1
|
Yao K, Chen Z, Li Y, Dou B, Xu Z, Ma Y, Du S, Wang J, Fu J, Liu Q, Fan Z, Liu Y, Lin X, Xu Y, Fang Y, Wang S, Guo Y. TRPA1 Ion Channel Mediates the Analgesic Effects of Acupuncture at the ST36 Acupoint in Mice Suffering from Arthritis. J Inflamm Res 2024; 17:1823-1837. [PMID: 38523680 PMCID: PMC10961083 DOI: 10.2147/jir.s455699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Acupuncture (ACU) has been demonstrated to alleviate inflammatory pain. Mechanoreceptors are present in acupuncture points. When acupuncture exerts mechanical force, these ion channels open and convert the mechanical signals into biochemical signals. TRPA1 (T ransient receptor potential ankyrin 1) is capable of sensing various physical and chemical stimuli and serves as a sensor for inflammation and pain. This protein is expressed in immune cells and contributes to local defense mechanisms during early tissue damage and inflammation. In this study, we investigated the role of TRPA1 in acupuncture analgesia. Patients and Methods We injected complete Freund's adjuvant (CFA) into the mouse plantars to establish a hyperalgesia model. Immunohistochemistry and immunofluorescence analyses were performed to determine the effect of acupuncture on the TRPA1 expression in the Zusanli (ST36). We used TRPA1-/- mouse and pharmacological methods to antagonize TRPA1 to observe the effect on acupuncture analgesia. On this basis, collagenase was used to destroy collagen fibers at ST36 to observe the effect on TRPA1. Results We found that the ACU group vs the CFA group, the number of TRPA1-positive mast cells, macrophages, and fibroblasts at the ST36 increased significantly. In CFA- inflammatory pain models, the TRPA1-/- ACU vs TRPA1+/+ ACU groups, the paw withdrawal latency (PWL) and paw withdrawal threshold (PWT) downregulated significantly. In the ACU + high-, ACU + medium-, ACU + low-dose HC-030031 vs ACU groups, the PWL and PWT were downregulated, and in carrageenan-induced inflammatory pain models were consistent with these results. We further found the ACU + collagenase vs ACU groups, the numbers of TRPA1-positive mast cells, macrophages, and fibroblasts at the ST36 were downregulated. Conclusion These findings together imply that TRPA1 plays a significant role in the analgesic effects produced via acupuncture at the ST36. This provides new evidence for acupuncture treatment of painful diseases.
Collapse
Affiliation(s)
- Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Yanwei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Yajing Ma
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Jiangshan Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Jiangjiang Fu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Qi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Zezhi Fan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Yuan Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| |
Collapse
|
2
|
Castellanos LCS, Gatto RG, Malnati GOM, Montes MM, Uchitel OD, Weissmann C. Redistribution of ASIC1a channels triggered by IL-6: Potential role of ASIC1a in neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166927. [PMID: 37907140 DOI: 10.1016/j.bbadis.2023.166927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Cytokines, particularly IL-6, play a crucial role in modulating immune responses in the central nervous system (CNS). Elevated IL-6 levels have been observed in neuroinflammatory conditions, as well as in the sera and brains of patients with neurodegenerative diseases such as Parkinson's, Huntington's, Multiple Sclerosis, and Alzheimer's. Additionally, alterations in regional brain pH have been noted in these conditions. Acid-sensing ion channels (ASICs), including ASIC1a, activated by low pH levels, are highly abundant in the CNS and have recently been associated with various neurological disorders. Our study examined the impact of IL-6 on ASIC1a channels in cell cultures, demonstrating IL-6-induced the redistribution of cytosolic ASIC1a channels to the cell membrane. This redistribution was accompanied by increased ASIC1a current amplitude upon activation, as well as elevated levels of phosphorylated CaMKII and ERK kinases. Additionally, we observed posttranslational modifications on the ASIC1a channel itself. These findings provide insight into a potential link between inflammatory processes and neurodegenerative mechanisms, highlighting ASIC1a channels as promising therapeutic targets in these conditions.
Collapse
Affiliation(s)
| | - Rodolfo Gabriel Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Mayra Micaela Montes
- Instituto de Fisiología Biología Molecular y Neurociencias-IFIBYNE-UBA-CONICET, LFBM, Argentina
| | - Osvaldo Daniel Uchitel
- Instituto de Fisiología Biología Molecular y Neurociencias-IFIBYNE-UBA-CONICET, LFBM, Argentina
| | - Carina Weissmann
- Instituto de Fisiología Biología Molecular y Neurociencias-IFIBYNE-UBA-CONICET, LFBM, Argentina.
| |
Collapse
|
3
|
Reddy P, Vasudeva J, Shah D, Prajapati JN, Harikumar N, Barik A. A Deep-Learning Driven Investigation of the Circuit Basis for Reflexive Hypersensitivity to Thermal Pain. Neuroscience 2023; 530:158-172. [PMID: 37640138 DOI: 10.1016/j.neuroscience.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Objectively measuring animal behavior is vital to understanding the neural circuits underlying pain. Recent progress in machine vision has presented unprecedented scope in behavioral analysis. Here, we apply DeepLabCut (DLC) to dissect mouse behavior on the thermal-plate test - a commonly used paradigm to ascertain supraspinal contributions to noxious thermal sensation and pain hypersensitivity. We determine the signature characteristics of the pattern of mouse movement and posture in 3D in response to a range of temperatures from innocuous to noxious on the thermal-plate test. Next, we test how acute chemical and chronic inflammatory injuries sensitize mouse behaviors. Repeated exposure to noxious temperatures on the thermal plate can induce learning. In this study, we design a novel assay and formulate an analytical pipeline to facilitate the dissection of plasticity mechanisms in pain circuits in the brain. Last, we record and test how activating Tacr1 expressing PBN neurons (PBNTacr1) - a population responsive to sustained noxious stimuli- affects mouse behavior on the thermal plate test. Taken together, we demonstrate that by tracking a single body part of a mouse, we can reveal the behavioral signatures of mice exposed to noxious surface temperatures, report the alterations of the same when injured, and determine if a molecularly and anatomically defined pain-responsive circuit plays a role in the reflexive hypersensitivity to thermal pain.
Collapse
Affiliation(s)
- Prannay Reddy
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Jayesh Vasudeva
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Devanshi Shah
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Jagat Narayan Prajapati
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Nikhila Harikumar
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Arnab Barik
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India.
| |
Collapse
|
4
|
Swain R, Moharana A, Habibullah S, Nandi S, Bose A, Mohapatra S, Mallick S. Ocular delivery of felodipine for the management of intraocular pressure and inflammation: Effect of film plasticizer and in vitro in vivo evaluation. Int J Pharm 2023:123153. [PMID: 37339688 DOI: 10.1016/j.ijpharm.2023.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
Glaucoma may cause irreversible eyesight loss and damage to the optic nerve. Trabecular meshwork obstruction may raise intraocular pressure (IOP) in open-angle and/or closed-angle type inflammatory glaucoma. Ocular delivery of felodipine (FEL) has been undertaken for the management of intraocular pressure and inflammation. FEL film was formulated using different plasticizers, and IOP has been assessed using a normotensive rabbit eye model. Ocular acute inflammation induced by carrageenan has also been monitored. Drug release has been enhanced significantly (93.9 % in 7 h) in the presence of DMSO (FDM) as a plasticizer in the film compared to others (59.8 to 86.2 % in 7 h). The same film also exhibited the highest ocular permeation of 75.5 % rather than others (50.5 to 61.0 %) in 7 h. Decreased IOP was maintained up to 8 h after ocular application of FDM compared to the solution of FEL only up to 5 h. Ocular inflammation has almost been disappeared within 2 h of using the film (FDM), whereas inflammation has been continued even after 3 h of the induced rabbit without film. DMSO plasticized felodipine film could be used for the better management of IOP and associated inflammation.
Collapse
Affiliation(s)
- Rakesh Swain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ankita Moharana
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sk Habibullah
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Souvik Nandi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Anindya Bose
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sujata Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Subrata Mallick
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Muthumalage T, Rahman I. Pulmonary immune response regulation, genotoxicity, and metabolic reprogramming by menthol- and tobacco-flavored e-cigarette exposures in mice. Toxicol Sci 2023; 193:146-165. [PMID: 37052522 PMCID: PMC10230290 DOI: 10.1093/toxsci/kfad033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Menthol and tobacco flavors are available for almost all tobacco products, including electronic cigarettes (e-cigs). These flavors are a mixture of chemicals with overlapping constituents. There are no comparative toxicity studies of these flavors produced by different manufacturers. We hypothesized that acute exposure to menthol and tobacco-flavored e-cig aerosols induces inflammatory, genotoxicity, and metabolic responses in mouse lungs. We compared two brands, A and B, of e-cig flavors (PG/VG, menthol, and tobacco) with and without nicotine for their inflammatory response, genotoxic markers, and altered genes and proteins in the context of metabolism by exposing mouse strains, C57BL/6J (Th1-mediated) and BALB/cJ (Th2-mediated). Brand A nicotine-free menthol exposure caused increased neutrophils and differential T-lymphocyte influx in bronchoalveolar lavage fluid and induced significant immunosuppression, while brand A tobacco with nicotine elicited an allergic inflammatory response with increased Eotaxin, IL-6, and RANTES levels. Brand B elicited a similar inflammatory response in menthol flavor exposure. Upon e-cig exposure, genotoxicity markers significantly increased in lung tissue. These inflammatory and genotoxicity responses were associated with altered NLRP3 inflammasome and TRPA1 induction by menthol flavor. Nicotine decreased surfactant protein D and increased PAI-1 by menthol and tobacco flavors, respectively. Integration of inflammatory and metabolic pathway gene expression analysis showed immunometabolic regulation in T cells via PI3K/Akt/p70S6k-mTOR axis associated with suppressed immunity/allergic immune response. Overall, this study showed the comparative toxicity of flavored e-cig aerosols, unraveling potential signaling pathways of nicotine and flavor-mediated pulmonary toxicological responses, and emphasized the need for standardized toxicity testing for appropriate premarket authorization of e-cigarette products.
Collapse
Affiliation(s)
- Thivanka Muthumalage
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
6
|
Sung B, Kim HK, Baek AR, Yang BW, Kim YH, Choi G, Park HJ, Kim M, Lee J, Chang Y. Nonsteroidal Anti-Inflammatory Drug Conjugated with Gadolinium (III) Complex as an Anti-Inflammatory MRI Agent. Int J Mol Sci 2023; 24:ijms24076870. [PMID: 37047841 PMCID: PMC10095586 DOI: 10.3390/ijms24076870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Studies have been actively conducted to ensure that gadolinium-based contrast agents for magnetic resonance imaging (MRI) are accompanied by various biological functions. A new example is the anti-inflammatory theragnostic MRI agent to target inflammatory mediators for imaging diagnosis and to treat inflammatory diseases simultaneously. We designed, synthesized, and characterized a Gd complex of 1,4,7-tris(carboxymethylaza) cyclododecane-10-azaacetylamide (DO3A) conjugated with a nonsteroidal anti-inflammatory drug (NSAID) that exerts the innate therapeutic effect of NSAIDs and is also applicable in MRI diagnostics. Gd-DO3A-fen (0.1 mmol/kg) was intravenously injected into the turpentine oil-induced mouse model, with Gd-DO3A-BT as a control group. In the in vivo MRI experiment, the contrast-to-noise ratio (CNR) was higher and persisted longer than that with Gd-DO3A-BT; specifically, the CNR difference was almost five times at 2 h after injection. Gd-DO3A-fen had a binding affinity (Ka) of 6.68 × 106 M-1 for the COX-2 enzyme, which was 2.1-fold higher than that of fenbufen, the original NSAID. In vivo evaluation of anti-inflammatory activity was performed in two animal models. In the turpentine oil-induced model, the mRNA expression levels of inflammatory parameters such as COX-2, TNF-α, IL-1β, and IL-6 were reduced, and in the carrageenan-induced edema model, swelling was suppressed by 72% and there was a 2.88-fold inhibition compared with the saline group. Correlation analysis between in vitro, in silico, and in vivo studies revealed that Gd-DO3A-fen acts as an anti-inflammatory theragnostic agent by directly binding to COX-2.
