1
|
Kim S, Jang S, Lee O. Simultaneous visualization of micro-damage in cortical bone, trabecular bone, and intracortical vasculature for diagnosing osteoporosis: An animal model synchrotron imaging. Microsc Res Tech 2024; 87:695-704. [PMID: 37983745 DOI: 10.1002/jemt.24457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
Osteoporosis (OP) is difficult to diagnose through the three-dimensional visualization of micro-damage. In this study, aimed to make an objective diagnosis by visualizing micro-damage caused by OP using synchrotron radiation-based μCT (SR-μCT). Female mice (n = 12) were randomly divided into an ovariectomized group (OVX, n = 6) in which both ovaries were excised and OP occurred, and a sham-operated group (SHAM, n = 6). After six weeks, all femurs (left and right) were excised from both groups (n = 12 per group). Thereafter, femurs were randomly divided into SR-μCT (OVX group, n = 6; SHAM group, n = 6) and μCT (OVX group, n = 6; SHAM group, n = 6) groups. In the SR-μCT group, micro-damage was visualized by manually segmenting the cortical bone, trabecular bone, and intracortical vasculature using a water-shedding algorithm. In addition, trabecular bone was obtained by automatic segmentation using μCT. Cortical bone volume/total volume was greater (p = .015), and cortical thickness was greater in the SHAM group than in the OVX group (p = .007). Among the trabecular bone parameters, the bone volume/total volume (TV) in OVX was significantly lower than that in the SHAM group (p = .012). The canal volume was greater (p = .021) and lacuna volume was greater (p < .001) in the SHAM group than in the OVX group. We expect that it will be possible to analyze damage and recovery mechanisms in the field of rehabilitation. SR-μCT has been proposed as an objective method for OP diagnosis as it allows the visualization of microstructures. RESEARCH HIGHLIGHTS: Damage mechanism for diagnosis and evaluation in an osteoporosis model. Synchrotron radiation can objectively diagnose osteoporosis. Visualization is possible by segmenting microdamage caused by osteoporosis.
Collapse
Affiliation(s)
- Subok Kim
- Department of Software Convergence, Graduate School, Soonchunhyang University, Asan, Republic of Korea
| | - Sanghun Jang
- Department of Physical Therapy, College of Health and Life Sciences, Korea National University of Transportation, Jeungpyeong-gun, Republic of Korea
| | - Onseok Lee
- Department of Software Convergence, Graduate School, Soonchunhyang University, Asan, Republic of Korea
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
2
|
Kim S, Jang S, Lee O. Single fiber curvature for muscle impairment assessment: Phase contrast imaging of stroke-induced animals. Microsc Res Tech 2024; 87:705-715. [PMID: 37983687 DOI: 10.1002/jemt.24459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/15/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
There are technical challenges in imaging studies that can three-dimensionally (3D) analyze a single fiber (SF) to observe the functionality of the entire muscle after stroke. This study proposes a 3D assessment technique that only segments the SF of the right stroke-induced soleus muscle of a gerbil using synchrotron radiation x-ray microcomputed tomography (SR-μCT), which is capable of muscle structure analysis. Curvature damage in the SF of the left soleus muscle (impaired) progressed at 7-day intervals after the stroke in the control; particularly on the 7 days (1 week) and 14 days (2 weeks), as observed through visualization analysis. At 2 weeks, the SF volume was significantly reduced in the control impaired group (p = .033), and was significantly less than that in the non-impaired group (p = .009). We expect that animal post-stroke studies will improve the basic field of rehabilitation therapy by diagnosing the degree of SF curvature. RESEARCH HIGHLIGHTS: Muscle evaluation after ischemic stroke using synchrotron radiation x-ray microcomputed tomography (SR-μCT). Curvature is measured by segmenting a single fiber (SF) in the muscle. Structural changes in the SF of impaired gerbils at 7-day intervals were assessed.
Collapse
Affiliation(s)
- Subok Kim
- Department of Software Convergence, Graduate School, Soonchunhyang University, Asan, Republic of Korea
| | - Sanghun Jang
- Department of Physical Therapy, College of Health and Life Sciences, Korea National University of Transportation, Jeungpyeong-gun, Republic of Korea
| | - Onseok Lee
- Department of Software Convergence, Graduate School, Soonchunhyang University, Asan, Republic of Korea
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
3
|
Liu Z, Zhu Y, Zhang L, Jiang W, Liu Y, Tang Q, Cai X, Li J, Wang L, Tao C, Yin X, Li X, Hou S, Jiang D, Liu K, Zhou X, Zhang H, Liu M, Fan C, Tian Y. Structural and functional imaging of brains. Sci China Chem 2022; 66:324-366. [PMID: 36536633 PMCID: PMC9753096 DOI: 10.1007/s11426-022-1408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 12/23/2022]
Abstract
Analyzing the complex structures and functions of brain is the key issue to understanding the physiological and pathological processes. Although neuronal morphology and local distribution of neurons/blood vessels in the brain have been known, the subcellular structures of cells remain challenging, especially in the live brain. In addition, the complicated brain functions involve numerous functional molecules, but the concentrations, distributions and interactions of these molecules in the brain are still poorly understood. In this review, frontier techniques available for multiscale structure imaging from organelles to the whole brain are first overviewed, including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), serial-section electron microscopy (ssEM), light microscopy (LM) and synchrotron-based X-ray microscopy (XRM). Specially, XRM for three-dimensional (3D) imaging of large-scale brain tissue with high resolution and fast imaging speed is highlighted. Additionally, the development of elegant methods for acquisition of brain functions from electrical/chemical signals in the brain is outlined. In particular, the new electrophysiology technologies for neural recordings at the single-neuron level and in the brain are also summarized. We also focus on the construction of electrochemical probes based on dual-recognition strategy and surface/interface chemistry for determination of chemical species in the brain with high selectivity and long-term stability, as well as electrochemophysiological microarray for simultaneously recording of electrochemical and electrophysiological signals in the brain. Moreover, the recent development of brain MRI probes with high contrast-to-noise ratio (CNR) and sensitivity based on hyperpolarized techniques and multi-nuclear chemistry is introduced. Furthermore, multiple optical probes and instruments, especially the optophysiological Raman probes and fiber Raman photometry, for imaging and biosensing in live brain are emphasized. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Ying Zhu
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Liming Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Weiping Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Qiaowei Tang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Xiaoqing Cai
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Jiang Li
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Lihua Wang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Changlu Tao
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | | | - Xiaowei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055 China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
4
|
Chen Z, Wang X, Wu H, Fan Y, Yan Z, Lu C, Ouyang H, Zhang S, Zhang M. X-box binding protein 1 as a key modulator in “healing endothelial cells”, a novel EC phenotype promoting angiogenesis after MCAO. Cell Mol Biol Lett 2022; 27:97. [PMID: 36348288 PMCID: PMC9644469 DOI: 10.1186/s11658-022-00399-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Background Endothelial cells (ECs) play an important role in angiogenesis and vascular reconstruction in the pathophysiology of ischemic stroke. Previous investigations have provided a profound cerebral vascular atlas under physiological conditions, but have failed to identify new disease-related cell subtypes. We aimed to identify new EC subtypes and determine the key modulator genes. Methods Two datasets GSE174574 and GSE137482 were included in the study. Seurat was utilized as the standard quality-control pipeline. UCell was used to calculate single-cell scores to validate cellular identity. Monocle3 and CytoTRACE were utilized in aid of pseudo-time differentiation analysis. CellChat was utilized to infer the intercellular communication pathways. The angiogenesis ability of ECs was validated by MTS, Transwell, tube formation, flow cytometry, and immunofluorescence assays in vitro and in vivo. A synchrotron radiation-based propagation contrast imaging was introduced to comprehensively portray cerebral vasculature. Results We successfully identified a novel subtype of EC named “healing EC” that highly expressed pan-EC marker and pro-angiogenic genes but lowly expressed all the arteriovenous markers identified in the vascular single-cell atlas. Further analyses showed its high stemness to differentiate into other EC subtypes and potential to modulate inflammation and angiogenesis via excretion of signal molecules. We therefore identified X-box binding protein 1 (Xbp1) as a key modulator in the healing EC phenotype. In vitro and in vivo experiments confirmed its pro-angiogenic roles under both physiological and pathological conditions. Synchrotron radiation-based propagation contrast imaging further proved that Xbp1 could promote angiogenesis and recover normal vasculature conformation, especially in the corpus striatum and prefrontal cortex under middle cerebral artery occlusion (MCAO) condition. Conclusions Our study identified a novel disease-related EC subtype that showed high stemness to differentiate into other EC subtypes. The predicted molecule Xbp1 was thus confirmed as a key modulator that can promote angiogenesis and recover normal vasculature conformation. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00399-5.
Collapse
|
5
|
Zhang H, Zhu L, Gao DS, Liu Y, Zhang J, Yan M, Qian J, Xi W. Imaging the Deep Spinal Cord Microvascular Structure and Function with High-Speed NIR-II Fluorescence Microscopy. SMALL METHODS 2022; 6:e2200155. [PMID: 35599368 DOI: 10.1002/smtd.202200155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/23/2022] [Indexed: 06/15/2023]
Abstract
The spinal cord (SC) is crucial for a myriad of somatosensory, autonomic signal processing, and transductions. Understanding the SC vascular structure and function thus plays an integral part in neuroscience and clinical research. However, the dense layers of myelinated ascending axons on the dorsal side inconveniently grant the SC tissue with high optical scattering property, which significantly hinders the imaging depth of the SC vasculature in vivo. Commonly used antiscattering techniques such as multiphoton fluorescence microscopy have low imaging speed and cannot capture the rapid vascular particle flow without significant motion blur. Here, advantage of the high penetration of near-infrared (NIR)-II fluorescence is taken to demonstrate a deep SC vascular structural image stack up to 350 µm, comparable to two-photon microscopy. Furthermore, the red blood cells are labelled with the clinically approved NIR dye indocyanine. The combination of a fast NIR camera and indocyanine green-red blood cells (RBCs) makes it possible to attain high-speed 100 frame-per-second NIR-II imaging to identify the corresponding changes in RBC velocity during the external hind leg stimulus. For the first time, it is established that the NIR-II region would be a promising spectral window for SC imaging. NIR-II fluorescence microscopy has excellent potential for clinical and basic science research on SC.
Collapse
Affiliation(s)
- Hequn Zhang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
| | - Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Dave Schwinn Gao
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yin Liu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
| | - Jun Zhang
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical School People's Hospital, Shangtang Road 158th, Hangzhou, Zhejiang Province, 310014, China
| | - Min Yan
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and instrument Science, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Guo Z, Li C, Cao Y, Jiang L, Zhang Y, Li P, Zhou Y, Duan C, Hu J, Lu H. 3D visualization and morphometric analysis of spinal motion segments and vascular networks: A synchrotron radiation-based micro-CT study in mice. J Anat 2022; 240:268-278. [PMID: 34622448 PMCID: PMC8742973 DOI: 10.1111/joa.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/08/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022] Open
Abstract
The structure of spinal motion segments and spinal vasculature is complicated. Visualizing the three-dimensional (3D) structure of the spine may provide guidance for spine surgery. However, conventional imaging techniques fail to simultaneously obtain 3D images of soft and hard tissues, and achieving such coimaging states of the spine and its vascular networks remains a challenge. Synchrotron radiation micro-CT (SRμCT) provides a relatively effective and novel method of acquiring detailed 3D information. In this study, specimens of the thoracic spine were obtained from six mice. SRμCT was employed to acquire 3D images of the structure, and histologic staining was performed for comparisons with the SRμCT images. The whole spinal motion segments and the spinal vascular network were simultaneously explored at high resolution. The mean thickness of the cartilaginous end plates (CEPs) and the volume of the intervertebral discs (IVDs) were calculated. The surface of the CEPs and the facet joint cartilage (FJC) were presented as heat maps, which allowed for direct visualization of the thickness distribution. Regional division revealed heterogeneity among the ventral, central, and dorsal parts of the CEPs and between the superior and inferior parts of the facet processes. Moreover, the connections and spatial morphology of the spinal vascular network were visualized. Our study indicates that SRμCT imaging is an ideal method for high-resolution visualization and 3D morphometric analysis of the whole spinal motion segments and spinal vascular network.
