1
|
Jin M, Wang H, Liu G, Lu J, Yuan Z, Li T, Liu E, Lu Z, Du L, Wei C. Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation. Genet Sel Evol 2024; 56:26. [PMID: 38565986 PMCID: PMC10988870 DOI: 10.1186/s12711-024-00880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Chinese indigenous sheep are valuable resources with unique features and characteristics. They are distributed across regions with different climates in mainland China; however, few reports have analyzed the environmental adaptability of sheep based on their genome. We examined the variants and signatures of selection involved in adaptation to extreme humidity, altitude, and temperature conditions in 173 sheep genomes from 41 phenotypically and geographically representative Chinese indigenous sheep breeds to characterize the genetic basis underlying environmental adaptation in these populations. RESULTS Based on the analysis of population structure, we inferred that Chinese indigenous sheep are divided into four groups: Kazakh (KAZ), Mongolian (MON), Tibetan (TIB), and Yunnan (YUN). We also detected a set of candidate genes that are relevant to adaptation to extreme environmental conditions, such as drought-prone regions (TBXT, TG, and HOXA1), high-altitude regions (DYSF, EPAS1, JAZF1, PDGFD, and NF1) and warm-temperature regions (TSHR, ABCD4, and TEX11). Among all these candidate genes, eight ABCD4, CNTN4, DOCK10, LOC105608545, LOC121816479, SEM3A, SVIL, and TSHR overlap between extreme environmental conditions. The TSHR gene shows a strong signature for positive selection in the warm-temperature group and harbors a single nucleotide polymorphism (SNP) missense mutation located between positions 90,600,001 and 90,650,001 on chromosome 7, which leads to a change in the protein structure of TSHR and influences its stability. CONCLUSIONS Analysis of the signatures of selection uncovered genes that are likely related to environmental adaptation and a SNP missense mutation in the TSHR gene that affects the protein structure and stability. It also provides information on the evolution of the phylogeographic structure of Chinese indigenous sheep populations. These results provide important genetic resources for future breeding studies and new perspectives on how animals can adapt to climate change.
Collapse
Affiliation(s)
- Meilin Jin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gang Liu
- National Animal Husbandry Service, National Center of Preservation and Utilization of Animal Genetic Resources, Beijing, China
| | - Jian Lu
- National Animal Husbandry Service, National Center of Preservation and Utilization of Animal Genetic Resources, Beijing, China
| | - Zehu Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Taotao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Engming Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lan-Zhou, China
| | - Lixin Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
Guerrini-Rousseau L, Pasmant E, Muleris M, Abbou S, Adam-De-Beaumais T, Brugieres L, Cabaret O, Colas C, Cotteret S, Decq P, Dufour C, Guillerm E, Rouleau E, Varlet P, Zili S, Vidaud D, Grill J. Neurofibromatosis type 1 mosaicism in patients with constitutional mismatch repair deficiency. J Med Genet 2024; 61:158-162. [PMID: 37775264 PMCID: PMC10850717 DOI: 10.1136/jmg-2023-109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/21/2023] [Indexed: 10/01/2023]
Abstract
Differential diagnosis between constitutional mismatch repair deficiency (CMMRD) and neurofibromatosis type 1 (NF1) is crucial as treatment and surveillance differ. We report the case of a girl with a clinical diagnosis of sporadic NF1 who developed a glioblastoma. Immunohistochemistry for MMR proteins identified PMS2 loss in tumour and normal cells and WES showed the tumour had an ultra-hypermutated phenotype, supporting the diagnosis of CMMRD. Germline analyses identified two variants (one pathogenic variant and one classified as variant(s) of unknown significance) in the PMS2 gene and subsequent functional assays on blood lymphocytes confirmed the diagnosis of CMMRD. The large plexiform neurofibroma of the thigh and the freckling were however more compatible with NF1. Indeed, a NF1 PV (variant allele frequencies of 20%, 3% and 9% and in blood, skin and saliva samples, respectively) was identified confirming a mosaicism for NF1. Retrospective analysis of a French cohort identified NF1 mosaicism in blood DNA in 2 out of 22 patients with CMMRD, underlining the existence of early postzygotic PV of NF1 gene in patients with CMMRD whose tumours have been frequently reported to exhibit somatic NF1 mutations. It highlights the potential role of this pathway in the pathogenesis of CMMRD-associated gliomas and argues in favour of testing MEK inhibitors in this context.
Collapse
Affiliation(s)
- Léa Guerrini-Rousseau
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Molecular Predictors and New Targets in Oncology, Inserm U981 Team "Genomics and Oncogenesis of pediatric Brain Tumors", Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Eric Pasmant
- Department of Molecular Genetics, Hôpital Cochin, DMU BioPhyGen, AP-HP Centre-Université Paris Cité, Paris, France
- Inserm U1016-CNRS UMR8104, Institut Cochin, Université Paris Cité, CARPEM, Paris, France
| | - Martine Muleris
- Department of Genetics, Hôpital Pitié-Salpêtrière. AP-HP. Sorbonne Université, Paris, France
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, F-75012 Paris, France
| | - Samuel Abbou
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Molecular Predictors and New Targets in Oncology, Inserm U981 Team "Genomics and Oncogenesis of pediatric Brain Tumors", Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Tiphaine Adam-De-Beaumais
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Laurence Brugieres
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Molecular Predictors and New Targets in Oncology, Inserm U981 Team "Genomics and Oncogenesis of pediatric Brain Tumors", Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Odile Cabaret
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Chrystelle Colas
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, France
| | - Sophie Cotteret
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Philippe Decq
- Neurosurgery Department, Beaujon Hospital, Paris Cité University, Paris, France
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Molecular Predictors and New Targets in Oncology, Inserm U981 Team "Genomics and Oncogenesis of pediatric Brain Tumors", Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Erell Guillerm
- Department of Genetics, Hôpital Pitié-Salpêtrière. AP-HP. Sorbonne Université, Paris, France
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, F-75012 Paris, France
| | - Etienne Rouleau
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Pascale Varlet
- Service de Neuropathologie, GHU Psychiatrie et Neurosciences, site Sainte-Anne, Paris, France
| | - Saïma Zili
- Molecular Predictors and New Targets in Oncology, Inserm U981 Team "Genomics and Oncogenesis of pediatric Brain Tumors", Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Dominique Vidaud
- Department of Molecular Genetics, Hôpital Cochin, DMU BioPhyGen, AP-HP Centre-Université Paris Cité, Paris, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Molecular Predictors and New Targets in Oncology, Inserm U981 Team "Genomics and Oncogenesis of pediatric Brain Tumors", Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
3
|
Roy V, Paquet A, Touzel-Deschênes L, Khuong HT, Dupré N, Gros-Louis F. Heterozygous NF1 dermal fibroblasts modulate exosomal content to promote angiogenesis in a tissue-engineered skin model of neurofibromatosis type-1. J Neurochem 2023; 167:556-570. [PMID: 37837197 DOI: 10.1111/jnc.15982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/01/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023]
Abstract
Neovascularization is a critical process in tumor progression and malignant transformation associated with neurofibromatosis type 1 (NF1). Indeed, fibroblasts are known to play a key role in the tumoral microenvironment modification by producing an abundant collagenous matrix, but their contribution in paracrine communication pathways is poorly understood. Here, we hypothesized that NF1 heterozygosis in human dermal fibroblasts could promote angiogenesis through exosomes secretion. The purposes of this study are to identify the NF1 fibroblast-derived exosome protein contents and to determine their proangiogenic activity. Angiogenic proteome measurement confirmed the overexpression of VEGF and other proteins involved in vascularization. Tube formation of microvascular endothelial cells was also enhanced in presence of exosomes derived from NF1 skin fibroblasts. NF1 tissue-engineered skin (NF1-TES) generation showed a significantly denser microvessels networks compared to healthy controls. The reduction of exosomes production with an inhibitor treatment demonstrated a drastic decrease in blood vessel formation within the dermis. Our results suggest that NF1 haploinsufficiency alters the dermal fibroblast function and creates a pro-angiogenic signal via exosomes, which increases the capillary formation. This study highlights the potential of targeting exosome secretion and angiogenesis for therapeutic interventions in NF1.
