1
|
Khandelwal N, Singh SP, Rai P, Kushwaha V, Gupta S, Singh A, Dehury L, Bisen AC, Tiwari AK, Chourasia MK, Bhatta RS, Tandon S, Sashidhara KV, Gaikwad AN. A new phytopharmaceutical obtained from Polyalthia longifolia with anti-dyslipidemic potential: Mechanistic pathway insights exploiting co-inverse miRNA-mRNA expression analysis. Eur J Pharmacol 2025; 991:177297. [PMID: 39884327 DOI: 10.1016/j.ejphar.2025.177297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Obesity and its associated metabolic disorders are significant global health challenges, necessitating novel therapeutic approaches. This study explores the anti-adipogenic and anti-dyslipidemic properties of 4655-EF, a novel phytopharmaceutical derived from Polyalthia longifolia, and explores the molecular pathways involved in its pharmacological activity. This phytopharmaceutical was prepared using a bioactivity-guided supercritical fluid extraction method suitable for large-scale production. The RP-UHPLC analysis of 4655-EF revealed that the percentage composition of its four biomarkers was 21.19 ± 1.21% (N-016-0014), 0.83 ± 0.02% (N-016-0015), 0.3 ± 0.02% (N-016-0016), and 35.09 ± 1.57% (N-016-0017). We examined the effects of 4655-EF on HFD-fed Syrian Golden Hamsters and HFD-fed C57BL/6 mice, models of dyslipidemia and obesity, respectively. In the hamsters, 4655-EF treatment reduced body weight and fat mass and improved lipid parameters. Similarly, in the mice, 4655-EF treatment resulted in reduced body weight and fat mass and improved dyslipidemia, glucose tolerance, and insulin sensitivity. Moreover, mechanistic study exploring the possible pathways responsible for its anti-adipogenic activity uncovered the downregulation of genes associated with adipogenesis, cholesterol metabolism, and PPAR (Peroxisome Proliferator-Activated Receptor) signaling pathways using next-generation sequencing. Additionally, miRNA expression analysis indicated the activation of the anti-adipogenic Wnt/β-catenin pathway. These findings signify a multifaceted mechanism by which 4655-EF exerts its beneficial effects and highlight its potential as a promising phytopharmaceutical for addressing obesity and dyslipidemia, along with its industry-friendly method for large-scale production.
Collapse
Affiliation(s)
- Nilesh Khandelwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suriya Pratap Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Prashant Rai
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Vinita Kushwaha
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanchita Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Astha Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lorie Dehury
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Amrendra K Tiwari
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manish K Chourasia
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sudeep Tandon
- Process Chemistry and Chemical Engineering Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Anil N Gaikwad
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Hongfang G, Khan R, El-Mansi AA. Bioinformatics Analysis of miR-181a and Its Role in Adipogenesis, Obesity, and Lipid Metabolism Through Review of Literature. Mol Biotechnol 2024; 66:2710-2724. [PMID: 37773313 DOI: 10.1007/s12033-023-00894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
The miRNAs regulate various biological processes in the mammalian body system. The role of miR-181a in the development, progression, and expansion of cancers is well-documented. However, the role of miR-181a in adipogenesis; lipid metabolism; obesity; and obesity-related issues such as diabetes mellitus needs to be explored. Therefore, in the present study, the literature was searched and bioinformatics tools were applied to explore the role of miR-181a in adipogenesis. The list of adipogenic and lipogenic target genes validated through different publications were extracted and compiled. The network and functional analysis of these target genes was performed through in-silico analysis. The mature sequence of miR-181a of different species were extracted from and were found highly conserved among the curated species. Additionally, we also used various bioinformatics tools such as target gene extraction from Targetscan, miRWalk, and miRDB, and the list of the target genes from these different databases was compared, and common target genes were predicted. These common target genes were further subjected to the enrichment score and KEGG pathways analysis. The enrichment score of the vital KEGG pathways of the target genes is the key regulator of adipogenesis, lipogenesis, obesity, and obesity-related syndromes in adipose tissues. Therefore, the information presented in the current review will explore the regulatory roles of miR-181a in fat tissues and its associated functions and manifestations.
Collapse
Affiliation(s)
- Guo Hongfang
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang City, 461000, Henan Province, People's Republic of China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan.
| | - Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Kiełbowski K, Żychowska J, Bakinowska E, Pawlik A. Non-Coding RNA Involved in the Pathogenesis of Atherosclerosis-A Narrative Review. Diagnostics (Basel) 2024; 14:1981. [PMID: 39272765 PMCID: PMC11394555 DOI: 10.3390/diagnostics14171981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Atherosclerosis is a highly prevalent condition associated with lipid accumulation in the intima layer of arterial blood vessels. The development of atherosclerotic plaques is associated with the incidence of major cardiovascular events, such as acute coronary syndrome or ischemic stroke. Due to the significant prevalence of atherosclerosis and its subclinical progression, it is associated with severe and potentially lethal complications. The pathogenesis of atherosclerosis is complex and not entirely known. The identification of novel non-invasive diagnostic markers and treatment methods that could suppress the progression of this condition is highly required. Non-coding RNA (ncRNA) involves several subclasses of RNA molecules. microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) differently regulate gene expression. Importantly, these molecules are frequently dysregulated under pathological conditions, which is associated with enhanced or suppressed expression of their target genes. In this review, we aim to discuss the involvement of ncRNA in crucial mechanisms implicated in the pathogenesis of atherosclerosis. We summarize current evidence on the potential use of these molecules as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Justyna Żychowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
Röszer T. MicroRNA Profile of Mouse Adipocyte-Derived Extracellular Vesicles. Cells 2024; 13:1298. [PMID: 39120327 PMCID: PMC11311276 DOI: 10.3390/cells13151298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
The post-transcriptional control of gene expression is a complex and evolving field in adipocyte biology, with the premise that the delivery of microRNA (miRNA) species to the obese adipose tissue may facilitate weight loss. Cells shed extracellular vesicles (EVs) that may deliver miRNAs as intercellular messengers. However, we know little about the miRNA profile of EVs secreted by adipocytes during postnatal development. Here, we defined the miRNA cargo of EVs secreted by mouse adipocytes in two distinct phases of development: on postnatal day 6, when adipocytes are lipolytic and thermogenic, and on postnatal day 56, when adipocytes have active lipogenesis. EVs were collected from cell culture supernatants, and their miRNA profile was defined by small RNA sequencing. The most abundant miRNA of mouse adipocyte-derived EVs was mmu-miR-148a-3p. Adipocyte EVs on postnatal day 6 were hallmarked with mmu-miR-98-5p, and some miRNAs were specific to this developmental stage, such as mmu-miR-466i-5p and 12 novel miRNAs. Adipocytes on postnatal day 56 secreted mmu-miR-365-3p, and 16 miRNAs were specific to this developmental stage. The miRNA cargo of adipocyte EVs targeted gene networks of cell proliferation, insulin signaling, interferon response, thermogenesis, and lipogenesis. We provided here a database of miRNAs secreted by developing mouse adipocytes, which may be a tool for further studies on the regulation of gene networks that control mouse adipocyte development.
Collapse
Affiliation(s)
- Tamás Röszer
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Garroni G, Cruciani S, Serra D, Pala R, Coradduzza D, Cossu ML, Ginesu GC, Ventura C, Maioli M. Effects of the MCF-7 Exhausted Medium on hADSC Behaviour. Int J Mol Sci 2024; 25:7026. [PMID: 39000134 PMCID: PMC11241546 DOI: 10.3390/ijms25137026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Stem cells possess the ability to differentiate into different lineages and the ability to self-renew, thus representing an excellent tool for regenerative medicine. They can be isolated from different tissues, including the adipose tissue. Adipose tissue and human adipose-derived stem cells (hADSCs) are privileged candidates for regenerative medicine procedures or other plastic reconstructive surgeries. The cellular environment is able to influence the fate of stem cells residing in the tissue. In a previous study, we exposed hADSCs to an exhausted medium of a breast cancer cell line (MCF-7) recovered at different days (4, 7, and 10 days). In the same paper, we inferred that the medium was able to influence the behaviour of stem cells. Considering these results, in the present study, we evaluated the expression of the major genes related to adipogenic and osteogenic differentiation. To confirm the gene expression data, oil red and alizarin red colorimetric assays were performed. Lastly, we evaluated the expression of miRNAs influencing the differentiation process and the proliferation rate, maintaining a proliferative state. The data obtained confirmed that cells exposed to the medium maintained a stem and proliferative state that could lead to a risky proliferative phenotype.
Collapse
Affiliation(s)
- Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.G.); (S.C.); (D.S.); (R.P.); (D.C.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.G.); (S.C.); (D.S.); (R.P.); (D.C.)
| | - Diletta Serra
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.G.); (S.C.); (D.S.); (R.P.); (D.C.)
| | - Renzo Pala
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.G.); (S.C.); (D.S.); (R.P.); (D.C.)
| | - Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.G.); (S.C.); (D.S.); (R.P.); (D.C.)
| | - Maria Laura Cossu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (M.L.C.); (G.C.G.)
| | - Giorgio Carlo Ginesu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (M.L.C.); (G.C.G.)
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy;
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.G.); (S.C.); (D.S.); (R.P.); (D.C.)