Collapse
Affiliation(s)
- Bokyung Sung
- Department of Medical & Biological Engineering, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Hee-Kyung Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Dong-gu, Daegu 41061, Republic of Korea
| | - Ah-Rum Baek
- Institute of Biomedical Engineering Research, Kyungpook National University, Jung-gu, Daegu 41566, Republic of Korea
| | - Byeong-Woo Yang
- Department of Medical & Biological Engineering, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Yeoun-Hee Kim
- R&D Center, Etnova Therapeutics Corp., Gwonseon-gu, Suwon-si 13120, Republic of Korea
| | - Garam Choi
- R&D Center, Etnova Therapeutics Corp., Gwonseon-gu, Suwon-si 13120, Republic of Korea
| | - Hyun-Jin Park
- R&D Center, Etnova Therapeutics Corp., Gwonseon-gu, Suwon-si 13120, Republic of Korea
| | - Minsup Kim
- Department of Biotechnology and Bioinformatics, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Jongmin Lee
- Department of Radiology, Kyungpook National University Hospital, Jung-gu, Daegu 41944, Republic of Korea
| | - Yongmin Chang
- Department of Radiology, Kyungpook National University Hospital, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
7
|
Srebro D, Dožić B, Savić Vujović K, Medić Brkić B, Vučković S. Magnesium Sulfate Reduces Carrageenan-Induced Rat Paw Inflammatory Edema Via Nitric Oxide Production. Dose Response 2023; 21:15593258231155788. [PMID: 36756149 PMCID: PMC9900672 DOI: 10.1177/15593258231155788] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/12/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background Magnesium is an antagonist of the N-methyl-D-aspartate receptor. This study aimed to investigate the anti-edematous effect of magnesium sulfate (MS) in different protocols of use and the possible mechanism of its action. Methods In a rat model of carrageenan-induced paw inflammation, the anti-edematous activity of MS was assessed with a plethysmometer. The effects of the nonselective inhibitor (L-NAME), selective inhibitor of neuronal (L-NPA) and inducible (SMT) nitric oxide synthase on the effects of MS were evaluated. Results MS administered systemically before or after inflammation reduced edema by 30% (5 mg/kg, P < .05) and 55% (30 mg/kg, P < .05). MS administered locally (.5 mg/paw, P < .05) significantly prevented the development of inflammatory edema by 60%. L-NAME, intraperitoneally administered before MS, potentiated (5 mg/kg, P < .05) or reduced (3 mg/kg, P < .05), while in the highest tested dose L-NPA (2 mg/kg, P < .01) and SMT (.015 mg/kg, P < .01) reduced the anti-edematous effect of MS. Conclusions Magnesium is a more effective anti-edematous drug in therapy than for preventing inflammatory edema. The effect of MS is achieved after systemic and local peripheral administration and when MS is administered as a single drug in a single dose. This effect is mediated at least in part via the production of nitric oxide.
Collapse
Affiliation(s)
- Dragana Srebro
- Department of Pharmacology,
Clinical Pharmacology and Toxicology, Faculty of Medicine,
University of Belgrade, Belgrade,
Serbia,Dragana Srebro, Department of Pharmacology,
Clinical Pharmacology and Toxicology, Faculty of Medicine, University of
Belgrade, Serbia Dr Subotića-starijeg 1, Belgrade 11129, Serbia.
| | - Branko Dožić
- Department of Pathology, School of
Dental Medicine, University of
Belgrade, Belgrade, Serbia
| | - Katarina Savić Vujović
- Department of Pharmacology,
Clinical Pharmacology and Toxicology, Faculty of Medicine,
University of Belgrade, Belgrade,
Serbia
| | - Branislava Medić Brkić
- Department of Pharmacology,
Clinical Pharmacology and Toxicology, Faculty of Medicine,
University of Belgrade, Belgrade,
Serbia
| | - Sonja Vučković
- Department of Pharmacology,
Clinical Pharmacology and Toxicology, Faculty of Medicine,
University of Belgrade, Belgrade,
Serbia
| |
Collapse
|
8
|
Yao K, Dou B, Zhang Y, Chen Z, Li Y, Fan Z, Ma Y, Du S, Wang J, Xu Z, Liu Y, Lin X, Wang S, Guo Y. Inflammation-the role of TRPA1 channel. Front Physiol 2023; 14:1093925. [PMID: 36875034 PMCID: PMC9977828 DOI: 10.3389/fphys.2023.1093925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Recently, increasing numbers of studies have demonstrated that transient receptor potential ankyrin 1 (TRPA1) can be used as a potential target for the treatment of inflammatory diseases. TRPA1 is expressed in both neuronal and non-neuronal cells and is involved in diverse physiological activities, such as stabilizing of cell membrane potential, maintaining cellular humoral balance, and regulating intercellular signal transduction. TRPA1 is a multi-modal cell membrane receptor that can sense different stimuli, and generate action potential signals after activation via osmotic pressure, temperature, and inflammatory factors. In this study, we introduced the latest research progress on TRPA1 in inflammatory diseases from three different aspects. First, the inflammatory factors released after inflammation interacts with TRPA1 to promote inflammatory response; second, TRPA1 regulates the function of immune cells such as macrophages and T cells, In addition, it has anti-inflammatory and antioxidant effects in some inflammatory diseases. Third, we have summarized the application of antagonists and agonists targeting TRPA1 in the treatment of some inflammatory diseases.
Collapse
Affiliation(s)
- Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanwei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zezhi Fan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajing Ma
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangshan Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Wang ZH, Feng Y, Hu Q, Wang XL, Zhang L, Liu TT, Zhang JT, Yang X, Fu QY, Fu DN, Hu J, Liu T. Keratinocyte TLR2 and TLR7 contribute to chronic itch through pruritic cytokines and chemokines in mice. J Cell Physiol 2023; 238:257-273. [PMID: 36436135 DOI: 10.1002/jcp.30923] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022]
Abstract
Although neuronal Toll-like receptors (TLRs) (e.g., TLR2, TLR3, and TLR7) have been implicated in itch sensation, the roles of keratinocyte TLRs in chronic itch are elusive. Herein, we evaluated the roles of keratinocyte TLR2 and TLR7 in chronic itch under dry skin and psoriasis conditions, which was induced by either acetone-ether-water treatment or 5% imiquimod cream in mice, respectively. We found that TLR2 and TLR7 signaling were significantly upregulated in dry skin and psoriatic skin in mice. Chronic itch and epidermal hyperplasia induced by dry skin or psoriasis were comparably reduced in TLR2 and TLR7 knockout mice. In the dry skin model, the enhanced messenger RNA (mRNA) expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, TNF-α, and IFN-γ were inhibited in TLR2-/- mice, while CXCL2, IL-31, and IL-6 were inhibited in TLR7-/- mice. In psoriasis model, the enhanced mRNA expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, and TNF-α were inhibited in TLR2-/- mice, while CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, and TNF-α were inhibited in TLR7-/- mice. Incubation with Staphylococcus aureus (S. aureus) peptidoglycan (PGN-SA) (a TLR2 agonist), imiquimod (a TLR7 agonist), and miR142-3p (a putative TLR7 agonist) were sufficient to upregulate the expression of pruritic cytokines or chemokines in cultured keratinocyte HaCaT cells. Finally, pharmacological blockade of C-X-C Motif Chemokine Receptor 1/2 and high mobility group box protein 1 dose-dependently attenuated acute and chronic itch in mice. Together, these results indicate that keratinocyte TLR2 and TLR7 signaling pathways are distinctly involved in the pathogenesis of chronic itch.
Collapse
Affiliation(s)
- Zhi-Hong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingfang Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue-Long Wang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital Beijing, Beijing, China
| | - Li Zhang
- Department of Anesthesiology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, China
| | - Teng-Teng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Xiaohua Yang
- The Affiliated Haian Hospital of Nantong University, Haian, China
| | - Qing-Yue Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan-Ni Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China.,College of Life Sciences, Yanan University, Yanan, China.,Suzhou Key Laboratory of Intelligent Medicine and Equipment, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Chung S, Kim H, Kim D, Lee JM, Lee CJ, Oh SB. Common bacterial metabolite indole directly activates nociceptive neuron through transient receptor potential ankyrin 1 channel. Pain 2022; 163:1530-1541. [PMID: 34817438 DOI: 10.1097/j.pain.0000000000002542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/15/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Nociceptors are known to directly recognize bacterial cell wall components or secreted toxins, thereby leading to pain induced by bacterial infection. However, direct activation of nociceptors by bacterial metabolites remains unclear although bacteria produce numerous metabolites related to health and disease. In this study, we investigated whether and how a common bacterial metabolite, indole, which is produced by normal microflora of the gastrointestinal tract and oral cavity, can directly activate nociceptive sensory neurons. We found that indole elicits calcium response and evokes inward currents in subsets of dorsal root ganglia (DRG) neurons. Intraplantar (i.pl.) injection of indole produced nocifensive behaviors in adult mice, which were enhanced in complete Freund's adjuvant-induced chronic inflammatory condition. Indole increased calcitonin gene-related peptide release in DRG neurons, and i.pl. injection of indole increased hind paw thickness, suggesting its role in generation of neurogenic inflammation. These in vitro and in vivo indole-induced responses were pharmacologically blocked by transient receptor potential ankyrin 1 (TRPA1) antagonist, HC-030031, and significantly abolished in TRPA1 knockout (KO) mice, indicating that indole targets TRPA1 for its action in DRG neurons. Nocifensive licking behavior induced by the injection of live Escherichia coli was significantly decreased in tryptophanase mutant (TnaA KO) E. coli- injected mice that lack indole production, further supporting the idea that bacteria-derived indole can induce pain during infection. Identifying the mechanism of action of indole through TRPA1 provides insights into bacteria-neuron interactions and the role of bacterial metabolites in pain signaling, especially in inflammation-accompanied bacterial infection.
Collapse
Affiliation(s)
- Sena Chung
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hayun Kim
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Doyun Kim
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jung Moo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Iannone LF, Nassini R, Patacchini R, Geppetti P, De Logu F. Neuronal and non-neuronal TRPA1 as therapeutic targets for pain and headache relief. Temperature (Austin) 2022; 10:50-66. [PMID: 37187829 PMCID: PMC10177743 DOI: 10.1080/23328940.2022.2075218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, has a major role in different types of pain. TRPA1 is primarily localized to a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia. This subset of nociceptors produces and releases the neuropeptide substance P (SP) and calcitonin gene-related peptide (CGRP), which mediate neurogenic inflammation. TRPA1 is characterized by unique sensitivity for an unprecedented number of reactive byproducts of oxidative, nitrative, and carbonylic stress and to be activated by several chemically heterogenous, exogenous, and endogenous compounds. Recent preclinical evidence has revealed that expression of TRPA1 is not limited to neurons, but its functional role has been reported in central and peripheral glial cells. In particular, Schwann cell TRPA1 was recently implicated in sustaining mechanical and thermal (cold) hypersensitivity in mouse models of macrophage-dependent and macrophage-independent inflammatory, neuropathic, cancer, and migraine pain. Some analgesics and herbal medicines/natural products widely used for the acute treatment of pain and headache have shown some inhibitory action at TRPA1. A series of high affinity and selective TRPA1 antagonists have been developed and are currently being tested in phase I and phase II clinical trials for different diseases with a prominent pain component. Abbreviations: 4-HNE, 4-hydroxynonenal; ADH-2, alcohol dehydrogenase-2; AITC, allyl isothiocyanate; ANKTD, ankyrin-like protein with transmembrane domains protein 1; B2 receptor, bradykinin 2 receptor; CIPN, chemotherapeutic-induced peripheral neuropathy; CGRP, calcitonin gene related peptide; CRISPR, clustered regularly interspaced short palindromic repeats; CNS, central nervous system; COOH, carboxylic terminal; CpG, C-phosphate-G; DRG, dorsal root ganglia; EP, prostaglandins; GPCR, G-protein-coupled receptors; GTN, glyceryl trinitrate; MAPK, mitogen-activated protein kinase; M-CSF, macrophage-colony stimulating factor; NAPQI, N-Acetyl parabenzoquinone-imine; NGF, nerve growth factor; NH2, amino terminal; NKA, neurokinin A; NO, nitric oxide; NRS, numerical rating scale; PAR2, protease-activated receptor 2; PMA, periorbital mechanical allodynia; PLC, phospholipase C; PKC, protein kinase C; pSNL, partial sciatic nerve ligation; RCS, reactive carbonyl species; ROS, reactive oxygen species; RNS, nitrogen oxygen species; SP, substance P; TG, trigeminal ganglion; THC, Δ9-tetrahydrocannabinol; TrkA, neurotrophic receptor tyrosine kinase A; TRP, transient receptor potential; TRPC, TRP canonical; TRPM, TRP melastatin; TRPP, TRP polycystin; TRPM, TRP mucolipin; TRPA, TRP ankyrin; TRPV, TRP vanilloid; VG, vagal ganglion.
Collapse
Affiliation(s)
- Luigi F. Iannone
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Romina Nassini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Riccardo Patacchini
- Corporate Drug Development, Chiesi Farmaceutici S.p.A, Nuovo Centro Ricerche, Parma, Italy
| | - Pierangelo Geppetti
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Francesco De Logu
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Sulaiman S, Ahmad S, Naz SS, Qaisar S, Muhammad S, Alotaibi A, Ullah R. Synthesis of Copper Oxide-Based Nanoformulations of Etoricoxib and Montelukast and Their Evaluation through Analgesic, Anti-Inflammatory, Anti-Pyretic, and Acute Toxicity Activities. Molecules 2022; 27:1433. [PMID: 35209221 PMCID: PMC8875186 DOI: 10.3390/molecules27041433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Copper oxide nanoparticles (CuO NPs) were synthesized through the coprecipitation method and used as nanocarriers for etoricoxib (selective COX-2 inhibitor drug) and montelukast (leukotriene product inhibitor drug) in combination therapy. The CuO NPs, free drugs, and nanoformulations were investigated through UV/Vis spectroscopy, FTIR spectroscopy, XRD, SEM, and DLS. SEM imaging showed agglomerated nanorods of CuO NPs of about 87 nm size. The CE1, CE2, and CE6 nanoformulations were investigated through DLS, and their particle sizes were 271, 258, and 254 nm, respectively. The nanoformulations were evaluated through in vitro anti-inflammatory activity, in vivo anti-inflammatory activity, in vivo analgesic activity, in vivo anti-pyretic activity, and in vivo acute toxicity activity. In vivo activities were performed on albino mice. BSA denaturation was highly inhibited by CE1, CE2, and CE6 as compared to other nanoformulations in the in vitro anti-inflammatory activity. The in vivo bioactivities showed that low doses (5 mg/kg) of nanoformulations were more potent than high doses (10 and 20 mg/kg) of free drugs in the inhibition of pain, fever, and inflammation. Lastly, CE2 was more potent than that of other nanoformulations.