Collapse
Affiliation(s)
- Vincent Roy
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Division of Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Alexandre Paquet
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Division of Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Lydia Touzel-Deschênes
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Division of Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Hélène T Khuong
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Division of Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Nicolas Dupré
- Division of Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Quebec, Canada
- Department of Neurological Sciences, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Francois Gros-Louis
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Division of Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
4
|
Idler J, Turkoglu O, Patek K, Stuart S, Taskin B, Sivaswamy L, Whitten A. Neurocutaneous Disorders in Pregnancy. Obstet Gynecol Surv 2023; 78:606-619. [PMID: 37976316 DOI: 10.1097/ogx.0000000000001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Importance Neurocutaneous disorders have significant implications for care of the pregnant patient. As neurocutaneous disorders are uncommon, obstetricians may be unfamiliar with these disorders and with recommendations for appropriate care of this population. Objective This review aims to summarize existing literature on the interaction between neurocutaneous disorders and pregnancy and to provide a guide for physicians caring for an affected patient. Evidence Acquisition A PubMed, MEDLINE, and Google Scholar search was carried out with a broad range of combinations of the medical subject headings (MeSH) terms "pregnancy," "Sturge -Weber," "Neurofibromatosis Type 1," "neurofibromatosis type 2," "von Hippel Lindau," "Tuberous Sclerosis," "neurocutaneous disorder," "treatment," "congenital malformations," "neurodevelopmental defects," "miscarriage," "breastfeeding," "autoimmune," "pathophysiology," and "management." References of included articles were searched to identify any articles that may have been missed after the above method was used. Results Neurocutaneous disorders are associated with increased pregnancy-associated maternal and fetal/neonatal morbidity, largely surrounding hypertensive disorders, epilepsy, and medication exposure. Some features of neurocutaneous disorders may be worsened or accelerated by pregnancy. Neurocutaneous disorders can often be diagnosed prenatally. Therefore, directed assessment should be offered to affected individuals with a personal or family history of a neurocutaneous disorder. Conclusion and Relevance Patients affected by neurocutaneous disorders who are pregnant or planning for future pregnancy should be carefully followed by a multidisciplinary team, which could include maternal-fetal medicine, neurology, and anesthesia, as well as other relevant subspecialists. Additional research is required regarding optimal counseling and management of these patients.
Collapse
Affiliation(s)
- Jay Idler
- Maternal Fetal Medicine Specialist, Allegheny Health Network, Pittsburgh, PA; Assistant Professor, Drexel College of Medicine, Philadelphia, PA
| | | | | | - Sean Stuart
- Obstetrics and Gynecology Resident, William Beaumont University Hospital, Corewell Health, Royal Oak
| | - Birce Taskin
- Child Neurologist, Pediatric Neurology Department, Children's Hospital of Michigan, Wayne State University, Detroit
| | - Lalitha Sivaswamy
- Child Neurologist, Pediatric Neurology Department, Children's Hospital of Michigan, Wayne State University, Detroit
| | - Amy Whitten
- Maternal Fetal Medicine Fellow; Maternal Fetal Medicine Specialist and Associate Professor, William Beaumont University Hospital, Corewell Health, Royal Oak, MI
| |
Collapse
|
5
|
Ahbara AM, Musa HH, Robert C, Abebe A, Al-Jumaili AS, Kebede A, Latairish S, Agoub MO, Clark E, Hanotte O, Mwacharo JM. Natural adaptation and human selection of northeast African sheep genomes. Genomics 2022; 114:110448. [PMID: 35964803 DOI: 10.1016/j.ygeno.2022.110448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
African sheep manifest diverse but distinct physio-anatomical traits, which are the outcomes of natural- and human-driven selection. Here, we generated 34.8 million variants from 150 indigenous northeast African sheep genomes sequenced at an average depth of ∼54× for 130 samples (Ethiopia, Libya) and ∼20× for 20 samples (Sudan). These represented sheep from diverse environments, tail morphology and post-Neolithic introductions to Africa. Phylogenetic and model-based admixture analysis provided evidence of four genetic groups corresponding to altitudinal geographic origins, tail morphotypes and possible historical introduction and dispersal of the species into and across the continent. Running admixture at higher levels of K (6 ≤ K ≤ 25), revealed cryptic levels of genome intermixing as well as distinct genetic backgrounds in some populations. Comparative genomic analysis identified targets of selection that spanned conserved haplotype structures overlapping clusters of genes and gene families. These were related to hypoxia responses, ear morphology, caudal vertebrae and tail skeleton length, and tail fat-depot structures. Our findings provide novel insights underpinning morphological variation and response to human-driven selection and environmental adaptation in African indigenous sheep.
Collapse
Affiliation(s)
- Abulgasim M Ahbara
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya; School of Life Sciences, University of Nottingham, University Park, Nottingham, UK; Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia; LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia; Animal and Veterinary Sciences, SRUC, The Roslin Institute Building, Midlothian, Edinburgh, UK.
| | - Hassan H Musa
- Faculty of Medical Laboratory Sciences, University of Khartoum, Sudan
| | - Christelle Robert
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK
| | - Ayele Abebe
- Debre Berhan Research Centre, Debre Berhan, Ethiopia
| | - Ahmed S Al-Jumaili
- Department of Medical Laboratory Techniques, Al-Maarif University College, Ramadi, Anbar, Iraq
| | - Adebabay Kebede
- LiveGene-CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia; Amhara Regional Agricultural Research Institute, Bahir Dar, Ethiopia
| | - Suliman Latairish
- Department of Animal Production, Faculty of Agriculture, Misurata University, Misurata, Libya
| | | | - Emily Clark
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK; LiveGene-CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia.
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia; Animal and Veterinary Sciences, SRUC, The Roslin Institute Building, Midlothian, Edinburgh, UK; Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK.
| |
Collapse
|
6
|
Current Aspects on the Pathophysiology of Bone Metabolic Defects during Progression of Scoliosis in Neurofibromatosis Type 1. J Clin Med 2022; 11:jcm11020444. [PMID: 35054138 PMCID: PMC8781800 DOI: 10.3390/jcm11020444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Neurofibromatosis type 1 (NF1), which is the most common phacomatoses, is an autosomal dominant disorder characterized by clinical presentations in various tissues and organs, such as the skin, eyes and nervous and skeletal systems. The musculoskeletal implications of NF1 include a variety of deformities, including scoliosis, kyphoscoliosis, spondylolistheses, congenital bony bowing, pseudarthrosis and bone dysplasia. Scoliosis is the most common skeletal problem, affecting 10-30% of NF1 patients. Although the pathophysiology of spinal deformities has not been elucidated yet, defects in bone metabolism have been implicated in the progression of scoliotic curves. Measurements of Bone Mineral Density (BMD) in the lumbar spine by using dual energy absorptiometry (DXA) and quantitative computer tomography (QCT) have demonstrated a marked reduction in Z-score and osteoporosis. Additionally, serum bone metabolic markers, such as vitamin D, calcium, phosphorus, osteocalcin and alkaline phosphatase, have been found to be abnormal. Intraoperative and histological vertebral analysis confirmed that alterations of the trabecular microarchitecture are associated with inadequate bone turnover, indicating generalized bone metabolic defects. At the molecular level, loss of function of neurofibromin dysregulates Ras and Transforming Growth factor-β1 (TGF-β1) signaling and leads to altered osteoclastic proliferation, osteoblastic activity and collagen production. Correlation between clinical characteristics and molecular pathways may provide targets for novel therapeutic approaches in NF1.
Collapse
|
7
|
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common neurocutaneous genetic disorders, presenting with different cutaneous features such as café-au-lait macules, intertriginous skin freckling, and neurofibromas. Although most of the disease manifestations are benign, patients are at risk for a variety of malignancies, including malignant transformation of plexiform neurofibromas. Numerous studies have investigated the mechanisms by which these characteristic neurofibromas develop, with progress made toward unraveling the various players involved in their complex pathogenesis. In this review, we summarize the current understanding of the cells that give rise to NF1 neoplasms as well as the molecular mechanisms and cellular changes that confer tumorigenic potential. We also discuss the role of the tumor microenvironment and the key aspects of its various cell types that contribute to NF1-associated tumorigenesis. An increased understanding of these intrinsic and extrinsic components is critical for developing novel therapeutic approaches for affected patients.
Collapse
Affiliation(s)
- Ashley Bui
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunhui Jiang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Renee M McKay
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laura J Klesse
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Comprehensive Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lu Q Le
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Comprehensive Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Hong CS, Kundishora AJ, Elsamadicy AA, Koo AB, McGuone D, Inzucchi SE, Omay SB, Erson-Omay EZ. Somatic NF1 mutations in pituitary adenomas: Report of two cases. Cancer Genet 2021; 256-257:26-30. [PMID: 33862521 DOI: 10.1016/j.cancergen.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/26/2020] [Accepted: 03/26/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Christopher S Hong
- Department of Neurosurgery, Yale School of Medicine, 20 York Street, LCI8, New Haven, CT 06511, United States
| | - Adam J Kundishora
- Department of Neurosurgery, Yale School of Medicine, 20 York Street, LCI8, New Haven, CT 06511, United States
| | - Aladine A Elsamadicy
- Department of Neurosurgery, Yale School of Medicine, 20 York Street, LCI8, New Haven, CT 06511, United States
| | - Andrew B Koo
- Department of Neurosurgery, Yale School of Medicine, 20 York Street, LCI8, New Haven, CT 06511, United States
| | - Declan McGuone
- Department of Pathology, Yale School of Medicine, New Haven, CT 06511, United States
| | - Silvio E Inzucchi
- Section of Endocrinology, Department of Medicine, Yale School of Medicine, New Haven, CT 06511, United States
| | - Sacit Bulent Omay
- Department of Neurosurgery, Yale School of Medicine, 20 York Street, LCI8, New Haven, CT 06511, United States.