Collapse
Affiliation(s)
- Zhu Guo
- Department of Spine Surgery and OrthopaedicsXiangya HospitalCentral South UniversityChangshaChina
- Spine Surgery Department of the Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chengjun Li
- Department of Spine Surgery and OrthopaedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
| | - Yong Cao
- Department of Spine Surgery and OrthopaedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
| | - Liyuan Jiang
- Department of Spine Surgery and OrthopaedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
| | - Yi Zhang
- Department of Sports MedicineAffiliated Hospital of Qingdao UniversityQingdaoChina
- Traumatic Orthopaedic Institute of Shandong ProvinceAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ping Li
- Department of ObstetricsXiangya HospitalCentral South UniversityChangshaChina
| | - Yongchun Zhou
- Department of OrthopedicShanxi Provincial People’s HospitalXi’anChina
| | - Chunyue Duan
- Department of Spine Surgery and OrthopaedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Jianzhong Hu
- Department of Spine Surgery and OrthopaedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan ProvinceChangshaChina
- Department of Sports MedicineResearch Centre of Sports MedicineXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
7
|
Kim S, Jang S, Ahn J, Lee S, Lee O. Analysis of type I osteoporosis animal models using synchrotron radiation. Microsc Res Tech 2021; 85:364-372. [PMID: 34453869 DOI: 10.1002/jemt.23911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 11/07/2022]
Abstract
Preclinical experiments to analyze the trabecular space of spongy bones using small animals are required for the evaluation and treatment of patients with osteoporosis (OP). We performed ovariectomy to create OP models. A total of four mice were used. Ovariectomized group (OVX, n = 2) in which both ovaries were resected at random, and the sham operated group (SHAM, n = 2) performed surgery without resecting the ovaries. We propose a study that enables OP analysis by analyzing tibia microstructures of OVX and SHAM using synchrotron radiation (SR). SR imaging is a technology capable of irradiating an extremely small object in the order of several tens of nanometers using a nondestructive method at the microscopic level. Unlike previous imaging diagnoses (staining, micro-CT [Computed Tomography]) it was possible to preserve the real shape and analyze bone microstructures in real-time and analyze and evaluate spongy bones to secure data and increase the reliability of OP analysis. We were able to confirm the possibility of OP diagnosis through experimental animals for spongy bone damage related to bone mineral density. Therefore, we aimed to provide a rehabilitation and medicine therapy intervention method through basic research on the evaluation of OP diagnosis through human-based segmentation of challenging spongy bones while supplementing the limitations of existing imaging methods. RESEARCH HIGHLIGHTS: We present an analysis of osteoporosis through spongy bone using phase-contrast X-ray source. Unlike existing methods, it is possible to analyze the internal microstructure of the tibia with this method. This is an objective mechanism for OP and a basis for rehabilitation.
Collapse
Affiliation(s)
- Subok Kim
- Department of Software Convergence, Graduate School, Soonchunhyang University, Chungnam, Republic of Korea
| | - Sanghun Jang
- Department of Physical Therapy, College of Health and Life Sciences, Korea National University of Transportation, Chungbuk, Republic of Korea
| | - Jihyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Gyeongnam, Republic of Korea
| | - Sukjun Lee
- Department of Biomedical Laboratory Science, College of Health & Medical Sciences, Cheongju University, Cheongju City, Republic of Korea
| | - Onseok Lee
- Department of Software Convergence, Graduate School, Soonchunhyang University, Chungnam, Republic of Korea.,Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, Chungnam, Republic of Korea
| |
Collapse
|
8
|
Simultaneous 3D Visualization of the Microvascular and Neural Network in Mouse Spinal Cord Using Synchrotron Radiation Micro-Computed Tomography. Neurosci Bull 2021; 37:1469-1480. [PMID: 34146232 PMCID: PMC8490558 DOI: 10.1007/s12264-021-00715-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/06/2021] [Indexed: 11/01/2022] Open
Abstract
Effective methods for visualizing neurovascular morphology are essential for understanding the normal spinal cord and the morphological alterations associated with diseases. However, ideal techniques for simultaneously imaging neurovascular structure in a broad region of a specimen are still lacking. In this study, we combined Golgi staining with angiography and synchrotron radiation micro-computed tomography (SRμCT) to visualize the 3D neurovascular network in the mouse spinal cord. Using our method, the 3D neurons, nerve fibers, and vasculature in a broad region could be visualized in the same image at cellular resolution without destructive sectioning. Besides, we found that the 3D morphology of neurons, nerve fiber tracts, and vasculature visualized by SRμCT were highly consistent with that visualized using the histological method. Moreover, the 3D neurovascular structure could be quantitatively evaluated by the combined methodology. The method shown here will be useful in fundamental neuroscience studies.
Collapse
|
9
|
Longo E, Sancey L, Cedola A, Barbier EL, Bravin A, Brun F, Bukreeva I, Fratini M, Massimi L, Greving I, Le Duc G, Tillement O, De La Rochefoucauld O, Zeitoun P. 3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography. Front Oncol 2021; 11:554668. [PMID: 34113554 PMCID: PMC8185349 DOI: 10.3389/fonc.2021.554668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/30/2021] [Indexed: 02/01/2023] Open
Abstract
Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is still an issue. X-ray phase-contrast tomography (XPCT) is a 3D label-free, non-invasive and multi-scale approach allowing imaging anatomical details with high spatial and contrast resolutions. Here an XPCT qualitative study on NPs distribution in a mouse brain model of melanoma metastases injected with gadolinium-based NPs for theranostics is presented. For the first time, XPCT images show the NPs uptake at micrometer resolution over the full brain. Our results revealed a heterogeneous distribution of the NPs inside the melanoma metastases, bridging the gap in spatial resolution between magnetic resonance imaging and histology. Our findings demonstrated that XPCT is a reliable technique for NPs detection and can be considered as an emerging method for the study of NPs distribution in organs.
Collapse
Affiliation(s)
- Elena Longo
- Helmholtz-Zentrum Hereon, Institute of Materials Physics, Geesthacht, Germany.,Laboratoire d'Optique Appliquée UMR7639, ENSTA-CNRS-Ecole Polytechnique IP Paris, Palaiseau, France
| | - Lucie Sancey
- Institute for Advanced Biosciences U1209 UMR5309 UGA, Allée des Alpes-Site Santé, La Tronche, France
| | | | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, Grenoble, France
| | - Alberto Bravin
- European Synchrotron Radiation Facility, Grenoble, France
| | | | - Inna Bukreeva
- Institute of Nanotechnology-CNR, Rome-Unit, Rome, Italy.,P. N. Lebedev Physical Institute, RAS, Moscow, Russia
| | - Michela Fratini
- Institute of Nanotechnology-CNR, Rome-Unit, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Lorenzo Massimi
- Institute of Nanotechnology-CNR, Rome-Unit, Rome, Italy.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Imke Greving
- Helmholtz-Zentrum Hereon, Institute of Materials Physics, Geesthacht, Germany
| | | | - Olivier Tillement
- Institut lumière-matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon, Villeurbanne, France
| | | | - Philippe Zeitoun
- Laboratoire d'Optique Appliquée UMR7639, ENSTA-CNRS-Ecole Polytechnique IP Paris, Palaiseau, France
| |
Collapse
|
10
|
Rodrigues PV, Tostes K, Bosque BP, de Godoy JVP, Amorim Neto DP, Dias CSB, Fonseca MDC. Illuminating the Brain With X-Rays: Contributions and Future Perspectives of High-Resolution Microtomography to Neuroscience. Front Neurosci 2021; 15:627994. [PMID: 33815039 PMCID: PMC8010130 DOI: 10.3389/fnins.2021.627994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
The assessment of three-dimensional (3D) brain cytoarchitecture at a cellular resolution remains a great challenge in the field of neuroscience and constant development of imaging techniques has become crucial, particularly when it comes to offering direct and clear obtention of data from macro to nano scales. Magnetic resonance imaging (MRI) and electron or optical microscopy, although valuable, still face some issues such as the lack of contrast and extensive sample preparation protocols. In this context, x-ray microtomography (μCT) has become a promising non-destructive tool for imaging a broad range of samples, from dense materials to soft biological specimens. It is a new supplemental method to be explored for deciphering the cytoarchitecture and connectivity of the brain. This review aims to bring together published works using x-ray μCT in neurobiology in order to discuss the achievements made so far and the future of this technique for neuroscience.
Collapse
Affiliation(s)
- Paulla Vieira Rodrigues
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Katiane Tostes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Dionisio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Carlos Sato Baraldi Dias
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
11
|
Steerable3D: An ImageJ plugin for neurovascular enhancement in 3-D segmentation. Phys Med 2021; 81:197-209. [PMID: 33472154 DOI: 10.1016/j.ejmp.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022] Open
|
12
|
Jiang L, Cao Y, Yin X, Ni S, Li M, Li C, Luo Z, Lu H, Hu J. A combinatorial method to visualize the neuronal network in the mouse spinal cord: combination of a modified Golgi-Cox method and synchrotron radiation micro-computed tomography. Histochem Cell Biol 2021; 155:477-489. [PMID: 33398435 PMCID: PMC8062354 DOI: 10.1007/s00418-020-01949-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/23/2022]
Abstract
Exploring the three-dimensional (3D) morphology of neurons is essential to understanding spinal cord function and associated diseases comprehensively. However, 3D imaging of the neuronal network in the broad region of the spinal cord at cellular resolution remains a challenge in the field of neuroscience. In this study, to obtain high-resolution 3D imaging of a detailed neuronal network in the mass of the spinal cord, the combination of synchrotron radiation micro-computed tomography (SRμCT) and the Golgi-cox staining were used. We optimized the Golgi-Cox method (GCM) and developed a modified GCM (M-GCM), which improved background staining, reduced the number of artefacts, and diminished the impact of incomplete vasculature compared to the current GCM. Moreover, we achieved high-resolution 3D imaging of the detailed neuronal network in the spinal cord through the combination of SRμCT and M-GCM. Our results showed that the M-GCM increased the contrast between the neuronal structure and its surrounding extracellular matrix. Compared to the GCM, the M-GCM also diminished the impact of the artefacts and incomplete vasculature on the 3D image. Additionally, the 3D neuronal architecture was successfully quantified using a combination of SRμCT and M-GCM. The SRμCT was shown to be a valuable non-destructive tool for 3D visualization of the neuronal network in the broad 3D region of the spinal cord. Such a combinatorial method will, therefore, transform the presentation of Golgi staining from 2 to 3D, providing significant improvements in the 3D rendering of the neuronal network.
Collapse
Affiliation(s)
- Liyuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Miao Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Chengjun Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Zixiang Luo
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China. .,Department of Sports Medicine, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China. .,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China. .,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China.