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| |
Collapse
|
7
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
8
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
9
|
Zhang W, Zhao T, Gao X, Ma S, Gong T, Yang Y, Li M, Cao G, Guo X, Li B. miR-10a-5p Regulates the Proliferation and Differentiation of Porcine Preadipocytes Targeting the KLF11 Gene. Animals (Basel) 2024; 14:337. [PMID: 38275797 PMCID: PMC10812476 DOI: 10.3390/ani14020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
In the swine industry, meat quality, color, and texture are influenced by the excessive differentiation of fat cells. miRNAs have emerged as integral regulators of adipose development. This study delves into the influence of miR-10a-5b on the proliferation and differentiation of pig preadipocytes. Our findings reveal that miR-10a-5b is prevalent across various tissues. It hinders preadipocyte proliferation, amplifies the expression of adipogenic genes, promotes lipid accumulation, and, as a result, advances preadipocyte differentiation. We predict that KLF11 is the target gene of miRNA. A dual-fluorescence reporter assay was conducted to validate the binding sites of miR-10a-5b on the 3'UTR of the KLF11 mRNA. Results showed that miR-10a-5b targeted KLF11 3'UTR and reduced the fluorescence activity of the dual-fluorescent reporter vector. Our research also indicates that miR-10a-5b targets and downregulates the expression of both mRNA and the protein levels of KLF11. During the differentiation of the preadipocytes, KLF11 inhibited adipose differentiation and was able to suppress the promotion of adipose differentiation by miR-10a-5b. This underscores miR-10a-5b's potential as a significant regulator of preadipocyte behavior by modulating KLF11 expression, offering insights into the role of functional miRNAs in fat deposition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.Z.); (T.Z.); (X.G.); (S.M.); (T.G.); (Y.Y.); (M.L.); (G.C.)
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.Z.); (T.Z.); (X.G.); (S.M.); (T.G.); (Y.Y.); (M.L.); (G.C.)
| |
Collapse
|
10
|
Cho YE, Chen S, Crouch K, Yun J, Klingelhutz A. Impact of Aging and a High-Fat Diet on Adipose-Tissue-Derived Extracellular Vesicle miRNA Profiles in Mice. Biomedicines 2024; 12:100. [PMID: 38255206 PMCID: PMC10813715 DOI: 10.3390/biomedicines12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Middle-aged adults have the highest obesity rates, leading to significant health complications in later years. Obesity triggers the release of altered molecules, including extracellular vesicles (EVs) from excess adipose tissue (AT), contributing to various health complications. In this study, we assessed the effects of age and a high-fat diet on AT-derived EV miRNA profiles to understand their potential roles in aging and obesity. METHOD C57BL/6 male mice were subjected to a normal chow diet (NCD) or a high-fat diet (HFD) for either 10-12 weeks (young mice, n = 10) or 50-61 weeks (middle-aged mice, n = 12). After evaluating metabolic characteristics, peri-gonadal white AT was isolated and cultured to obtain EVs. AT-derived EV miRNAs were profiled using a NanoString miRNA panel (n = 599). RESULTS Middle-aged mice exhibited obesity regardless of diet. Young mice fed an HFD showed similar metabolic traits to middle-aged mice. In the NCD group, 131 differentially expressed miRNAs (DE-miRNAs) emerged in middle-aged mice compared to young mice, including miR-21, miR-148a, and miR-29a, associated with cancer, neuro/psychological disorders, and reproductive diseases. In the HFD group, 55 DE-miRNAs were revealed in middle-aged mice compared to young mice. These miRNAs were associated with significantly suppressed IGF1R activity. CONCLUSION This study demonstrates the potential significant impact of miRNAs of AT EVs on aging- and obesity-related diseases.
Collapse
Affiliation(s)
- Young-Eun Cho
- College of Nursing, The University of Iowa, 50 Newton Road, Iowa City, IA 52242, USA
| | - Shaoshuai Chen
- College of Nursing, The University of Iowa, 50 Newton Road, Iowa City, IA 52242, USA
| | - Keith Crouch
- College of Nursing, The University of Iowa, 50 Newton Road, Iowa City, IA 52242, USA
| | - Joseph Yun
- Predictiv Care, Inc., 800 West El Camino Real, Mountain View, CA 94040, USA
| | - Aloysius Klingelhutz
- Department of Microbiology and Immunology, College of Medicine, The University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Engin AB, Engin A. MicroRNAs as Epigenetic Regulators of Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:595-627. [PMID: 39287866 DOI: 10.1007/978-3-031-63657-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
12
|
Zhang JY, Ren CQ, Cao YN, Ren Y, Zou L, Zhou C, Peng LX. Role of MicroRNAs in Dietary Interventions for Obesity and Obesity-Related Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14396-14412. [PMID: 37782460 DOI: 10.1021/acs.jafc.3c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Obesity and related metabolic syndromes pose a serious threat to human health and quality of life. A proper diet is a safe and effective strategy to prevent and control obesity, thus maintaining overall health. However, no consensus exists on the connotations of proper diet, and it is attributed to various factors, including "nutritional dark matter" and the "matrix effect" of food. Accumulating evidence confirms that obesity is associated with the in vivo levels of miRNAs, which serve as potential markers and regulatory targets for obesity onset and progression; food-derived miRNAs can regulate host obesity by targeting the related genes or gut microbiota across the animal kingdom. Host miRNAs mediate food nutrient-gut microbiota-obesity interactions. Thus, miRNAs are important correlates of diet and obesity onset. This review outlines the recent findings on miRNA-mediated food interventions for obesity, thereby elucidating their potential applications. Overall, we provide new perspectives and views on the evaluation of dietary nutrition, which may bear important implications for dietary control and obesity prevention.
Collapse
Affiliation(s)
- Ji-Yue Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chao-Qin Ren
- Aba Teachers University, Wenchuan, Sichuan 623002, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chuang Zhou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
13
|
Zhang W, Jiang Y, He Y, Boucetta H, Wu J, Chen Z, He W. Lipid carriers for mRNA delivery. Acta Pharm Sin B 2023; 13:4105-4126. [PMID: 37799378 PMCID: PMC10547918 DOI: 10.1016/j.apsb.2022.11.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Messenger RNA (mRNA) is the template for protein biosynthesis and is emerging as an essential active molecule to combat various diseases, including viral infection and cancer. Especially, mRNA-based vaccines, as a new type of vaccine, have played a leading role in fighting against the current global pandemic of COVID-19. However, the inherent drawbacks, including large size, negative charge, and instability, hinder its use as a therapeutic agent. Lipid carriers are distinguishable and promising vehicles for mRNA delivery, owning the capacity to encapsulate and deliver negatively charged drugs to the targeted tissues and release cargoes at the desired time. Here, we first summarized the structure and properties of different lipid carriers, such as liposomes, liposome-like nanoparticles, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanoemulsions, exosomes and lipoprotein particles, and their applications in delivering mRNA. Then, the development of lipid-based formulations as vaccine delivery systems was discussed and highlighted. Recent advancements in the mRNA vaccine of COVID-19 were emphasized. Finally, we described our future vision and perspectives in this field.
Collapse
Affiliation(s)
- Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxin Jiang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yonglong He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Wu
- Department of Geriatric Cardiology, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
14
|
Liu C, Liu X, Li H, Kang Z. Advances in the regulation of adipogenesis and lipid metabolism by exosomal ncRNAs and their role in related metabolic diseases. Front Cell Dev Biol 2023; 11:1173904. [PMID: 37791070 PMCID: PMC10543472 DOI: 10.3389/fcell.2023.1173904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
Exosomes are membrane-bound extracellular vesicles released following the fusion of multivesicular bodies (MVBs) with the cell membrane. Exosomes transport diverse molecules, including proteins, lipids, DNA and RNA, and regulate distant intercellular communication. Noncoding RNA (ncRNAs) carried by exosomes regulate cell-cell communication in tissues, including adipose tissue. This review summarizes the action mechanisms of ncRNAs carried by exosomes on adipocyte differentiation and modulation of adipogenesis by exosomal ncRNAs. This study aims to provide valuable insights for developing novel therapeutics.
Collapse
Affiliation(s)
- Cong Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xilin Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong Li
- Department of Nursing, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhichen Kang
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Agamia NF, Sorror OA, Sayed NM, Ghazala RA, Echy SM, Moussa DH, Melnik BC. Overexpression of hypoxia-inducible factor-1α in hidradenitis suppurativa: the link between deviated immunity and metabolism. Arch Dermatol Res 2023; 315:2107-2118. [PMID: 36961533 PMCID: PMC10366312 DOI: 10.1007/s00403-023-02594-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/13/2023] [Accepted: 02/23/2023] [Indexed: 03/25/2023]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is the master transcription factor of glycolysis, Th17 cell differentiation and suppression of regulatory T cells. In the skin and serum of patients with psoriasis vulgaris, increased expression of HIF-1α has been reported, whereas HIF-1α expression in the skin and serum of patients with hidradenitis suppurativa (HS) has not yet been studied. The objective of the study is to demonstrate is there a role for HIF-1α in the pathogenesis of hidradenitis suppurativa, and its relation to HS severity. Twenty patients suffering from hidradenitis suppurativa were included in the study. Punch biopsies were taken from lesional skin for the determination of HIF-1α expression by immunohistochemical staining, and HIF-1α gene expression by quantitative reverse transcription real time PCR. Quantification of HIF-1α protein concentration was done by enzyme-linked immunosorbent assay. Twenty socio-demographically cross-matched healthy volunteers served as controls. We found increased serum levels of HIF-1α. Literature-derived evidence indicates that the major clinical triggering factors of HS, obesity, and smoking are associated with hypoxia and enhanced HIF-1α expression. Pro-inflammatory cytokines such as tumor necrosis factor-[Formula: see text] via upregulation of nuclear factor [Formula: see text]B enhance HIF-1α expression. HIF-1α plays an important role for keratinocyte proliferation, especially for keratinocytes of the anagen hair follicle, which requires abundant glycolysis providing sufficient precursors molecules for biosynthetic pathways. Metformin via inhibition of mTORC1 as well as adalimumab attenuate HIF-1α expression, the key mediator between Th17-driven deviated immunity and keratinocyte hyperproliferation. In accordance with psoriasis, our study identifies HS as an HIF-1α-driven inflammatory skin disease and offers a new rationale for the prevention and treatment of HS by targeting HIF-1[Formula: see text] overexpression.