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, 20 York Street, LCI8, New Haven, CT 06511, United States.
| |
Collapse
|
9
|
Tao J, Sun D, Dong L, Zhu H, Hou H. Advancement in research and therapy of NF1 mutant malignant tumors. Cancer Cell Int 2020; 20:492. [PMID: 33061844 PMCID: PMC7547409 DOI: 10.1186/s12935-020-01570-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
The NF1 gene encodes neurofibromin, which is one of the primary negative regulatory factors of the Ras protein. Neurofibromin stimulates the GTPase activity of Ras to convert it from an active GTP-bound form to its inactive GDP-bound form through its GTPase activating protein-related domain (GRD). Therefore, neurofibromin serves as a shutdown signal for all vertebrate RAS GTPases. NF1 mutations cause a resultant decrease in neurofibromin expression, which has been detected in many human malignancies, including NSCLC, breast cancer and so on. NF1 mutations are associated with the underlying mechanisms of treatment resistance discovered in multiple malignancies. This paper reviews the possible mechanisms of NF1 mutation-induced therapeutic resistance to chemotherapy, endocrine therapy and targeted therapy in malignancies. Then, we further discuss advancements in targeted therapy for NF1-mutated malignant tumors. In addition, therapies targeting the downstream molecules of NF1 might be potential novel strategies for the treatment of advanced malignancies.
Collapse
Affiliation(s)
- Junyan Tao
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Dantong Sun
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Lina Dong
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Hua Zhu
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Helei Hou
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| |
Collapse
|
10
|
Jia J, Zhang H, Zhang H, Du H, Liu W, Shu M. Activated androgen receptor accelerates angiogenesis in cutaneous neurofibroma by regulating VEGFA transcription. Int J Oncol 2019; 55:157-166. [PMID: 31059067 DOI: 10.3892/ijo.2019.4797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/16/2019] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence has demonstrated the significant progression of cutaneous neurofibroma (cNF) without necrosis during puberty. However, the molecular events involved in this process remain unclear. The alteration of the steroid hormone levels during puberty has led to the investigation of the expression levels of the androgen receptor (AR). A positive correlation between AR expression and microvessel density has been reported in human cNF tissues in combination with enhanced endothelial cell tube formation in vitro. In addition, activated AR signaling can promote neurofibroma cell growth in vivo and in vitro and tube formation in vitro. In the present study, AR was shown to bind directly to the promoter of vascular endothelial growth factor A (VEGFA), a key factor involved in angiogenesis, and to sequentially induce its expression. Furthermore, the AR inhibitor, MDV3100, downregulated VEGFA expression and abolished endothelial cell recruitment and tube formation. Taken collectively, the findings of this study revealed that AR signaling enhanced tumor growth and angiogenesis in cNF by regulating VEGFA transcription. However, whether AR can be regarded a therapeutic target for cNF requires further investigation.
Collapse
Affiliation(s)
- Jing Jia
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Haibao Zhang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hongke Zhang
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huicong Du
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenbo Liu
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Maoguo Shu
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
11
|
Zhang H, Hudson FZ, Xu Z, Tritz R, Rojas M, Patel C, Haigh SB, Bordán Z, Ingram DA, Fulton DJ, Weintraub NL, Caldwell RB, Stansfield BK. Neurofibromin Deficiency Induces Endothelial Cell Proliferation and Retinal Neovascularization. Invest Ophthalmol Vis Sci 2019; 59:2520-2528. [PMID: 29847659 PMCID: PMC5963003 DOI: 10.1167/iovs.17-22588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Neurofibromatosis type 1 (NF1) is the result of inherited mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin. Eye manifestations are common in NF1 with recent reports describing a vascular dysplasia in the retina and choroid. Common features of NF1 retinopathy include tortuous and dilated feeder vessels that terminate in capillary tufts, increased endothelial permeability, and neovascularization. Given the retinal vascular phenotype observed in persons with NF1, we hypothesize that preserving neurofibromin may be a novel strategy to control pathologic retinal neovascularization. Methods Nf1 expression in human endothelial cells (EC) was reduced using small hairpin (sh) RNA and EC proliferation, migration, and capacity to form vessel-like networks were assessed in response to VEGF and hypoxia. Wild-type (WT), Nf1 heterozygous (Nf1+/−), and Nf1flox/+;Tie2cre pups were subjected to hyperoxia/hypoxia using the oxygen-induced retinopathy model. Retinas were analyzed quantitatively for extent of retinal vessel dropout, neovascularization, and capillary branching. Results Neurofibromin expression was suppressed in response to VEGF, which corresponded with activation of Mek-Erk and PI3-K-Akt signaling. Neurofibromin-deficient EC exhibited enhanced proliferation and network formation in response to VEGF and hypoxia via an Akt-dependent mechanism. In response to hyperoxia/hypoxia, Nf1+/− retinas exhibited increased vessel dropout and neovascularization when compared with WT retinas. Neovascularization was similar between Nf1+/− and Nf1flox/+;Tie2cre retinas, but capillary drop out in Nf1flox/+;Tie2cre retinas was significantly reduced when compared with Nf1+/− retinas. Conclusions These data suggest that neurofibromin expression is essential for controlling endothelial cell proliferation and retinal neovascularization and therapies targeting neurofibromin-deficient EC may be beneficial.
Collapse
Affiliation(s)
- Hanfang Zhang
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, Georgia, United States.,Vascular Biology Center, Augusta University, Augusta, Georgia, United States
| | - Farlyn Z Hudson
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, Georgia, United States.,Vascular Biology Center, Augusta University, Augusta, Georgia, United States
| | - Zhimin Xu
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States
| | - Rebekah Tritz
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, Georgia, United States.,Vascular Biology Center, Augusta University, Augusta, Georgia, United States
| | - Modesto Rojas
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States.,Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, United States
| | - Chintan Patel
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States
| | - Stephen B Haigh
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States
| | - Zsuzsanna Bordán
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States
| | - David A Ingram
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States.,Department of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - David J Fulton
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States.,Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, United States
| | - Neal L Weintraub
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States.,Department of Cardiology, Augusta University, Augusta, Georgia, United States
| | - Ruth B Caldwell
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States.,Vision Discovery Institute, Augusta University, Augusta, Georgia, United States.,Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States.,Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Brian K Stansfield
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, Georgia, United States.,Vascular Biology Center, Augusta University, Augusta, Georgia, United States.,Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
12
|
Apatinib-based targeted therapy against pulmonary sarcomatoid carcinoma: a case report and literature review. Oncotarget 2018; 9:33734-33738. [PMID: 30263099 PMCID: PMC6154744 DOI: 10.18632/oncotarget.25989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/17/2018] [Indexed: 12/15/2022] Open
Abstract
Sarcomatoid carcinoma is a rare malignancy characterized by a combination of epithelial and sarcoma or sarcoma-like components. In this study, we reported one case of pulmonary sarcomatoid carcinoma and evaluated the safety and efficacy of apatinib, a tyrosine kinase inhibitor selectively targeting vascular endothelial growth factor receptor 2, in treating this disease. The tumor mass was detected in the left lung of a 75-year-old man and showed positive immunostaining for cytokeratin (CK) 7, CK8, smooth muscle actin, CD31, and CD34. Next-generation sequencing analysis identified 4 mutations in NF1 (p.Q347Sfs*29), CDKN2A (p.G23V), ERBB3 (p.V104L), and TP53 (p.V157F) genes. The patient was given apatinib (250 mg) orally once per day. Sustained tumor regression was observed after apatinib treatment. There was no sever complication associated with apatinib therapy. In conclusion, apatinib-based targeted therapy may represent an important option for patients with sarcomatoid carcinoma.
Collapse
|
13
|
Lee S, Bak H, Ahn SK. Liponeurofibroma: Clinicopathological features and histogenesis. J Dermatol 2018; 45:416-424. [PMID: 29388260 DOI: 10.1111/1346-8138.14238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/24/2017] [Indexed: 11/30/2022]
Abstract
A neurofibroma is a common cutaneous benign tumor of neural origin. Various histological variants have been reported. Recently, sporadic reports of fatty variants have been reported but their clinicopathological features have not been well studied. The purpose of this study was to examine liponeurofibroma, and to report the distinctive clinicopathological features and histogenesis in comparison with the classic form. A retrospective study was performed on 130 cases. Immunohistochemical staining was performed for S100, factor VIIIa, perilipin and vascular endothelial growth factor. Masson's trichrome stain was also used. Intratumoral adipocytes were examined with transmission electron microscopy. Thirty-two (24.6%) cases were classified as liponeurofibroma on microscopic examination. This variant was more common in patients with neurofibromatosis type 1, older age and female sex. The most prevalent location was the head and neck. Intratumoral fat deposits showed differences in morphology and size compared with subcutaneous fat on light microscopy. Neurofibromatosis type 1 had the highest odds of fatty change in liponeurofibroma. In sporadic cases, fatty change can be caused by senescence, chronic injury, or tissue hypoxia secondary to internal or external stimuli. Further investigation is needed to identify the pathomechanism of fatty change in various cutaneous neoplasms, including neurofibroma.