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China. .,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China. .,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China. .,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China.
| |
Collapse
|
13
|
Barbone GE, Bravin A, Mittone A, Grosu S, Ricke J, Cavaletti G, Djonov V, Coan P. High-Spatial-Resolution Three-dimensional Imaging of Human Spinal Cord and Column Anatomy with Postmortem X-ray Phase-Contrast Micro-CT. Radiology 2021; 298:135-146. [DOI: 10.1148/radiol.2020201622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Massimi L, Meganck JA, Towns R, Olivo A, Endrizzi M. Evaluation of a compact multicontrast and multiresolution X-ray phase contrast edge illumination system for small animal imaging. Med Phys 2020; 48:376-386. [PMID: 33107980 DOI: 10.1002/mp.14553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 01/20/2023] Open
Abstract
PURPOSE In this work the performance of a compact multiresolution and multicontrast x-ray phase system based on edge illumination is investigated. It has been designed for small animal imaging and with a limited footprint for ease of deployment in laboratories. METHODS The presented edge illumination system is based on a compact microfocus tungsten x-ray source combined with a flat panel detector. The source has a maximum output of 10 W when the minimum spot size of about 15 μm is used. The system has an overall length of 70 cm. A new double sample mask design, obtained by arranging both skipped and nonskipped configurations on the same structure, provides dual resolution capability. To test the system, we carried out computed tomography (CT) scans of a plastic phantom with different source settings using both single-image and multi-image acquisition schemes at different spatial resolutions. In addition, CT scans of an ex-vivo mouse specimen were acquired at the best identified working conditions to demonstrate the application of the presented system to small animal imaging. RESULTS We found this system delivers good image quality, allowing for an efficient material separation and improving detail visibility in small animals thanks to the higher signal-to-noise ratio (SNR) of phase contrast with respect to conventional attenuation contrast. The system offers high versatility in terms of spatial resolution thanks to the double sample mask design integrated into a single scanner. The availability of both multi- and single-image acquisition schemes coupled with their dedicated retrieval algorithms, allows different working modes which can be selected based on user preference. Multi-image acquisition provides quantitative separation of the real and imaginary part of the refractive index, however, it requires a long scanning time. On the other hand, the single image approach delivers the best material separation and image quality at all the investigated source settings with a shorter scanning time but at the cost of quantitativeness. Finally, we also observed that the single image approach combined with a high-power x-ray source may result in a fast acquisition protocol compatible with in-vivo imaging.
Collapse
Affiliation(s)
- Lorenzo Massimi
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jeffrey A Meganck
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK.,Research and Development, Life Sciences Technology, PerkinElmer, Hopkinton, MA, USA
| | - Rebecca Towns
- Biological Services, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marco Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
15
|
Begani Provinciali G, Cedola A, Rochefoucauld ODL, Zeitoun P. Modelling of Phase Contrast Imaging with X-ray Wavefront Sensor and Partial Coherence Beams. SENSORS 2020; 20:s20226469. [PMID: 33198428 PMCID: PMC7697187 DOI: 10.3390/s20226469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022]
Abstract
The Hartmann wavefront sensor is able to measure, separately and in absolute, the real δ and imaginary part β of the X-ray refractive index. While combined with tomographic setup, the Hartman sensor opens many interesting opportunities behind the direct measurement of the material density. In order to handle the different ways of using an X-ray wavefront sensor in imaging, we developed a 3D wave propagation model based on Fresnel propagator. The model can manage any degree of spatial coherence of the source, thus enabling us to model experiments accurately using tabletop, synchrotron or X-ray free-electron lasers. Beam divergence is described in a physical manner consistent with the spatial coherence. Since the Hartmann sensor can detect phase and absorption variation with high sensitivity, a precise simulation tool is thus needed to optimize the experimental parameters. Examples are displayed.
Collapse
Affiliation(s)
- Ginevra Begani Provinciali
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique IP Paris, 828 Boulevard des Maréchaux, 91120 Palaiseau, France
- Institute of Nanotechnology-CNR c/o Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
- Correspondence: (G.B.P.); (P.Z.)
| | - Alessia Cedola
- Institute of Nanotechnology-CNR c/o Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | | | - Philippe Zeitoun
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique IP Paris, 828 Boulevard des Maréchaux, 91120 Palaiseau, France
- Correspondence: (G.B.P.); (P.Z.)
| |
Collapse
|
16
|
Palermo F, Pieroni N, Maugeri L, Provinciali GB, Sanna A, Massimi L, Catalano M, Olbinado MP, Bukreeva I, Fratini M, Uccelli A, Gigli G, Kerlero de Rosbo N, Balducci C, Cedola A. X-ray Phase Contrast Tomography Serves Preclinical Investigation of Neurodegenerative Diseases. Front Neurosci 2020; 14:584161. [PMID: 33240038 PMCID: PMC7680960 DOI: 10.3389/fnins.2020.584161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
We report a qualitative study on central nervous system (CNS) damage that demonstrates the ability of X-ray phase contrast tomography (XPCT) to confirm data obtained with standard 2D methodology and permits the description of additional features that are not detected with 2D or other 3D techniques. In contrast to magnetic resonance or computed tomography, XPCT makes possible the high-resolution 3D imaging of soft tissues classically considered "invisible" to X-rays without the use of additional contrast agents, or without the need for intense processing of the tissue required by 2D techniques. Most importantly for studies of CNS diseases, XPCT enables a concomitant multi-scale 3D biomedical imaging of neuronal and vascular networks ranging from cells through to the CNS as a whole. In the last years, we have used XPCT to investigate neurodegenerative diseases, such as Alzheimer's disease (AD) and multiple sclerosis (MS), to shed light on brain damage and extend the observations obtained with standard techniques. Here, we show the cutting-edge ability of XPCT to highlight in 3D, concomitantly, vascular occlusions and damages, close associations between plaques and damaged vessels, as well as dramatic changes induced at neuropathological level by treatment in AD mice. We corroborate data on the well-known blood-brain barrier dysfunction in the animal model of MS, experimental autoimmune encephalomyelitis, and further show its extent throughout the CNS axis and at the level of the single vessel/capillary.
Collapse
Affiliation(s)
- Francesca Palermo
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy.,Dipartimento di Fisica, Università della Calabria, Rende, Italy
| | - Nicola Pieroni
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy.,Dipartimento di Morfogenesi e Ingegneria Tissutale, Sapienza Università di Roma, Rome, Italy
| | - Laura Maugeri
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy
| | | | - Alessia Sanna
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy
| | | | | | - Margie P Olbinado
- Swiss Light Source, Paul Scherrer Institut X-ray Tomography Group, Villigen, Switzerland
| | - Inna Bukreeva
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy
| | | | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology and Maternal-Fetal Medicine (DINOGMI), University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, CNR, Università del Salento, Lecce, Italy
| | - Nicole Kerlero de Rosbo
- Department of Neurosciences, Rehabilitation, Ophthalmology and Maternal-Fetal Medicine (DINOGMI), University of Genoa, Genoa, Italy
| | - Claudia Balducci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | |
Collapse
|
17
|
Bukreeva I, Junemann O, Cedola A, Palermo F, Maugeri L, Begani Provinciali G, Pieroni N, Sanna A, Otlyga DA, Buzmakov A, Krivonosov Y, Zolotov D, Chukalina M, Ivanova A, Saveliev S, Asadchikov V, Fratini M. Investigation of the human pineal gland 3D organization by X-ray phase contrast tomography. J Struct Biol 2020; 212:107659. [PMID: 33152420 DOI: 10.1016/j.jsb.2020.107659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Pineal gland (PG) is a part of the human brain epithalamus that plays an important role in sleep, circadian rhythm, immunity, and reproduction. The calcium deposits and lesions in PG interfere with normal function of the organ and can be associated with different health disorders including serious neurological diseases. At the moment, the detailed mechanisms of PG calcifications and PG lesions formation as well as their involvement in pathological processes are not fully understood. The deep and comprehensive study of the structure of the uncut human PG with histological details, poses a stiff challenge to most imaging techniques, due to low spatial resolution, low visibility or to exceedingly aggressive sample preparation. Here, we investigate the whole uncut and unstained human post-mortem PGs by X-ray phase contrast tomography (XPCT). XPCT is an advanced 3D imaging technique, that permits to study of both soft and calcified tissue of a sample at different scales: from the whole organ to cell structure. In our research we simultaneously resolved 3D structure of parenchyma, vascular network and calcifications. Moreover, we distinguished structural details of intact and degenerated PG tissue. We discriminated calcifications with different structure, pinealocytes nuclei and the glial cells processes. All results were validated by histology. Our research clear demonstrated that XPCT is a potential tool for the high resolution 3D imaging of PG morphological features. This technique opens a new perspective to investigate PG dysfunction and understand the mechanisms of onset and progression of diseases involving the pineal gland.
Collapse
Affiliation(s)
- Inna Bukreeva
- Institute of Nanotechnology- CNR, Lecce Unit, Campus Ecotekne Via Monteroni, Lecce; Rome Unit, Piazzale Aldo Moro 5, Rome, Italy; P.N. Lebedev Physical Institute, RAS, Leninskiy pr., 53 Moscow, Russian Federation.
| | - Olga Junemann
- FSSI Research Institute of Human Morphology, Tsyurupy Str 3, Moscow, Russian Federation.
| | - Alessia Cedola
- Institute of Nanotechnology- CNR, Lecce Unit, Campus Ecotekne Via Monteroni, Lecce; Rome Unit, Piazzale Aldo Moro 5, Rome, Italy.
| | - Francesca Palermo
- Institute of Nanotechnology- CNR, Lecce Unit, Campus Ecotekne Via Monteroni, Lecce; Rome Unit, Piazzale Aldo Moro 5, Rome, Italy; Department of Physics, University of Calabria, I-87036 Arcavacata di Rende (CS), Italy
| | - Laura Maugeri
- Institute of Nanotechnology- CNR, Lecce Unit, Campus Ecotekne Via Monteroni, Lecce; Rome Unit, Piazzale Aldo Moro 5, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Ardeatina 352, Rome, Italy
| | - Ginevra Begani Provinciali
- Institute of Nanotechnology- CNR, Lecce Unit, Campus Ecotekne Via Monteroni, Lecce; Rome Unit, Piazzale Aldo Moro 5, Rome, Italy; Laboratoire d'Optique appliquée, ENSTA Paris, Institut Polytechnique de Paris, 828 boulevard des Maréchaux, Palaiseau, France
| | - Nicola Pieroni
- Institute of Nanotechnology- CNR, Lecce Unit, Campus Ecotekne Via Monteroni, Lecce; Rome Unit, Piazzale Aldo Moro 5, Rome, Italy; SAIMLAL Department, Sapienza University, via A. Scarpa 14, Rome, Italy
| | - Alessia Sanna
- Institute of Nanotechnology- CNR, Lecce Unit, Campus Ecotekne Via Monteroni, Lecce; Rome Unit, Piazzale Aldo Moro 5, Rome, Italy
| | - Dmitry A Otlyga
- FSSI Research Institute of Human Morphology, Tsyurupy Str 3, Moscow, Russian Federation
| | - Alexey Buzmakov
- FSRC «Crystallography and Photonics» RAS, Leninskiy pr., 59, Moscow, Russian Federation
| | - Yuri Krivonosov
- FSRC «Crystallography and Photonics» RAS, Leninskiy pr., 59, Moscow, Russian Federation
| | - Denis Zolotov
- FSRC «Crystallography and Photonics» RAS, Leninskiy pr., 59, Moscow, Russian Federation
| | - Marina Chukalina
- FSRC «Crystallography and Photonics» RAS, Leninskiy pr., 59, Moscow, Russian Federation; Smart Engines Service LLC, 60-letiya Oktyabrya pr., 9, Moscow, Russian Federation
| | - Anna Ivanova
- FSRC «Crystallography and Photonics» RAS, Leninskiy pr., 59, Moscow, Russian Federation
| | - Sergey Saveliev
- FSSI Research Institute of Human Morphology, Tsyurupy Str 3, Moscow, Russian Federation
| | - Victor Asadchikov
- FSRC «Crystallography and Photonics» RAS, Leninskiy pr., 59, Moscow, Russian Federation
| | - Michela Fratini
- Institute of Nanotechnology- CNR, Lecce Unit, Campus Ecotekne Via Monteroni, Lecce; Rome Unit, Piazzale Aldo Moro 5, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Ardeatina 352, Rome, Italy
| |
Collapse
|
18
|
Li P, Xu Y, Cao Y, Wu T. 3D Digital Anatomic Angioarchitecture of the Rat Spinal Cord: A Synchrotron Radiation Micro-CT Study. Front Neuroanat 2020; 14:41. [PMID: 32792915 PMCID: PMC7387706 DOI: 10.3389/fnana.2020.00041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/16/2020] [Indexed: 01/01/2023] Open
Abstract
Comprehensive analysis of 3D angioarchitecture within the intact rat spinal cord remains technically challenging due to its sophisticated anatomical properties. In this study, we aim to present a framework for ultrahigh-resolution digitalized mapping of the normal rat spinal cord angioarchitecture and to determine the physiological parameters using synchrotron radiation micro-CT (SRμCT). Male SD rats were used in this ex vivo study. After a proportional mixture of contrast agents perfusion, the intact spinal cord covered the cervical spinal from the upper of the 1st cervical vertebra to the 5th lumbar vertebra was harvested and cut into proper lengths within three distinct regions: Cervical 3–5 levels, Thoracic 10–12 levels, Lumbar 3–5 levels spinal cord and examined using SRμCT. This method enabled the replication of the complicated microvasculature network of the normal rat spinal cord at the ultrahigh-resolution level, allowing for the precise quantitative analysis of the vascular morphological difference among cervical, thoracic and lumbar spinal cord in a 3D manner. Apart from a series of delicate 3D digital anatomical maps of the rat spinal cord angioarchitecture ranging from the cervical and thoracic to the lumbar spinal cord were presented, the 3D reconstruction data of SRμCT made the 3D printing of the spinal cord targeted selected microvasculature reality, that possibly provided deep insight into the nature and role of spinal cord intricate angioarchitecture. Our data proposed a new approach to outline systematic visual and quantitative evaluations on the 3D arrangement of the entire hierarchical microvasculature of the normal rat spinal cord at ultrahigh resolution. The technique may have great potential and become useful for future research on the poorly understood nature and function of the neurovascular interaction, particularly to investigate their pathology changes in various models of neurovascular disease.