Collapse
Affiliation(s)
- Sulaiman Sulaiman
- Department of Chemistry, Islamia College University, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (S.S.); (S.A.); (S.M.)
- Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 44000, Punjab, Pakistan; (S.S.N.); (S.Q.)
| | - Shabir Ahmad
- Department of Chemistry, Islamia College University, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (S.S.); (S.A.); (S.M.)
| | - Syeda Sohaila Naz
- Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 44000, Punjab, Pakistan; (S.S.N.); (S.Q.)
| | - Sara Qaisar
- Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 44000, Punjab, Pakistan; (S.S.N.); (S.Q.)
| | - Sayyar Muhammad
- Department of Chemistry, Islamia College University, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (S.S.); (S.A.); (S.M.)
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Riaz Ullah
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Yuan J, Liang X, Zhou W, Feng J, Wang Z, Shen S, Guan X, Zhao L, Deng F. TRPA1 promotes cisplatin-induced nephrotoxicity through inflammation mediated by the MAPK/NF-κB signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1578. [PMID: 34790784 PMCID: PMC8576655 DOI: 10.21037/atm-21-5125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND The nephrotoxicity induced by cisplatin (DDP) has been a severe obstacle for its clinical use in anticancer treatment. The apoptosis and inflammation induced by DDP are the main causes of the nephrotoxicity. Transient receptor potential ankyrin 1 (TRPA1) is a non-selective cation ligand-gated channel that is involved in the inflammation progress. METHODS The apoptosis, inflammation, MAPK/NF-κB signaling pathway, and TRPA1 expression were assessed after HEK293 cells had been induced by DDP, and the role of TRPA1 in apoptosis and inflammation of DDP-induced HEK293 cells treated with TRPA1 antagonist HC-030031 was also evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), flow cytometry, and western blot assays. RESULTS The cell viability was reduced by DDP in both a time-dependent and dose-dependent manner with a minimal cytotoxic concentration of 10 μM. Moreover, DDP induced an enhancement of the apoptosis and inflammation in a dose-dependent manner, as indicated by the increase of the relative protein level of cleaved-caspase3 (cleaved-cas3), the cleavage product of caspase-3 substrate poly-ADP-ribose polymerase (cleaved-PARP) and inducible nitric oxide synthase (iNOS), and the messenger RNA (mRNA) expression level of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), and interferon-γ (INF-γ). Additionally, DDP treatment increased the protein phosphorylation expression of IKKβ, JNK, ERK, and p38 in a dose-dependent manner, which was antagonized by the treatment of NF-κB-specific inhibitor BAY 11-7082 and pan-MAPK inhibitor U0126. It was also found that DDP upregulated the expression of TRPA1 at both the mRNA and protein levels in a dose-dependent manner. Besides, block of TRPA1 with HC-030031 relieved the apoptosis, diminished the level of IL-1β, IL-6, TNF-α, and INF-γ, reduced the level of cleaved-cas3, cleaved-PARP, and iNOS, decreased the p-IKKβ, p-JNK, p-ERK, and p-p38 expression, and enhanced the expression of IκBα. CONCLUSIONS Taken together, these results indicate that TRPA1 regulates DDP-induced nephrotoxicity via inflammation mediated by the MAPK/NF-κB signaling pathway in HEK293 cells.
Collapse
Affiliation(s)
- Jinyan Yuan
- Department of Nephrology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Liang
- Department of Internal Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zhou
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Feng
- Department of Traditional Chinese Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenyang Wang
- Department of Nephrology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shaoxian Shen
- Department of Nephrology, Jinniu Hospital of Sichuan Provincial People’s Hospital and Chengdu Jinniu District People’s Hospital, Chengdu, China
| | - Xin Guan
- Department of Nephrology, Jinniu Hospital of Sichuan Provincial People’s Hospital and Chengdu Jinniu District People’s Hospital, Chengdu, China
| | - Liangbin Zhao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Deng
- Department of Nephrology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Jinniu Hospital of Sichuan Provincial People’s Hospital and Chengdu Jinniu District People’s Hospital, Chengdu, China
| |
Collapse
|
14
|
Luostarinen S, Hämäläinen M, Hatano N, Muraki K, Moilanen E. The inflammatory regulation of TRPA1 expression in human A549 lung epithelial cells. Pulm Pharmacol Ther 2021; 70:102059. [PMID: 34302984 DOI: 10.1016/j.pupt.2021.102059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/06/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Transient receptor potential ankyrin-1 (TRPA1) is an ion channel mediating pain and cough signals in sensory neurons. We and others have shown that TRPA1 is also expressed in some non-neuronal cells and supports inflammatory responses. To address the pathogenesis and to uncover potential targets for pharmacotherapy in inflammatory lung diseases, we set out to study the expression of TRPA1 in human A549 lung epithelial cells under inflammatory conditions. TRPA1 expression was determined by RT-qPCR and Western blotting at a mRNA and protein level, respectively and its function was studied by Fluo 3-AM intracellular Ca2+ measurement in A549 lung epithelial cells. TRPA1 promoter activity was assessed by reporter gene assay. TRPA1 expression was very low in A549 cells in the absence of inflammatory stimuli. Tumor necrosis factor-α (TNF-α) significantly increased TRPA1 expression and a synergy was found between TNF-α, interleukin-1β (IL-1β) and interferon-γ (IFN-γ). Reporter gene experiments indicate that the combination of TNF-α and IL-1β increases TRPA1 promoter activity while the effect of IFN-γ seems to be non-transcriptional. Interestingly, the glucocorticoid dexamethasone downregulated TRPA1 expression in A549 cells by reducing TRPA1 mRNA stability in a transcription-dependent manner. Furthermore, pharmacological blockade of TRPA1 reduced the production of the pro-inflammatory cytokine IL-8. In conclusion, TRPA1 was found to be expressed and functional in human A549 lung epithelial cells under inflammatory conditions. The anti-inflammatory steroid dexamethasone reduced TRPA1 expression through post-transcriptional mechanisms. The results reveal TRPA1 as a potential mediator and drug target in inflammatory lung conditions.
Collapse
Affiliation(s)
- Samu Luostarinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
15
|
Hasriadi, Wasana PWD, Vajragupta O, Rojsitthisak P, Towiwat P. Automated home-cage for the evaluation of innate non-reflexive pain behaviors in a mouse model of inflammatory pain. Sci Rep 2021; 11:12240. [PMID: 34112846 PMCID: PMC8192791 DOI: 10.1038/s41598-021-91444-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
The failure to develop analgesic drugs is attributed not only to the complex and diverse pathophysiology of pain in humans but also to the poor experimental design and poor preclinical assessment of pain. Although considerable efforts have been devoted to overcoming the relevant problems, many features of the behavioral pain assessment remain to be characterized. For example, a decreased locomotor activity as a common presentation of pain-like behavior has yet to be described. Studies on mice experimentally induced with carrageenan have provided opportunities to explore pain-related behaviors in automated home-cage monitoring. Through this approach, the locomotor activities of mice with carrageenan-induced inflammatory pain can be precisely and objectively captured. Here, we found that the mobile behaviors of mice reduced, and their immobility increased, indicating that carrageenan induction in mice caused a significant decrease in locomotor activity. These non-reflexive pain behaviors were strongly correlated with the reflexive pain behaviors measured via von Frey and plantar tests. Furthermore, the pharmacological intervention using indomethacin improved the locomotor activity of mice with carrageenan-induced pain. Thus, the analysis of the locomotor activity in automated home-cage monitoring is useful for studying the behavioral analgesia and the pharmacological screening of analgesic drugs. The combined evaluation of reflexive and non-reflexive pain behaviors enhances the translational utility of preclinical pain research in rodents.
Collapse
Affiliation(s)
- Hasriadi
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peththa Wadu Dasuni Wasana
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Opa Vajragupta
- Research Affairs, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasarapa Towiwat
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
16
|
Luostarinen S, Hämäläinen M, Moilanen E. Transient Receptor Potential Ankyrin 1 (TRPA1)-An Inflammation-Induced Factor in Human HaCaT Keratinocytes. Int J Mol Sci 2021; 22:ijms22073322. [PMID: 33805042 PMCID: PMC8037497 DOI: 10.3390/ijms22073322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is an ion channel mainly studied in sensory neurons where it mediates itch, pain and neurogenic inflammation. Recently, some nonneuronal cells have also been shown to express TRPA1 to support inflammatory responses. To address the role of TRPA1 in skin inflammation, we aimed to investigate TRPA1 expression in keratinocytes. HaCaT cells (a model of human keratinocytes) and skin biopses from wild-type and TRPA1 deficient mice were used in the studies. TRPA1 expression in nonstimulated keratinocytes was very low but significantly inducible by the proinflammatory cytokine tumor necrosis factor (TNF) in an nuclear factor kappa B (NF-κB), and mitogen-activated protein (MAP) kinase (p38 and c-Jun N-terminal kinase, JNK)-dependent manner. Interestingly, drugs widely used to treat skin inflammation, the calcineurin inhibitors tacrolimus and cyclosporine and the glucocorticoid dexamethasone, significantly decreased TRPA1 expression. Furthermore, pharmacological inhibition and genetic deletion of TRPA1 reduced the synthesis of TNF-induced monocyte chemoattractant protein 1 (MCP-1) in keratinocytes and mouse skin biopsies. In conclusion, these findings point to an inflammatory role for TRPA1 in keratinocytes and present TRPA1 as a potential drug target in inflammatory skin diseases.
Collapse
|
17
|
Maglie R, Souza Monteiro de Araujo D, Antiga E, Geppetti P, Nassini R, De Logu F. The Role of TRPA1 in Skin Physiology and Pathology. Int J Mol Sci 2021; 22:3065. [PMID: 33802836 PMCID: PMC8002674 DOI: 10.3390/ijms22063065] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, acts as 'polymodal cellular sensor' on primary sensory neurons where it mediates the peripheral and central processing of pain, itch, and thermal sensation. However, the TRPA1 expression extends far beyond the sensory nerves. In recent years, much attention has been paid to its expression and function in non-neuronal cell types including skin cells, such as keratinocytes, melanocytes, mast cells, dendritic cells, and endothelial cells. TRPA1 seems critically involved in a series of physiological skin functions, including formation and maintenance of physico-chemical skin barriers, skin cells, and tissue growth and differentiation. TRPA1 appears to be implicated in mechanistic processes in various immunological inflammatory diseases and cancers of the skin, such as atopic and allergic contact dermatitis, psoriasis, bullous pemphigoid, cutaneous T-cell lymphoma, and melanoma. Here, we report recent findings on the implication of TRPA1 in skin physiology and pathophysiology. The potential use of TRPA1 antagonists in the treatment of inflammatory and immunological skin disorders will be also addressed.
Collapse
Affiliation(s)
- Roberto Maglie
- Department of Health Sciences, Section of Dermatology, University of Florence, 50139 Florence, Italy; (R.M.); (E.A.)
| | - Daniel Souza Monteiro de Araujo
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (P.G.); (F.D.L.)
| | - Emiliano Antiga
- Department of Health Sciences, Section of Dermatology, University of Florence, 50139 Florence, Italy; (R.M.); (E.A.)
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (P.G.); (F.D.L.)
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (P.G.); (F.D.L.)
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (P.G.); (F.D.L.)
| |
Collapse
|
18
|
Micheli L, Vasarri M, Barletta E, Lucarini E, Ghelardini C, Degl’Innocenti D, Di Cesare Mannelli L. Efficacy of Posidonia oceanica Extract against Inflammatory Pain: In Vivo Studies in Mice. Mar Drugs 2021; 19:md19020048. [PMID: 33494253 PMCID: PMC7909763 DOI: 10.3390/md19020048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
Posidonia oceanica (L.) Delile is traditionally used for its beneficial properties. Recently, promising antioxidant and anti-inflammatory biological properties emerged through studying the in vitro activity of the ethanolic leaves extract (POE). The present study aims to investigate the anti-inflammatory and analgesic role of POE in mice. Inflammatory pain was modeled in CD-1 mice by the intraplantar injection of carrageenan, interleukin IL-1β and formalin. Pain threshold was measured by von Frey and paw pressure tests. Nociceptive pain was studied by the hot-plate test. POE (10–100 mg kg−1) was administered per os. The paw soft tissue of carrageenan-treated animals was analyzed to measure anti-inflammatory and antioxidant effects. POE exerted a dose-dependent, acute anti-inflammatory effect able to counteract carrageenan-induced pain and paw oedema. Similar anti-hyperalgesic and anti-allodynic results were obtained when inflammation was induced by IL-1β. In the formalin test, the pre-treatment with POE significantly reduced the nocifensive behavior. Moreover, POE was able to evoke an analgesic effect in naïve animals. Ex vivo, POE reduced the myeloperoxidase activity as well as TNF-α and IL-1β levels; further antioxidant properties were highlighted as a reduction in NO concentration. POE is the candidate for a new valid strategy against inflammation and pain.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)‐Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.G.)