Collapse
Affiliation(s)
- Solam Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hana Bak
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sung Ku Ahn
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
14
|
Dodd RD, Lee CL, Overton T, Huang W, Eward WC, Luo L, Ma Y, Ingram DR, Torres KE, Cardona DM, Lazar AJ, Kirsch DG. NF1 +/- Hematopoietic Cells Accelerate Malignant Peripheral Nerve Sheath Tumor Development without Altering Chemotherapy Response. Cancer Res 2017; 77:4486-4497. [PMID: 28646022 PMCID: PMC5839126 DOI: 10.1158/0008-5472.can-16-2643] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/09/2017] [Accepted: 06/12/2017] [Indexed: 12/11/2022]
Abstract
Haploinsufficiency in the tumor suppressor NF1 contributes to the pathobiology of neurofibromatosis type 1, but a related role has not been established in malignant peripheral nerve sheath tumors (MPNST) where NF1 mutations also occur. Patients with NF1-associated MPNST appear to have worse outcomes than patients with sporadic MPNST, but the mechanism underlying this correlation is not understood. To define the impact of stromal genetics on the biology of this malignancy, we developed unique mouse models that reflect the genetics of patient-associated MPNST. Specifically, we used adenovirus-Cre injections to generate MPNST in Nf1Flox/Flox; Ink4a/ArfFlox/Flox and Nf1Flox/-; Ink4a/ArfFlox/Flox paired littermate mice to model tumors from NF1-wild-type and NF1-associated patients, respectively. In these models, Nf1 haploinsufficiency in hematopoietic cells accelerated tumor onset and increased levels of tumor-infiltrating immune cells comprised of CD11b+ cells, monocytes, and mast cells. We observed that mast cells were also enriched in human NF1-associated MPNST. In a coclinical trial to examine how the tumor microenvironment influences the response to multiagent chemotherapy, we found that stromal Nf1 status had no effect. Taken together, our results clarify the role of the NF1-haploinsufficient tumor microenvironment in MPNST. Cancer Res; 77(16); 4486-97. ©2017 AACR.
Collapse
Affiliation(s)
- Rebecca D Dodd
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Tess Overton
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Wesley Huang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - William C Eward
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Davis R Ingram
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keila E Torres
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Diana M Cardona
- Department of Pathology, Duke University, Durham, North Carolina
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
15
|
Abstract
Background Neurofibromatosis type 1 (NF1: Online Mendelian Inheritance in Man (OMIM) #162200) is an autosomal dominantly inherited tumour predisposition syndrome. Heritable constitutional mutations in the NF1 gene result in dysregulation of the RAS/MAPK pathway and are causative of NF1. The major known function of the NF1 gene product neurofibromin is to downregulate RAS. NF1 exhibits variable clinical expression and is characterized by benign cutaneous lesions including neurofibromas and café-au-lait macules, as well as a predisposition to various types of malignancy, such as breast cancer and leukaemia. However, acquired somatic mutations in NF1 are also found in a wide variety of malignant neoplasms that are not associated with NF1. Main body Capitalizing upon the availability of next-generation sequencing data from cancer genomes and exomes, we review current knowledge of somatic NF1 mutations in a wide variety of tumours occurring at a number of different sites: breast, colorectum, urothelium, lung, ovary, skin, brain and neuroendocrine tissues, as well as leukaemias, in an attempt to understand their broader role and significance, and with a view ultimately to exploiting this in a diagnostic and therapeutic context. Conclusion As neurofibromin activity is a key to regulating the RAS/MAPK pathway, NF1 mutations are important in the acquisition of drug resistance, to BRAF, EGFR inhibitors, tamoxifen and retinoic acid in melanoma, lung and breast cancers and neuroblastoma. Other curiosities are observed, such as a high rate of somatic NF1 mutation in cutaneous melanoma, lung cancer, ovarian carcinoma and glioblastoma which are not usually associated with neurofibromatosis type 1. Somatic NF1 mutations may be critical drivers in multiple cancers. The mutational landscape of somatic NF1 mutations should provide novel insights into our understanding of the pathophysiology of cancer. The identification of high frequency of somatic NF1 mutations in sporadic tumours indicates that neurofibromin is likely to play a critical role in development, far beyond that evident in the tumour predisposition syndrome NF1.
Collapse
|
16
|
Bargagna-Mohan P, Ishii A, Lei L, Sheehy D, Pandit S, Chan G, Bansal R, Mohan R. Sustained activation of ERK1/2 MAPK in Schwann cells causes corneal neurofibroma. J Neurosci Res 2017; 95:1712-1729. [PMID: 28489286 DOI: 10.1002/jnr.24067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/09/2017] [Accepted: 03/30/2017] [Indexed: 12/27/2022]
Abstract
Recent studies have shown that constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in Schwann cells (SCs) increases myelin thickness in transgenic mice. In this secondary analysis, we report that these transgenic mice develop a postnatal corneal neurofibroma with the loss of corneal transparency by age six months. We show that expansion of non-myelinating SCs, under the control of activated ERK1/2, also drive myofibroblast differentiation that derives from both SC precursors and resident corneal keratocytes. Further, these mice also harbor activated mast cells in the central cornea, which contributes to pathological corneal neovascularization and fibrosis. This breach of corneal avascularity and immune status is associated with the growth of the tumor pannus, resulting in a corneal stroma that is nearly four times its normal size. In corneas with advanced disease, some axons became ectopically myelinated, and the disruption of Remak bundles is evident. To determine whether myofibroblast differentiation was linked to vimentin, we examined the levels and phosphorylation status of this fibrotic biomarker. Concomitant with the early upregulation of vimentin, a serine 38-phosphorylated isoform of vimentin (pSer38vim) increased in SCs, which was attributed primarily to the soluble fraction of protein-not the cytoskeletal portion. However, the overexpressed pSer38vim became predominantly cytoskeletal with the growth of the corneal tumor. Our findings demonstrate an unrecognized function of ERK1/2 in the maintenance of corneal homeostasis, wherein its over-activation in SCs promotes corneal neurofibromas. This study is also the first report of a genetically engineered mouse that spontaneously develops a corneal tumor.
Collapse
Affiliation(s)
| | - Akihiro Ishii
- Department of Neuroscience, University of Connecticut Health Center
| | - Ling Lei
- Department of Neuroscience, University of Connecticut Health Center
| | - Daniel Sheehy
- Department of Neuroscience, University of Connecticut Health Center
| | - Saagar Pandit
- Department of Neuroscience, University of Connecticut Health Center
| | - Grace Chan
- Department of Psychiatry, University of Connecticut Health Center
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut Health Center
| | - Royce Mohan
- Department of Neuroscience, University of Connecticut Health Center
| |
Collapse
|
17
|
Abstract
Neurofibromatosis type 1 (NF1) is a relatively common tumour predisposition syndrome related to germline aberrations of NF1, a tumour suppressor gene. The gene product neurofibromin is a negative regulator of the Ras cellular proliferation pathway, and also exerts tumour suppression via other mechanisms. Recent next-generation sequencing projects have revealed somatic NF1 aberrations in various sporadic tumours. NF1 plays a critical role in a wide range of tumours. NF1 alterations appear to be associated with resistance to therapy and adverse outcomes in several tumour types. Identification of a patient's germline or somatic NF1 aberrations can be challenging, as NF1 is one of the largest human genes, with a myriad of possible mutations. Epigenetic factors may also contribute to inadequate levels of neurofibromin in cancer cells. Clinical trials of NF1-based therapeutic approaches are currently limited. Preclinical studies on neurofibromin-deficient malignancies have mainly been on malignant peripheral nerve sheath tumour cell lines or xenografts derived from NF1 patients. However, the emerging recognition of the role of NF1 in sporadic cancers may lead to the development of NF1-based treatments for other tumour types. Improved understanding of the implications of NF1 aberrations is critical for the development of novel therapeutic strategies.
Collapse
|
18
|
Benito-Martin A, Di Giannatale A, Ceder S, Peinado H. The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. Front Immunol 2015; 6:66. [PMID: 25759690 PMCID: PMC4338782 DOI: 10.3389/fimmu.2015.00066] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/02/2015] [Indexed: 12/30/2022] Open
Abstract
Tumors must evade the immune system to survive and metastasize, although the mechanisms that lead to tumor immunoediting and their evasion of immune surveillance are far from clear. The first line of defense against metastatic invasion is the innate immune system that provides immediate defense through humoral immunity and cell-mediated components, mast cells, neutrophils, macrophages, and other myeloid-derived cells that protect the organism against foreign invaders. Therefore, tumors must employ different strategies to evade such immune responses or to modulate their environment, and they must do so prior metastasizing. Exosomes and other secreted vesicles can be used for cell–cell communication during tumor progression by promoting the horizontal transfer of information. In this review, we will analyze the role of such extracellular vesicles during tumor progression, summarizing the role of secreted vesicles in the crosstalk between the tumor and the innate immune system.