Collapse
Affiliation(s)
- Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Yong Cao
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tianding Wu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Massimi L, Pieroni N, Maugeri L, Fratini M, Brun F, Bukreeva I, Santamaria G, Medici V, Poloni TE, Balducci C, Cedola A. Assessment of plaque morphology in Alzheimer's mouse cerebellum using three-dimensional X-ray phase-based virtual histology. Sci Rep 2020; 10:11233. [PMID: 32641715 PMCID: PMC7343834 DOI: 10.1038/s41598-020-68045-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/18/2020] [Indexed: 02/03/2023] Open
Abstract
Visualization and characterization of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β-amyloid deposits is a fundamental task in pre-clinical study of Alzheimer’s disease (AD) to assess its evolution and monitor the efficiency of new therapeutic strategies. While the cerebellum is one of the brain areas most underestimated in the context of AD, renewed interest in cerebellar lesions has recently arisen as they may link to motor and cognitive alterations. Thus, we quantitatively investigated three-dimensional plaque morphology in the cerebellum in APP/PS1 transgenic mouse, as a model of AD. In order to obtain a complete high-resolution three-dimensional view of the investigated tissue, we exploited synchrotron X-ray phase contrast tomography (XPCT), providing virtual slices with histology-matching resolution. We found the formation of plaques elongated in shape, and with a specific orientation in space depending on the investigated region of the cerebellar cortex. Remarkably, a similar shape is observed in human cerebellum from demented patients. Our findings demonstrate the capability of XPCT in volumetric quantification, supporting the current knowledge about plaque morphology in the cerebellum and the fundamental role of the surrounding tissue in driving their evolution. A good correlation with the human neuropathology is also reported.
Collapse
Affiliation(s)
- Lorenzo Massimi
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK. .,Institute of Nanotechnology - CNR, Rome Unit, Rome, Italy.
| | - Nicola Pieroni
- Institute of Nanotechnology - CNR, Rome Unit, Rome, Italy.,Department of Anatomical Sciences, Histological, Legal Medical and Locomotor, University of Rome "Sapienza", Rome, Italy
| | - Laura Maugeri
- Institute of Nanotechnology - CNR, Rome Unit, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Michela Fratini
- Institute of Nanotechnology - CNR, Rome Unit, Rome, Italy.,Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Francesco Brun
- Institute of Nanotechnology - CNR, Rome Unit, Rome, Italy.,Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Inna Bukreeva
- Institute of Nanotechnology - CNR, Rome Unit, Rome, Italy
| | - Giulia Santamaria
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Valentina Medici
- Department of Neuropathology and Neurology, Golgi-Cenci Foundation, 20081, Abbiategrasso, Italy
| | - Tino Emanuele Poloni
- Department of Neuropathology and Neurology, Golgi-Cenci Foundation, 20081, Abbiategrasso, Italy
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessia Cedola
- Institute of Nanotechnology - CNR, Rome Unit, Rome, Italy
| |
Collapse
|
20
|
Begani Provinciali G, Pieroni N, Bukreeva I, Fratini M, Massimi L, Maugeri L, Palermo F, Bardelli F, Mittone A, Bravin A, Gigli G, Gentile F, Fossaghi A, Riva N, Quattrini A, Cedola A. X-ray phase contrast tomography for the investigation of amyotrophic lateral sclerosis. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1042-1048. [PMID: 33566014 PMCID: PMC7336179 DOI: 10.1107/s1600577520006785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/20/2020] [Indexed: 05/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motor neurons. Pre-clinical studies drive the development of animal models that well mimic ALS disorder and enable both the dissection of disease processes and an early assessment of therapy efficacy. A comprehensive knowledge of neuronal and vascular lesions in the brain and spinal cord is an essential factor to understand the development of the disease. Spatial resolution and bidimensional imaging are important drawbacks limiting current neuroimaging tools, while neuropathology relies on protocols that may alter tissue chemistry and structure. In contrast, recent ex vivo studies in mice demonstrated that X-ray phase-contrast tomography enables study of the 3D distribution of both vasculature and neuronal networks, without sample sectioning or use of staining. Here we present our findings on ex vivo SOD1G93A ALS mice spinal cord at a micrometric scale. An unprecedented direct quantification of neuro-vascular alterations at different stages of the disease is shown.
Collapse
Affiliation(s)
- Ginevra Begani Provinciali
- Physics Department ‘Sapienza’ University, CNR-Institute of Nanotechnology, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Laboratoire d’Optique Appliquée, ENSTA Paris Tech, 828 Boulevard des Maréchaux, 91120 Palaiseau, France
| | - Nicola Pieroni
- Physics Department ‘Sapienza’ University, CNR-Institute of Nanotechnology, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Inna Bukreeva
- Physics Department ‘Sapienza’ University, CNR-Institute of Nanotechnology, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Michela Fratini
- Physics Department ‘Sapienza’ University, CNR-Institute of Nanotechnology, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Fondazione Santa Lucia IRCCS, Via Ardeatina 306, 00179 Rome, Italy
| | - Lorenzo Massimi
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Laura Maugeri
- Fondazione Santa Lucia IRCCS, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Palermo
- Physics Department ‘Sapienza’ University, CNR-Institute of Nanotechnology, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Fisica, Università della Calabria, Via P. Bucci, Cubo 31 C, 87036 Arcavacata di Rende (Cosenza), Italy
| | - Fabrizio Bardelli
- Physics Department ‘Sapienza’ University, CNR-Institute of Nanotechnology, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alberto Mittone
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Alberto Bravin
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Giuseppe Gigli
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
- Dipartimento di Matematica e Fisica, Universita’ del Salento, via Arnesano, 73100 Lecce, Italy
| | - Francesco Gentile
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Fossaghi
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Nilo Riva
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessia Cedola
- Physics Department ‘Sapienza’ University, CNR-Institute of Nanotechnology, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
21
|
Barbone GE, Bravin A, Mittone A, Kraiger MJ, Hrabě de Angelis M, Bossi M, Ballarini E, Rodriguez-Menendez V, Ceresa C, Cavaletti G, Coan P. Establishing sample-preparation protocols for X-ray phase-contrast CT of rodent spinal cords: Aldehyde fixations and osmium impregnation. J Neurosci Methods 2020; 339:108744. [DOI: 10.1016/j.jneumeth.2020.108744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
|
22
|
Jiang L, Cao Y, Liu Z, Ni S, Liu J, Ha Y, Luo Z, Li C, Liu S, Li J, Yin X, Wu T, Lu H, Hu J. SRμCT Reveals 3D Microstructural Alterations of the Vascular and Neuronal Network in a Rat Model of Chronic Compressive Thoracic Spinal Cord Injury. Aging Dis 2020; 11:603-617. [PMID: 32489705 PMCID: PMC7220295 DOI: 10.14336/ad.2019.0529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/29/2019] [Indexed: 01/12/2023] Open
Abstract
The complex pathology of chronic thoracic spinal cord compression involves vascular and neuroarchitectural repair processes that are still largely unknown. In this study, we used synchrotron radiation microtomography (SRμCT) to quantitatively characterize the 3D temporal-spatial changes in the vascular and neuronal network after chronic thoracic spinal cord compression in order to obtain further insights into the pathogenesis of this disease and to elucidate its underlying mechanisms. Direct 3D characterization of the spinal cord microvasculature and neural microstructure of the thoracic spinal cord was successfully reconstructed. The significant reduction in vasculature and degeneration of neurons in the thoracic spinal cord visualized via SRμCT after chronic compression were consistent with the changes detected by immunofluorescence staining. The 3D morphological measurements revealed significant reductions of neurovascular parameters in the thoracic spinal cord after 1 month of compression and became even worse after 6 months without relief of compression. In addition, the distinct 3D morphological twist and the decrease in branches of the central sulcal artery after chronic compression vividly displayed that these could be the potential triggers leading to blood flow reduction and neural deficits of the thoracic spinal cord. Our findings propose a novel methodology for the 3D analysis of neurovascular repair in chronic spinal cord compression, both qualitatively and quantitatively. The results indicated that compression simultaneously caused vascular dysfunction and neuronal network impairment, which should be acknowledged as concurrent events after chronic thoracic spinal cord injury. Combining neuroprotection with vasoprotection may provide promising therapeutic targets for chronic thoracic spinal cord compression.
Collapse
Affiliation(s)
- Liyuan Jiang
- 1Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,2Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Yong Cao
- 1Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,2Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Zhen Liu
- 3The First Chenzhou People's Hospital, Chenzhou, China
| | - Shuangfei Ni
- 1Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,2Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Jun Liu
- 3The First Chenzhou People's Hospital, Chenzhou, China
| | - Yoon Ha
- 4Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Zixiang Luo
- 1Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,2Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Chengjun Li
- 1Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,2Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Shaohua Liu
- 1Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jingsong Li
- 5Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xianzhen Yin
- 6Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tianding Wu
- 1Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,2Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Hongbin Lu
- 2Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,7Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Hu
- 1Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,2Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
23
|
Dahlin LB, Rix KR, Dahl VA, Dahl AB, Jensen JN, Cloetens P, Pacureanu A, Mohseni S, Thomsen NOB, Bech M. Three-dimensional architecture of human diabetic peripheral nerves revealed by X-ray phase contrast holographic nanotomography. Sci Rep 2020; 10:7592. [PMID: 32371896 PMCID: PMC7200696 DOI: 10.1038/s41598-020-64430-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/14/2020] [Indexed: 01/06/2023] Open
Abstract
A deeper knowledge of the architecture of the peripheral nerve with three-dimensional (3D) imaging of the nerve tissue at the sub-cellular scale may contribute to unravel the pathophysiology of neuropathy. Here we demonstrate the feasibility of X-ray phase contrast holographic nanotomography to enable 3D imaging of nerves at high resolution, while covering a relatively large tissue volume. We show various subcomponents of human peripheral nerves in biopsies from patients with type 1 and 2 diabetes and in a healthy subject. Together with well-organized, parallel myelinated nerve fibres we show regenerative clusters with twisted nerve fibres, a sprouted axon from a node of Ranvier and other specific details. A novel 3D construction (with movie created) of a node of Ranvier with end segment of a degenerated axon and sprout of a regenerated one is captured. Many of these architectural elements are not described in the literature. Thus, X-ray phase contrast holographic nanotomography enables identifying specific morphological structures in 3D in peripheral nerve biopsies from a healthy subject and from patients with type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Lars B Dahlin
- Department of Translational Medicine - Hand Surgery, Lund University, Jan Waldenströms gata 5, SE-205 02, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Jan Waldenströms gata 5, SE-205 02, Malmö, Sweden
| | - Kristian R Rix
- Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Vedrana A Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads Building 324, 2800, Kgs Lyngby, Denmark
| | - Anders B Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads Building 324, 2800, Kgs Lyngby, Denmark
| | - Janus N Jensen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads Building 324, 2800, Kgs Lyngby, Denmark
| | - Peter Cloetens
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Alexandra Pacureanu
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Simin Mohseni
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Niels O B Thomsen
- Department of Hand Surgery, Skåne University Hospital, Jan Waldenströms gata 5, SE-205 02, Malmö, Sweden
| | - Martin Bech
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden.