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (E.B.); (D.D.)
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (E.B.); (D.D.)
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)‐Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)‐Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.G.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (E.B.); (D.D.)
- Interuniversity Center of Marine Biology and Applied Ecology “G. Bacci” (CIBM), Viale N. Sauro 4, 57128 Livorno, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)‐Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.G.)
- Correspondence:
| |
Collapse
|
19
|
Nummenmaa E, Hämäläinen M, Pemmari A, Moilanen LJ, Tuure L, Nieminen RM, Moilanen T, Vuolteenaho K, Moilanen E. Transient Receptor Potential Ankyrin 1 (TRPA1) Is Involved in Upregulating Interleukin-6 Expression in Osteoarthritic Chondrocyte Models. Int J Mol Sci 2020; 22:ijms22010087. [PMID: 33374841 PMCID: PMC7794684 DOI: 10.3390/ijms22010087] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a membrane-bound ion channel found in neurons, where it mediates nociception and neurogenic inflammation. Recently, we have discovered that TRPA1 is also expressed in human osteoarthritic (OA) chondrocytes and downregulated by the anti-inflammatory drugs aurothiomalate and dexamethasone. We have also shown TRPA1 to mediate inflammation, pain, and cartilage degeneration in experimental osteoarthritis. In this study, we investigated the role of TRPA1 in joint inflammation, focusing on the pro-inflammatory cytokine interleukin-6 (IL-6). We utilized cartilage/chondrocytes from wild-type (WT) and TRPA1 knockout (KO) mice, along with primary chondrocytes from OA patients. The results show that TRPA1 regulates the synthesis of the OA-driving inflammatory cytokine IL-6 in chondrocytes. IL-6 was highly expressed in WT chondrocytes, and its expression, along with the expression of IL-6 family cytokines leukemia inhibitory factor (LIF) and IL-11, were significantly downregulated by TRPA1 deficiency. Furthermore, treatment with the TRPA1 antagonist significantly downregulated the expression of IL-6 in chondrocytes from WT mice and OA patients. The results suggest that TRPA1 is involved in the upregulation of IL-6 production in chondrocytes. These findings together with previous results on the expression and functions of TRPA1 in cellular and animal models point to the role of TRPA1 as a potential mediator and novel drug target in osteoarthritis.
Collapse
Affiliation(s)
- Elina Nummenmaa
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Lauri J. Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Riina M. Nieminen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
- Coxa Hospital for Joint Replacement, FI-33520 Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
- Correspondence:
| |
Collapse
|
20
|
Induction of Short-Term Sensitization by an Aversive Chemical Stimulus in Zebrafish Larvae. eNeuro 2020; 7:ENEURO.0336-19.2020. [PMID: 33004417 PMCID: PMC7729299 DOI: 10.1523/eneuro.0336-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Larval zebrafish possess a number of molecular and genetic advantages for rigorous biological analyses of learning and memory. These advantages have motivated the search for novel forms of memory in these animals that can be exploited for understanding the cellular and molecular bases of vertebrate memory formation and consolidation. Here, we report a new form of behavioral sensitization in zebrafish larvae that is elicited by an aversive chemical stimulus [allyl isothiocyanate (AITC)] and that persists for ≥30 min. This form of sensitization is expressed as enhanced locomotion and thigmotaxis, as well as elevated heart rate. To characterize the neural basis of this nonassociative memory, we used transgenic zebrafish expressing the fluorescent calcium indicator GCaMP6 (Chen et al., 2013); because of the transparency of larval zebrafish, we could optically monitor neural activity in the brain of intact transgenic zebrafish before and after the induction of sensitization. We found a distinct brain area, previously linked to locomotion, that exhibited persistently enhanced neural activity following washout of AITC; this enhanced neural activity correlated with the behavioral sensitization. These results establish a novel form of memory in larval zebrafish and begin to unravel the neural basis of this memory.
Collapse
|
21
|
Silverman HA, Chen A, Kravatz NL, Chavan SS, Chang EH. Involvement of Neural Transient Receptor Potential Channels in Peripheral Inflammation. Front Immunol 2020; 11:590261. [PMID: 33193423 PMCID: PMC7645044 DOI: 10.3389/fimmu.2020.590261] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are a superfamily of non-selective cation channels that act as polymodal sensors in many tissues throughout mammalian organisms. In the context of ion channels, they are unique for their broad diversity of activation mechanisms and their cation selectivity. TRP channels are involved in a diverse range of physiological processes including chemical sensing, nociception, and mediating cytokine release. They also play an important role in the regulation of inflammation through sensory function and the release of neuropeptides. In this review, we discuss the functional contribution of a subset of TRP channels (TRPV1, TRPV4, TRPM3, TRPM8, and TRPA1) that are involved in the body’s immune responses, particularly in relation to inflammation. We focus on these five TRP channels because, in addition to being expressed in many somatic cell types, these channels are also expressed on peripheral ganglia and nerves that innervate visceral organs and tissues throughout the body. Activation of these neural TRP channels enables crosstalk between neurons, immune cells, and epithelial cells to regulate a wide range of inflammatory actions. TRP channels act either through direct effects on cation levels or through indirect modulation of intracellular pathways to trigger pro- or anti-inflammatory mechanisms, depending on the inflammatory disease context. The expression of TRP channels on both neural and immune cells has made them an attractive drug target in diseases involving inflammation. Future work in this domain will likely yield important new pathways and therapies for the treatment of a broad range of disorders including colitis, dermatitis, sepsis, asthma, and pain.
Collapse
Affiliation(s)
- Harold A Silverman
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Adrian Chen
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Nigel L Kravatz
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Eric H Chang
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| |
Collapse
|
22
|
Souza Monteiro de Araujo D, Nassini R, Geppetti P, De Logu F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin Ther Targets 2020; 24:997-1008. [PMID: 32838583 PMCID: PMC7610834 DOI: 10.1080/14728222.2020.1815191] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction Chronic pain affects approximatively 30–50% of the population globally. Pathologies such as migraine, diabetic neuropathy, nerve injury and treatment with chemotherapeutic agents, can induce chronic pain. Members of the transient receptor potential (TRP) channels, including the TRP ankyrin 1 (TRPA1), have a major role in pain. Areas covered We focus on TRPA1 as a therapeutic target for pain relief. The structure, localization, and activation of the channel and its implication in different pathways to signal pain are described. This paper underlines the role of pharmacological interventions on TRPA1 to reduce pain in numerous pain conditions. We conducted a literature search in PubMed up to and including July 2020. Expert opinion Our understanding of the molecular mechanisms underlying the sensitization of central and peripheral nociceptive pathways is limited. Preclinical evidence indicates that, in murine models of pain diseases, numerous mechanisms converge on the pathway that encompasses oxidative stress and Schwann cell TRPA1 to sustain chronic pain. Programs to identify and develop treatments to attenuate TRPA1-mediated chronic pain have emerged from this knowledge. Antagonists explored as a novel class of analgesics have a new and promising target in the TRPA1 expressed by peripheral glial cells.
Collapse
Affiliation(s)
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| |
Collapse
|
23
|
Wang J, Clark DL, Jacobi SK, Velleman SG. Effect of early posthatch supplementation of vitamin E and omega-3 fatty acids on the severity of wooden breast, breast muscle morphological structure, and gene expression in the broiler breast muscle. Poult Sci 2020; 99:5925-5935. [PMID: 33142510 PMCID: PMC7647921 DOI: 10.1016/j.psj.2020.08.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/24/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Wooden breast (WB) has arisen primarily in the breast muscle of commercial broilers. It is characterized by palpation of a rigid pectoralis major (p. major) muscle and is under severe oxidative stress and inflammation. Previous studies have shown that vitamin E (VE) has antioxidant properties and omega-3 (n-3) fatty acids have an anti-inflammatory effect. The objectives of this study were to identify the effects of VE and n-3 fatty acids on the severity of WB, morphological structure of the p. major muscle, expression of genes likely associated with WB and to determine the most beneficial supplementation period. A total of 210 Ross 708 broilers were randomly assigned into 7 treatments with 10 replicates of 3 birds each. The control group received a corn–soybean meal basal diet during the entire study (0–58 d). Supplementation of VE (200 IU/kg), n-3 fatty acids (n-6/n-3 ratio of 3.2:1), or combination of both were fed during the starter phase (0–10 d) or grower phase (11–24 d). All broilers were harvested at 58 d of age. Morphological assessment of the p. major muscle included myofiber width, perimysial and endomysial connective tissue space, overall morphological structure, and scoring of WB microscopically. Gene expression was measured using nanostring analysis. Genes associated with muscle development and growth factors, inflammation, extracellular matrix, and glucose metabolism were differentially expressed in the p. major muscle of the broilers supplemented with VE in the grower diet. Greater than 2 times more giant myofibers (≥70 μm) were found in the group supplemented with VE and n-3 fatty acids in the starter diet compared with the group fed VE in the grower diet (P = 0.02). Microscopic evaluation showed that VE supplementation in the grower diet had a 16.19% increase in muscle with no WB compared with the control group (P = 0.05). These data suggest that supplementation of VE during the grower phase may reduce the severity of WB in broilers.
Collapse
Affiliation(s)
- Ji Wang
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691
| | - Daniel L Clark
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691
| | - Sheila K Jacobi
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691.
| |
Collapse
|
24
|
COL2A1 and Caspase-3 as Promising Biomarkers for Osteoarthritis Prognosis in an Equus asinus Model. Biomolecules 2020; 10:biom10030354. [PMID: 32111016 PMCID: PMC7175237 DOI: 10.3390/biom10030354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/06/2023] Open
Abstract
Osteoarthritis (OA) is one of the most degenerative joint diseases in both human and veterinary medicine. The objective of the present study was the early diagnosis of OA in donkeys using a reliable grading of the disease based on clinical, chemical, and molecular alterations. OA was induced by intra-articular injection of 25 mg monoiodoacetate (MIA) as a single dose into the left radiocarpal joint of nine donkeys. Animals were clinically evaluated through the assessment of lameness score, radiographic, and ultrasonographic findings for seven months. Synovial fluid and cartilage samples were collected from both normal and diseased joints for the assessment of matrix metalloproteinases (MMPs) activity, COL2A1 protein expression level, and histopathological and immunohistochemical analysis of Caspase-3. Animals showed the highest lameness score post-induction after one week then decreased gradually with the progression of radiographical and ultrasonographic changes. MMP activity and COL2A1 and Caspase-3 expression increased, accompanied by articular cartilage degeneration and loss of proteoglycan. OA was successfully graded in Egyptian donkeys, with the promising use of COL2A1and Caspase-3 for prognosis. However, MMPs failed to discriminate between early and late grades of OA.
Collapse
|
25
|
Fialho MFP, Brum EDS, Pegoraro NS, Couto ACG, Trevisan G, Cruz L, Oliveira SM. Topical transient receptor potential ankyrin 1 antagonist treatment attenuates nociception and inflammation in an ultraviolet B radiation-induced burn model in mice. J Dermatol Sci 2020; 97:135-142. [PMID: 31982303 DOI: 10.1016/j.jdermsci.2020.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ultraviolet B (UVB) radiation exposure promotes sunburn and thereby acute and chronic inflammatory processes, contributing to pain development and maintenance. New therapeutic alternatives are necessary because typical treatments can cause adverse effects. An attractive alternative would be to target the transient receptor potential ankyrin 1 (TRPA1), a calcium-permeable, non-selective cation channel, which is involved in a variety of inflammatory pain models. OBJECTIVE Evaluate the peripheral participation of TRPA1 using a topical treatment (HC030031 gel formulation; a selective TRPA1 antagonist) in nociception and inflammation caused by a UVB radiation-induced burn model in male mice (25-30 g). METHODS The mice were anaesthetised, and just the right hind paw was exposed to UVB radiation (0.75 J/cm2). Topical treatments were applied immediately after irradiation and once a day for 8 days. RESULTS HC030031 gel presented suitable pH and spreadability factor, ensuring its quality and the therapeutic effect. HC030031 0.05 % reversed UVB-induced mechanical and cold allodynia, with maximum inhibition (Imax) of 69 ± 13 % and 100 % (on day 4), respectively. HC030031 0.05 % also reduced the paw edema and MPO activity, with Imax of 77 ± 6 % (on day 5) and 69 ± 28 %, respectively. Likewise, UVB radiation increased the H2O2 levels (a TRPA1 agonist) and the Ca2+ influx in mice spinal cord synaptosomes. UVB radiation-induced Ca2+ influx was reduced by HC030031. CONCLUSION These findings confirm the activation of the TRPA1 channel by UVB radiation, suggesting that topical TRPA1 antagonists can be a new strategy for the adjuvant treatment of sunburn-associated pain and inflammation.