Collapse
Affiliation(s)
- Naglaa Fathi Agamia
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Osama Ahmed Sorror
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Naglaa Mohamed Sayed
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Rasha Abdelmawla Ghazala
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Sammar Mohamed Echy
- Department of Clinical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Doaa Helmy Moussa
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Bodo Clemens Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
16
|
Zhong Y, Wang X, Zhao X, Shen J, Wu X, Gao P, Yang P, Chen J, An W. Multifunctional Milk-Derived Small Extracellular Vesicles and Their Biomedical Applications. Pharmaceutics 2023; 15:1418. [PMID: 37242660 PMCID: PMC10223436 DOI: 10.3390/pharmaceutics15051418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, small extracellular vesicles (sEVs) have been regarded as the next generation of novel delivery systems after lipid nanoparticles because of their advantages and huge prospects in drug delivery. Studies have shown that sEVs are abundant in milk and therefore can be a large and economical source of sEVs. Natural milk-derived small extracellular vesicles (msEVs) have important functions such as immune regulation, anti-bacterial infection, anti-oxidative, etc., and play a beneficial role in human health at multiple levels, including intestinal health, bone/muscle metabolism, and microbiota regulation. In addition, because they can pass the gastrointestinal barrier and have low immunogenicity, good biocompatibility, and stability, msEVs are considered a crucial oral drug delivery vehicle. Moreover, msEVs can be further engineered for targeted delivery to prolong the circulation time or enhance local drug concentrations. However, msEVs separation and purification, complex contents, and quality control hinder their application in drug delivery. This paper provides a comprehensive review of the biogenesis and characteristics, isolation and purification, composition, loading methods, and function of msEVs, based on which their applications in biomedical fields are further explored.
Collapse
Affiliation(s)
- Youxiu Zhong
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xudong Wang
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xian Zhao
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Jiuheng Shen
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xue Wu
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Peifen Gao
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Peng Yang
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Junge Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing 100083, China
| | - Wenlin An
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| |
Collapse
|
17
|
Nguyen HD, Kim MS. The Effects of a Mixture of Cadmium, Lead, and Mercury on Metabolic Syndrome and Its Components, as well as Cognitive Impairment: Genes, MicroRNAs, Transcription Factors, and Sponge Relationships : The Effects of a Mixture of Cadmium, Lead, and Mercury on Metabolic Syndrome and Its Components, as well as Cognitive Impairment: Genes, MicroRNAs, Transcription Factors, and Sponge Relationships. Biol Trace Elem Res 2023; 201:2200-2221. [PMID: 35798913 DOI: 10.1007/s12011-022-03343-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/21/2022] [Indexed: 01/11/2023]
Abstract
Converging evidence indicates heavy metal-induced genes, transcription factors (TFs), and microRNAs (miRNAs) are critical pathological components of metabolic syndrome (MetS) and cognitive impairment. Thus, our goals are to identify the interaction of mixed heavy metals (cadmium + lead + mercury) with genes, TFs, and miRNAs involved in MetS and its components, as well as cognitive impairment development. The most commonly retrieved genes for each disease were different, but essential biological pathways such as oxidative stress, altered lipoprotein metabolism, fluid shear stress and atherosclerosis, apoptosis, the IL-6 signaling pathway, and Alzheimer's disease were highlighted. The genes CASP3, BAX, BCL2, IL6, TNF, APOE, HMOX1, and IGF were found to be mutually affected by the heavy metal mixture studied, suggesting the importance of apoptosis, inflammation, lipid, heme, and glucose metabolism in MetS and cognitive impairment, as well as the potentiality of targeting these genes in prospective therapeutic intervention for these diseases. EGR2, ATF3, and NFE2L2 were noted as the most key TFs implicated in the etiology of MetS and its components, as well as cognitive impairment. We also found six miRNAs induced by studied heavy metals were the mutual miRNAs linked to MetS, its components, and cognitive impairment. In particular, we used miRNAsong to construct and verify a miRNA sponge sequence for these miRNAs. These sponges are promising molecules for the treatment of MetS and its components, as well as cognitive impairment.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
18
|
Bao K, Jiao Y, Xing L, Zhang F, Tian F. The role of wnt signaling in diabetes-induced osteoporosis. Diabetol Metab Syndr 2023; 15:84. [PMID: 37106471 PMCID: PMC10141960 DOI: 10.1186/s13098-023-01067-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoporosis, a chronic complication of diabetes mellitus, is characterized by a reduction in bone mass, destruction of bone microarchitecture, decreased bone strength, and increased bone fragility. Because of its insidious onset, osteoporosis renders patients highly susceptible to pathological fractures, leading to increased disability and mortality rates. However, the specific pathogenesis of osteoporosis induced by chronic hyperglycemia has not yet been fully elucidated. But it is currently known that the disruption of Wnt signaling triggered by chronic hyperglycemia is involved in the pathogenesis of diabetic osteoporosis. There are two main types of Wnt signaling pathways, the canonical Wnt signaling pathway (β-catenin-dependent) and the non-canonical Wnt signaling pathway (non-β-catenin-dependent), both of which play an important role in regulating the balance between bone formation and bone resorption. Therefore, this review systematically describes the effects of abnormal Wnt pathway signaling on bone homeostasis under hyperglycemia, hoping to reveal the relationship between Wnt signaling and diabetic osteoporosis to further improve understanding of this disease.
Collapse
Affiliation(s)
- Kairan Bao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China.
| | - Yinghua Jiao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| | - Lei Xing
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Fang Zhang
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Faming Tian
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| |
Collapse
|
19
|
Chen R, Yang H, Dai J, Zhang M, Lu G, Zhang M, Yu H, Zheng M, He Q. The biological functions of maternal-derived extracellular vesicles during pregnancy and lactation and its impact on offspring health. Clin Nutr 2023; 42:493-504. [PMID: 36857958 DOI: 10.1016/j.clnu.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
During pregnancy and lactation, mothers provide not only nutrients, but also many bioactive components for their offspring through placenta and breast milk, which are essential for offspring development. Extracellular vesicles (EVs) are nanovesicles containing a variety of biologically active molecules and participate in the intercellular communication. In the past decade, an increasing number of studies have reported that maternal-derived EVs play a crucial role in offspring growth, development, and immune system establishment. Hereby, we summarized the characteristics of EVs; biological functions of maternal-derived EVs during pregnancy, including implantation, decidualization, placentation, embryo development and birth of offspring; biological function of breast milk-derived EVs (BMEs) on infant oral and intestinal diseases, immune system, neurodevelopment, and metabolism. In summary, emerging studies have revealed that maternal-derived EVs play a pivotal role in offspring health. As such, maternal-derived EVs may be used as promising biomarkers in offspring disease diagnosis and treatment. However, existing research on maternal-derived EVs and offspring health is largely limited to animal and cellular studies. Evidence from human studies is needed.
Collapse
Affiliation(s)
- Rui Chen
- School of Public Health, Wuhan University, Wuhan, China
| | | | - Jie Dai
- School of Public Health, Wuhan University, Wuhan, China
| | - Minzhe Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Gaolei Lu
- School of Public Health, Wuhan University, Wuhan, China
| | - Minjie Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Hongjie Yu
- School of Public Health, Wuhan University, Wuhan, China
| | - Miaobing Zheng
- School of Nutrition and Exercise, Deakin University, Melbourne, Australia
| | - Qiqiang He
- School of Public Health, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China; Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Abbas MA, Al-Saigh NN, Saqallah FG. Regulation of adipogenesis by exosomal milk miRNA. Rev Endocr Metab Disord 2023; 24:297-316. [PMID: 36692804 DOI: 10.1007/s11154-023-09788-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Milk is a rich source of miRNA packaged in exosomes. Evidence for the systemic uptake and tissue distribution of milk exosomes was reported in newborn and adult humans and animals. Breastfeeding in infants was associated with a reduced risk of obesity. Numerous adipogenesis-related miRNAs have been detected in human milk exosomes. It has been demonstrated that ingested exosomal milk miRNAs may alter gene expression in offspring to regulate their metabolism and growth. In humans, consumption of other species' milk, such as cows and goats, is continued through adulthood. Since miRNAs are conserved, the concern of cross-species transfer of adipogenic miRNA has been raised in recent years, and the increase in obesity worldwide was attributed partially to dairy milk consumption by humans. However, evidence is still weak. Research emphasizes the need for an adequate number of exosomal milk's miRNAs to reach the target cell for biological action to be achieved. It was reported that obese women's milk had less miRNA-148a and miRNA-30b, which may affect the fat acquisition of their babies. Some exosomal milk miRNAs, such as miRNA-29, miRNA-148, miRNA-30b and miRNA-125b, may have epigenetic effects on milk recipients. Moreover, the ability of milk exosomes to cross the gastrointestinal barrier makes them a promising oral drug delivery tool. Yet, exosomes may also be tagged with specific ligands which target certain tissues. Thus, milk exosomes can be engineered and loaded with certain miRNAs responsible for adipocyte differentiation, conversion, or browning. Modifications in the miRNA cargo of exosomes can benefit human health and be an alternative to traditional drugs.
Collapse
Affiliation(s)
- Manal A Abbas
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan.
- Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan.
| | - Noor Nadhim Al-Saigh
- Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Siences, Amman, 11104, Jordan
| | - Fadi G Saqallah
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
21
|
Kim IK, Song BW, Lim S, Kim SW, Lee S. The Role of Epicardial Adipose Tissue-Derived MicroRNAs in the Regulation of Cardiovascular Disease: A Narrative Review. BIOLOGY 2023; 12:498. [PMID: 37106699 PMCID: PMC10135702 DOI: 10.3390/biology12040498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Cardiovascular diseases have been leading cause of death worldwide for many decades, and obesity has been acknowledged as a risk factor for cardiovascular diseases. In the present review, human epicardial adipose tissue-derived miRNAs reported to be differentially expressed under pathologic conditions are discussed and summarized. The results of the literature review indicate that some of the epicardial adipose tissue-derived miRNAs are believed to be cardioprotective, while some others show quite the opposite effects depending on the underlying pathologic conditions. Furthermore, they suggest that that the epicardial adipose tissue-derived miRNAs have great potential as both a diagnostic and therapeutic modality. Nevertheless, mainly due to highly limited availability of human samples, it is very difficult to make any generalized claims on a given miRNA in terms of its overall impact on the cardiovascular system. Therefore, further functional investigation of a given miRNA including, but not limited to, the study of its dose effect, off-target effects, and potential toxicity is required. We hope that this review can provide novel insights to transform our current knowledge on epicardial adipose tissue-derived miRNAs into clinically viable therapeutic strategies for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Sang-Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| |
Collapse
|
22
|
Bilinska A, Pszczola M, Stachowiak M, Stachecka J, Garbacz F, Aksoy MO, Szczerbal I. Droplet Digital PCR Quantification of Selected Intracellular and Extracellular microRNAs Reveals Changes in Their Expression Pattern during Porcine In Vitro Adipogenesis. Genes (Basel) 2023; 14:genes14030683. [PMID: 36980955 PMCID: PMC10047974 DOI: 10.3390/genes14030683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Extracellular miRNAs have attracted considerable interest because of their role in intercellular communication, as well as because of their potential use as diagnostic and prognostic biomarkers for many diseases. It has been shown that miRNAs secreted by adipose tissue can contribute to the pathophysiology of obesity. Detailed knowledge of the expression of intracellular and extracellular microRNAs in adipocytes is thus urgently required. The system of in vitro differentiation of mesenchymal stem cells (MSCs) into adipocytes offers a good model for such an analysis. The aim of this study was to quantify eight intracellular and extracellular miRNAs (miR-21a, miR-26b, miR-30a, miR-92a, miR-146a, miR-148a, miR-199, and miR-383a) during porcine in vitro adipogenesis using droplet digital PCR (ddPCR), a highly sensitive method. It was found that only some miRNAs associated with the inflammatory process (miR-21a, miR-92a) were highly expressed in differentiated adipocytes and were also secreted by cells. All miRNAs associated with adipocyte differentiation were highly abundant in both the studied cells and in the cell culture medium. Those miRNAs showed a characteristic expression profile with upregulation during differentiation.
Collapse
|
23
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
24
|
Alternative Methods as Tools for Obesity Research: In Vitro and In Silico Approaches. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010108. [PMID: 36676057 PMCID: PMC9860640 DOI: 10.3390/life13010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
The study of adipogenesis is essential for understanding and treating obesity, a multifactorial problem related to body fat accumulation that leads to several life-threatening diseases, becoming one of the most critical public health problems worldwide. In this review, we propose to provide the highlights of the adipogenesis study based on in vitro differentiation of human mesenchymal stem cells (hMSCs). We list in silico methods, such as molecular docking for identification of molecular targets, and in vitro approaches, from 2D, more straightforward and applied for screening large libraries of substances, to more representative physiological models, such as 3D and bioprinting models. We also describe the development of physiological models based on microfluidic systems applied to investigate adipogenesis in vitro. We intend to identify the main alternative models for adipogenesis evaluation, contributing to the direction of preclinical research in obesity. Future directions indicate the association of in silico and in vitro techniques to bring a clear picture of alternative methods based on adipogenesis as a tool for obesity research.
Collapse
|
25
|
Chiba T, Takaguri A, Kooka A, Kowatari K, Yoshizawa M, Fukushi Y, Hongo F, Sato H, Fujisawa M, Wada S, Maeda T. Suppression of milk-derived miR-148a caused by stress plays a role in the decrease in intestinal ZO-1 expression in infants. Clin Nutr 2022; 41:2691-2698. [PMID: 36343560 DOI: 10.1016/j.clnu.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/17/2022] [Accepted: 10/09/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS Milk-derived miR-148a-3p (miR-148a), which is abundant in breast milk, has been shown to be associated with the development of infants' intestines. Although it is well known that stress during lactation changes milk constituents in terms of lipid and protein, no studies have examined the influence of stress on miR-148a expression in breast milk. The objective of this study is to investigate the relationship between stress and miR-148a expression in milk, and to evaluate whether the changes in milk-derived miR-148a expression-caused by the mother's exposure to stress-influence intestinal ZO-1 expression in infants. METHODS The participants of this study were healthy Japanese women who were nursing. Psychological stress evaluation of the subjects was conducted using a short form of the Profile of Mood State Second Edition-Adult (POMS-2). Additionally, miR-148a expressions in restraint stressed nursing mice were investigated using quantitative real-time PCR. The levels of a tight junction protein zonula occludens-1 (ZO-1) and DNA methyltransferase 1 (DNMT1), which is a direct target of miR-148a, in ileum in neonatal mice breastfed by stressed nursing mice were investigated using Western blot. Furthermore, to investigate the influence of miR-148a on ZO-1 expression within the intestine, the levels of ZO-1 and DNMT1 in human intestinal epithelial Caco-2 cells with lentivirus-mediated miR-148a overexpression were evaluated. RESULTS A significantly negative correlation was observed between relative miR-148a expression in breast milk and the total mood disturbance T-score. Each T-score on negative mood subscales of anger-hostility, confusion-bewilderment, depression-dejection, fatigue-inertia, and tension-anxiety was significantly negatively correlated with relative miR-148a expression in breast milk: a positive mood subscale vigor-activity T-score was significantly positively correlated with relative miR-148a expression in breast milk. A positive mood friendliness T-score, estimated separately from other scores, was significantly positively correlated with relative miR-148a expression in breast milk. Additionally, the relative expression of miR-148a in the milk obtained from stressed mice was significantly lower than that of control mice. The relative level of ZO-1 in ileum of neonatal mice nursed by stressed mice was significantly lower than that of neonatal mice nursed by control mice. Additionally, the relative level of DNMT1 in ileum of neonatal mice nursed by stressed mice was significantly higher than that of neonatal mice nursed by control mice. Furthermore, the relative level of ZO-1 in miR-148a-overexpressed Caco-2 cells was significantly higher than that in control cells. The relative level of DNMT1 in miR-148a-overexpressed Caco-2 cells was significantly lower than that in control cells. CONCLUSIONS Mothers' exposure to stress during lactation may cause miR-148a expression in breast milk. Additionally, stressed-induced suppression of miR-148a expression in breast milk may cause a decrease in intestinal ZO-1 level via the increase in DNMT1 in infants' intestines. These observations are beneficial information for breastfeeding mothers and their families and perinatal medical professionals. Our findings encourage monitoring maternal psychological stress during lactation to promote breastfeeding and adequate infant nutrition.
Collapse
Affiliation(s)
- Takeshi Chiba
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan.
| | - Akira Takaguri
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Aya Kooka
- Department of Pharmacy, Teine Keijinkai Hospital, 12-1-10, Maeda 1-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Kiyoko Kowatari
- Department of Nursing, Teine Keijinkai Hospital, 12-1-10, Maeda 1-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Megumi Yoshizawa
- Department of Nursing, Teine Keijinkai Hospital, 12-1-10, Maeda 1-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Yoshiyuki Fukushi
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, 12-1-10, Maeda 1-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Fuminori Hongo
- Department of Pharmacy, Teine Keijinkai Hospital, 12-1-10, Maeda 1-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Hideki Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Miho Fujisawa
- Center for Liberal Arts and Sciences, Iwate Medical University, 1-1-1, Idaidori, Yahaba-cho, Shiwagun, Iwate, Japan
| | - Shinichiro Wada
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, 12-1-10, Maeda 1-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Tomoji Maeda
- Department of Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, Kitaadachi-gun, Saitama-shi, Japan
| |
Collapse
|
26
|
Voynova E, Kulebyakin K, Grigorieva O, Novoseletskaya E, Basalova N, Alexandrushkina N, Arbatskiy M, Vigovskiy M, Sorokina A, Zinoveva A, Bakhchinyan E, Kalinina N, Akopyan Z, Tkachuk V, Tyurin-Kuzmin P, Efimenko A. Declined adipogenic potential of senescent MSCs due to shift in insulin signaling and altered exosome cargo. Front Cell Dev Biol 2022; 10:1050489. [PMID: 36467400 PMCID: PMC9714334 DOI: 10.3389/fcell.2022.1050489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) maintain cellular homeostasis and regulate tissue renewal and repair both by differentiating into mesodermal lineage, e.g., adipocytes, or managing the functions of differentiated cells. Insulin is a key physiological inducer of MSC differentiation into adipocytes, and disturbances in MSC insulin sensitivity could negatively affect adipose tissue renewal. During aging, regulation and renewal of adipose tissue cells may be disrupted due to the altered insulin signaling and differentiation potential of senescent MSCs, promoting the development of serious metabolic diseases, including metabolic syndrome and obesity. However, the potential mechanisms mediating the dysfunction of adipose-derived senescent MSC remains unclear. We explored whether aging could affect the adipogenic potential of human adipose tissue-derived MSCs regulated by insulin. Age-associated senescent MSCs (isolated from donors older than 65 years) and MSCs in replicative senescence (long-term culture) were treated by insulin to induce adipogenic differentiation, and the efficiency of the process was compared to MSCs from young donors. Insulin-dependent signaling pathways were explored in these cells. We also analyzed the involvement of extracellular vesicles secreted by MSCs (MSC-EVs) into the regulation of adipogenic differentiation and insulin signaling of control and senescent cells. Also the microRNA profiles of MSC-EVs from aged and young donors were compared using targeted PCR arrays. Both replicatively and chronologically senescent MSCs showed a noticeably decreased adipogenic potential. This was associated with insulin resistance of MSCs from aged donors caused by the increase in the basal level of activation of crucial insulin-dependent intracellular effectors ERK1/2 and Akt. To assess the impact of the paracrine cross-talk of MSCs, we analyzed microRNAs profile differences in MSC-EVs and revealed that senescent MSCs produced EVs with increased content of miRNAs targeting components of insulin-dependent signaling cascade PTEN, MAPK1, GAREM1 and some other targets. We also confirmed these data by differentiation of control MSCs in the presence of EVs from senescent cells and vice versa. Thus, aging attenuated the adipogenic potential of MSCs due to autocrine or paracrine-dependent induction of insulin resistance associated with the specific changes in MSC-EV cargo.