| |
Collapse
|
24
|
Bukreeva I, Asadchikov V, Buzmakov A, Chukalina M, Ingacheva A, Korolev NA, Bravin A, Mittone A, Biella GEM, Sierra A, Brun F, Massimi L, Fratini M, Cedola A. High resolution 3D visualization of the spinal cord in a post-mortem murine model. BIOMEDICAL OPTICS EXPRESS 2020; 11:2235-2253. [PMID: 32341880 PMCID: PMC7173906 DOI: 10.1364/boe.386837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 05/04/2023]
Abstract
A crucial issue in the development of therapies to treat pathologies of the central nervous system is represented by the availability of non-invasive methods to study the three-dimensional morphology of spinal cord, with a resolution able to characterize its complex vascular and neuronal organization. X-ray phase contrast micro-tomography enables a high-quality, 3D visualization of both the vascular and neuronal network simultaneously without the need of contrast agents, destructive sample preparations or sectioning. Until now, high resolution investigations of the post-mortem spinal cord in murine models have mostly been performed in spinal cords removed from the spinal canal. We present here post-mortem phase contrast micro-tomography images reconstructed using advanced computational tools to obtain high-resolution and high-contrast 3D images of the fixed spinal cord without removing the bones and preserving the richness of micro-details available when measuring exposed spinal cords. We believe that it represents a significant step toward the in-vivo application.
Collapse
Affiliation(s)
- Inna Bukreeva
- Institute of Nanotechnology- CNR, Rome Unit, Piazzale Aldo Moro 5, Italy
- P. N. Lebedev Physical Institute, RAS, Leninsky pr., 53, Moscow, Russia
| | - Victor Asadchikov
- Shubnikov Institute of Crystallography FSRC “Crystallography and Photonics” RAS, Leninsky prosp., 59, Moscow, Russia
| | - Alexey Buzmakov
- Shubnikov Institute of Crystallography FSRC “Crystallography and Photonics” RAS, Leninsky prosp., 59, Moscow, Russia
| | - Marina Chukalina
- Shubnikov Institute of Crystallography FSRC “Crystallography and Photonics” RAS, Leninsky prosp., 59, Moscow, Russia
- Intitute for Information Transmission Problems RAS, Bolshoi Karetny per, 9, Moscow, Russia
| | - Anastasya Ingacheva
- Intitute for Information Transmission Problems RAS, Bolshoi Karetny per, 9, Moscow, Russia
| | - Nikolay A. Korolev
- National Research Nuclear University /Moscow Engineering Physics Institute, Kashirskoye Highway, 31 Moscow, Russia
| | - Alberto Bravin
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, France
| | - Alberto Mittone
- CELLS - ALBA Synchrotron Light Source, Carrer de la Llum, 2-26, Cerdanyola del Valles, Barcelona, Spain
| | | | - Alejandra Sierra
- Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Francesco Brun
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio, 6/1 Trieste, Italy
| | - Lorenzo Massimi
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Michela Fratini
- Institute of Nanotechnology- CNR, Rome Unit, Piazzale Aldo Moro 5, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via Ardeatina 306, Roma, Italy
| | - Alessia Cedola
- Institute of Nanotechnology- CNR, Rome Unit, Piazzale Aldo Moro 5, Italy
| |
Collapse
|
25
|
Fratini M, Abdollahzadeh A, DiNuzzo M, Salo RA, Maugeri L, Cedola A, Giove F, Gröhn O, Tohka J, Sierra A. Multiscale Imaging Approach for Studying the Central Nervous System: Methodology and Perspective. Front Neurosci 2020; 14:72. [PMID: 32116518 PMCID: PMC7019007 DOI: 10.3389/fnins.2020.00072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Non-invasive imaging methods have become essential tools for understanding the central nervous system (CNS) in health and disease. In particular, magnetic resonance imaging (MRI) techniques provide information about the anatomy, microstructure, and function of the brain and spinal cord in vivo non-invasively. However, MRI is limited by its spatial resolution and signal specificity. In order to mitigate these shortcomings, it is crucial to validate MRI with an array of ancillary ex vivo imaging techniques. These techniques include histological methods, such as light and electron microscopy (EM), which can provide specific information on the tissue structure in healthy and diseased brain and spinal cord, at cellular and subcellular level. However, these conventional histological techniques are intrinsically two-dimensional (2D) and, as a result of sectioning, lack volumetric information of the tissue. This limitation can be overcome with genuine three-dimensional (3D) imaging approaches of the tissue. 3D highly resolved information of the CNS achievable by means of other imaging techniques can complement and improve the interpretation of MRI measurements. In this article, we provide an overview of different 3D imaging techniques that can be used to validate MRI. As an example, we introduce an approach of how to combine diffusion MRI and synchrotron X-ray phase contrast tomography (SXRPCT) data. Our approach paves the way for a new multiscale assessment of the CNS allowing to validate and to improve our understanding of in vivo imaging (such as MRI).
Collapse
Affiliation(s)
- Michela Fratini
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Institute of Nanotechnology-CNR c/o Physics Department, Sapienza University of Rome, Rome, Italy
| | - Ali Abdollahzadeh
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Raimo A. Salo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Alessia Cedola
- Institute of Nanotechnology-CNR c/o Physics Department, Sapienza University of Rome, Rome, Italy
| | - Federico Giove
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jussi Tohka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
26
|
Mangini F, DiNuzzo M, Maugeri L, Moraschi M, Mascali D, Cedola A, Frezza F, Giove F, Fratini M. Numerical simulation of the blood oxygenation level-dependent functional magnetic resonance signal using finite element method. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3290. [PMID: 31808299 DOI: 10.1002/cnm.3290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/10/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Since the introduction of functional magnetic resonance imaging (fMRI), several computational approaches have been developed to examine the effect of the morphology and arrangement of blood vessels on the blood oxygenation-level dependent (BOLD) signal in the brain. In the present work, we implemented the original Ogawa's model using a numerical simulation based on the finite element method (FEM) instead of the analytical models. In literature, there are different works using analytical methods to analyse the transverse relaxation rate ( R2∗ ), which BOLD signal is related to, modelling the vascular system with simple and canonical geometries such as an infinite cylinder model (ICM) or a set of cylinders. We applied the numerical simulation to the extravascular BOLD signal as a function of angular vessel distribution (perpendicular vs parallel to the static magnetic field) relevant for anatomical districts characterized by geometrical symmetries, such as spinal cord. Numerical simulations confirmed analytical results for the canonical ICM. Moreover, the perturbation to the magnetic field induced by blood deoxyhaemoglobin, as quantified assuming Brownian diffusion of water molecules around the vessel, revealed that vessels contribute the most to the variation of the R2∗ when they are preferentially perpendicular to the external magnetic field, regardless of their size. Our results indicate that the numerical simulation method is sensitive to the effects of different vascular geometry. This work highlights the opportunity to extend R2∗ simulations to realistic models of vasculature based on high-resolution anatomical images.
Collapse
Affiliation(s)
- Fabio Mangini
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Mauro DiNuzzo
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Laura Maugeri
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marta Moraschi
- Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Daniele Mascali
- Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | | | - Fabrizio Frezza
- Department of Information Engineering, Electronics and Telecommunications, La Sapienza University of Rome, Rome, Italy
| | - Federico Giove
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Michela Fratini
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- CNR Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
27
|
Synchrotron Radiation-Based Three-Dimensional Visualization of Angioarchitectural Remodeling in Hippocampus of Epileptic Rats. Neurosci Bull 2019; 36:333-345. [PMID: 31823302 DOI: 10.1007/s12264-019-00450-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Characterizing the three-dimensional (3D) morphological alterations of microvessels under both normal and seizure conditions is crucial for a better understanding of epilepsy. However, conventional imaging techniques cannot detect microvessels on micron/sub-micron scales without angiography. In this study, synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (ILPCI) and quantitative 3D characterization were used to acquire high-resolution, high-contrast images of rat brain tissue under both normal and seizure conditions. The number of blood microvessels was markedly increased on days 1 and 14, but decreased on day 60 after seizures. The surface area, diameter distribution, mean tortuosity, and number of bifurcations and network segments also showed similar trends. These pathological changes were confirmed by histological tests. Thus, SR-based ILPCI provides systematic and detailed views of cerebrovascular anatomy at the micron level without using contrast-enhancing agents. This holds considerable promise for better diagnosis and understanding of the pathogenesis and development of epilepsy.
Collapse
|
28
|
Shi S, Zhang H, Yin X, Wang Z, Tang B, Luo Y, Ding H, Chen Z, Cao Y, Wang T, Xiao B, Zhang M. 3D digital anatomic angioarchitecture of the mouse brain using synchrotron-radiation-based propagation phase-contrast imaging. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1742-1750. [PMID: 31490166 DOI: 10.1107/s160057751900674x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Thorough investigation of the three-dimensional (3D) configuration of the vasculature of mouse brain remains technologically difficult because of its complex anatomical structure. In this study, a systematic analysis is developed to visualize the 3D angioarchitecture of mouse brain at ultrahigh resolution using synchrotron-radiation-based propagation phase-contrast imaging. This method provides detailed restoration of the intricate brain microvascular network in a precise 3D manner. In addition to depicting the delicate 3D arrangements of the vascular network, 3D virtual micro-endoscopy is also innovatively performed to visualize randomly a selected vessel within the brain for both external 3D micro-imaging and endoscopic visualization of any targeted microvessels, which improves the understanding of the intrinsic properties of the mouse brain angioarchitecture. Based on these data, hierarchical visualization has been established and a systematic assessment on the 3D configuration of the mouse brain microvascular network has been achieved at high resolution which will aid in advancing the understanding of the role of vasculature in the perspective of structure and function in depth. This holds great promise for wider application in various models of neurovascular diseases.
Collapse
Affiliation(s)
- Shupeng Shi
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Haoran Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Zhuolu Wang
- Department of Breast Surgery, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, People's Republic of China
| | - Bin Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yuebei Luo
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Hui Ding
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Tiantian Wang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
29
|
Li T, Liu CJ, Akkin T. Contrast-enhanced serial optical coherence scanner with deep learning network reveals vasculature and white matter organization of mouse brain. NEUROPHOTONICS 2019; 6:035004. [PMID: 31338386 PMCID: PMC6646884 DOI: 10.1117/1.nph.6.3.035004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/02/2019] [Indexed: 06/01/2023]
Abstract
Optical coherence tomography provides volumetric reconstruction of brain structure with micrometer resolution. Gray matter and white matter can be highlighted using conventional and polarization-based contrasts; however, vasculature in ex-vivo fixed brain has not been investigated at large scale due to lack of intrinsic contrast. We present contrast enhancement to visualize the vasculature by perfusing titanium dioxide particles transcardially into the mouse vascular system. The brain, after dissection and fixation, is imaged by a serial optical coherence scanner. Accumulation of particles in blood vessels generates distinguishable optical signals. Among these, the cross-polarization images reveal the vasculature organization remarkably well. The conventional and polarization-based contrasts are still available for probing the gray matter and white matter structures. The segmentation and reconstruction of the vasculature are presented by using a deep learning algorithm. Axonal fiber pathways in the mouse brain are delineated by utilizing the retardance and optic axis orientation contrasts. This is a low-cost method that can be further developed to study neurovascular diseases and brain injury in animal models.