Collapse
Affiliation(s)
- Maria Fernanda Pessano Fialho
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne da Silva Brum
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Natháli Schopf Pegoraro
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ana Claudia Gontijo Couto
- Institute of Genetics and Biochemistry, Graduate Program in Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
26
|
Rodrigues de Araújo A, Iles B, de Melo Nogueira K, Dias JDN, Plácido A, Rodrigues A, Albuquerque P, Silva-Pereira I, Socodatto R, Portugal CC, Relvas JB, Costa Véras LM, Dalmatti Alves Lima FC, Batagin-Neto A, Rolim Medeiros JV, Moreira Nunes PH, Eaton P, de Souza de Almeida Leite JR. Antifungal and anti-inflammatory potential of eschweilenol C-rich fraction derived from Terminalia fagifolia Mart. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111941. [PMID: 31100435 DOI: 10.1016/j.jep.2019.111941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Folk knowledge transmitted between generations allows traditional populations to maintain the use of medicinal plants for the treatment of several diseases. In this context, the species Terminalia fagifolia Mart., native to Brazil, is used for the treatment of chronic and infectious diseases. Plants rich in secondary metabolites, such as this species and their derivatives, may represent therapeutic alternatives for the treatment of diseases that reduce the quality of life of people. AIM OF THE STUDY The aim of this study was to evaluate the antifungal and anti-inflammatory potential of aqueous fraction from ethanolic extract of T. fagifolia, with in silico study of the major compound of the fraction. MATERIAL AND METHODS The phytochemical study of the aqueous fraction was performed by HPLC, LC/MS and NMR. The antifungal activity was evaluated against yeasts, by determination of the minimum inhibitory concentration and minimum fungicidal concentration. The effect on Candida albicans was analyzed by AFM. The antibiofilm potential against biofilms of C. albicans was also tested. The anti-inflammatory potential of the aqueous fraction was evaluated in vivo by the carrageenan-induced paw edema and peritonitis. A microglial model of LPS-induced neuroinflammation was also studied. Further insights on the activation mechanism were studied using quantum chemistry computer simulations. Toxicity was evaluated in the Galleria mellonella and human erythrocytes models. RESULTS Eschweilenol C was identified as the major constituent of the aqueous fraction of the ethanolic extract of T. fagifolia. The aqueous fraction was active against all Candida strains used (sensitive and resistant to Fluconazole) with MICs ranging from 1000 to 0.4 μg/mL. By AFM it was possible to observe morphological alterations in treated Candida cells. The fraction significantly (p < 0.05) inhibited paw edema and decreased levels of malondialdehyde induced by carrageenan. In a microglial cell model, aqueous fraction demonstrated the ability to inhibit NF-κB after induction with lipopolysaccharide. The theoretical studies showed structural similarity between eschweilenol C and indomethacin and an excellent antioxidant potential. The aqueous fraction did not present toxicity in the studied models. CONCLUSION The results indicate that the aqueous fraction of T. fagifolia has potential for biomedical applications with low toxicity. This finding can be attributed to the predominance of eschweilenol C in the aqueous fraction.
Collapse
Affiliation(s)
| | - Bruno Iles
- Biotechnology and Biodiversity Center Research, Biotec, Federal University of Piaui, Parnaíba, Piaui, Brazil
| | - Kerolayne de Melo Nogueira
- Biotechnology and Biodiversity Center Research, Biotec, Federal University of Piaui, Parnaíba, Piaui, Brazil
| | - Jhones do Nascimento Dias
- Laboratory of Molecular Biology of Dimorphic and Pathogenic Fungi, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Alexandra Plácido
- Glial Cell Biology Laboratory, Institute for Research and Innovation in Health, i3S, University of Porto, Porto, Portugal; Bioprospectum, Lda, UPTEC, Porto, Portugal
| | - Artur Rodrigues
- Glial Cell Biology Laboratory, Institute for Research and Innovation in Health, i3S, University of Porto, Porto, Portugal
| | - Patrícia Albuquerque
- Laboratory of Molecular Biology of Dimorphic and Pathogenic Fungi, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology of Dimorphic and Pathogenic Fungi, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Renato Socodatto
- Glial Cell Biology Laboratory, Institute for Research and Innovation in Health, i3S, University of Porto, Porto, Portugal
| | - Camila C Portugal
- Glial Cell Biology Laboratory, Institute for Research and Innovation in Health, i3S, University of Porto, Porto, Portugal
| | - João B Relvas
- Glial Cell Biology Laboratory, Institute for Research and Innovation in Health, i3S, University of Porto, Porto, Portugal
| | - Leiz Maria Costa Véras
- Biotechnology and Biodiversity Center Research, Biotec, Federal University of Piaui, Parnaíba, Piaui, Brazil
| | | | | | | | | | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - José Roberto de Souza de Almeida Leite
- The Northeast Biotechnology Network, RENORBIO, Federal University of Piaui, Teresina, PI, Brazil; Center for Research in Applied Morphology and Immunology, NuPMIA, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
27
|
Mäki-Opas I, Hämäläinen M, Moilanen LJ, Haavikko R, Ahonen TJ, Alakurtti S, Moreira VM, Muraki K, Yli-Kauhaluoma J, Moilanen E. Pyrazine-Fused Triterpenoids Block the TRPA1 Ion Channel in Vitro and Inhibit TRPA1-Mediated Acute Inflammation in Vivo. ACS Chem Neurosci 2019; 10:2848-2857. [PMID: 31034197 DOI: 10.1021/acschemneuro.9b00083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TRPA1 is a nonselective cation channel, most famously expressed in nonmyelinated nociceptors. In addition to being an important chemical and mechanical pain sensor, TRPA1 has more recently appeared to have a role also in inflammation. Triterpenoids are natural products with anti-inflammatory and anticancer effects in experimental models. In this paper, 13 novel triterpenoids were created by synthetically modifying betulin, an abundant triterpenoid of the genus Betula L., and their TRPA1-modulating properties were examined. The Fluo 3-AM protocol was used in the initial screening, in which six of the 14 tested triterpenoids inhibited TRPA1 in a statistically significant manner. In subsequent whole-cell patch clamp recordings, the two most effective compounds (pyrazine-fused triterpenoids 8 and 9) displayed a reversible and dose- and voltage-dependent effect to block the TRPA1 ion channel at submicromolar concentrations. Interestingly, the TRPA1 blocking action was also evident in vivo, as compounds 8 and 9 both alleviated TRPA1 agonist-induced acute paw inflammation in mice. The results introduce betulin-derived pyrazine-fused triterpenoids as promising novel antagonists of TRPA1 that are potentially useful in treating diseases with a TRPA1-mediated adverse component.
Collapse
Affiliation(s)
- Ilari Mäki-Opas
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Lauri J. Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Raisa Haavikko
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Tiina J. Ahonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Sami Alakurtti
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- VTT Technical Research Centre of Finland Ltd., 02044 Espoo, Finland
| | - Vânia M. Moreira
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| |
Collapse
|
28
|
De Logu F, Li Puma S, Landini L, Tuccinardi T, Poli G, Preti D, De Siena G, Patacchini R, Tsagareli MG, Geppetti P, Nassini R. The acyl-glucuronide metabolite of ibuprofen has analgesic and anti-inflammatory effects via the TRPA1 channel. Pharmacol Res 2019; 142:127-139. [PMID: 30794923 DOI: 10.1016/j.phrs.2019.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Ibuprofen is a widely used non-steroidal anti-inflammatory drug (NSAID) that exerts analgesic and anti-inflammatory actions. The transient receptor potential ankyrin 1 (TRPA1) channel, expressed primarily in nociceptors, mediates the action of proalgesic and inflammatory agents. Ibuprofen metabolism yields the reactive compound, ibuprofen-acyl glucuronide, which, like other TRPA1 ligands, covalently interacts with macromolecules. To explore whether ibuprofen-acyl glucuronide contributes to the ibuprofen analgesic and anti-inflammatory actions by targeting TRPA1, we used in vitro tools (TRPA1-expressing human and rodent cells) and in vivo mouse models of inflammatory pain. Ibuprofen-acyl glucuronide, but not ibuprofen, inhibited calcium responses evoked by reactive TRPA1 agonists, including allyl isothiocyanate (AITC), in cells expressing the recombinant and native human channel and in cultured rat primary sensory neurons. Responses by the non-reactive agonist, menthol, in a mutant human TRPA1 lacking key cysteine-lysine residues, were not affected. In addition, molecular modeling studies evaluating the covalent interaction of ibuprofen-acyl glucuronide with TRPA1 suggested the key cysteine residue C621 as a probable alkylation site for the ligand. Local administration of ibuprofen-acyl glucuronide, but not ibuprofen, in the mouse hind paw attenuated nociception by AITC and other TRPA1 agonists and the early nociceptive response (phase I) to formalin. Systemic ibuprofen-acyl glucuronide and ibuprofen, but not indomethacin, reduced phase I of the formalin response. Carrageenan-evoked allodynia in mice was reduced by local ibuprofen-acyl glucuronide, but not by ibuprofen, whereas both drugs attenuated PGE2 levels. Ibuprofen-acyl glucuronide, but not ibuprofen, inhibited the release of IL-8 evoked by AITC from cultured bronchial epithelial cells. The reactive ibuprofen metabolite selectively antagonizes TRPA1, suggesting that this novel action of ibuprofen-acyl glucuronide might contribute to the analgesic and anti-inflammatory activities of the parent drug.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Simone Li Puma
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Lorenzo Landini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | | | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Delia Preti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Gaetano De Siena
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Riccardo Patacchini
- Department of Corporate Drug Development, Chiesi Farmaceutici SpA, Parma, Italy
| | - Merab G Tsagareli
- Laboratory of Pain and Analgesia, Beritashvili Center for Experimental Biomedicine, Tbilisi, Georgia
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| |
Collapse
|
29
|
Moilanen LJ, Hämäläinen M, Ilmarinen P, Kankaanranta H, Nieminen RM, Moilanen E, Lehtimäki L. Transient Receptor Potential Ankyrin 1 Enhances Ovalbumin-Induced Acute Allergic Inflammation in Murine Models. Int Arch Allergy Immunol 2019; 178:238-247. [PMID: 30699406 DOI: 10.1159/000494932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/27/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transient receptor potential ankyrin 1 (TRPA1) is an ion channel known to mediate nociception and neurogenic inflammation, and to be activated by reactive oxygen and nitrogen species (ROS and RNS) produced at the sites of inflammation. Because neurogenic inflammation as well as the release of ROS and RNS are typical features of early stages of allergic responses, we hypothesized that TRPA1 may be involved in triggering and/or amplifying allergic inflammation. OBJECTIVE This study aims at exploring the role of TRPA1 ion channel in acute ovalbumin-induced allergic inflammation in applicable murine models. METHODS The effects of pharmacological blockade and genetic deletion of TRPA1 in ovalbumin-induced allergic conjunctivitis and acute paw inflammation were studied in mice sensitized to ovalbumin. RESULTS Ovalbumin-induced allergic conjunctivitis was milder in TRPA1-deficient mice and alleviated in wild-type mice treated with the TRPA1 antagonist TCS 5861528. Subcutaneous challenge with ovalbumin caused a significant paw edema and interleukin (IL)-4 production in sensitized mice; these responses were attenuated in animals treated with the TRPA1 antagonist and in TRPA1-deficient mice. Interestingly, blockade of the major secondary effector of TRPA1, substance P, also resulted in attenuated ovalbumin-induced paw edema and IL-4 production. However, the splenocytes' responses to ovalbumin were similar in cells from wild-type and TRPA1-deficient mice sensitized to ovalbumin. CONCLUSION These results introduce a novel concept that TRPA1 mediates early events in allergic inflammation, but does not seem to affect allergic sensitization, and could therefore be a novel drug target to treat conditions associated with allergic inflammation.
Collapse
Affiliation(s)
- Lauri J Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland,
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Pinja Ilmarinen
- Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Hannu Kankaanranta
- Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland.,Department of Respiratory Medicine, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Riina M Nieminen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Lauri Lehtimäki
- Department of Respiratory Medicine, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Allergy Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
30
|
Abstract
A large series of different ion channels have been identified and investigated as potential targets for new medicines for the treatment of a variety of human diseases, including pain. Among these channels, the voltage gated calcium channels (VGCC) are inhibited by drugs for the treatment of migraine, neuropathic pain or intractable pain. Transient receptor potential (TRP) channels are emerging as important pain transducers as they sense low pH media or oxidative stress and other mediators and are abundantly found at sites of inflammation or tissue injury. Low pH may also activate acid sensing ion channels (ASIC) and mechanical forces stimulate the PIEZO channels. While potent agonists of TRP channels due to their desensitizing action on pain transmission are used as topical applications, the potential of TRP antagonists as pain therapeutics remains an exciting field of investigation. The study of ASIC or PIEZO channels in pain signaling is in an early stage, whereas antagonism of the purinergic P2X3 channels has been reported to provide beneficial effects in chronic intractable cough. The present chapter covers these intriguing channels in great detail, highlighting their diverse mechanisms and broad potential for therapeutic utility.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| |
Collapse
|
31
|
Yin S, Wang P, Xing R, Zhao L, Li X, Zhang L, Xiao Y. Transient Receptor Potential Ankyrin 1 (TRPA1) Mediates Lipopolysaccharide (LPS)-Induced Inflammatory Responses in Primary Human Osteoarthritic Fibroblast-Like Synoviocytes. Inflammation 2018; 41:700-709. [PMID: 29318481 DOI: 10.1007/s10753-017-0724-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a membrane-associated cation channel, widely expressed in neuronal and non-neuronal cells. Recently, emerging evidences suggested the crucial role of TRPA1 in the disease progression of osteoarthritis (OA). Therefore, we aimed to investigate whether TRPA1 mediate lipopolysaccharide (LPS)-induced inflammatory responses in primary human OA fibroblast-like synoviocytes (OA-FLS). The expression of TRPA1 in LPS-treated OA-FLS was assessed by polymerase chain reaction (PCR) and western blot (WB), and the functionality of TRPA1 channel by Ca2+ influx measurements. Meanwhile, production of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, matrix metalloproteinase (MMP)-1, and MMP-3 in LPS-treated cells was measured by immunoassay. Histological observation after inhibition of TRPA1 was also performed in rats with LPS-induced inflammatory arthritis. After being induced by LPS, the gene and protein expression of TRPA1 was increased in the time-dependent or dose-dependent manner. Meanwhile, Ca2+ influx mediated by TRPA1 in human OA-FLS was also enhanced. In addition, pharmacological inhibition and gene silencing of TRPA1 downregulated the production of IL-1β, TNF-α, IL-6, MMP-1, and MMP-3 in LPS-treated FLS. Finally, synovial inflammation and cartilage degeneration were also reduced by the TRPA1 antagonist. We found the LPS caused the increased functional expression of TRPA1, the activation of which involved in LPS-reduced inflammatory responses in primary human OA-FLS, and the inhibition of TRPA1 produces protective effect in LPS-induced arthritis.
