated significant immune cell infiltration and a predominant IFNG response in samples expressing high levels of EBV transcripts relative to samples expressing low or no EBV transcripts. Despite the apparent immune cell infiltration, high levels of the cytotoxic T-cell (CTL) and natural killer (NK) cell inhibitor, IDO1, was observed in the hiEBVaGCs samples suggesting an active tolerance inducing pathway in this subgroup. These results were confirmed in a separate cohort of 21 Vietnamese gastric carcinoma samples using qRT-PCR and on tissue samples using in situ hybridization and immunohistochemistry. Lastly, a panel of tumor suppressors and candidate oncogenes were expressed at lower levels in hiEBVaGC versus EBV-low and EBV-negative gastric cancers suggesting the direct regulation of tumor pathways by EBV. Epstein-Barr virus (EBV) is detected in roughly 10% of gastric carcinoma (GC) cases worldwide. Despite a strong link between EBV and gastric carcinoma, the contribution of EBV to the tumor environment in EBV associated gastric carcinoma is unclear. We performed a global assessment of EBV and host cell gene expression in gastric carcinoma tumors from 71 patients to link EBV genes (and expression intensities) to cell and microenvironmental changes. In addition to the finding that EBV is associated with down-regulated tumor regulatory genes, this study revealed that samples with high levels of EBV gene expression (hiEBVaGCs) displayed elevated immune cell infiltration with high interferon-gamma (IFNG) expression compared to samples with low or no EBV gene expression. Despite this evidence of increased immune posturing, hiEBVaGC samples also showed elevated expression of the potent immune cell inhibitor, IDO1. This finding may partly explain the persistence of these virus associated tumors in the face of local immune cell concentration. Importantly, the small molecule IDO inhibitor, 1MT (1-methyl Tryptophan), has been shown to reverse the tolerance inducing effects of IDO1 in other tumors. We propose that stratification of gastric carcinomas into EBV-negative, EBV-low and EBV-high may provide indicator value for the use of IDO1 inhibitors as adjuvant therapies against hiEBVaGCs.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Databases, Nucleic Acid
- Epstein-Barr Virus Infections/epidemiology
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/pathology
- Epstein-Barr Virus Infections/therapy
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/immunology
- Gene Expression Regulation, Viral/genetics
- Gene Expression Regulation, Viral/immunology
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/metabolism
- Humans
- Immunotherapy
- Male
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA, Neoplasm/immunology
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- RNA, Viral/immunology
- Stomach Neoplasms/epidemiology
- Stomach Neoplasms/genetics
- Stomach Neoplasms/immunology
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Stomach Neoplasms/therapy
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Michael J. Strong
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - Guorong Xu
- Department of Computer Science, University of New Orleans, New Orleans, Louisiana, United States of America
| | - Joseph Coco
- Department of Computer Science, University of New Orleans, New Orleans, Louisiana, United States of America
| | - Carl Baribault
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
- Department of Mathematics, Tulane University, New Orleans, Louisiana, United States of America
| | - Dass S. Vinay
- Department of Medicine, Section of Clinical Immunology, Allergy, and Rheumatology, Tulane University, New Orleans, Louisiana, United States of America
| | - Michelle R. Lacey
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
- Department of Mathematics, Tulane University, New Orleans, Louisiana, United States of America
| | - Amy L. Strong
- Tulane Center for Stem Cell Research and Regenerative Medicine, New Orleans, Louisiana, United States of America
| | - Teresa A. Lehman
- BioServe Biotechnologies, Ltd., Beltsville, Maryland, United States of America
| | - Michael B. Seddon
- BioServe Biotechnologies, Ltd., Beltsville, Maryland, United States of America
| | - Zhen Lin
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - Monica Concha
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - Melody Baddoo
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - MaryBeth Ferris
- Department of Microbiology & Immunology, Tulane University, New Orleans, Louisiana, United States of America
| | - Kenneth F. Swan
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States of America
| | - Deborah E. Sullivan
- Department of Microbiology & Immunology, Tulane University, New Orleans, Louisiana, United States of America
| | - Matthew E. Burow
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University, New Orleans, Louisiana, United States of America
| | - Christopher M. Taylor
- Department of Computer Science, University of New Orleans, New Orleans, Louisiana, United States of America
- Department of Microbiology, Immunology & Parasitology, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
- Research Institute for Children, Children's Hospital, New Orleans, Louisiana, United States of America
- * E-mail: (CMT); (EKF)
| | - Erik K. Flemington
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
- * E-mail: (CMT); (EKF)
| |
Collapse
|
47
|