Collapse
Affiliation(s)
- Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Chao J. Liu
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| |
Collapse
|
30
|
Töpperwien M, Markus A, Alves F, Salditt T. Contrast enhancement for visualizing neuronal cytoarchitecture by propagation-based x-ray phase-contrast tomography. Neuroimage 2019; 199:70-80. [PMID: 31129306 DOI: 10.1016/j.neuroimage.2019.05.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Knowledge of the three-dimensional (3d) neuronal cytoarchitecture is an important factor in order to understand the connection between tissue structure and function or to visualize pathological changes in neurodegenerative diseases or tumor development. The gold standard in neuropathology is histology, a technique which provides insights into the cellular organization based on sectioning of the sample. Conventional histology, however, misses the complete 3d information as only individual two-dimensional slices through the object are available. In this work, we use propagation-based phase-contrast x-ray tomography to perform 3d virtual histology on cerebellar tissue from mice. This technique enables us to non-invasively visualize the entire 3d density distribution of the examined samples at isotropic (sub-)cellular resolution. One central challenge, however, of the technique is the fact that contrast for important structural features can be easily lost due to small electron density differences, notably between the cells and surrounding tissue. Here, we evaluate the influence of different embedding media, which are intermediate steps in sample preparation for classical histology, on contrast formation and examine the applicability of the different sample preparations both at a synchrotron-based holotomography setup as well as a laboratory source.
Collapse
Affiliation(s)
- Mareike Töpperwien
- Institute for X-Ray Physics, University of Göttingen, Germany; Center for Nanoscopy and Molecular Physiology of the Brain (CNMPB), Germany.
| | - Andrea Markus
- Department of Haematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Frauke Alves
- Department of Haematology and Medical Oncology, University Medical Center Göttingen, Germany; Department of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Germany; Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, Germany; Center for Nanoscopy and Molecular Physiology of the Brain (CNMPB), Germany.
| |
Collapse
|
31
|
Comparison of Three-Dimensional Micro-CT Angiography of Cervical Spinal Cord between Two Contrast Agents. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5215923. [PMID: 31110469 PMCID: PMC6487131 DOI: 10.1155/2019/5215923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/18/2019] [Accepted: 02/17/2019] [Indexed: 12/11/2022]
Abstract
Purpose Barium sulfate and lead oxide are commonly used for angiographic studies, but there is no report on the comparison of two contrast agents in angiography of cervical spinal cord. This study was aimed to compare the microvascular architecture of cervical spinal cord in rats after angiography with the barium sulfate agent to the lead oxide agent. Methods Twelve adult Sprague-Dawley rats were randomly divided into the barium sulfate group (n=6) and the lead oxide group (n=6). Each rat was perfused under the same protocol using either two contrast agents. The angiography was evaluated with the vascular number at different ranks. The cervical spinal cord samples were scanned using micro-CT with low resolution and high resolution. The microvascular parameters, including ratio of vascular volume to tissue volume (VV/TV), vascular number (V.N), diameter (V.Dm), separation (V.Sp), connectivity density (Conn.D), structure model index (SMI), percentage, and volume of vessels at different diameters were measured. Results The perfusion was better in the barium sulfate group, with more blood vessel trees of rank II and III visible compared to the lead oxide group. Low-resolution micro-CT analysis showed no difference in microvascular parameters except SMI between the two groups. High-resolution micro-CT analysis results showed that V.N and Conn.D of barium sulfate group were 60% and 290% more than those of the lead oxide group; however, V.Sp was 41% less than the lead oxide group. The percentage of vessels with diameter of 10 μm and 20 μm, and the volume of vessels with diameter of less than 100 μm was higher in the barium sulfate group than in the lead oxide group. The SMI index in the barium sulfate group was higher than that in the lead oxide group at both low resolution and high resolution. Conclusions Compared with lead oxide, barium sulfate is more suitable for perfusion of cervical spinal cord microvessels, and cheap and nontoxic with high resolution.
Collapse
|
32
|
Böhm T, Joseph K, Kirsch M, Moroni R, Hilger A, Osenberg M, Manke I, Johnston M, Stieglitz T, Hofmann UG, Haas CA, Thiele S. Quantitative synchrotron X-ray tomography of the material-tissue interface in rat cortex implanted with neural probes. Sci Rep 2019; 9:7646. [PMID: 31113972 PMCID: PMC6529414 DOI: 10.1038/s41598-019-42544-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/01/2019] [Indexed: 01/13/2023] Open
Abstract
Neural probes provide many options for neuroscientific research and medical purposes. However, these implantable micro devices are not functionally stable over time due to host-probe interactions. Thus, reliable high-resolution characterization methods are required to understand local tissue changes upon implantation. In this work, synchrotron X-ray tomography is employed for the first time to image the interface between brain tissue and an implanted neural probe, showing that this 3D imaging method is capable of resolving probe and surrounding tissue at a resolution of about 1 micrometer. Unstained tissue provides sufficient contrast to identify electrode sites on the probe, cells, and blood vessels within tomograms. Exemplarily, we show that it is possible to quantify characteristics of the interaction region between probe and tissue, like the blood supply system. Our first-time study demonstrates a way for simultaneous 3D investigation of brain tissue with implanted probe, providing information beyond what was hitherto possible.
Collapse
Affiliation(s)
- Thomas Böhm
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
| | - Kevin Joseph
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
- Neuroelectronic Systems, Dept. of Neurosurgery, Faculty of Medicine, University Medical Center, Engesserstraße 4, 79108, Freiburg, Germany
| | - Matthias Kirsch
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 23, 79104, Freiburg, Germany
| | - Riko Moroni
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - André Hilger
- Helmholtz Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Markus Osenberg
- Helmholtz Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
- Institute of Materials Science and Technology, Technical University Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| | - Ingo Manke
- Helmholtz Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Midori Johnston
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
- Experimental Epilepsy Research, Dept. of Neurosurgery, University Medical Center, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Thomas Stieglitz
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
- Laboratory for Biomedical Microtechnology, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 102, 79110, Freiburg, Germany
- Bernstein Center Freiburg, Hansastraße 9a, 79104, Freiburg, Germany
| | - Ulrich G Hofmann
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
- Neuroelectronic Systems, Dept. of Neurosurgery, Faculty of Medicine, University Medical Center, Engesserstraße 4, 79108, Freiburg, Germany
| | - Carola A Haas
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
- Experimental Epilepsy Research, Dept. of Neurosurgery, University Medical Center, Breisacher Straße 64, 79106, Freiburg, Germany
- Bernstein Center Freiburg, Hansastraße 9a, 79104, Freiburg, Germany
| | - Simon Thiele
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany.
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058, Erlangen, Germany.
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany.
| |
Collapse
|
33
|
Cao Y, Zhang M, Ding H, Chen Z, Tang B, Wu T, Xiao B, Duan C, Ni S, Jiang L, Luo Z, Li C, Zhao J, Liao S, Yin X, Fu Y, Xiao T, Lu H, Hu J. Synchrotron radiation micro-tomography for high-resolution neurovascular network morphology investigation. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:607-618. [PMID: 31074423 DOI: 10.1107/s1600577519003060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
There has been increasing interest in using high-resolution micro-tomography to investigate the morphology of neurovascular networks in the central nervous system, which remain difficult to characterize due to their microscopic size as well as their delicate and complex 3D structure. Synchrotron radiation X-ray imaging, which has emerged as a cutting-edge imaging technology with a high spatial resolution, provides a novel platform for the non-destructive imaging of microvasculature networks at a sub-micrometre scale. When coupled with computed tomography, this technique allows the characterization of the 3D morphology of vasculature. The current review focuses on recent progress in developing synchrotron radiation methodology and its application in probing neurovascular networks, especially the pathological changes associated with vascular abnormalities in various model systems. Furthermore, this tool represents a powerful imaging modality that improves our understanding of the complex biological interactions between vascular function and neuronal activity in both physiological and pathological states.
Collapse
Affiliation(s)
- Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hui Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Bin Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Chunyue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Liyuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zixiang Luo
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Chengjun Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Jinyun Zhao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shenghui Liao
- School of Information Science and Engineering, Central South University, Changsha 410008, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 20203, People's Republic of China
| | - Yalan Fu
- Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 21204, People's Republic of China
| | - Tiqiao Xiao
- Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 21204, People's Republic of China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
34
|
Luo Y, Yin X, Shi S, Ren X, Zhang H, Wang Z, Cao Y, Tang M, Xiao B, Zhang M. Non-destructive 3D Microtomography of Cerebral Angioarchitecture Changes Following Ischemic Stroke in Rats Using Synchrotron Radiation. Front Neuroanat 2019; 13:5. [PMID: 30766481 PMCID: PMC6365468 DOI: 10.3389/fnana.2019.00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/15/2019] [Indexed: 01/29/2023] Open
Abstract
A better understanding of functional changes in the cerebral microvasculature following ischemic injury is essential to elucidate the pathogenesis of stroke. Up to now, the simultaneous depiction and stereological analysis of 3D micro-architectural changes of brain vasculature with network disorders remains a technical challenge. We aimed to explore the three dimensional (3D) microstructural changes of microvasculature in the rat brain on 4, 6 hours, 3 and 18 days post-ischemia using synchrotron radiation micro-computed tomography (SRμCT) with a per pixel size of 5.2 μm. The plasticity of angioarchitecture was distinctly visualized. Quantitative assessments of time-related trends after focal ischemia, including number of branches, number of nodes, and frequency distribution of vessel diameter, reached a peak at 6 h and significantly decreased at 3 days and initiated to form cavities. The detected pathological changes were also proven by histological tests. We depicted a novel methodology for the 3D analysis of vascular repair in ischemic injury, both qualitatively and quantitatively. Cerebral angioarchitecture sustained 3D remodeling and modification during the healing process. The results might provide a deeper insight into the compensatory mechanisms of microvasculature after injury, suggesting that SRμCT is able to provide a potential new platform for deepening imaging pathological changes in complicated angioarchitecture and evaluating potential therapeutic targets for stroke.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shupeng Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolei Ren
- Department of Orthopaedics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haoran Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuolu Wang
- Department of Breast Surgery, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Kim S, Jang S, Lee O. Usefulness of synchrotron radiation for three‐dimensional microstructure analysis of the mouse tibia. Microsc Res Tech 2018; 82:564-571. [DOI: 10.1002/jemt.23202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/14/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Subok Kim
- Department of ICT Convergence Rehabilitation EngineeringSoonchunhyang University Asan City Chungnam‐do Republic of Korea
| | - Sanghun Jang
- Department of Physical Therapy, College of Nursing and Health ScienceGimcheon University Gimcheon City Republic of Korea
| | - Onseok Lee
- Department of Medical IT Engineering, College of Medical SciencesSoonchunhyang University Asan City Chungnam‐do Republic of Korea
| |
Collapse
|
36
|
Fractal Dimension Analysis of High-Resolution X-Ray Phase Contrast Micro-Tomography Images at Different Threshold Levels in a Mouse Spinal Cord. CONDENSED MATTER 2018. [DOI: 10.3390/condmat3040048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fractal analysis is a powerful method for the morphological study of complex systems that is increasingly applied to biomedical images. Spatial resolution and image segmentation are crucial for the discrimination of tissue structures at the multiscale level. In this work, we have applied fractal analysis to high-resolution X-ray phase contrast micro-tomography (XrPCμT) images in both uninjured and injured tissue of a mouse spinal cord. We estimated the fractal dimension (FD) using the box-counting method on tomographic slices segmented at different threshold levels. We observed an increased FD in the ipsilateral injured hemicord compared with the contralateral uninjured tissue, which was almost independent of the chosen threshold. Moreover, we found that images exhibited the highest fractality close to the global histogram threshold level. Finally, we showed that the FD estimate largely depends on the image histogram regardless of tissue appearance. Our results demonstrate that the pre-processing of XrPCμT images is critical to fractal analysis and the estimation of FD.