Collapse
Affiliation(s)
- Songjiang Yin
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of TCM, Nanjing, China
| | - Peimin Wang
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of TCM, Nanjing, China. .,The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong road 155#, Nanjing, Jiangsu province, China.
| | - Runlin Xing
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of TCM, Nanjing, China
| | - Linrui Zhao
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of TCM, Nanjing, China
| | - Xiaochen Li
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of TCM, Nanjing, China
| | - Li Zhang
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of TCM, Nanjing, China
| | - Yancheng Xiao
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of TCM, Nanjing, China
| |
Collapse
|
32
|
Hiraishi K, Kurahara LH, Sumiyoshi M, Hu YP, Koga K, Onitsuka M, Kojima D, Yue L, Takedatsu H, Jian YW, Inoue R. Daikenchuto (Da-Jian-Zhong-Tang) ameliorates intestinal fibrosis by activating myofibroblast transient receptor potential ankyrin 1 channel. World J Gastroenterol 2018; 24:4036-4053. [PMID: 30254408 PMCID: PMC6148431 DOI: 10.3748/wjg.v24.i35.4036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/06/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the anti-fibrotic effects of the traditional oriental herbal medicine Daikenchuto (DKT) associated with transient receptor potential ankyrin 1 (TRPA1) channels in intestinal myofibroblasts.
METHODS Inflammatory and fibrotic changes were detected in a 2,4,6-trinitrobenzenesulfonic acid (TNBS) chronic colitis model of wild-type and TRPA1-knockout (TRPA1-KO) mice via pathological staining and immunoblotting analysis. Ca2+ imaging experiments examined the effects of DKT and its components/ingredients on intestinal myofibroblast (InMyoFib) cell TRPA1 channel function. Pro-fibrotic factors and transforming growth factor (TGF)-β1-associated signaling were tested in an InMyoFib cell line by qPCR and immunoblotting experiments. Samples from non-stenotic and stenotic regions of the intestines of patients with Crohn’s disease (CD) were used for pathological analysis.
RESULTS Chronic treatment with TNBS caused more severe inflammation and fibrotic changes in TRPA1-KO than in wild-type mice. A one-week enema administration of DKT reduced fibrotic lesions in wild-type but not in TRPA1-KO mice. The active ingredients of DKT, i.e., hydroxy α-sanshool and 6-shogaol, induced Ca2+ influxes in InMyoFib, and this was antagonized by co-treatment with a selective TRPA1 channel blocker, HC-030031. DKT counteracted TGF-β1-induced expression of Type I collagen and α-smooth muscle actin (α-SMA), which were accompanied by a reduction in the phosphorylation of Smad-2 and p38-mitogen-activated protein kinase (p38-MAPK) and the expression of myocardin. Importantly, 24-h incubation with a DKT active component Japanese Pepper increased the mRNA and protein expression levels of TRPA1 in InMyoFibs, which in turn negatively regulated collagen synthesis. In the stenotic regions of the intestines of CD patients, TRPA1 expression was significantly enhanced.
CONCLUSION The effects of DKT on the expression and activation of the TRPA1 channel could be advantageous for suppressing intestinal fibrosis, and benefit inflammatory bowel disease treatment.
Collapse
Affiliation(s)
- Keizo Hiraishi
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Lin-Hai Kurahara
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Miho Sumiyoshi
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Yao-Peng Hu
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Kaori Koga
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Miki Onitsuka
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Daibo Kojima
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Lixia Yue
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, United States
| | - Hidetoshi Takedatsu
- Department of Gastroenterology and Medicine, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Yu-Wen Jian
- College of Letters and Science, University of California, Davis, CA 95616, United States
| | - Ryuji Inoue
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| |
Collapse
|
33
|
Chakrabarti S, Pattison LA, Singhal K, Hockley JRF, Callejo G, Smith ESJ. Acute inflammation sensitizes knee-innervating sensory neurons and decreases mouse digging behavior in a TRPV1-dependent manner. Neuropharmacology 2018; 143:49-62. [PMID: 30240782 PMCID: PMC6277850 DOI: 10.1016/j.neuropharm.2018.09.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
Ongoing, spontaneous pain is characteristic of inflammatory joint pain and reduces an individual's quality of life. To understand the neural basis of inflammatory joint pain, we made a unilateral knee injection of complete Freund's adjuvant (CFA) in mice, which reduced their natural digging behavior. We hypothesized that sensitization of knee-innervating dorsal root ganglion (DRG) neurons underlies this altered behavior. To test this hypothesis, we performed electrophysiological recordings on retrograde labeled knee-innervating primary DRG neuron cultures and measured their responses to a number of electrical and chemical stimuli. We found that 24-h after CFA-induced knee inflammation, knee neurons show a decreased action potential generation threshold, as well as increased GABA and capsaicin sensitivity, but have unaltered acid sensitivity. The inflammation-induced sensitization of knee neurons persisted for 24-h in culture, but was not observed after 48-h in culture. Through immunohistochemistry, we showed that the increased knee neuron capsaicin sensitivity correlated with enhanced expression of the capsaicin receptor, transient receptor potential vanilloid 1 (TRPV1) in knee-innervating neurons of the CFA-injected side. We also observed an increase in the co-expression of TRPV1 with tropomyosin receptor kinase A (TrkA), which is the receptor for nerve growth factor (NGF), suggesting that NGF partially induces the increased TRPV1 expression. Lastly, we found that systemic administration of the TRPV1 antagonist, A-425619, reversed the decrease in digging behavior induced by CFA injection, further confirming the role of TRPV1, expressed by knee neurons, in acute inflammatory joint pain. Knee inflammation decreases digging behavior in mice. Knee-innervating dorsal root ganglion neurons are hyperexcitable after inflammation. NGF-mediated increase in TRPV1 expression is observed in knee-innervating neurons. Systemic TRPV1 antagonist administration normalises digging behavior in mice.
Collapse
Affiliation(s)
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Kaajal Singhal
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Gerard Callejo
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
34
|
Lee SH, Lee SH, Shin JH, Choi S. Label-free monitoring of inflammatory tissue conditions using a carrageenan-induced acute inflammation rat model. Microsc Res Tech 2018; 81:544-550. [PMID: 29473284 DOI: 10.1002/jemt.23010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 12/28/2022]
Abstract
Although the confirmation of inflammatory changes within tissues at the onset of various diseases is critical for the early detection of disease and selection of appropriate treatment, most therapies are based on complex and time-consuming diagnostic procedures. Raman spectroscopy has the ability to provide non-invasive, real-time, chemical bonding analysis through the inelastic scattering of photons. In this study, we evaluate the feasibility of Raman spectroscopy as a new, easy, fast, and accurate diagnostic method to support diagnostic decisions. The molecular changes in carrageenan-induced acute inflammation rat tissues were assessed by Raman spectroscopy. Volumes of 0 (control), 100, 150, and 200 µL of 1% carrageenan were administered to rat hind paws to control the degree of inflammation. The prominent peaks at [1,062, 1,131] cm-1 and [2,847, 2,881] cm-1 were selected as characteristic measurements corresponding to the C-C stretching vibrational modes and the symmetric and asymmetric C-H (CH2 ) stretching vibrational modes, respectively. Principal component analysis of the inflammatory Raman spectra enabled graphical representation of the degree of inflammation through principal component loading profiles of inflammatory tissues on a two-dimensional plot. Therefore, Raman spectroscopy with multivariate statistical analysis represents a promising method for detecting biomolecular responses based on different types of inflammatory tissues.
Collapse
Affiliation(s)
- Seung Ho Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sang Hwa Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jae-Ho Shin
- Department of Ophthalmology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Samjin Choi
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
35
|
Kurahara LH, Hiraishi K, Hu Y, Koga K, Onitsuka M, Doi M, Aoyagi K, Takedatsu H, Kojima D, Fujihara Y, Jian Y, Inoue R. Activation of Myofibroblast TRPA1 by Steroids and Pirfenidone Ameliorates Fibrosis in Experimental Crohn's Disease. Cell Mol Gastroenterol Hepatol 2017; 5:299-318. [PMID: 29552620 PMCID: PMC5852292 DOI: 10.1016/j.jcmgh.2017.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 12/07/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The transient receptor potential ankyrin 1 (TRPA1) channel is highly expressed in the intestinal lamina propria, but its contribution to gut physiology/pathophysiology is unclear. Here, we evaluated the function of myofibroblast TRPA1 channels in intestinal remodeling. METHODS An intestinal myofibroblast cell line (InMyoFibs) was stimulated by transforming growth factor-β1 to induce in vitro fibrosis. Trpa1 knockout mice were generated using the Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. A murine chronic colitis model was established by weekly intrarectal trinitrobenzene sulfonic acid (TNBS) administration. Samples from the intestines of Crohn's disease (CD) patients were used for pathologic staining and quantitative analyses. RESULTS In InMyoFibs, TRPA1 showed the highest expression among TRP family members. In TNBS chronic colitis model mice, the extents of inflammation and fibrotic changes were more prominent in TRPA1-/- knockout than in wild-type mice. One-week enema administration of prednisolone suppressed fibrotic lesions in wild-type mice, but not in TRPA1 knockout mice. Steroids and pirfenidone induced Ca2+ influx in InMyoFibs, which was antagonized by the selective TRPA1 channel blocker HC-030031. Steroids and pirfenidone counteracted transforming growth factor-β1-induced expression of heat shock protein 47, type 1 collagen, and α-smooth muscle actin, and reduced Smad-2 phosphorylation and myocardin expression in InMyoFibs. In stenotic intestinal regions of CD patients, TRPA1 expression was increased significantly. TRPA1/heat shock protein 47 double-positive cells accumulated in the stenotic intestinal regions of both CD patients and TNBS-treated mice. CONCLUSIONS TRPA1, in addition to its anti-inflammatory actions, may protect against intestinal fibrosis, thus being a novel therapeutic target for highly incurable inflammatory/fibrotic disorders.
Collapse
Key Words
- AITC, allyl isothiocyanate
- CD, Crohn’s disease
- Crohn’s Disease
- EGTA, ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid
- HSP47, heat shock protein 47
- InMyoFib, intestinal myofibroblast cell line
- Intestinal Fibrosis
- KO, knockout
- MT, Masson trichrome
- Myofibroblast
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- RT-PCR, reverse-transcription polymerase chain reaction
- TGF, transforming growth factor
- TNBS, trinitrobenzene sulfonic acid
- TNF, tumor necrosis factor
- TRP, transient receptor potential
- TRPA1, transient receptor potential ankyrin 1
- TRPC, transient receptor potential canonical
- Transient Receptor Potential Ankyrin 1
- WT, wild-type
- mRNA, messenger RNA
- sgRNA, single-guide RNA
- siRNA, small interfering RNA
- α-SMA, α smooth muscle actin
Collapse
Affiliation(s)
- Lin Hai Kurahara
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan,Correspondence Address correspondence to: Lin Hai Kurahara, PhD, Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan. fax: (81) 92-865-6032.Department of PhysiologyFaculty of MedicineFukuoka UniversityFukuoka814-0180Japan
| | - Keizo Hiraishi
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yaopeng Hu
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kaori Koga
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Miki Onitsuka
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Mayumi Doi
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan,Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Oita, Japan
| | - Kunihiko Aoyagi
- Department of Gastroenterology, Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Hidetoshi Takedatsu
- Department of Gastroenterology and Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Daibo Kojima
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuwen Jian
- College of Letters and Science, University of California—Davis, Davis, California
| | - Ryuji Inoue
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
36
|
Synthesis and Pharmacological Properties of Novel Esters Based on Monoterpenoids and Glycine. Pharmaceuticals (Basel) 2017; 10:ph10020047. [PMID: 28524111 PMCID: PMC5490404 DOI: 10.3390/ph10020047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 11/17/2022] Open
Abstract
Esters based on mono- and bicyclic terpenoids with glycine have been synthesized via Steglich esterification and characterized by 1H-NMR, IR, and mass spectral studies. Their analgesic and anti-inflammatory activities were investigated after transdermal delivery on models of formalin, capsaicin, and AITC-induced pain, respectively. Glycine esters of menthol and borneol exhibited higher antinociceptive action, whereas eugenol derivative significantly suppressed the development of the inflammatory process. The mechanism of competitive binding between terpenoid esters and TRPA1/TRPV1 agonists was proposed explaining significant analgesic effect of synthesized derivatives. For an explanation of high anti-inflammatory activity, competitive inhibition between terpenoid esters and AITC for binding sites of the TRPA1 ion channel has been suggested.