Collapse
Affiliation(s)
- Alberto Benito-Martin
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Weill Cornell Medical College , New York, NY , USA
| | - Angela Di Giannatale
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Weill Cornell Medical College , New York, NY , USA
| | - Sophia Ceder
- Department of Oncology and Pathology, Karolinska Institutet , Stockholm , Sweden
| | - Héctor Peinado
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Weill Cornell Medical College , New York, NY , USA ; Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| |
Collapse
|
19
|
Kaufmann D, Hoesch J, Su Y, Deeg L, Mellert K, Spatz JP, Kemkemer R. Partial Blindness to Submicron Topography in NF1 Haploinsufficient Cultured Fibroblasts Indicates a New Function of Neurofibromin in Regulation of Mechanosensoric. Mol Syndromol 2012; 3:169-79. [PMID: 23239959 DOI: 10.1159/000342698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2012] [Indexed: 12/22/2022] Open
Abstract
Cells sense physical properties of their extracellular environment and translate them into biochemical signals. In this study, cell responses to surfaces with submicron topographies were investigated in cultured human NF1 haploinsufficient fibroblasts. Age-matched fibroblasts from 8 patients with neurofibromatosis type 1 (NF1(+/-)) and 9 controls (NF1(+/+)) were cultured on surfaces with grooves of 200 nm height and lateral distance of 2 μm. As cellular response indicator, the mean cell orientation along microstructured grooves was systematically examined. The tested NF1 haploinsufficient fibroblasts were significantly less affected by the topography than those from healthy donors. Incubation of the NF1(+/-) fibroblasts with the farnesyltransferase inhibitor FTI-277 and other inhibitors of the neurofibromin pathway ameliorates significantly the cell orientation. These data indicate that NF1 haploinsufficiency results in an altered response to specific surface topography in fibroblasts. We suggest a new function of neurofibromin in the sensoric mechanism to topographies and a partial mechanosensoric blindness by NF1 haploinsufficiency.
Collapse
Affiliation(s)
- D Kaufmann
- Institute of Human Genetics, University of Ulm, Ulm, Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Gelfand JM, Green AJ. Reply: microcystic macular degeneration from optic neuropathy and Reply: microcystic macular oedema confirmed, but not specific for multiple sclerosis. Brain 2012. [DOI: 10.1093/brain/aws218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Bajaj A, Li QF, Zheng Q, Pumiglia K. Loss of NF1 expression in human endothelial cells promotes autonomous proliferation and altered vascular morphogenesis. PLoS One 2012; 7:e49222. [PMID: 23145129 PMCID: PMC3492274 DOI: 10.1371/journal.pone.0049222] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/04/2012] [Indexed: 12/30/2022] Open
Abstract
Neurofibromatosis is a well known familial tumor syndrome, however these patients also suffer from a number of vascular anomalies. The loss of NFl from the endothelium is embryonically lethal in mouse developmental models, however little is known regarding the molecular regulation by NF1 in endothelium. We investigated the consequences of losing NF1 expression on the function of endothelial cells using shRNA. The loss of NF1 was sufficient to elevate levels of active Ras under non-stimulated conditions. These elevations in Ras activity were associated with activation of downstream signaling including activation of ERK, AKT and mTOR. Cells knocked down in NF1 expression exhibited no cellular senescence. Rather, they demonstrated augmented proliferation and autonomous entry into the cell cycle. These proliferative changes were accompanied by enhanced expression of cyclin D, phosphorylation of p27KIP, and decreases in total p27KIP levels, even under growth factor free conditions. In addition, NF1-deficient cells failed to undergo normal branching morphogenesis in a co-culture assay, instead forming planar islands with few tubules and branches. We find the changes induced by the loss of NF1 could be mitigated by co-expression of the GAP-related domain of NF1 implicating Ras regulation in these effects. Using doxycycline-inducible shRNA, targeting NF1, we find that the morphogenic changes are reversible. Similarly, in fully differentiated and stable vascular-like structures, the silencing of NF1 results in the appearance of abnormal vascular structures. Finally, the proliferative changes and the abnormal vascular morphogenesis are normalized by low-dose rapamycin treatment. These data provide a detailed analysis of the molecular and functional consequences of NF1 loss in human endothelial cells. These insights may provide new approaches to therapeutically addressing vascular abnormalities in these patients while underscoring a critical role for normal Ras regulation in maintaining the health and function of the vasculature.
Collapse
Affiliation(s)
- Anshika Bajaj
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Qing-fen Li
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Qingxia Zheng
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Kevin Pumiglia
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
de Wijn RS, Oduber CE, Breugem CC, Alders M, Hennekam RC, van der Horst CM. Phenotypic variability in a family with capillary malformations caused by a mutation in the RASA1 gene. Eur J Med Genet 2012; 55:191-5. [DOI: 10.1016/j.ejmg.2012.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/21/2012] [Indexed: 10/14/2022]
|
23
|
Wu X, Chen S, Orlando SA, Yuan J, Kim ET, Munugalavadla V, Mali RS, Kapur R, Yang FC. p85alpha regulates osteoblast differentiation by cross-talking with the MAPK pathway. J Biol Chem 2011; 286:13512-21. [PMID: 21324896 DOI: 10.1074/jbc.m110.187351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Class IA phosphoinositide 3-kinase (PI3K) is involved in regulating many cellular functions including cell growth, proliferation, cell survival, and differentiation. The p85 regulatory subunit is a critical component of the PI3K signaling pathway. Mesenchymal stem cells (MSC) are multipotent cells that can be differentiated into osteoblasts (OBs), adipocytes, and chondrocytes under defined culture conditions. To determine whether p85α subunit of PI3K affects biological functions of MSCs, bone marrow-derived wild type (WT) and p85α-deficient (p85α(-/-)) cells were employed in this study. Increased cell growth, higher proliferation rate and reduced number of senescent cells were observed in MSCs lacking p85α compare with WT MSCs as evaluated by CFU-F assay, thymidine incorporation assay, and β-galactosidase staining, respectively. These functional changes are associated with the increased cell cycle, increased expression of cyclin D, cyclin E, and reduced expression of p16 and p19 in p85α(-/-) MSCs. In addition, a time-dependent reduction in alkaline phosphatase (ALP) activity and osteocalcin mRNA expression was observed in p85α(-/-) MSCs compared with WT MSCs, suggesting impaired osteoblast differentiation due to p85α deficiency in MSCs. The impaired p85α(-/-) osteoblast differentiation was associated with increased activation of Akt and MAPK. Importantly, bone morphogenic protein 2 (BMP2) was able to intensify the differentiation of osteoblasts derived from WT MSCs, whereas this process was significantly impaired as a result of p85α deficiency. Addition of LY294002, a PI3K inhibitor, did not alter the differentiation of osteoblasts in either genotype. However, application of PD98059, a Mek/MAPK inhibitor, significantly enhanced osteoblast differentiation in WT and p85α(-/-) MSCs. These results suggest that p85α plays an essential role in osteoblast differentiation from MSCs by repressing the activation of MAPK pathway.
Collapse
Affiliation(s)
- Xiaohua Wu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Smith M, Heran MKS, Connolly MB, Heran HK, Friedman JM, Jett K, Lyons CJ, Steinbok P, Armstrong L. Cerebrovasculopathy in NF1 associated with ocular and scalp defects. Am J Med Genet A 2010; 155A:380-5. [PMID: 21271658 DOI: 10.1002/ajmg.a.33788] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 10/03/2010] [Indexed: 11/09/2022]
Abstract
Vascular lesions are uncommon in children with neurofibromatosis 1 (NF1) but can cause serious complications. We report on a child with NF1 who presented at 18 months of age with symptomatic stenosis of the left middle cerebral artery and its branches, and associated moyamoya disease. She also had bilateral posterior embryotoxon, left corneal opacity (Peters anomaly), and cutis aplasia of the left scalp. All of these defects may have occurred as a result of disruption of the blood supply caused by NF1 vasculopathy prenatally. This constellation of vascular anomalies has not been previously reported in a patient with NF1.