Collapse
|
37
|
Massimi L, Bukreeva I, Santamaria G, Fratini M, Corbelli A, Brun F, Fumagalli S, Maugeri L, Pacureanu A, Cloetens P, Pieroni N, Fiordaliso F, Forloni G, Uccelli A, Kerlero de Rosbo N, Balducci C, Cedola A. Exploring Alzheimer's disease mouse brain through X-ray phase contrast tomography: From the cell to the organ. Neuroimage 2018; 184:490-495. [PMID: 30240904 DOI: 10.1016/j.neuroimage.2018.09.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/09/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder associated with aberrant production of beta-amyloid (Aβ) peptide depositing in brain as amyloid plaques. While animal models allow investigation of disease progression and therapeutic efficacy, technology to fully dissect the pathological mechanisms of this complex disease at cellular and vascular levels is lacking. X-ray phase contrast tomography (XPCT) is an advanced non-destructive 3D multi-scale direct imaging from the cell through to the whole brain, with exceptional spatial and contrast resolution. We exploit XPCT to simultaneously analyse disease-relevant vascular and neuronal networks in AD mouse brain, without sectioning and staining. The findings clearly show the different typologies and internal structures of Aβ plaques, together with their interaction with patho/physiological cellular and neuro-vascular microenvironment. XPCT enables for the first time a detailed visualization of amyloid-angiopathy at capillary level, which is impossible to achieve with other approaches. XPCT emerges as added-value technology to explore AD mouse brain as a whole, preserving tissue chemistry and structure, enabling the comparison of physiological vs. pathological states at the level of crucial disease targets. In-vivo translation will permit to monitor emerging therapeutic approaches and possibly shed new light on pathological mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lorenzo Massimi
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Inna Bukreeva
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, Rome, Italy; Dipartimento di Fisica, Università Sapienza, Rome, Italy
| | | | - Michela Fratini
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Francesco Brun
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | - Laura Maugeri
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Peter Cloetens
- European Synchrotron Radiation Facility, Grenoble, France
| | - Nicola Pieroni
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Fabio Fiordaliso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Antonio Uccelli
- DINOGMI, Università degli Studi di Genova, Genoa, Italy; Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Claudia Balducci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Alessia Cedola
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, Rome, Italy; Dipartimento di Fisica, Università Sapienza, Rome, Italy.
| |
Collapse
|
38
|
Optimising complementary soft tissue synchrotron X-ray microtomography for reversibly-stained central nervous system samples. Sci Rep 2018; 8:12017. [PMID: 30104610 PMCID: PMC6089931 DOI: 10.1038/s41598-018-30520-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/24/2018] [Indexed: 11/08/2022] Open
Abstract
Synchrotron radiation microtomography (SRμCT) is a nominally non-destructive 3D imaging technique which can visualise the internal structures of whole soft tissues. As a multi-stage technique, the cumulative benefits of optimising sample preparation, scanning parameters and signal processing can improve SRμCT imaging efficiency, image quality, accuracy and ultimately, data utility. By evaluating different sample preparations (embedding media, tissue stains), imaging (projection number, propagation distance) and reconstruction (artefact correction, phase retrieval) parameters, a novel methodology (combining reversible iodine stain, wax embedding and inline phase contrast) was optimised for fast (~12 minutes), high-resolution (3.2-4.8 μm diameter capillaries resolved) imaging of the full diameter of a 3.5 mm length of rat spinal cord. White-grey matter macro-features and micro-features such as motoneurons and capillary-level vasculature could then be completely segmented from the imaged volume for analysis through the shallow machine learning SuRVoS Workbench. Imaged spinal cord tissue was preserved for subsequent histology, establishing a complementary SRμCT methodology that can be applied to study spinal cord pathologies or other nervous system tissues such as ganglia, nerves and brain. Further, our 'single-scan iterative downsampling' approach and side-by-side comparisons of mounting options, sample stains and phase contrast parameters should inform efficient, effective future soft tissue SRμCT experiment design.
Collapse
|
39
|
Giuliani A, Mencarelli M, Frati C, Savi M, Lagrasta C, Pompilio G, Rossini A, Quaini F. Phase-contrast microtomography: are the tracers necessary for stem cell tracking in infarcted hearts? Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aad570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Mittone A, Ivanishko Y, Kovalev S, Lisutina P, Lotoshnikov M, Tkachev S, Tkacheva M, Crippa L, Dmitriev V, Bravin A. High resolution hard X-ray 3D mapping of a Macaca fascicularis eye: A feasibility study without contrast agents. Phys Med 2018; 51:7-12. [DOI: 10.1016/j.ejmp.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/28/2018] [Accepted: 06/02/2018] [Indexed: 11/30/2022] Open
|
41
|
Nanoscale mechanics of brain abscess: An atomic force microscopy study. Micron 2018; 113:34-40. [PMID: 29957562 DOI: 10.1016/j.micron.2018.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022]
Abstract
Mechanical stimuli are a fundamental player in the pathophysiology of the brain influencing its physiological development and contributing to the onset and progression of many diseases. In some pathological states, the involvement of mechanical and physical stimuli might be extremely subtle; in others, it is more evident and particularly relevant. Among the latter pathologies, one of the most serious life-threatening condition is the brain abscess (BA), a focal infection localized in the brain parenchyma, which causes large brain mechanical deformations, giving rise to a wide range of neurological impairments. In this paper, we present the first nano-mechanical characterization of surgically removed human brain abscess tissues by means of atomic force microscopy (AFM) in the spectroscopy mode. Consistently with previous histological findings, we modeled the brain abscess as a multilayered structure, composed of three main layers: the cerebritis layer, the collagen capsule, and the internal inflammatory border. We probed the viscoelastic behavior of each layer separately through the measure of the apparent Young's modulus (E), that gives information about the sample stiffness, and the AFM hysteresis (H), that estimates the contribution of viscous and dissipative forces. Our experimental findings provide a full mechanical characterization of the abscess, showing an average E of (94 ± 5) kPa and H of 0.37 ± 0.01 for the cerebritis layer, an average E = (1.04 ± 0.05) MPa and H = 0.10 ± 0.01 for the collagen capsule and an average E = (9.8 ± 0.4) kPa and H = 0.57 ± 0.01 for the internal border. The results here presented have the potential to contribute to the development of novel surgical instruments dedicated to the treatment of the pathology and to stimulate the implementation of novel constitutive mechanical models for the estimation of brain compression and damage during BA progression.
Collapse
|
42
|
Khimchenko A, Bikis C, Pacureanu A, Hieber SE, Thalmann P, Deyhle H, Schweighauser G, Hench J, Frank S, Müller‐Gerbl M, Schulz G, Cloetens P, Müller B. Hard X-Ray Nanoholotomography: Large-Scale, Label-Free, 3D Neuroimaging beyond Optical Limit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700694. [PMID: 29938163 PMCID: PMC6010902 DOI: 10.1002/advs.201700694] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/17/2018] [Indexed: 05/22/2023]
Abstract
There have been great efforts on the nanoscale 3D probing of brain tissues to image subcellular morphologies. However, limitations in terms of tissue coverage, anisotropic resolution, stain dependence, and complex sample preparation all hinder achieving a better understanding of the human brain functioning in the subcellular context. Herein, X-ray nanoholotomography is introduced as an emerging synchrotron radiation-based technology for large-scale, label-free, direct imaging with isotropic voxel sizes down to 25 nm, exhibiting a spatial resolution down to 88 nm. The procedure is nondestructive as it does not require physical slicing. Hence, it allows subsequent imaging by complementary techniques, including histology. The feasibility of this 3D imaging approach is demonstrated on human cerebellum and neocortex specimens derived from paraffin-embedded tissue blocks. The obtained results are compared to hematoxylin and eosin stained histological sections and showcase the ability for rapid hierarchical neuroimaging and automatic rebuilding of the neuronal architecture at the level of a single cell nucleolus. The findings indicate that nanoholotomography can complement microscopy not only by large isotropic volumetric data but also by morphological details on the sub-100 nm level, addressing many of the present challenges in brain tissue characterization and probably becoming an important tool in nanoanatomy.
Collapse
Affiliation(s)
- Anna Khimchenko
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Christos Bikis
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Alexandra Pacureanu
- ID16A‐NI Nano‐Imaging BeamlineEuropean Synchrotron Radiation Facility (ESRF)38043GrenobleFrance
| | - Simone E. Hieber
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Peter Thalmann
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Hans Deyhle
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Gabriel Schweighauser
- Institute of PathologyDepartment of NeuropathologyBasel University Hospital4056BaselSwitzerland
| | - Jürgen Hench
- Institute of PathologyDepartment of NeuropathologyBasel University Hospital4056BaselSwitzerland
| | - Stephan Frank
- Institute of PathologyDepartment of NeuropathologyBasel University Hospital4056BaselSwitzerland
| | - Magdalena Müller‐Gerbl
- Musculoskeletal Research GroupDepartment of BiomedicineUniversity of Basel4056BaselSwitzerland
| | - Georg Schulz
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Peter Cloetens
- ID16A‐NI Nano‐Imaging BeamlineEuropean Synchrotron Radiation Facility (ESRF)38043GrenobleFrance
| | - Bert Müller
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| |
Collapse
|
43
|
Morphometric Analysis of Rat Spinal Cord Angioarchitecture by Phase Contrast Radiography: From 2D to 3D Visualization. Spine (Phila Pa 1976) 2018; 43:E504-E511. [PMID: 28885295 DOI: 10.1097/brs.0000000000002408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An advanced imaging of vasculature with synchrotron radiation X-ray in a rat model. OBJECTIVE To develop the potential for quantitative assessment of vessel network from two-dimensional (2D) to 3D visualization by synchrotron radiation X-ray phase contrast tomography (XPCT) in rat spinal cord model. SUMMARY OF BACKGROUND DATA Investigation of microvasculature contributes to the understanding of pathological development of spinal cord injury. A few of X-ray imaging is available to visualize vascular architecture without usage of angiography or invasive casting preparation. METHODS A rat spinal cord injury model was produced by modified Allen method. Histomorphometric detection was simultaneously analyzed by both histology and XPCT from 2D to 3D visualization. The parameters including tissue lesion area, microvessel density, vessel diameter, and frequency distribution of vessel diameter were evaluated. RESULTS XPCT rendered the microvessels as small as capillary scale with a pixel size of 3.7 μm. It presented a high linear concordance for characterizing the 2D vascular morphometry compared with the histological staining (r = 0.8438). In the presence of spinal cord injury model, 3D construction quantified the significant angioarchitectural deficiency in the injury epicenter of cord lesion (P<0.01). CONCLUSION XPCT has a great potential to detect the smallest vascular network with pixel size up to micron dimension. It is inferred that the loss of abundant microvessels (≤40 μm) is responsible for local ischemia and neural dysfunction. XPCT holds a promise for morphometric analysis from 2D to 3D imaging in experimental model of neurovascular disorders. LEVEL OF EVIDENCE N/A.
Collapse
|
44
|
Massimi L, Brun F, Fratini M, Bukreeva I, Cedola A. An improved ring removal procedure for in-line x-ray phase contrast tomography. Phys Med Biol 2018; 63:045007. [PMID: 29324438 DOI: 10.1088/1361-6560/aaa706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The suppression of ring artifacts in x-ray computed tomography (CT) is a required step in practical applications; it can be addressed by introducing refined digital low pass filters within the reconstruction process. However, these filters may introduce additional ringing artifacts when simultaneously imaging pure phase objects and elements having a non-negligible absorption coefficient. Ringing originates at sharp interfaces, due to the truncation of spatial high frequencies, and severely affects qualitative and quantitative analysis of the reconstructed slices. In this work, we discuss the causes of ringing artifacts, and present a general compensation procedure to account for it. The proposed procedure has been tested with CT datasets of the mouse central nervous system acquired at different synchrotron radiation facilities. The results demonstrate that the proposed method compensates for ringing artifacts induced by low pass ring removal filters. The effectiveness of the ring suppression filters is not altered; the proposed method can thus be considered as a framework to improve the ring removal step, regardless of the specific filter adopted or the imaged sample.