Collapse
Affiliation(s)
- Elizaveta Voynova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Elizaveta Voynova, ; Pyotr Tyurin-Kuzmin, ; Anastasia Efimenko,
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia,Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Novoseletskaya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail Arbatskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Vigovskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Sorokina
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Zinoveva
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Natalia Kalinina
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Zhanna Akopyan
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Elizaveta Voynova, ; Pyotr Tyurin-Kuzmin, ; Anastasia Efimenko,
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Elizaveta Voynova, ; Pyotr Tyurin-Kuzmin, ; Anastasia Efimenko,
| |
Collapse
|
27
|
Huber MA, Nadella S, Cao H, Kallakury B, Tucker RD, Gay MD, Shivapurkar N, Edmondson EF, Yue Y, Dou W, Fang HB, Smith JP. Does Chronic Use of High Dose Proton Pump Inhibitors Increase Risk for Pancreatic Cancer? Pancreas 2022; 51:1118-1127. [PMID: 37078934 PMCID: PMC10119745 DOI: 10.1097/mpa.0000000000002145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
OBJECTIVES To analyze whether use of proton pump inhibitors increase the risk for pancreatic cancer in a mouse model and human clinical cohorts. METHODS p48-Cre/LSL-KrasG12D mice that develop precancerous pancreatic intraepithelial neoplasia (PanINs) were treated with low- or high-dose proton pump inhibitors (PPIs) orally for 1 and 4 months. The mechanism for the cholecystokinin receptor 2 (CCK-2R) activation was investigated in vitro. Two resources were employed to analyze the risk of pancreatic cancer in human subjects with PPI use. RESULTS Serum gastrin levels were increased 8-fold (P < 0.0001) in mice treated with chronic high-dose PPIs, and this change correlated with an increase (P = 0.02) in PanIN grade and the development of microinvasive cancer. The CCK-2R expression was regulated by microRNA-148a in the p48-Cre/LSL-KrasG12D mice pancreas and in human pancreatic cancer cells in vitro. Proton pump inhibitor consumption in human subjects was correlated with pancreatic cancer risk (odds ratio, 1.54). A validation analysis conducted using the large-scale United Kingdom Biobank database confirmed the correlation (odds ratio, 1.9; P = 0.00761) of pancreatic cancer risk with PPI exposure. CONCLUSIONS This investigation revealed in both murine models and human subjects, PPI use is correlated with a risk for development of pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | - Robin D Tucker
- Department of Pathology, Georgetown University, Washington, DC
| | | | | | | | - Yuanzhen Yue
- Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC
| | - Wenyu Dou
- Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC
| | - Hong-Bin Fang
- Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC
| | | |
Collapse
|
28
|
Zhang H, Qiao L, Liu X, Han X, Kang J, Liu Y, Lin J, Yan X. Differential expression of Ago2-mediated microRNA signaling in adipose tissue is associated with food-induced obesity. FEBS Open Bio 2022; 12:1828-1838. [PMID: 36062491 PMCID: PMC9527595 DOI: 10.1002/2211-5463.13471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue is a major component for the regulation of energy homeostasis by storage and release of lipids. As a core element of RNA-induced silencing complex, argonaute2 (Ago2) plays critical role in maintenance of systemic metabolic demand. Here, we show that high-fat-diet-fed mice exhibit an increase in body mass alongside systematic insulin resistance and altered rate of energy expenditure. Interestingly, Ago2 expression is associated with obesity and an increased amount of adipose tissue. Moreover, increased levels of Ago2 inhibited the expression of AMPKα by promoting its targeting by miR-148a, the most abundant microRNA in adipose tissues. Those results suggested that Ago2-miR-148a-AMPKα signaling pathway play an important function in the developing obesity and adiposity, and will further provide basic research data for the potential clinical treatment of obesity.
Collapse
Affiliation(s)
- Hansi Zhang
- School of Life Science and TechnologyXinxiang Medical UniversityChina,Stem Cell and Biotherapy Technology Research CenterXinxiang Medical UniversityChina
| | - Liang Qiao
- School of Life Science and TechnologyXinxiang Medical UniversityChina,Stem Cell and Biotherapy Technology Research CenterXinxiang Medical UniversityChina,Henan Joint International Research Laboratory of Stem Cell MedicineXinxiang Medical UniversityChina
| | - Xiaoxuan Liu
- School of Life Science and TechnologyXinxiang Medical UniversityChina,Stem Cell and Biotherapy Technology Research CenterXinxiang Medical UniversityChina
| | - Xiaojing Han
- School of Life Science and TechnologyXinxiang Medical UniversityChina,Stem Cell and Biotherapy Technology Research CenterXinxiang Medical UniversityChina
| | - Jing Kang
- School of Life Science and TechnologyXinxiang Medical UniversityChina
| | - Yanli Liu
- School of Life Science and TechnologyXinxiang Medical UniversityChina,Stem Cell and Biotherapy Technology Research CenterXinxiang Medical UniversityChina,Henan Joint International Research Laboratory of Stem Cell MedicineXinxiang Medical UniversityChina
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research CenterXinxiang Medical UniversityChina,Henan Joint International Research Laboratory of Stem Cell MedicineXinxiang Medical UniversityChina
| | - Xin Yan
- School of Life Science and TechnologyXinxiang Medical UniversityChina,Stem Cell and Biotherapy Technology Research CenterXinxiang Medical UniversityChina,Henan Joint International Research Laboratory of Stem Cell MedicineXinxiang Medical UniversityChina
| |
Collapse
|
29
|
Human Milk Extracellular Vesicles: A Biological System with Clinical Implications. Cells 2022; 11:cells11152345. [PMID: 35954189 PMCID: PMC9367292 DOI: 10.3390/cells11152345] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
The consumption of human milk by a breastfeeding infant is associated with positive health outcomes, including lower risk of diarrheal disease, respiratory disease, otitis media, and in later life, less risk of chronic disease. These benefits may be mediated by antibodies, glycoproteins, glycolipids, oligosaccharides, and leukocytes. More recently, human milk extracellular vesicles (hMEVs) have been identified. HMEVs contain functional cargos, i.e., miRNAs and proteins, that may transmit information from the mother to promote infant growth and development. Maternal health conditions can influence hMEV composition. This review summarizes hMEV biogenesis and functional contents, reviews the functional evidence of hMEVs in the maternal–infant health relationship, and discusses challenges and opportunities in hMEV research.
Collapse
|
30
|
Hutny M, Hofman J, Zachurzok A, Matusik P. MicroRNAs as the promising markers of comorbidities in childhood obesity-A systematic review. Pediatr Obes 2022; 17:e12880. [PMID: 34918493 PMCID: PMC9285424 DOI: 10.1111/ijpo.12880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/01/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Rising child obesity rate creates a need for tools quantifying changes in children suffering from obesity, for purposes of detection or prevention of comorbidities. A candidate for such a role seems to be microRNAs, which in vivo serve as the suppressing factors in gene expression. OBJECTIVES This study aimed at reviewing recent discoveries in this field and concluding directions of research or application of studied molecules. METHODS Repeated browsing of databases and screening of results, led to final approval of 16 articles. Filtered studies examined differences in microRNA expression between subjects with obesity and children suffering from its comorbidities. RESULTS Studies concerning endothelial dysfunction identified molecules miR-320a and miR-630 as a possible diagnosis and treatment option. Search for the alternative markers in diagnosis of non-alcoholic fatty liver disease suggested value of molecules: miR-199a-5p and miR-122. miR-486, miR-146b, and miR-15b may serve in grading the development of type 2 diabetes in children, although further research raised doubts. Panel of molecules was indicated as useful in early detection of metabolic syndrome and insulin resistance associated alterations. No valid link between studied microRNAs and atherosclerosis was found. CONCLUSIONS MicroRNAs seem to be promising prognostic markers for diagnosis of endothelial dysfunction, non-alcoholic fatty liver disease, type 2 diabetes, metabolic syndrome and insulin resistance in children.
Collapse
Affiliation(s)
- Michał Hutny
- Scientific Society of Medical Students, Faculty of Medical Sciences in KatowiceMedical University of SilesiaKatowicePoland
| | - Jagoda Hofman
- Scientific Society of Medical Students, Faculty of Medical Sciences in KatowiceMedical University of SilesiaKatowicePoland
| | - Agnieszka Zachurzok
- Department of Pediatrics, Faculty of Medical Sciences in ZabrzeMedical University of SilesiaKatowicePoland
| | - Paweł Matusik
- Department of Pediatrics, Pediatric Obesity and Metabolic Bone Diseases, Chair of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in KatowiceMedical University of SilesiaKatowicePoland
| |
Collapse
|
31
|
Rubbi L, Zhang H, Feng J, He C, Kurnia P, Ratan P, Tammana A, House S, Thompson M, Farrell C, Snir S, Stahler D, Ostrander EA, vonHoldt BM, Pellegrini M. The effects of age, sex, weight, and breed on canid methylomes. Epigenetics 2022; 17:1497-1512. [PMID: 35502722 PMCID: PMC9586589 DOI: 10.1080/15592294.2022.2069385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Unlike genomes, which are static throughout the lifespan of an organism, DNA methylomes are dynamic. To study these dynamics, we developed quantitative models that measure the effect of multiple factors on DNA methylomes including, age, sex, weight, and genetics. We conducted our study in canids, which prove to be an ideal species to assess epigenetic moderators due to their extreme variability in size and well-characterized genetic structure. We collected buccal swabs from 217 canids (207 domestic dogs and 10 grey wolves) and used targeted bisulphite sequencing to measure methylomes. We also measured genotypes at over one thousand single nucleotide polymorphisms (SNPs). As expected, we found that DNA methylomes are strongly associated with age, enabling the construction of epigenetic clocks. However, we also identify novel associations between methylomes and sex, weight, and sterilization status, leading to accurate models that predict these factors. Methylomes are also affected by genetics, and we observe multiple associations between SNP loci and methylated CpGs. Finally, we show that several factors moderate the relationship between epigenetic ages and real ages, such as body weight, which increases epigenetic ageing. In conclusion, we demonstrate that the plasticity of DNA methylomes is impacted by myriad genetics and physiological factors, and that DNA methylation biomarkers are accurate predictors of age, sex and sterilization status.