Benedetti G, Fredriksson L, Herpers B, Meerman J, van de Water B, de Graauw M. TNF-α-mediated NF-κB survival signaling impairment by cisplatin enhances JNK activation allowing synergistic apoptosis of renal proximal tubular cells. Biochem Pharmacol 2013; 85:274-86. [DOI: 10.1016/j.bcp.2012.10.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 12/12/2022]
|
48
|
Kaur H, Mao S, Li Q, Sameni M, Krawetz SA, Sloane BF, Mattingly RR. RNA-Seq of human breast ductal carcinoma in situ models reveals aldehyde dehydrogenase isoform 5A1 as a novel potential target. PLoS One 2012; 7:e50249. [PMID: 23236365 PMCID: PMC3516505 DOI: 10.1371/journal.pone.0050249] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/22/2012] [Indexed: 01/16/2023] Open
Abstract
Breast ductal carcinoma in situ (DCIS) is being found in great numbers of women due to the widespread use of mammography. To increase knowledge of DCIS, we determined the expression changes that are common among three DCIS models (MCF10.DCIS, SUM102 and SUM225) compared to the MCF10A model of non-tumorigenic mammary epithelial cells in three dimensional (3D) overlay culture with reconstituted basement membrane (rBM). Extracted mRNA was subjected to 76 cycles of deep sequencing (RNA-Seq) using Illumina Genome Analyzer GAIIx. Analysis of RNA-Seq results showed 295 consistently differentially expressed transcripts in the DCIS models. These differentially expressed genes encode proteins that are associated with a number of signaling pathways such as integrin, fibroblast growth factor and TGFβ signaling, show association with cell-cell signaling, cell-cell adhesion and cell proliferation, and have a notable bias toward localization in the extracellular and plasma membrane compartments. RNA-Seq data was validated by quantitative real-time PCR of selected differentially expressed genes. Aldehyde dehydrogenase 5A1 (ALDH5A1) which is an enzyme that is involved in mitochondrial glutamate metabolism, was over-expressed in all three DCIS models at both the mRNA and protein levels. Disulfiram and valproic acid are known to inhibit ALDH5A1 and are safe for chronic use in humans for other disorders. Both of these drugs significantly inhibited net proliferation of the DCIS 3D rBM overlay models, but had minimal effect on MCF10A 3D rBM overlay models. These results suggest that ALDH5A1 may play an important role in DCIS and potentially serve as a novel molecular therapeutic target.
Collapse
Affiliation(s)
- Hitchintan Kaur
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Shihong Mao
- Center for Molecular Medicine and Genetics, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Quanwen Li
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Mansoureh Sameni
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Stephen A. Krawetz
- Center for Molecular Medicine and Genetics, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Bonnie F. Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Raymond R. Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
49
|
Scharmach E, Buhrke T, Lichtenstein D, Lampen A. Perfluorooctanoic acid affects the activity of the hepatocyte nuclear factor 4 alpha (HNF4α). Toxicol Lett 2012; 212:106-12. [DOI: 10.1016/j.toxlet.2012.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 12/20/2022]
|
50
|
Pandiri AR, Sills RC, Ziglioli V, Ton TVT, Hong HHL, Lahousse SA, Gerrish KE, Auerbach SS, Shockley KR, Bushel PR, Peddada SD, Hoenerhoff MJ. Differential transcriptomic analysis of spontaneous lung tumors in B6C3F1 mice: comparison to human non-small cell lung cancer. Toxicol Pathol 2012; 40:1141-59. [PMID: 22688403 DOI: 10.1177/0192623312447543] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lung cancer is the leading cause of cancer-related death in people and is mainly due to environmental factors such as smoking and radon. The National Toxicology Program (NTP) tests various chemicals and mixtures for their carcinogenic hazard potential. In the NTP chronic bioassay using B6C3F1 mice, the incidence of lung tumors in treated and control animals is second only to the liver tumors. In order to study the molecular mechanisms of chemically induced lung tumors, an understanding of the genetic changes that occur in spontaneous lung (SL) tumors from untreated control animals is needed. The authors have evaluated the differential transcriptomic changes within SL tumors compared to normal lungs from untreated age-matched animals. Within SL tumors, several canonical pathways associated with cancer (eukaryotic initiation factor 2 signaling, RhoA signaling, PTEN signaling, and mammalian target of rapamycin signaling), metabolism (Inositol phosphate metabolism, mitochondrial dysfunction, and purine and pyramidine metabolism), and immune responses (FcγR-mediated phagocytosis, clathrin-mediated endocytosis, interleukin 8 signaling, and CXCR4 signaling) were altered. Meta-analysis of murine SL tumors and human non-small cell lung cancer transcriptomic data sets revealed a high concordance. These data provide important information on the differential transcriptomic changes in murine SL tumors that will be critical to our understanding of chemically induced lung tumors and will aid in hazard analysis in the NTP 2-year carcinogenicity bioassays.
Collapse
Affiliation(s)
- Arun R Pandiri
- Cellular and Molecular Pathology Branch, National Toxicology Program-NTP, National Institute of Environmental Health Sciences-NIEHS, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|