Collapse
Affiliation(s)
- Matt Smith
- Provincial Medical Genetics Programme, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bajaj A, Zheng Q, Adam A, Vincent P, Pumiglia K. Activation of endothelial ras signaling bypasses senescence and causes abnormal vascular morphogenesis. Cancer Res 2010; 70:3803-12. [PMID: 20388785 DOI: 10.1158/0008-5472.can-09-2648] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Angiogenesis is crucial for embryogenesis, reproduction, and wound healing and is a critical determinant of tumor growth and metastasis. The multifunctional signal transducer Ras is a proto-oncogene and frequently becomes mutated in a variety of human cancers, including angiosarcomas. Regulation of Ras is important for endothelial cell function and angiogenesis. Hyperactivation of Ras is linked with oncogene-induced senescence in many cell types. Given links between vascular malformations and angiosarcoma with activated Ras signaling, we sought to determine the consequence of sustained Ras activation on endothelial cell function. We find that sustained Ras activation in primary endothelial cells leads to prolonged activation of progrowth signaling, accompanied by a senescence bypass, enhanced proliferation, autonomous growth, and increased survival. Moreover, Ras severely compromises the ability of these cells to organize into vascular structures, instead promoting formation of planar endothelial sheets. This abnormal phenotype is regulated by phosphoinositide 3-kinase signaling, highlighting the therapeutic potential of agents targeting this axis in dealing with vascular morphogenic disorders and vascular normalization of tumors.
Collapse
Affiliation(s)
- Anshika Bajaj
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | |
Collapse
|
26
|
Ichise T, Yoshida N, Ichise H. H-, N- and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice. Development 2010; 137:1003-13. [PMID: 20179099 DOI: 10.1242/dev.043489] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian Ras, which is encoded by three independent genes, has been thought to be a versatile component of intracellular signalling. However, when, where and how Ras signalling plays essential roles in development and whether the three Ras genes have overlapping functions in particular cells remain unclear. Here, we show that the three Ras proteins dose-dependently regulate lymphatic vessel growth in mice. We find that lymphatic vessel hypoplasia is a common phenotype in Ras compound knockout mice and that overexpressed normal Ras in an endothelial cell lineage selectively causes lymphatic vessel hyperplasia in vivo. Overexpression of normal Ras in lymphatic endothelial cells leads to sustained MAPK activation, cellular viability and enhanced endothelial network formation under serum-depleted culture conditions in vitro, and knockdown of endogenous Ras in lymphatic endothelial cells impairs cell proliferation, MAPK activation, cell migration and endothelial network formation. Ras overexpression and knockdown result in up- and downregulation of vascular endothelial growth factor receptor (VEGFR) 3 expression, respectively, in lymphatic endothelial cells in vitro. The close link between Ras and VEGFR3 in vitro is consistent with the result that Ras knockout and transgenic alleles are genetic modifiers in lymphatic vessel hypoplasia caused by Vegfr3 haploinsufficiency. Our findings demonstrate a cooperative function of the three Ras proteins in normal development, and also provide a novel aspect of VEGFR3 signalling modulated by Ras in lymphangiogenesis.
Collapse
Affiliation(s)
- Taeko Ichise
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
27
|
Pemov A, Park C, Reilly KM, Stewart DR. Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency. BMC Genomics 2010; 11:194. [PMID: 20307317 PMCID: PMC2858150 DOI: 10.1186/1471-2164-11-194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 03/22/2010] [Indexed: 11/10/2022] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is a common monogenic tumor-predisposition disorder that arises secondary to mutations in the tumor suppressor gene NF1. Haploinsufficiency of NF1 fosters a permissive tumorigenic environment through changes in signalling between cells, however the intracellular mechanisms for this tumor-promoting effect are less clear. Most primary human NF1+/- cells are a challenge to obtain, however lymphoblastoid cell lines (LCLs) have been collected from large NF1 kindreds. We hypothesized that the genetic effects of NF1-haploinsufficiency may be discerned by comparison of genome-wide transcriptional profiling in somatic, non-tumor cells (LCLs) from NF1-affected and -unaffected individuals. As a cross-species filter for heterogeneity, we compared the results from two human kindreds to whole-genome transcriptional profiling in spleen-derived B lymphocytes from age- and gender-matched Nf1+/- and wild-type mice, and used gene set enrichment analysis (GSEA), Onto-Express, Pathway-Express and MetaCore tools to identify genes perturbed in NF1-haploinsufficiency. Results We observed moderate expression of NF1 in human LCLs and of Nf1 in CD19+ mouse B lymphocytes. Using the t test to evaluate individual transcripts, we observed modest expression differences in the transcriptome in NF1-haploinsufficient LCLs and Nf1-haploinsuffiicient mouse B lymphocytes. However, GSEA, Onto-Express, Pathway-Express and MetaCore analyses identified genes that control cell cycle, DNA replication and repair, transcription and translation, and immune response as the most perturbed in NF1-haploinsufficient conditions in both human and mouse. Conclusions Haploinsufficiency arises when loss of one allele of a gene is sufficient to give rise to disease. Haploinsufficiency has traditionally been viewed as a passive state. Our observations of perturbed, up-regulated cell cycle and DNA repair pathways may functionally contribute to NF1-haploinsufficiency as an "active state" that ultimately promotes the loss of the wild-type allele.
Collapse
Affiliation(s)
- Alexander Pemov
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
28
|
Riccardi VM. Neurofibromatosis type 1 is a disorder of dysplasia: the importance of distinguishing features, consequences, and complications. ACTA ACUST UNITED AC 2010; 88:9-14. [PMID: 19691086 DOI: 10.1002/bdra.20616] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The disorder neurofibromatosis type 1 (NF1) is caused by mutations in the NF1 gene, which influences the availability of activated Ras and the latter's control of cellular proliferation. Emphasis on this aspect of NF1 has focused attention on the tumor suppression function of NF1 and thereby displaced attention from the gene's role in initial normal tissue formation, maintenance, and repair. METHODS Clinical and neuroimaging data systematically compiled over more than 30 years are analyzed to document the involvement of multiple organs and tissues, often with an embryonic origin. In addition, recent literature based on selective knockout mouse experiments is cited to corroborate embryonic dysplasia as an element of NF1 pathogenesis. RESULTS Tissue dysplasia, both ab initio and as part of tissue maintenance and wound healing, is a key clinical and pathogenetic aspect of NF1 and thereby provides a rationale for differentiating the elements of NF1 into features, consequences, and complications. CONCLUSIONS NF1 is a histogenesis control gene that also has properties that overlap with those of a tumor suppressor gene. Both its neoplastic and dysplastic manifestations become more amenable to understanding and treatment if they are differentiated at three levels--specifically, features, consequences and complications.
Collapse
|
29
|
Reilly KM. Neurofibromatosis and lessons for the war on cancer. EMBO Mol Med 2010; 1:198-200. [PMID: 20049721 PMCID: PMC2804936 DOI: 10.1002/emmm.200900029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the war on cancer, a great deal of attention is being paid to knowing the ‘enemy’. It is widely believed that by understanding the driving forces underlying cancer, researchers can develop better ways to target the disease. Currently, large-scale efforts have been under taken to completely characterize molecular changes in common human cancers (http://cancergenome.nih.gov/) (Collins & Bearker, 2007). However, as more is learned about cancer, the debate increases on what exactly the enemy is: cells making up the bulk of the tumour, rare tumour stem cells that can regrow the tumour, tumour microenvironment, the subset of cancer cells with metastatic potential, etc. Studies of the cancers associated with Neurofibromatosis type 1 (NF1) are helping to define the relationship between many of these different cell types. It is still unclear how these different enemies are related to each other and how they interact to wage cancer's war on the patient.
Collapse
|
30
|
Dilworth JT, Wojtkowiak JW, Mathieu P, Tainsky MA, Reiners JJ, Mattingly RR, Hancock CN. Suppression of proliferation of two independent NF1 malignant peripheral nerve sheath tumor cell lines by the pan-ErbB inhibitor CI-1033. Cancer Biol Ther 2008; 7:1938-46. [PMID: 18927496 DOI: 10.4161/cbt.7.12.6942] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) is characterized by the abnormal proliferation of neuroectodermal tissues and the development of certain tumors, particularly neurofibromas, which may progress into malignant peripheral nerve sheath tumors (MPNSTs). Effective pharmacological therapy for the treatment of NF1 tumors is currently unavailable and the prognosis for patients with MPNSTs is poor. Loss of neurofibromin correlates with increased expression of the epidermal growth factor receptor (EGFR) and ErbB2 tyrosine kinases and these kinases have been shown to promote NF1 tumor-associated pathologies in vivo. We show here that while NF1 MPNST cells have higher EGFR expression levels and are more sensitive to EGF when compared to a non-NF1 MPNST cell line, the ability of the EGFR inhibitor gefitinib to selectively inhibit NF1 MPNST cell proliferation is marginal. We also show that NF1 MPNST proliferation correlates with activated ErbB2 and can be suppressed by nanomolar concentrations of the pan-ErbB inhibitor CI-1033 (canertinib). Consequently, targeting both EGFR and ErbB2 may prove an effective strategy for suppressing NF1 MPNST tumor growth in vivo.