Collapse
Affiliation(s)
- Liudmilla Rubbi
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Haoxuan Zhang
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Junxi Feng
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher He
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Patrick Kurnia
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Prashansa Ratan
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Aakash Tammana
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sabina House
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Thompson
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Colin Farrell
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sagi Snir
- Department Evolutionary and Environmental Biology, University of Haifa, Israel
| | - Daniel Stahler
- Yellowstone Center for Resources, Yellowstone National Park, Wyo, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, CA, USA
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
32
|
Sheng W, Jiang H, Yuan H, Li S. miR‑148a‑3p facilitates osteogenic differentiation of fibroblasts in ankylosing spondylitis by activating the Wnt pathway and targeting DKK1. Exp Ther Med 2022; 23:365. [PMID: 35493425 PMCID: PMC9019766 DOI: 10.3892/etm.2022.11292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory form of arthritis. MicroRNAs (miRNAs) have been identified to serve as therapeutic targets in various inflammatory diseases. The aim of the present study was to determine the functional mechanism of miR-148a-3p on AS. Specimens were collected from AS patients and non-AS patients. Fibroblasts were delivered with the aid of miR-148a-3p inhibitor. Cell staining was performed to observe the morphological changes, calcified nodules, and mineralization degree. The binding sites of miR-148a-3p and DKK1 were predicted on the Starbase website and subsequently verified by means of dual-luciferase reporter assay. AS fibroblasts with silenced miR-148a-3p were transfected with si-DKK1. Levels of RUNX2 and Osteocalcin, DKK1 and Wnt1 protein and phosphorylation level of β-catenin were detected by means of western blot analysis. Results of the present study denoted that AS upregulated miR-148a-3p in fibroblasts to exacerbate osteogenic differentiation, resulting in increased calcified nodules and mineralization degree. Silencing miR-148a-3p could reverse the upregulation of RUNX2 and Osteocalcin in AS fibroblasts and reduce the calcified nodules and mineralization degree. miR-148a-3p targeted DKK1. DKK1 knockdown averted the effect of silencing miR-148a-3p in AS fibroblasts. In addition, silencing miR-148a-3p reversed the upregulation of Wnt1 and β-catenin proteins in AS fibroblasts. To conclude, miR-148a-3p exacerbated the osteogenic differentiation of AS fibroblasts by inhibiting DKK1 expression and activating the Wnt pathway.
Collapse
Affiliation(s)
- Wenbo Sheng
- Department of Spine Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Haitao Jiang
- Department of Spine Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Hantao Yuan
- Department of Spine Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Sibo Li
- Department of Spine Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
33
|
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Feldo M, Kocki J, Bogucka-Kocka A. Relationships between Indicators of Lower Extremity Artery Disease and miRNA Expression in Peripheral Blood Mononuclear Cells. J Clin Med 2022; 11:1619. [PMID: 35329950 PMCID: PMC8948757 DOI: 10.3390/jcm11061619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022] Open
Abstract
Lower extremity artery disease (LEAD) is an underdiagnosed and globally underestimated vascular disease caused by the progressive and chronic formation of atherosclerotic plaques in the arteries of the lower limbs. Much evidence indicates that the abnormal course of pathophysiological processes underlying LEAD development is associated with altered miRNA modulatory function. In the presented study, relationships between miRNA expression and clinical indicators of this disease (ABI, claudication distance, length of arterial occlusion, Rutherford category, and plaque localization) were identified. MiRNA expression profiles were obtained using next-generation sequencing in peripheral blood mononuclear cells (PBMCs) of 40 LEAD patients. Correlation analysis performed using the Spearman rank correlation test revealed miRNAs related to ABI, claudication distance, and length of arterial occlusion. In the DESeq2 analysis, five miRNAs were found to be dysregulated in patients with Rutherford category 3 compared to patients with Rutherford category 2. No miRNAs were found to be differentially expressed between patients with different plaque localizations. Functional analysis performed using the miRNet 2.0 website tool determined associations of selected miRNAs with processes underlying vascular pathology, such as vascular smooth muscle cell differentiation, endothelial cell apoptosis, response to hypoxia, inflammation, lipid metabolism, and circadian rhythm. The most enriched functional terms for genes targeted by associated miRNAs were linked to regulation of the cell cycle, regulation of the transcription process, and nuclear cellular compartment. In conclusion, dysregulations of miRNA expression in PBMCs of patients with LEAD are indicative of the disease and could potentially be used in the prediction of LEAD progression.
Collapse
Affiliation(s)
- Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Karol P. Ruszel
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA;
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| |
Collapse
|
34
|
Emerging Roles of Non-Coding RNAs in the Feed Efficiency of Livestock Species. Genes (Basel) 2022; 13:genes13020297. [PMID: 35205343 PMCID: PMC8872339 DOI: 10.3390/genes13020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
A global population of already more than seven billion people has led to an increased demand for food and water, and especially the demand for meat. Moreover, the cost of feed used in animal production has also increased dramatically, which requires animal breeders to find alternatives to reduce feed consumption. Understanding the biology underlying feed efficiency (FE) allows for a better selection of feed-efficient animals. Non-coding RNAs (ncRNAs), especially micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs), play important roles in the regulation of bio-logical processes and disease development. The functions of ncRNAs in the biology of FE have emerged as they participate in the regulation of many genes and pathways related to the major FE indicators, such as residual feed intake and feed conversion ratio. This review provides the state of the art studies related to the ncRNAs associated with FE in livestock species. The contribution of ncRNAs to FE in the liver, muscle, and adipose tissues were summarized. The research gap of the function of ncRNAs in key processes for improved FE, such as the nutrition, heat stress, and gut–brain axis, was examined. Finally, the potential uses of ncRNAs for the improvement of FE were discussed.
Collapse
|
35
|
Kornmueller K, Amri EZ, Scheideler M, Prassl R. Delivery of miRNAs to the adipose organ for metabolic health. Adv Drug Deliv Rev 2022; 181:114110. [PMID: 34995679 DOI: 10.1016/j.addr.2021.114110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Despite the increasing prevalence of obesity and diabetes, there is no efficient treatment to combat these epidemics. The adipose organ is the main site for energy storage and plays a pivotal role in whole body lipid metabolism and energy homeostasis, including remodeling and dysfunction of adipocytes and adipose tissues in obesity and diabetes. Thus, restoring and balancing metabolic functions in the adipose organ is in demand. MiRNAs represent a novel class of drugs and drug targets, as they are heavily involved in the regulation of many cellular and metabolic processes and diseases, likewise in adipocytes. In this review, we summarize key regulatory activities of miRNAs in the adipose organ, discuss various miRNA replacement and inhibition strategies, promising delivery systems for miRNAs and reflect the future of novel miRNA-based therapeutics to target adipose tissues with the ultimate goal to combat metabolic disorders.
Collapse
Affiliation(s)
- Karin Kornmueller
- Department of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | | | - Marcel Scheideler
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ruth Prassl
- Department of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Austria.
| |
Collapse
|
36
|
Silveira A, Gomes J, Roque F, Fernandes T, de Oliveira EM. MicroRNAs in Obesity-Associated Disorders: The Role of Exercise Training. Obes Facts 2022; 15:105-117. [PMID: 35051942 PMCID: PMC9021631 DOI: 10.1159/000517849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
Obesity is a worldwide epidemic affecting over 13% of the adult population and is defined by an excess of body fat that predisposes comorbidities. It is considered a multifactorial disease in which environmental and genetic factors interact, and it is a risk marker for cardiovascular disease. Lifestyle modifications remain the mainstay of treatment for obesity based on adequate diet and physical exercise. In addition, obesity is related to cardiovascular and skeletal muscle disorders, such as cardiac hypertrophy, microvascular rarefaction, and skeletal muscle atrophy. The discovery of obesity-involved molecular pathways is an important step to improve both the prevention and management of this disease. MicroRNAs (miRNAs) are a class of gene regulators which bind most commonly, but not exclusively, to the 3'-untranslated regions of messenger RNAs of protein-coding genes and negatively regulate their expression. Considerable effort has been made to identify miRNAs and target genes that predispose to obesity. Besides their intracellular function, recent studies have demonstrated that miRNAs can be exported or released by cells and circulate within the blood in a remarkably stable form. The discovery of circulating miRNAs opens up intriguing possibilities for the use of circulating miRNA patterns as biomarkers for obesity and cardiovascular diseases. The aim of this review is to provide an overview of the recent discoveries of the role played by miRNAs in the obese phenotype and associated comorbidities. Furthermore, we will discuss the role of exercise training on regulating miRNAs, indicating the mechanisms related to these alterations.
Collapse
Affiliation(s)
- Andre Silveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - João Gomes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Roque
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- *Tiago Fernandes,
| | - Edilamar Menezes de Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- **Edilamar Menezes de Oliveira,
| |
Collapse
|
37
|
Lincoln S, Morse LR, Troy K, Mattson N, Nguyen N, Battaglino RA. MicroRNA-148a-3p is a candidate mediator of increased bone marrow adiposity and bone loss following spinal cord injury. Front Endocrinol (Lausanne) 2022; 13:910934. [PMID: 35992108 PMCID: PMC9388741 DOI: 10.3389/fendo.2022.910934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury is often followed by osteoporosis characterized by rapid and severe bone loss. This leads to an increased risk of osteoporotic fracture in people with spinal cord injury, resulting in increased healthcare costs, morbidity, and mortality. Though it is common, the mechanisms underlying this osteoporosis are not completely understood and treatment options are limited. No biomarkers have been identified for predicting fracture risk. In this study, we sought to investigate microRNA mediated mechanisms relating to osteoporosis following spinal cord injury. We studied subjects with acute SCI (n=12), chronic SCI (n=18), and controls with no SCI (n=23). Plasma samples from all subjects underwent transcriptomic analysis to quantify microRNA expression, after which miR-148a-3p was selected for further study. We performed CT scans of the knee on all subjects with SCI and analyzed these scans to quantify bone marrow adipose tissue volume. MiR-148a-3p was upregulated in subjects with acute SCI vs chronic SCI, as well as in acute SCI vs no SCI. Subjects with chronic SCI had greater levels of marrow adiposity in the distal femoral diaphysis compared to subjects with acute SCI. MiR-148a-3p levels were negatively associated with distal femoral diaphysis marrow adiposity. A multivariable model showed that miR-148a-3p and BMI explained 24% of variation in marrow adiposity. A literature search revealed that miR-148a-3p has multiple bone and fat metabolism related targets. Our findings suggest that miR-148a-3p is a mediator of osteoporosis following spinal cord injury and a potential future therapeutic target.