Collapse
|
45
|
Ogunleke A, Recur B, Balacey H, Chen HH, Delugin M, Hwu Y, Javerzat S, Petibois C. 3D chemical imaging of the brain using quantitative IR spectro-microscopy. Chem Sci 2018; 9:189-198. [PMID: 29629087 PMCID: PMC5869290 DOI: 10.1039/c7sc03306k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/13/2017] [Indexed: 01/14/2023] Open
Abstract
Three-dimensional (3D) histology is the next frontier for modern anatomo-pathology. Characterizing abnormal parameters in a tissue is essential to understand the rationale of pathology development. However, there is no analytical technique, in vivo or histological, that is able to discover such abnormal features and provide a 3D distribution at microscopic resolution. Here, we introduce a unique high-throughput infrared (IR) microscopy method that combines automated image correction and subsequent spectral data analysis for 3D-IR image reconstruction. We performed spectral analysis of a complete organ for a small animal model, a mouse brain with an implanted glioma tumor. The 3D-IR image is reconstructed from 370 consecutive tissue sections and corrected using the X-ray tomogram of the organ for an accurate quantitative analysis of the chemical content. A 3D matrix of 89 × 106 IR spectra is generated, allowing us to separate the tumor mass from healthy brain tissues based on various anatomical, chemical, and metabolic parameters. We demonstrate that quantitative metabolic parameters can be extracted from the IR spectra for the characterization of the brain vs. tumor metabolism (assessing the Warburg effect in tumors). Our method can be further exploited by searching for the whole spectral profile, discriminating tumor vs. healthy tissue in a non-supervised manner, which we call 'spectromics'.
Collapse
Affiliation(s)
- Abiodun Ogunleke
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Benoit Recur
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Hugo Balacey
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Hsiang-Hsin Chen
- Academia Sinica , Institute of Physics , 128 Sec. 2, Academia Rd., Nankang , Taipei 11529 , Taiwan , Republic of China
| | - Maylis Delugin
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Yeukuang Hwu
- Academia Sinica , Institute of Physics , 128 Sec. 2, Academia Rd., Nankang , Taipei 11529 , Taiwan , Republic of China
| | - Sophie Javerzat
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Cyril Petibois
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
- Academia Sinica , Institute of Physics , 128 Sec. 2, Academia Rd., Nankang , Taipei 11529 , Taiwan , Republic of China
| |
Collapse
|
46
|
Liao S, Ni S, Cao Y, Yin X, Wu T, Lu H, Hu J, Wu H, Lang Y. The 3D characteristics of post-traumatic syringomyelia in a rat model: a propagation-based synchrotron radiation microtomography study. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:1218-1225. [PMID: 29091065 DOI: 10.1107/s1600577517011201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
Many published literature sources have described the histopathological characteristics of post-traumatic syringomyelia (PTS). However, three-dimensional (3D) visualization studies of PTS have been limited due to the lack of reliable 3D imaging techniques. In this study, the imaging efficiency of propagation-based synchrotron radiation microtomography (PB-SRµCT) was determined to detect the 3D morphology of the cavity and surrounding microvasculature network in a rat model of PTS. The rat model of PTS was established using the infinite horizon impactor to produce spinal cord injury (SCI), followed by a subarachnoid injection of kaolin to produce arachnoiditis. PB-SRµCT imaging and histological examination, as well as fluorescence staining, were conducted on the animals at the tenth week after SCI. The 3D morphology of the cystic cavity was vividly visualized using PB-SRµCT imaging. The quantitative parameters analyzed by PB-SRµCT, including the lesion and spared spinal cord tissue area, the minimum and maximum diameters in the cystic cavity, and cavity volume, were largely consistent with the results of the histological assessment. Moreover, the 3D morphology of the cavity and surrounding angioarchitecture could be simultaneously detected on the PB-SRµCT images. This study demonstrated that high-resolution PB-SRµCT could be used for the 3D visualization of trauma-induced spinal cord cavities and provides valuable quantitative data for cavity characterization. PB-SRµCT could be used as a reliable imaging technique and offers a novel platform for tracking cavity formation and morphological changes in an experimental animal model of PTS.
Collapse
Affiliation(s)
- Shenghui Liao
- School of Information Science and Engineering, Central South University, Changsha 410008, People's Republic of China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410008, People's Republic of China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hao Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Ye Lang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
47
|
Simultaneous visualisation of calcified bone microstructure and intracortical vasculature using synchrotron X-ray phase contrast-enhanced tomography. Sci Rep 2017; 7:13289. [PMID: 29038597 PMCID: PMC5643345 DOI: 10.1038/s41598-017-13632-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/27/2017] [Indexed: 01/12/2023] Open
Abstract
3D imaging of the bone vasculature is of key importance in the understanding of skeletal disease. As blood vessels in bone are deeply encased in the calcified matrix, imaging techniques that are applicable to soft tissues are generally difficult or impossible to apply to the skeleton. While canals in cortical bone can readily be identified and characterised in X-ray computed tomographic data in 3D, the soft tissue comprising blood vessels that are putatively contained within the canal structures does not provide sufficient image contrast necessary for image segmentation. Here, we report an approach that allows for rapid, simultaneous visualisation of calcified bone tissue and the vasculature within the calcified bone matrix. Using synchrotron X-ray phase contrast-enhanced tomography we show exemplar data with intracortical capillaries uncovered at sub-micrometre level without the need for any staining or contrast agent. Using the tibiofibular junction of 15 week-old C57BL/6 mice post mortem, we show the bone cortical porosity simultaneously along with the soft tissue comprising the vasculature. Validation with histology confirms that we can resolve individual capillaries. This imaging approach could be easily applied to other skeletal sites and transgenic models, and could improve our understanding of the role the vasculature plays in bone disease.
Collapse
|
48
|
Giuliani A, Mazzoni S, Mele L, Liccardo D, Tromba G, Langer M. Synchrotron Phase Tomography: An Emerging Imaging Method for Microvessel Detection in Engineered Bone of Craniofacial Districts. Front Physiol 2017; 8:769. [PMID: 29085301 PMCID: PMC5649129 DOI: 10.3389/fphys.2017.00769] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/20/2017] [Indexed: 01/12/2023] Open
Abstract
The engineering of large 3D constructs, such as certain craniofacial bone districts, is nowadays a critical challenge. Indeed, the amount of oxygen needed for cell survival is able to reach a maximum diffusion distance of ~150–200 μm from the original vascularization vector, often hampering the long-term survival of the regenerated tissues. Thus, the rapid growth of new blood vessels, delivering oxygen and nutrients also to the inner cells of the bone grafts, is mandatory for their long-term function in clinical practice. Unfortunately, significant progress in this direction is currently hindered by a lack of methods with which to visualize these processes in 3D and reliably quantify them. In this regard, a challenging method for simultaneous 3D imaging and analysis of microvascularization and bone microstructure has emerged in recent years: it is based on the use of synchrotron phase tomography. This technique is able to simultaneously identify multiple tissue features in a craniofacial bone site (e.g., the microvascular and the calcified tissue structure). Moreover, it overcomes the intrinsic limitations of both histology, achieving only a 2D characterization, and conventional tomographic approaches, poorly resolving the vascularization net in the case of an incomplete filling of the newly formed microvessels by contrast agents. Indeed, phase tomography, being based on phase differences among the scattered X-ray waves, is capable of discriminating tissues with similar absorption coefficients (like vessels and woven bone) in defined experimental conditions. The approach reviewed here is based on the most recent experiences applied to bone regeneration in the craniofacial region.
Collapse
Affiliation(s)
- Alessandra Giuliani
- Sezione di Biochimica, Biologia e Fisica Applicata, Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Serena Mazzoni
- Sezione di Biochimica, Biologia e Fisica Applicata, Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Luigi Mele
- Sezione di Biotecnologie, Istologia Medica e Biologia Molecolare, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Davide Liccardo
- Sezione di Biotecnologie, Istologia Medica e Biologia Molecolare, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | | | - Max Langer
- Centre de Recherche en Acquisition et Traitment d'Images pour la Santé (CREATIS), Centre National de la Recherche Scientifique (CNRS) UMR 5220, Institut national de la santé et de la recherche médicale (Inserm) U1206, Université de Lyon, INSA-Lyon, Villeurbanne, France
| |
Collapse
|
49
|
Ngo JP, Le B, Khan Z, Kett MM, Gardiner BS, Smith DW, Melhem MM, Maksimenko A, Pearson JT, Evans RG. Micro-computed tomographic analysis of the radial geometry of intrarenal artery-vein pairs in rats and rabbits: Comparison with light microscopy. Clin Exp Pharmacol Physiol 2017; 44:1241-1253. [PMID: 28795785 DOI: 10.1111/1440-1681.12842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
We assessed the utility of synchrotron-radiation micro-computed tomography (micro-CT) for quantification of the radial geometry of the renal cortical vasculature. The kidneys of nine rats and six rabbits were perfusion fixed and the renal circulation filled with Microfil. In order to assess shrinkage of Microfil, rat kidneys were imaged at the Australian Synchrotron immediately upon tissue preparation and then post fixed in paraformaldehyde and reimaged 24 hours later. The Microfil shrank only 2-5% over the 24 hour period. All subsequent micro-CT imaging was completed within 24 hours of sample preparation. After micro-CT imaging, the kidneys were processed for histological analysis. In both rat and rabbit kidneys, vascular structures identified in histological sections could be identified in two-dimensional (2D) micro-CT images from the original kidney. Vascular morphology was similar in the two sets of images. Radial geometry quantified by manual analysis of 2D images from micro-CT was consistent with corresponding data generated by light microscopy. However, due to limited spatial resolution when imaging a whole organ using contrast-enhanced micro-CT, only arteries ≥100 and ≥60 μm in diameter, for the rat and rabbit respectively, could be assessed. We conclude that it is feasible and valid to use micro-CT to quantify vascular geometry of the renal cortical circulation in both the rat and rabbit. However, a combination of light microscopic and micro-CT approaches are required to evaluate the spatial relationships between intrarenal arteries and veins over an extensive range of vessel size.
Collapse
Affiliation(s)
- Jennifer P Ngo
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Vic., Australia
| | - Bianca Le
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Vic., Australia
| | - Zohaib Khan
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia.,School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Michelle M Kett
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Vic., Australia
| | - Bruce S Gardiner
- School of Engineering and Information Technology, Murdoch University, Perth, WA, Australia
| | - David W Smith
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia
| | - Mayer M Melhem
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Vic., Australia
| | - Anton Maksimenko
- Imaging and Medical Beamline, Australian Synchrotron, Clayton, Vic., Australia
| | - James T Pearson
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Vic., Australia.,Monash Biomedical Imaging Facility, Monash University, Melbourne, Vic., Australia.,Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
50
|
X-Ray Phase Contrast Tomography Reveals Early Vascular Alterations and Neuronal Loss in a Multiple Sclerosis Model. Sci Rep 2017; 7:5890. [PMID: 28724999 PMCID: PMC5517657 DOI: 10.1038/s41598-017-06251-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/12/2017] [Indexed: 01/08/2023] Open
Abstract
The degenerative effects of multiple sclerosis at the level of the vascular and neuronal networks in the central nervous system are currently the object of intensive investigation. Preclinical studies have demonstrated the efficacy of mesenchymal stem cell (MSC) therapy in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis, but the neuropathology of specific lesions in EAE and the effects of MSC treatment are under debate. Because conventional imaging techniques entail protocols that alter the tissues, limiting the reliability of the results, we have used non-invasive X-ray phase-contrast tomography to obtain an unprecedented direct 3D characterization of EAE lesions at micro-to-nano scales, with simultaneous imaging of the vascular and neuronal networks. We reveal EAE-mediated alterations down to the capillary network. Our findings shed light on how the disease and MSC treatment affect the tissues, and promote X-ray phase-contrast tomography as a powerful tool for studying neurovascular diseases and monitoring advanced therapies.
Collapse
|