Collapse
Affiliation(s)
- Joshua T Dilworth
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Pak1 regulates multiple c-Kit mediated Ras-MAPK gain-in-function phenotypes in Nf1+/- mast cells. Blood 2008; 112:4646-54. [PMID: 18768391 DOI: 10.1182/blood-2008-04-155085] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder caused by mutations in the NF1 locus, which encodes neurofibromin, a negative regulator of Ras. Patients with NF1 develop numerous neurofibromas, which contain many inflammatory mast cells that contribute to tumor formation. Subsequent to c-Kit stimulation, signaling from Ras to Rac1/2 to the MAPK pathway appears to be responsible for multiple hyperactive mast cell phenotypes; however, the specific effectors that mediate these functions remain uncertain. p21-activated kinase 1 (Pak1) is a downstream mediator of Rac1/2 that has been implicated as a positive regulator of MAPK pathway members and is a modulator of cell growth and cytoskeletal dynamics. Using an intercross of Pak 1(-/-) mice with Nf1(+/-) mice, we determined that Pak1 regulates hyperactive Ras-dependent proliferation via a Pak1/Erk pathway, whereas a Pak1/p38 pathway is required for the increased migration in Nf1(+/-) mast cells. Furthermore, we confirmed that loss of Pak1 corrects the dermal accumulation of Nf1(+/-) mast cells in vivo to levels found in wild-type mice. Thus, Pak1 is a novel mast cell mediator that functions as a key node in the MAPK signaling network and potential therapeutic target in NF1 patients.
Collapse
|
32
|
Revencu N, Boon LM, Mulliken JB, Enjolras O, Cordisco MR, Burrows PE, Clapuyt P, Hammer F, Dubois J, Baselga E, Brancati F, Carder R, Quintal JMC, Dallapiccola B, Fischer G, Frieden IJ, Garzon M, Harper J, Johnson-Patel J, Labrèze C, Martorell L, Paltiel HJ, Pohl A, Prendiville J, Quere I, Siegel DH, Valente EM, Van Hagen A, Van Hest L, Vaux KK, Vicente A, Weibel L, Chitayat D, Vikkula M. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat 2008; 29:959-65. [PMID: 18446851 DOI: 10.1002/humu.20746] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is a newly recognized autosomal dominant disorder, caused by mutations in the RASA1 gene in six families. Here we report 42 novel RASA1 mutations and the associated phenotype in 44 families. The penetrance and de novo occurrence were high. All affected individuals presented multifocal capillary malformations (CMs), which represent the hallmark of the disorder. Importantly, one-third had fast-flow vascular lesions. Among them, we observed severe intracranial AVMs, including vein of Galen aneurysmal malformation, which were symptomatic at birth or during infancy, extracranial AVM of the face and extremities, and Parkes Weber syndrome (PKWS), previously considered sporadic and nongenetic. These fast-flow lesions can be differed from the other two genetic AVMs seen in hereditary hemorrhagic telangiectasia (HHT) and in phosphatase and tensin homolog (PTEN) hamartomatous tumor syndrome. Finally, some CM-AVM patients had neural tumors reminiscent of neurofibromatosis type 1 or 2. This is the first extensive study on the phenotypes associated with RASA1 mutations, and unravels their wide heterogeneity.
Collapse
Affiliation(s)
- Nicole Revencu
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schindeler A, Little DG. Recent insights into bone development, homeostasis, and repair in type 1 neurofibromatosis (NF1). Bone 2008; 42:616-22. [PMID: 18248783 DOI: 10.1016/j.bone.2007.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/05/2007] [Accepted: 11/13/2007] [Indexed: 11/27/2022]
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common single gene syndromes and is typified by a range of characteristic but variably penetrant manifestations. The orthopaedic manifestations of congenital pseudarthrosis of the tibia (CPT) and scoliosis, along with other skeletal defects including sphenoid wing dysplasia, rib penciling, and gracile bones have been classically associated with NF1. Added to this, several recent studies have reported a high prevalence of osteoporosis or osteopenia in NF1 cohorts. Clues to the underlying molecular and cellular deficiencies that cause these bony defects can be gleaned from genetically modified mouse models of Nf1 gene deficiency. These studies suggest that a variety of different cell lineages may be adversely affected by Nf1 haploinsufficiency or by double inactivation of the Nf1 gene. Osteoblasts, osteoclasts, chondrocytes, fibroblasts, and vascular endothelial cells all express the Nf1 gene product, neurofibromin, and may be functionally compromised when levels are decreased or absent. This paper reviews the current literature on NF1 bone development, homeostatic regulation, and repair, and highlights some emerging themes that may have relevance for managing orthopaedic disorders that can arise in individuals with NF1.
Collapse
Affiliation(s)
- Aaron Schindeler
- Department of Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead, Sydney, Australia.
| | | |
Collapse
|
34
|
Abstract
Neurofibromatosis 2 (NF2) is a hereditary tumor disease characterized by bilateral vestibular schwannomas. Polyneuropathy seems to occur quite frequently in NF2 and in most cases, the etiology of this neuropathy is unclear, especially when the neuropathy is symmetric. NF2 is believed to follow the two-hit hypothesis. According to this, one allele is mutated in the germline, and the second hit is somatic and results in tumor formation. The second hit most frequently is a loss of the NF2 locus, often the entire chromosome 22. We set out to investigate the underlying genetics in peripheral nerve of NF2 patients with polyneuropathy. We identified NF2 patients with polyneuropathy in which we could detect the germline mutation and analyzed NF2 gene dosage in archived nerve biopsies from these patients using a newly developed method. We observed merlin haploinsufficiency in peripheral nerves of two different patients with NF2-related polyneuropathy. This finding was further supported by showing that approximately 50% merlin expression in a cell line using shRNA results in altered gene expression as previously shown in schwannomas. Thus, we suggest that reduced merlin gene dosage is relevant in NF2-associated polyneuropathy.
Collapse
Affiliation(s)
- Clemens O Hanemann
- Clinical Neurobiology, Inst. Biomedical and Clinical Science, Peninsula Medical School, The John Bull Building, Tamar Science Park, Research Way, Plymouth PL6 8BU, UK.
| | | | | |
Collapse
|
35
|
Mahller YY, Vaikunth SS, Currier MA, Miller SJ, Ripberger MC, Hsu YH, Mehrian-Shai R, Collins MH, Crombleholme TM, Ratner N, Cripe TP. Oncolytic HSV and erlotinib inhibit tumor growth and angiogenesis in a novel malignant peripheral nerve sheath tumor xenograft model. Mol Ther 2007; 15:279-86. [PMID: 17235305 DOI: 10.1038/sj.mt.6300038] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs), driven in part by hyperactive Ras and epidermal growth factor receptor (EGFR) signaling, are often incurable. Testing of therapeutics for MPNST has been hampered by lack of adequate xenograft models. We previously documented that human MPNST cells are permissive for lytic infection by oncolytic herpes simplex viruses (oHSV). Herein we developed and characterized a xenograft model of human MPNST and evaluated the antitumor effects of oHSV mutants (G207 and hrR3) and the EGFR inhibitor, erlotinib. Additive cytotoxicity of these agents was found in human MPNST cell lines, suggesting that EGFR signaling is not critical for virus replication. Mice bearing human MPNST tumors treated with G207 or hrR3 by intraperitoneal or intratumoral injection showed tumor-selective virus biodistribution, virus replication, and reduced tumor burden. oHSV injection demonstrated more dramatic antitumor activity than erlotinib. Combination therapies showed a trend toward an increased antiproliferative effect. Both oHSV and erlotinib were antiangiogenic as measured by proangiogenic gene expression, effect on endothelial cells and xenograft vessel density. Overall, oHSVs showed highly potent antitumor effects against MPNST xenografts, an effect not diminished by EGFR inhibition. Our data suggest that inclusion of MPNSTs in clinical trials of oHSV is warranted.
Collapse
Affiliation(s)
- Yonatan Y Mahller
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
✓Discovery that the Schwann cell is the primary cell type responsible for both the neurofibroma as well as the schwannoma has proven to represent a crucial milestone in understanding the pathogenesis of peripheral nerve tumor development. This information and related findings have served as a nidus for research aimed at more fully characterizing this family of conditions. Recent discoveries in the laboratory have clarified an understanding of the molecular mechanisms underlying the pathogenesis of benign peripheral nerve tumors. Similarly, the mechanisms whereby idiopathic and syndromic (NF1- andNF2-associated) nerve sheath tumors progress to malignancy are being elucidated. This detailed understanding of the molecular pathogenesis of peripheral nerve tumors provides the information necessary to create a new generation of therapies tailored specifically to the prevention, cessation, or reversal of pathological conditions at the fundamental level of dysfunction. The authors review the data that have helped to elucidate the molecular pathogenesis of this category of conditions, explore the current progress toward exploitation of these findings, and discuss potential therapeutic avenues for future research.