Collapse
Affiliation(s)
- Samantha Lincoln
- Drexel University College of Medicine, Philadelphia, PA, United States
| | - Leslie R. Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Karen Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Nicole Mattson
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Nguyen Nguyen
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Ricardo A. Battaglino
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, United States
- *Correspondence: Ricardo A. Battaglino,
| |
Collapse
|
38
|
Mahala S, Rai S, Singh A, Mehrotra A, Pandey HO, Kumar A. Perspectives of bovine and human milk exosomics as health biomarkers for advancing systemic therapeutic potential. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1979033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sudarshan Mahala
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| | - Sweta Rai
- Department of Food Science and Technology, College of Agriculture, Gbpuat, Pantnagar US Nagar, Uttarakhand, India
| | - Akansha Singh
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| | - Arnav Mehrotra
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| | - Hari Om Pandey
- Scientist, Livestock Production and Management, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
39
|
Karere GM, Cox LA, Bishop AC, South AM, Shaltout HA, Mercado-Deane MG, Cuda S. Sex Differences in MicroRNA Expression and Cardiometabolic Risk Factors in Hispanic Adolescents with Obesity. J Pediatr 2021; 235:138-143.e5. [PMID: 33831442 PMCID: PMC8926296 DOI: 10.1016/j.jpeds.2021.03.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To evaluate sex differences in microRNA (miRNA) expression, anthropometric measures, and cardiometabolic risk factors in Hispanic adolescents with obesity. STUDY DESIGN Cross-sectional study of 68 (60% male) Hispanic adolescents with obesity, aged 13-17 years, recruited from a pediatric weight management clinic. We used small RNA sequencing to identify differentially expressed circulating miRNAs. We used ingenuity pathway analysis and David bioinformatic resource tools to identify target genes for these miRNAs and enriched pathways. We used standard procedures to measure anthropometric and cardiometabolic factors. RESULTS We identified 5 miRNAs (miR-24-3p, miR-361-3p, miR-3605-5p, miR-486-5p, and miR-199b-3p) that differed between females and males. miRNA targets-enriched pathways included phosphatidylinositol 3-kinase-protein, 5' AMP-activated protein kinase, insulin resistance, sphingolipid, transforming growth factor-β, adipocyte lipolysis regulation, and oxytocin signaling pathways. In addition, there were sex differences in blood pressure, skeletal muscle mass, lean body mass, and percent body fat. CONCLUSIONS We have identified sex differences in miRNA expression in Hispanic adolescents relevant to cardiometabolic health. Future studies should focus on sex-specific mechanistic roles of miRNAs on gene pathways associated with obesity pathophysiology to support development of precision cardiometabolic interventions.
Collapse
Affiliation(s)
- Genesio M. Karere
- Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina,Corresponding author Department of Internal Medicine, Center for Precision Medicine, Wake Forest Baptist, Medical Center, Winston-Salem, NC 27157., Telephone: (336) 713-7561, Fax: (336) 713-7566,
| | - Laura A. Cox
- Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Andrew C. Bishop
- Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Andrew M. South
- Department of Pediatrics, Brenner Children’s Hospital, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina,Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Hossam A. Shaltout
- Department of Obstetrics and Gynecology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Maria-Gisela Mercado-Deane
- Department of Radiology, Baylor College of Medicine, Children’s Hospital of San Antonio, San Antonio, Texas
| | - Suzanne Cuda
- Department of Pediatrics, Baylor College of Medicine, Children’s Hospital of San Antonio, San Antonio, Texas
| |
Collapse
|
40
|
Duan DY, Tang J, Tian HT, Shi YY, Jia J. Adipocyte-secreted microvesicle-derived miR-148a regulates adipogenic and osteogenic differentiation by targeting Wnt5a/Ror2 pathway. Life Sci 2021; 278:119548. [PMID: 33930365 DOI: 10.1016/j.lfs.2021.119548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/08/2023]
Abstract
AIMS Adipocyte-secreted microvesicles (MVs)-derived microRNAs (miRNAs) are relevant to adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in osteonecrosis of the femoral head (ONFH). Our aims are to investigate the mechanism of adipocyte-derived MVs-miR-148a in ONFH. MATERIALS AND METHODS Adipocyte-derived MVs were identified via transmission electron microscopy and specific markers expression. The adipogenic and osteogenic differentiation were investigated by Oil-Red O staining, alkaline phosphatase (ALP) activity, Alizarin Red S (ARS) staining and osteogenic or adipogenic factors levels. Genes and proteins expression were detected by using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The relationship between miR-148a and Wnt5a was tested via dual-luciferase reporter analysis. The adipogenic differentiation and osteogenic differentiation in methylprednisolone (MPS)-induced ONFH rat model were assessed via hematoxylin-eosin (HE) staining, and immunohistochemical staining of collagen I (COL I). KEY FINDINGS Adipocyte-derived MVs promoted adipogenic differentiation via increasing Oil-Red O staining positive cells, adiponectin (Adipoq), acid-binding protein 2 (aP2) and peroxisome proliferator-activated receptor γ (PPAR-γ) levels, and repressed osteogenic differentiation of BMSCs via decreasing ARS staining positive cells, ALP, Runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) levels. MiR-148a was present in adipocyte-derived MVs, and miR-148a knockdown inhibited adipogenic differentiation and promoted osteogenic differentiation. Furthermore, Wnt5a expression was regulated by miR-148a. MiR-148a overexpression facilitated adipogenic differentiation and suppressed osteogenic differentiation via regulating the Wnt5a/Ror2 pathway. Adipocyte-derived MVs promoted adipogenic differentiation and inhibited osteogenic differentiation in MPS-induced ONFH rat model. SIGNIFICANCE Adipocyte-derived MVs-miR-148a promoted adipogenic differentiation and suppressed osteogenic differentiation via targeting the Wnt5a/Ror2 pathway.
Collapse
Affiliation(s)
- De-Yu Duan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Jing Tang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Hong-Tao Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Yang-Yang Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Jie Jia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China.
| |
Collapse
|
41
|
Li T, Zhu L, Zhu L, Wang P, Xu W, Huang J. Recent Developments in Delivery of MicroRNAs Utilizing Nanosystems for Metabolic Syndrome Therapy. Int J Mol Sci 2021; 22:ijms22157855. [PMID: 34360621 PMCID: PMC8346175 DOI: 10.3390/ijms22157855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a set of complex, chronic inflammatory conditions that are characterized by central obesity and associated with an increased risk of cardiovascular diseases. In recent years, microRNAs (miRNAs) have become an important type of endocrine factors, which play crucial roles in maintaining energy balance and metabolic homeostasis. However, its unfavorable properties such as easy degradation in blood and off-target effect are still a barrier for clinical application. Nanosystem based delivery possess strong protection, high bioavailability and control release rate, which is beneficial for success of gene therapy. This review first describes the current progress and advances on miRNAs associated with MetS, then provides a summary of the therapeutic potential and targets of miRNAs in metabolic organs. Next, it discusses recent advances in the functionalized development of classic delivery systems (exosomes, liposomes and polymers), including their structures, properties, functions and applications. Furthermore, this work briefly discusses the intelligent strategies used in emerging novel delivery systems (selenium nanoparticles, DNA origami, microneedles and magnetosomes). Finally, challenges and future directions in this field are discussed provide a comprehensive overview of the future development of targeted miRNAs delivery for MetS treatment. With these contributions, it is expected to address and accelerate the development of effective NA delivery systems for the treatment of MetS.
Collapse
Affiliation(s)
- Tong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
| | - Longjiao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
42
|
Mahmoud MM, Sanad EF, Hamdy NM. MicroRNAs' role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36984-37000. [PMID: 34046834 DOI: 10.1007/s11356-021-14550-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 05/28/2023]
Abstract
The discovery of microRNAs (miRNAs) 20 years ago has advocated a new era of "small molecular genetics." About 2000 miRNAs are present that regulate one third of the genome. MiRNA dysregulated expression arising as a response to our environment insult or stress or changes may contribute to several diseases, namely non-communicable diseases, including tumor growth. Their presence in body fluids, reflecting level alteration in various cancers, merit circulating miRNAs as the "next-generation biomarkers" for early-stage tumor diagnosis and/or prognosis. Herein, we performed a comprehensive literature search focusing on the origin, biosynthesis, and role of miRNAs and summarized the foremost studies centering on miR value as non-invasive biomarkers in different environment-related non-communicable diseases, including various cancer types. Moreover, during chemotherapy, many miRNAs were linked to multidrug resistance, via modulating numerous, environment triggered or not, biological processes and/or pathways that will be highlighted as well.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Eman F Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt.
| |
Collapse
|
43
|
Jiang X, You L, Zhang Z, Cui X, Zhong H, Sun X, Ji C, Chi X. Biological Properties of Milk-Derived Extracellular Vesicles and Their Physiological Functions in Infant. Front Cell Dev Biol 2021; 9:693534. [PMID: 34249944 PMCID: PMC8267587 DOI: 10.3389/fcell.2021.693534] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are released by all cells under pathological and physiological conditions. EVs harbor various biomolecules, including protein, lipid, non-coding RNA, messenger RNA, and DNA. In 2007, mRNA and microRNA (miRNA) carried by EVs were found to have regulatory functions in recipient cells. The biological function of EVs has since then increasingly drawn interest. Breast milk, as the most important nutritional source for infants, contains EVs in large quantities. An increasing number of studies have provided the basis for the hypothesis associated with information transmission between mothers and infants via breast milk-derived EVs. Most studies on milk-derived EVs currently focus on miRNAs. Milk-derived EVs contain diverse miRNAs, which remain stable both in vivo and in vitro; as such, they can be absorbed across different species. Further studies have confirmed that miRNAs derived from milk-derived EVs can resist the acidic environment and enzymatic hydrolysis of the digestive tract; moreover, they can be absorbed by intestinal cells in infants to perform physiological functions. miRNAs derived from milk EVs have been reported in the maturation of immune cells, regulation of immune response, formation of neuronal synapses, and development of metabolic diseases such as obesity and diabetes. This article reviews current status and advances in milk-derived EVs, including their history, biogenesis, molecular contents, and biological functions. The effects of milk-derived EVs on growth and development in both infants and adults were emphasized. Finally, the potential application and future challenges of milk-derived EVs were discussed, providing comprehensive understanding and new insight into milk-derived EVs.