Collapse
|
37
|
Analgesic effect of dimethyl trisulfide in mice is mediated by TRPA1 and sst 4 receptors. Nitric Oxide 2017; 65:10-21. [PMID: 28137611 DOI: 10.1016/j.niox.2017.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
TRPA1 receptors are calcium-permeable ligand-gated channels expressed in primary sensory neurons and involved in inflammation and pain. Activation of these neurons might have analgesic effect. Suggested mechanism of analgesic effect mediated by TRPA1 activation is the release of somatostatin (SOM) and its action on sst4 receptors. In the present study analgesic effect of TRPA1 activation on primary sensory neurons by organic trisulfide compound dimethyl trisulfide (DMTS) presumably leading to SOM release was investigated. Opening of TRPA1 by DMTS in CHO cells was examined by patch-clamp and fluorescent Ca2+ detection. Ca2+ influx upon DMTS administration in trigeminal ganglion (TRG) neurons of TRPA1 receptor wild-type (WT) and knockout (KO) mice was detected by ratiometric Ca2+ imaging. SOM release from sensory nerves of murine skin was assessed by radioimmunoassay. Analgesic effect of DMTS in mild heat injury-induced mechanical hyperalgesia was examined by dynamic plantar aesthesiometry. Regulatory role of DMTS on deep body temperature (Tb) was measured by thermocouple thermometry with respirometry and by telemetric thermometry. DMTS produced TRPA1-mediated currents and elevated [Ca2+]i in CHO cells. Similar data were obtained in TRG neurons. DMTS released SOM from murine sensory neurons TRPA1-dependently. DMTS exerted analgesic effect mediated by TRPA1 and sst4 receptors. DMTS-evoked hypothermia and hypokinesis were attenuated in freely-moving TRPA1 KO animals. Our study has presented original evidence regarding analgesic action of DMTS which might be due to TRPA1-mediated SOM release from sensory neurons and activation of sst4 receptors. DMTS could be a novel analgesic drug candidate.
Collapse
|
38
|
sec-Butylpropylacetamide (SPD), a new amide derivative of valproic acid for the treatment of neuropathic and inflammatory pain. Pharmacol Res 2016; 117:129-139. [PMID: 27890817 DOI: 10.1016/j.phrs.2016.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/20/2016] [Accepted: 11/22/2016] [Indexed: 01/12/2023]
Abstract
Chronic pain is a multifactorial disease comprised of both inflammatory and neuropathic components that affect ∼20% of the world's population. sec-Butylpropylacetamide (SPD) is a novel amide analogue of valproic acid (VPA) previously shown to possess a broad spectrum of anticonvulsant activity. In this study, we defined the pharmacokinetic parameters of SPD in rat and mouse, and then evaluated its antinociceptive potential in neuropathic and acute inflammatory pain models. In the sciatic nerve ligation (SNL) model of neuropathic pain, SPD was equipotent to gabapentin and more potent than its parent compound VPA. SPD also showed either higher or equal potency to VPA in the formalin, carrageenan, and writhing tests of inflammatory pain. SPD showed no effects on compound action potential properties in a sciatic nerve preparation, suggesting that its mechanism of action is distinct from local anesthetics and membrane stabilizing drugs. SPD's activity in both neuropathic and inflammatory pain warrants its development as a potential broad-spectrum anti-nociceptive drug.
Collapse
|
39
|
Nummenmaa E, Hämäläinen M, Moilanen LJ, Paukkeri EL, Nieminen RM, Moilanen T, Vuolteenaho K, Moilanen E. Transient receptor potential ankyrin 1 (TRPA1) is functionally expressed in primary human osteoarthritic chondrocytes. Arthritis Res Ther 2016; 18:185. [PMID: 27515912 PMCID: PMC4982008 DOI: 10.1186/s13075-016-1080-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transient receptor potential ankyrin 1 (TRPA1) is a membrane-associated cation channel, widely expressed in neuronal cells and involved in nociception and neurogenic inflammation. We showed recently that TRPA1 mediates cartilage degradation and joint pain in the MIA-model of osteoarthritis (OA) suggesting a hitherto unknown role for TRPA1 in OA. Therefore, we aimed to investigate whether TRPA1 is expressed and functional in human OA chondrocytes. METHODS Expression of TRPA1 in primary human OA chondrocytes was assessed by qRT-PCR and Western blot. The functionality of the TRPA1 channel was assessed by Ca(2+)-influx measurements. Production of MMP-1, MMP-3, MMP-13, IL-6, and PGE2 subsequent to TRPA1 activation was measured by immunoassay. RESULTS We show here for the first time that TRPA1 is expressed in primary human OA chondrocytes and its expression is increased following stimulation with inflammatory factors IL-1β, IL-17, LPS, and resistin. Further, the TRPA1 channel was found to be functional, as stimulation with the TRPA1 agonist AITC caused an increase in Ca(2+) influx, which was attenuated by the TRPA1 antagonist HC-030031. Genetic depletion and pharmacological inhibition of TRPA1 downregulated the production of MMP-1, MMP-3, MMP-13, IL-6, and PGE2 in osteoarthritic chondrocytes and murine cartilage, respectively. CONCLUSIONS The TRPA1 cation channel was found to be functionally expressed in primary human OA chondrocytes, which is an original finding. The presence and inflammatory and catabolic effects of TRPA1 in human OA chondrocytes propose a highly intriguing role for TRPA1 as a pathogenic factor and drug target in OA.
Collapse
Affiliation(s)
- Elina Nummenmaa
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Lauri J Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Erja-Leena Paukkeri
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Riina M Nieminen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Teemu Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.,Coxa Hospital for Joint Replacement, Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
40
|
Synthesis and Pharmacological Properties of Novel Esters Based on Monocyclic Terpenes and GABA. Pharmaceuticals (Basel) 2016; 9:ph9020032. [PMID: 27304960 PMCID: PMC4932550 DOI: 10.3390/ph9020032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 11/26/2022] Open
Abstract
Novel esters of γ-aminobutyric acid (GABA) with monocyclic terpenes were synthesized via Steglich esterification and characterized by 1H-NMR, IR and mass spectral studies. Their anticonvulsant, analgesic and anti-inflammatory activities were evaluated by a PTZ-induced convulsion model, AITC-induced hyperalgesia and AITC-induced paw edema, respectively. All studied esters, as well as their parent terpenes, were found to produce antinociceptive effects in the AITC-induced model and attenuate acute pain more than the reference drug benzocaine after their topical application. GABA esters of l-menthol and thymol were also shown to exceed the reference drug ibuprofen in their ability to decrease the inflammatory state induced by intraplantar injection of the TRPA1 activator AITC. The present findings indicate that GABA esters of carvacrol and guaiacol are not a classical prodrug and possess their own pharmacological activity. Prolonged antiseizure action of the ester based on the amino acid and guaiacol (200 mg/kg) was revealed at 24 h after oral administration. Furthermore, orally co-administered gidazepam (1 mg/kg) and GABA esters of l-menthol, thymol and carvacrol produce synergistic seizure prevention effects.
Collapse
|
41
|
Park J, Shim MK, Jin M, Rhyu MR, Lee Y. Methyl syringate, a TRPA1 agonist represses hypoxia-induced cyclooxygenase-2 in lung cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:324-329. [PMID: 26969386 DOI: 10.1016/j.phymed.2016.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/21/2015] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND We have previously found that methyl syringate is a specific and selective agonist of the human transient receptor potential channel ankyrin 1 (TRPA1) and suppresses food intake and gastric emptying in imprinting control region mice. Because TRPA1 has been implicated in inflammatory responses, and inflammation and tumorigenesis are stimulated by the cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway in hypoxic cancer cells. PURPOSE This study examined the effects of methyl syringate on hypoxia-induced COX-2 in human distal lung epithelial A549 cells. STUDY DESIGN The effect of the methyl syringate on suppression of hypoxia-induced COX-2 in A549 cells were determined by Western blot and/or quantitative real-time polymerase chain reaction. The anti-invasive effect of methyl syringate was evaluated on A549 cells using matrigel invasion assay. RESULTS Methyl syringate suppressed hypoxia-induced COX-2 protein and mRNA expression and promoter activity and reduced hypoxia-induced cell migration and invasion and secretion of vascular endothelial growth factor. These effects were antagonized by a TRPA1 antagonist, implying their mediation by the TRPA1 pathway. CONCLUSION Together, these results indicate that methyl syringate inhibits the hypoxic induction of COX-2 expression and cell invasion through TRPA1 activation. These findings suggest that methyl syringate could be effective to suppress hypoxia-induced inflammation and indicate an additional functional effect of methyl syringate.
Collapse
Affiliation(s)
- Joonwoo Park
- Department of Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Republic of Korea
| | - Myeong Kuk Shim
- Department of Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Republic of Korea
| | - Mirim Jin
- Laboratory of Pharmacology, College of Korean Medicine, Daejeon University, Daejeon 301-724, Republic of Korea
| | - Mee-Ra Rhyu
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Sungnam 463-746, Republic of Korea.
| | - YoungJoo Lee
- Department of Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Republic of Korea.
| |
Collapse
|
42
|
Payrits M, Sághy É, Mátyus P, Czompa A, Ludmerczki R, Deme R, Sándor Z, Helyes Z, Szőke É. A novel 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime compound is a potent Transient Receptor Potential Ankyrin 1 and Vanilloid 1 (TRPA1 and V1) receptor antagonist. Neuroscience 2016; 324:151-62. [PMID: 26930003 DOI: 10.1016/j.neuroscience.2016.02.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Transient Receptor Potential Ankyrin 1 and Vanilloid 1 (TRPA1, TRPV1) ion channels expressed on nociceptive primary sensory neurons are important regulators of pain and inflammation. TRPA1 is activated by several inflammatory mediators including formaldehyde and methylglyoxal that are products of the semicarbazide-sensitive amine-oxidase enzyme (SSAO). SZV-1287 is a new 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime SSAO inhibitor, its chemical structure is similar to other oxime derivatives described as TRPA1 antagonists. Therefore, we investigated its effects on TRPA1 and TRPV1 receptor activation on the cell bodies and peripheral terminals of primary sensory neurons and TRPA1 or TRPV1 receptor-expressing cell lines. Calcium influx in response to the TRPA1 agonist allyl-isothiocyanate (AITC) (200 μM) and the TRPV1 stimulator capsaicin (330 nM) in rat trigeminal neurons or TRPA1 and TRPV1 receptor-expressing cell lines was measured by microfluorimetry or radioactive (45)Ca(2+) uptake experiments. Calcitonin gene-related peptide (CGRP) release as the indicator of 100 μM AITC - or 100 nM capsaicin-induced peripheral sensory nerve terminal activation was measured by radioimmunoassay. SZV-1287 (100, 500 and 1000 nM) exerted a concentration-dependent significant inhibition on both AITC- and capsaicin-evoked calcium influx in trigeminal neurons and TRPA1 or TRPV1 receptor-expressing cell lines. It also significantly inhibited the TRPA1, but not the TRPV1 activation-induced CGRP release from the peripheral sensory nerve endings in a concentration-dependent manner. In contrast, the reference SSAO inhibitor LJP 1207 with a different structure had no effect on TRPA1 or TRPV1 activation in either model system. This is the first evidence that our novel oxime compound SZV-1287 originally developed as a SSAO inhibitor has a potent dual antagonistic action on TRPA1 and TRPV1 ion channels on primary sensory neurons.
Collapse
Affiliation(s)
- M Payrits
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary.
| | - É Sághy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary.
| | - P Mátyus
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - A Czompa
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - R Ludmerczki
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - R Deme
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - Z Sándor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary.
| | - Zs Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary; MTA-PTE Chronic Pain Research Group, Pécs-7624, Szigeti str. 12., Hungary.
| | - É Szőke
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary; MTA-PTE Chronic Pain Research Group, Pécs-7624, Szigeti str. 12., Hungary.
| |
Collapse
|
43
|
Horváth Á, Tékus V, Boros M, Pozsgai G, Botz B, Borbély É, Szolcsányi J, Pintér E, Helyes Z. Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice. Arthritis Res Ther 2016; 18:6. [PMID: 26746673 PMCID: PMC4718022 DOI: 10.1186/s13075-015-0904-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/22/2015] [Indexed: 12/04/2022] Open
Abstract
Background The transient receptor potential ankyrin 1 (TRPA1) is a calcium-permeable cation channel that is expressed on capsaicin-sensitive sensory neurons, endothelial and inflammatory cells. It is activated by a variety of inflammatory mediators, such as methylglyoxal, formaldehyde and hydrogen sulphide. Since only few data are available about the role of TRPA1 in arthritis and related pain, we investigated its involvement in inflammation models of different mechanisms. Methods Chronic arthritis was induced by complete Freund’s adjuvant (CFA), knee osteoarthritis by monosodium iodoacetate (MIA) in TRPA1 knockout (KO) mice and C57Bl/6 wildtype mice. For comparison, carrageenan- and CFA-evoked acute paw and knee inflammatory changes were investigated. Thermonociception was determined on a hot plate, cold tolerance in icy water, mechanonociception by aesthesiometry, paw volume by plethysmometry, knee diameter by micrometry, weight distribution with incapacitance tester, neutrophil myeloperoxidase activity and vascular leakage by in vivo optical imaging, and histopathological alterations by semiquantitative scoring. Results CFA-induced chronic mechanical hypersensitivity, tibiotarsal joint swelling and histopathological alterations, as well as myeloperoxidase activity in the early phase (day 2), and vascular leakage in the later stage (day 7), were significantly reduced in TRPA1 KO mice. Heat and cold sensitivities did not change in this model. Although in TRPA1 KO animals MIA-evoked knee swelling and histopathological destruction were not altered, hypersensitivity and impaired weight bearing on the osteoarthritic limb were significantly decreased. In contrast, carrageenan- and CFA-induced acute inflammation and pain behaviours were not modified by TRPA1 deletion. Conclusions TRPA1 has an important role in chronic arthritis/osteoarthritis and related pain behaviours in the mouse. Therefore, it might be a promising target for novel analgesic/anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Melinda Boros
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,PharmInVivo Ltd., 10 Szondi György Street, Pécs, 7624, Hungary.