Collapse
Affiliation(s)
- Jonathan Riley
- Department of Neurosciences and the Center for Neurological Restoration, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
37
|
Kolanczyk M, Kossler N, Kühnisch J, Lavitas L, Stricker S, Wilkening U, Manjubala I, Fratzl P, Spörle R, Herrmann BG, Parada LF, Kornak U, Mundlos S. Multiple roles for neurofibromin in skeletal development and growth. Hum Mol Genet 2007; 16:874-86. [PMID: 17317783 DOI: 10.1093/hmg/ddm032] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a prevalent genetic disorder primarily characterized by the formation of neurofibromas, café-au-lait spots and freckling. Skeletal abnormalities such as short stature or bowing/pseudarthrosis of the tibia are relatively common. To investigate the role of the neurofibromin in skeletal development, we crossed Nf1flox mice with Prx1Cre mice to inactivate Nf1 in undifferentiated mesenchymal cells of the developing limbs. Similar to NF1 affected individuals, Nf1(Prx1) mice show bowing of the tibia and diminished growth. Tibial bowing is caused by decreased stability of the cortical bone due to a high degree of porosity, decreased stiffness and reduction in the mineral content as well as hyperosteoidosis. Accordingly, osteoblasts show an increase in proliferation and a decreased ability to differentiate and mineralize in vitro. The reduction in growth is due to lower proliferation rates and a differentiation defect of chondrocytes. Abnormal vascularization of skeletal tissues is likely to contribute to this pathology as it exerts a negative effect on cortical bone stability. Furthermore, Nf1 has an important role in the development of joints, as shown by fusion of the hip joints and other joint abnormalities, which are not observed in neurofibromatosis type I. Thus, neurofibromin has multiple essential roles in skeletal development and growth.
Collapse
Affiliation(s)
- Mateusz Kolanczyk
- FG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hawes JJ, Tuskan RG, Reilly KM. Nf1 expression is dependent on strain background: implications for tumor suppressor haploinsufficiency studies. Neurogenetics 2007; 8:121-30. [PMID: 17216419 PMCID: PMC6687394 DOI: 10.1007/s10048-006-0078-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 12/15/2006] [Indexed: 11/29/2022]
Abstract
Neurofibromatosis type 1 (NF1) is the most common cancer predisposition syndrome affecting the nervous system, with elevated risk for both astrocytoma and peripheral nerve sheath tumors. NF1 is caused by a germline mutation in the NF1 gene, with tumors showing loss of the wild type copy of NF1. In addition, NF1 heterozygosity in surrounding stroma is important for tumor formation, suggesting an additional role of haploinsufficiency for NF1. Studies in mouse models and NF1 families have implicated modifier genes unlinked to NF1 in the severity of the disease and in susceptibility to astrocytoma and peripheral nerve sheath tumors. To determine if differences in Nf1 expression may contribute to the strain-specific effects on tumor predisposition, we examined the levels of Nf1 gene expression in mouse strains with differences in tumor susceptibility using quantitative polymerase chain reaction. The data presented in this paper demonstrate that strain background has as much effect on Nf1 expression levels as mutation of one Nf1 allele, indicating that studies of haploinsufficiency must be carefully interpreted with respect to strain background. Because expression levels do not correlate entirely with the susceptibility or resistance to tumors observed in the strain, these data suggest that either variation in Nf1 levels is not responsible for the differences in astrocytoma and peripheral nerve sheath tumor susceptibility in Nf1-/+;Trp53-/+cis mice, or that certain mouse strains have evolved compensatory mechanisms for differences in Nf1 expression.
Collapse
Affiliation(s)
- Jessica J Hawes
- Mouse Cancer Genetics Program, National Cancer Institute-Frederick, West 7th Street at Fort Detrick, P.O. Box B, Building 560, Rm 31-20, Frederick, MD 21702, USA
| | | | | |
Collapse
|
39
|
Perrin GQ, Fishbein L, Thomson SA, Thomas SL, Stephens K, Garbern JY, DeVries GH, Yachnis AT, Wallace MR, Muir D. Plexiform-like neurofibromas develop in the mouse by intraneural xenograft of an NF1 tumor-derived Schwann cell line. J Neurosci Res 2007; 85:1347-57. [PMID: 17335073 DOI: 10.1002/jnr.21226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Plexiform neurofibromas are peripheral nerve sheath tumors that arise frequently in neurofibromatosis type 1 (NF1) and have a risk of malignant progression. Past efforts to establish xenograft models for neurofibroma involved the implantation of tumor fragments or heterogeneous primary cultures, which rarely achieved significant tumor growth. We report a practical and reproducible animal model of plexiform-like neurofibroma by xenograft of an immortal human NF1 tumor-derived Schwann cell line into the peripheral nerve of scid mice. The S100 and p75 positive sNF94.3 cell line was shown to possess a normal karyotype and have apparent full-length neurofibromin by Western blot. These cells were shown to have a constitutional NF1 microdeletion and elevated Ras-GTP activity, however, suggesting loss of normal neurofibromin function. Localized intraneural injection of the cell line sNF94.3 produced consistent and slow growing tumors that infiltrated and disrupted the host nerve. The xenograft tumors resembled plexiform neurofibromas with a low rate of proliferation, abundant extracellular matrix (hypocellularity), basal laminae, high vascularity, and mast cell infiltration. The histologic features of the developed tumors were particularly consistent with those of human plexiform neurofibroma as well. Intraneural xenograft of sNF94.3 cells enables the precise initiation of intraneural, plexiform-like tumors and provides a highly reproducible model for the study of plexiform neurofibroma tumorigenesis. This model facilitates testing of potential therapeutic interventions, including angiogenesis inhibitors, in a relevant cellular environment.
Collapse
Affiliation(s)
- George Q Perrin
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610-0244, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Thomas SL, Deadwyler GD, Tang J, Stubbs EB, Muir D, Hiatt KK, Clapp DW, De Vries GH. Reconstitution of the NF1 GAP-related domain in NF1-deficient human Schwann cells. Biochem Biophys Res Commun 2006; 348:971-80. [PMID: 16908010 DOI: 10.1016/j.bbrc.2006.07.159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 07/23/2006] [Indexed: 01/07/2023]
Abstract
Schwann cells derived from peripheral nerve sheath tumors from individuals with Neurofibromatosis Type 1 (NF1) are deficient for the protein neurofibromin, which contains a GAP-related domain (NF1-GRD). Neurofibromin-deficient Schwann cells have increased Ras activation, increased proliferation in response to certain growth stimuli, increased angiogenic potential, and altered cell morphology. This study examined whether expression of functional NF1-GRD can reverse the transformed phenotype of neurofibromin-deficient Schwann cells from both benign and malignant peripheral nerve sheath tumors. We reconstituted the NF1-GRD using retroviral transduction and examined the effects on cell morphology, growth potential, and angiogenic potential. NF1-GRD reconstitution resulted in morphologic changes, a 16-33% reduction in Ras activation, and a 53% decrease in proliferation in neurofibromin-deficient Schwann cells. However, NF1-GRD reconstitution was not sufficient to decrease the in vitro angiogenic potential of the cells. This study demonstrates that reconstitution of the NF1-GRD can at least partially reverse the transformation of human NF1 tumor-derived Schwann cells.
Collapse
Affiliation(s)
- Stacey L Thomas
- Research Service, Edward Hines Jr. V.A. Hospital, 5th Avenue and Roosevelt Road, Hines, IL 60141, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Albini A, Pfeffer U. A new tumor suppressor gene: invasion, metastasis, and angiogenesis as potential key targets. J Natl Cancer Inst 2006; 98:800-1. [PMID: 16788148 DOI: 10.1093/jnci/djj256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
42
|
Li F, Munchhof AM, White HA, Mead LE, Krier TR, Fenoglio A, Chen S, Wu X, Cai S, Yang FC, Ingram DA. Neurofibromin is a novel regulator of RAS-induced signals in primary vascular smooth muscle cells. Hum Mol Genet 2006; 15:1921-30. [PMID: 16644864 DOI: 10.1093/hmg/ddl114] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the NF1 tumor suppressor gene. Neurofibromin is encoded by NF1 and functions as a negative regulator of Ras activity. NF1 patients develop renal artery stenosis and arterial occlusions resulting in cerebral and visceral infarcts. Further, NF1 patients develop vascular neurofibromas where tumor vessels are invested in a dense pericyte sheath. Although it is well established that aberrations in Ras signaling lead to human malignancies, emerging data generated in genetically engineered mouse models now implicate perturbations in the Ras signaling axis in vascular smooth muscular cells (VSMCs) as central to the initiation and progression of neointimal hyperplasia and arterial stenosis. Despite these observations, the function of neurofibromin in regulating VSMC function and how Ras signals are terminated in VSMCs is virtually unknown. Utilizing VSMCs harvested from Nf1+/- mice and primary human neurofibromin-deficient VSMCs, we identify a discrete Ras effector pathway, which is tightly regulated by neurofibromin to limit VSMC proliferation and migration. Thus, these studies identify neurofibromin as a novel regulator of Ras activity in VSMCs and provide a framework for understanding cardiovascular disease in NF1 patients and a mechanism by which Ras signals are attenuated for maintaining VSMC homeostasis in blood vessel walls.
Collapse
Affiliation(s)
- Fang Li
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|