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,PharmInVivo Ltd., 10 Szondi György Street, Pécs, 7624, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,PharmInVivo Ltd., 10 Szondi György Street, Pécs, 7624, Hungary. .,MTA-PTE NAP B Chronic Pain Research Group, 12 Szigeti Street, Pécs, 7624, Hungary.
| |
Collapse
|
44
|
Moilanen LJ, Hämäläinen M, Nummenmaa E, Ilmarinen P, Vuolteenaho K, Nieminen RM, Lehtimäki L, Moilanen E. Monosodium iodoacetate-induced inflammation and joint pain are reduced in TRPA1 deficient mice--potential role of TRPA1 in osteoarthritis. Osteoarthritis Cartilage 2015; 23:2017-26. [PMID: 26521748 DOI: 10.1016/j.joca.2015.09.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/20/2015] [Accepted: 09/11/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Intra-articularly injected monosodium iodoacetate (MIA) induces joint pathology mimicking osteoarthritis (OA) and it is a widely used experimental model of OA. MIA induces acute inflammation, cartilage degradation and joint pain. Transient Receptor Potential Ankyrin 1 (TRPA1) is an ion channel known to mediate nociception and neurogenic inflammation. Here, we tested the hypothesis that TRPA1 would be involved in the development of MIA-induced acute inflammation, cartilage changes and joint pain. METHODS The effects of pharmacological blockade (by TCS 5861528) and genetic depletion of TRPA1 were studied in MIA-induced acute paw inflammation. Cartilage changes (histological scoring) and joint pain (weight-bearing test) in MIA-induced experimental OA were compared between wild type and TRPA1 deficient mice. The effects of MIA were also studied in primary human OA chondrocytes and in mouse cartilage. RESULTS MIA evoked acute inflammation, degenerative cartilage changes and joint pain in wild type mice. Interestingly, these responses were attenuated in TRPA1 deficient animals. MIA-induced paw inflammation was associated with increased tissue levels of substance P; and the inflammatory edema was reduced by pretreatment with catalase, with the TRPA1 antagonist TCS 5861528 and with the neurokinin 1 receptor antagonist L703,606. In chondrocytes, MIA enhanced interleukin-1 induced cyclooxygenase-2 (COX-2) expression, an effect that was blunted by pharmacological inhibition and genetic depletion of TRPA1. CONCLUSIONS TRPA1 was found to mediate acute inflammation and the development of degenerative cartilage changes and joint pain in MIA-induced experimental OA in the mouse. The results reveal TRPA1 as a potential mediator and drug target in OA.
Collapse
Affiliation(s)
- L J Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | - M Hämäläinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | - E Nummenmaa
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | - P Ilmarinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | - K Vuolteenaho
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | - R M Nieminen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | - L Lehtimäki
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | - E Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
45
|
Moilanen LJ, Hämäläinen M, Lehtimäki L, Nieminen RM, Muraki K, Moilanen E. Pinosylvin Inhibits TRPA1-Induced Calcium Influx In Vitro and TRPA1-Mediated Acute Paw Inflammation In Vivo. Basic Clin Pharmacol Toxicol 2015; 118:238-42. [PMID: 26335783 DOI: 10.1111/bcpt.12485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/27/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Lauri J Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Lauri Lehtimäki
- Department of Respiratory Medicine, University of Tampere School of Medicine and Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Riina M Nieminen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
46
|
Arendt Nielsen T, Nielsen BP, Wang K, Arendt-Nielsen L, Boudreau SA. Psychophysical and Vasomotor Responses of the Oral Tissues: A Nicotine Dose-Response and Menthol Interaction Study. Nicotine Tob Res 2015; 18:596-603. [PMID: 26242288 DOI: 10.1093/ntr/ntv163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/22/2015] [Indexed: 01/21/2023]
Abstract
INTRODUCTION This study implemented an intra-oral test-platform to assess the sensory, psychophysical, and vasomotor responses to nicotine and menthol, alone or in combination. METHODS Two double-blinded, placebo-controlled, randomized, cross-over studies, including healthy nonsmoking participants were performed. Study I: A dose-response relationship (N = 20) between 0, 2, and 4 mg nicotine gum. Study II: An interaction response (N = 22) to 30 mg menthol and 4 mg nicotine alone or in combination. Heart rate, blood pressure, tactile and thermosensory thresholds, intra-oral blood flow and temperature, pain/irritation intensities/locations, McGill Pain Questionnaire, and taste experience were assessed before, during or after the completion of a standardized chewing regime. RESULTS A dose-response elevation in heart rate was attenuated when nicotine was combined with menthol. Blood flow, temperature, and warm-detection thresholds, as assessed on the tongue, similarly increased for all gums. Pain intensity and taste experiences were similar between nicotine doses. Nicotine attenuated the sweet, cooling, and freshening sensation of menthol. Within the first 4 minutes, menthol reduced the intensity but not the area of nicotine-induced pain and irritation. The 4-mg nicotine dose led to a continued increase in the intensity and area of irritation in the throat post-chewing. Moreover, one-half of participants responded to menthol as an irritant, and these individuals demonstrated larger areas of nicotine-induced irritation in the throat post-chewing. CONCLUSIONS The intra-oral test platform provides a basis to optimize the assessment of nicotine-related taste and sensory experiences and can be used in future studies for profiling nicotine gum.
Collapse
Affiliation(s)
- Thomas Arendt Nielsen
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
| | | | - Kelun Wang
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
| | - Shellie A Boudreau
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark;
| |
Collapse
|
47
|
Synthesis and evaluation of novel diphenylthiazole derivatives as potential anti-inflammatory agents. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1418-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Hatakeyama Y, Takahashi K, Tominaga M, Kimura H, Ohta T. Polysulfide evokes acute pain through the activation of nociceptive TRPA1 in mouse sensory neurons. Mol Pain 2015; 11:24. [PMID: 25934637 PMCID: PMC4428232 DOI: 10.1186/s12990-015-0023-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/23/2015] [Indexed: 11/18/2022] Open
Abstract
Background Hydrogen sulfide (H2S) is oxidized to polysulfide. Recent reports show that this sulfur compound modulates various biological functions. We have reported that H2S is involved in inflammatory pain in mice. On the other hand, little is known about the functional role of polysulfide in sensory neurons. Here we show that polysulfide selectively stimulates nociceptive TRPA1 and evokes acute pain, using TRPA1-gene deficient mice (TRPA1(−/−)), a heterologous expression system and a TRPA1-expressing cell line. Results In wild-type mouse sensory neurons, polysulfide elevated the intracellular Ca concentration ([Ca2+]i) in a dose-dependent manner. The half maximal effective concentration (EC50) of polysulfide was less than one-tenth that of H2S. The [Ca2+]i responses to polysulfide were observed in neurons responsive to TRPA1 agonist and were inhibited by blockers of TRPA1 but not of TRPV1. Polysulfide failed to evoke [Ca2+]i increases in neurons from TRPA1(−/−) mice. In RIN-14B cells, constitutively expressing rat TRPA1, polysulfide evoked [Ca2+]i increases with the same EC50 value as in sensory neurons. Heterologously expressed mouse TRPA1 was activated by polysulfide and that was suppressed by dithiothreitol. Analyses of the TRPA1 mutant channel revealed that cysteine residues located in the internal domain were related to the sensitivity to polysulfide. Intraplantar injection of polysulfide into the mouse hind paw induced acute pain and edema which were significantly less than in TRPA1(−/−) mice. Conclusions The present data suggest that polysulfide functions as pronociceptive substance through the activation of TRPA1 in sensory neurons. Since the potency of polysulfide is higher than parental H2S and this sulfur compound is generated under pathophysiological conditions, it is suggested that polysulfide acts as endogenous ligand for TRPA1. Therefore, TRPA1 may be a promising therapeutic target for endogenous sulfur compound-related algesic action.
Collapse
Affiliation(s)
- Yukari Hatakeyama
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan.
| | - Kenji Takahashi
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan.
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.
| | - Hideo Kimura
- Natinal Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, 187-8551, Japan.
| | - Toshio Ohta
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan.
| |
Collapse
|
49
|
The TRPA1 channel in inflammatory and neuropathic pain and migraine. Rev Physiol Biochem Pharmacol 2015; 167:1-43. [PMID: 24668446 DOI: 10.1007/112_2014_18] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, is primarily localized to a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia. This subset of nociceptors produces and releases the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP), which mediate neurogenic inflammatory responses. TRPA1 is activated by a number of exogenous compounds, including molecules of botanical origin, environmental irritants, and medicines. However, the most prominent feature of TRPA1 resides in its unique sensitivity for large series of reactive byproducts of oxidative and nitrative stress. Here, the role of TRPA1 in models of different types of pain, including inflammatory and neuropathic pain and migraine, is summarized. Specific attention is paid to TRPA1 as the main contributing mechanism to the transition of mechanical and cold hypersensitivity from an acute to a chronic condition and as the primary transducing pathway by which oxidative/nitrative stress produces acute nociception, allodynia, and hyperalgesia. A series of migraine triggers or medicines have been reported to modulate TRPA1 activity and the ensuing CGRP release. Thus, TRPA1 antagonists may be beneficial in the treatment of inflammatory and neuropathic pain and migraine.
Collapse
|
50
|
Godin AM, Araújo DP, César IC, Menezes RR, Brito AMS, Melo ISF, Coura GME, Bastos LFS, Almeida MO, Byrro RMD, Matsui TC, Batista CRA, Pianetti GA, de Fátima Â, Machado RR, Coelho MM. Activities of 2-phthalimidethyl nitrate and 2-phthalimidethanol in the models of nociceptive response and edema induced by formaldehyde in mice and preliminary investigation of the underlying mechanisms. Eur J Pharmacol 2015; 756:59-66. [PMID: 25794846 DOI: 10.1016/j.ejphar.2015.02.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/03/2015] [Accepted: 02/22/2015] [Indexed: 01/23/2023]
Abstract
The activities of 2-phthalimidethyl nitrate (PTD-NO) and 2-phthalimidethanol (PTD-OH) were recently demonstrated in models of pain and inflammation. We expanded our investigation by evaluating their activities in models of nociceptive and inflammatory pain and inflammatory edema, the preliminary pharmacokinetic parameter for PTD-NO and the role of opioid and cannabinoid pathways in the activity of analogs. Per os (p.o.) administration of PTD-NO or PTD-OH, 1h before intraplantar injection of formaldehyde, inhibited both phases of the nociceptive response (500 and 750 mg/kg) and paw edema (125, 250, 500 and 750 mg/kg). After p.o. administration of PTD-NO, peak plasma concentrations of PTD-NO and PTD-OH were found 0.92 and 1.13 h, respectively. The plasma concentrations of PTD-NO were higher than those of PTD-OH. Intraperitoneal (i.p.) administration of CB1 (AM251) or CB2 (AM630) cannabinoid receptor antagonists (4 or 8 mg/kg, -30 min) or opioid antagonist naltrexone (5 or 10mg/kg, -30 min) did not affect the antinociceptive activities of the analogs. AM251 (8 mg/kg, i.p., -30 min) attenuated the antiedematogenic activity of both analogs, while naltrexone (10mg/kg, i.p., -30 min) only attenuated the antiedematogenic activity of PTD-NO. The antiedematogenic activities of both analogs were not affected by the CB2 cannabinoid antagonist AM630 (4 or 8 mg/kg, i.p., -30 min). Concluding, we expanded the knowledge on the activities of PTD-NO and PTD-OH by showing that these phthalimide analogs also exhibit marked activity in models of nociceptive and inflammatory pain and inflammatory edema. Opioid and cannabinoid mechanisms partially mediate the anti-inflammatory, but not the antinociceptive activity.
Collapse
Affiliation(s)
- Adriana M Godin
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Débora P Araújo
- Departamento de Química, Instituto de Ciências Exatas Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Isabela C César
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Raquel R Menezes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ana Mercy S Brito
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ivo S F Melo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Giovanna M E Coura
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Leandro F S Bastos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Mariana O Almeida
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo M D Byrro
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Tamires C Matsui
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Carla R A Batista
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Gerson A Pianetti
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Márcio M Coelho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|