Collapse
Affiliation(s)
- Xue Jiang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Lianghui You
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhenxing Zhang
- The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hong Zhong
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xingzhen Sun
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Chenbo Ji
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xia Chi
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
44
|
Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-Derived MicroRNAs of Human Milk and Their Effects on Infant Health and Development. Biomolecules 2021; 11:biom11060851. [PMID: 34200323 PMCID: PMC8228670 DOI: 10.3390/biom11060851] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple biologically active components of human milk support infant growth, health and development. Milk provides a wide spectrum of mammary epithelial cell-derived extracellular vesicles (MEVs) for the infant. Although the whole spectrum of MEVs appears to be of functional importance for the growing infant, the majority of recent studies report on the MEV subfraction of milk exosomes (MEX) and their miRNA cargo, which are in the focus of this review. MEX and the dominant miRNA-148a play a key role in intestinal maturation, barrier function and suppression of nuclear factor-κB (NF-κB) signaling and may thus be helpful for the prevention and treatment of necrotizing enterocolitis. MEX and their miRNAs reach the systemic circulation and may impact epigenetic programming of various organs including the liver, thymus, brain, pancreatic islets, beige, brown and white adipose tissue as well as bones. Translational evidence indicates that MEX and their miRNAs control the expression of global cellular regulators such as DNA methyltransferase 1-which is important for the up-regulation of developmental genes including insulin, insulin-like growth factor-1, α-synuclein and forkhead box P3-and receptor-interacting protein 140, which is important for the regulation of multiple nuclear receptors. MEX-derived miRNA-148a and miRNA-30b may stimulate the expression of uncoupling protein 1, the key inducer of thermogenesis converting white into beige/brown adipose tissue. MEX have to be considered as signalosomes derived from the maternal lactation genome emitted to promote growth, maturation, immunological and metabolic programming of the offspring. Deeper insights into milk's molecular biology allow the conclusion that infants are both "breast-fed" and "breast-programmed". In this regard, MEX miRNA-deficient artificial formula is not an adequate substitute for breastfeeding, the birthright of all mammals.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Correspondence: ; Tel.: +49-5241-988060
| | - Wolfgang Stremmel
- Private Praxis for Internal Medicine, Beethovenstraße 2, D-76530 Baden-Baden, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
45
|
Catanzaro G, Filardi T, Sabato C, Vacca A, Migliaccio S, Morano S, Ferretti E. Tissue and circulating microRNAs as biomarkers of response to obesity treatment strategies. J Endocrinol Invest 2021; 44:1159-1174. [PMID: 33111214 PMCID: PMC8124039 DOI: 10.1007/s40618-020-01453-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Obesity, characterized by an increased amount of adipose tissue, is a metabolic chronic alteration which has reached pandemic proportion. Lifestyle changes are the first line therapy for obesity and a large variety of dietary approaches have demonstrated efficacy in promoting weight loss and improving obesity-related metabolic alterations. Besides diet and physical activity, bariatric surgery might be an effective therapeutic strategy for morbid obese patients. Response to weight-loss interventions is characterised by high inter-individual variability, which might involve epigenetic factors. microRNAs have critical roles in metabolic processes and their dysregulated expression has been reported in obesity. AIM The aim of this review is to provide a comprehensive overview of current studies evaluating changes in microRNA expression in obese patients undergoing lifestyle interventions or bariatric surgery. RESULTS A considerable number of studies have reported a differential expression of circulating microRNAs before and after various dietary and bariatric surgery approaches, identifying several candidate biomarkers of response to weight loss. Significant changes in microRNA expression have been observed at a tissue level as well, with entirely different patterns between visceral and subcutaneous adipose tissue. Interestingly, relevant differences in microRNA expression have emerged between responders and non-responders to dietary or surgical interventions. A wide variety of dysregulated microRNA target pathways have also been identified, helping to understand the pathophysiological mechanisms underlying obesity and obesity-related metabolic diseases. CONCLUSIONS Although further research is needed to draw firm conclusions, there is increasing evidence about microRNAs as potential biomarkers for weight loss and response to intervention strategies in obesity.
Collapse
Affiliation(s)
- G Catanzaro
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - T Filardi
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - C Sabato
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - A Vacca
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - S Migliaccio
- Department of Movement, Human and Health Sciences, "Foro Italico" University of Rome, Rome, Italy
| | - S Morano
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - E Ferretti
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
46
|
Hernández-Díazcouder A, González-Ramírez J, Giacoman-Martínez A, Cardoso-Saldaña G, Martínez-Martínez E, Osorio-Alonso H, Márquez-Velasco R, Sánchez-Gloria JL, Juárez-Vicuña Y, Gonzaga G, Sánchez-Lozada LG, Almanza-Pérez JC, Sánchez-Muñoz F. High fructose exposure modifies the amount of adipocyte-secreted microRNAs into extracellular vesicles in supernatants and plasma. PeerJ 2021; 9:e11305. [PMID: 34055478 PMCID: PMC8140597 DOI: 10.7717/peerj.11305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background High fructose exposure induces metabolic and endocrine responses in adipose tissue. Recent evidence suggests that microRNAs in extracellular vesicles are endocrine signals secreted by adipocytes. Fructose exposure on the secretion of microRNA by tissues and cells is poorly studied. Thus, the aim of this study was to evaluate the effect of fructose exposure on the secretion of selected microRNAs in extracellular vesicles from 3T3-L1 cells and plasma from Wistar rats. Methods 3T3-L1 cells were exposed to 550 µM of fructose or standard media for four days, microRNAs levels were determined in extracellular vesicles of supernatants and cells by RT-qPCR. Wistar rats were exposed to either 20% fructose drink or tap water for eight weeks, microRNAs levels were determined in extracellular vesicles of plasma and adipose tissue by RT-qPCR. Results This study showed that fructose exposure increased the total number of extracellular vesicles released by 3T3-L1 cells (p = 0.0001). The levels of miR-143-5p were increased in extracellular vesicles of 3T3-L1 cells exposed to fructose (p = 0.0286), whereas miR-223-3p levels were reduced (p = 0.0286). Moreover, in plasma-derived extracellular vesicles, miR-143-5p was higher in fructose-fed rats (p = 0.001), whereas miR-223-3p (p = 0.022), miR-342-3p (p = 0.0011), miR-140-5p (p = 0.0129) and miR-146b-5p (p = 0.0245) were lower. Conclusion Fructose exposure modifies the levels of microRNAs in extracellular vesicles in vitro and in vivo. In particular, fructose exposure increases miR-143-5p, while decreases miR-223-3p and miR-342-3p.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México.,Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Javier González-Ramírez
- Laboratorio de Biología Celular, Facultad de Enfermería, Universidad Autónoma de Baja California Campus Mexicali, Mexicali, Baja California, Mexico
| | - Abraham Giacoman-Martínez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Guillermo Cardoso-Saldaña
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Eduardo Martínez-Martínez
- Laboratorio de Comunicación Celular y Vesículas Extracelulares, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Ricardo Márquez-Velasco
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - José L Sánchez-Gloria
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Yaneli Juárez-Vicuña
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Guillermo Gonzaga
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Julio César Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and circular RNAs (circRNAs) are pivotal regulators of mRNA and protein expression that critically contribute to cardiovascular pathophysiology. Although little is known about the origin and function of such ncRNAs, they have been suggested as promising biomarkers with powerful therapeutic value in cardiovascular disease (CVD). In this review, we summarize the most recent findings on ncRNAs biology and their implication on cholesterol homeostasis and lipoprotein metabolism that highlight novel therapeutic avenues for treating dyslipidemia and atherosclerosis. RECENT FINDINGS Clinical and experimental studies have elucidated the underlying effects that specific miRNAs impose both directly and indirectly regulating circulating high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) metabolism and cardiovascular risk. Some of these relevant miRNAs include miR-148a, miR-128-1, miR-483, miR-520d, miR-224, miR-30c, miR-122, miR-33, miR-144, and miR-34. circRNAs are known to participate in a variety of physiological and pathological processes due to their abundance in tissues and their stage-specific expression activation. Recent studies have proven that circRNAs may be considered targets of CVD as well. Some of these cirRNAs are circ-0092317, circ_0003546, circ_0028198, and cirFASN that have been suggested to be strongly involved in lipoprotein metabolism; however, their relevance in CVD is still unknown. MicroRNA and cirRNAs have been proposed as powerful therapeutic targets for treating cardiometabolic disorders including atherosclerosis. Here, we discuss the recent findings in the field of lipid and lipoprotein metabolism underscoring the novel mechanisms by which some of these ncRNAs influence lipoprotein metabolism and CVD.
Collapse
|
48
|
RNA-Seq Reveals Function of Bta-miR-149-5p in the Regulation of Bovine Adipocyte Differentiation. Animals (Basel) 2021; 11:ani11051207. [PMID: 33922274 PMCID: PMC8145242 DOI: 10.3390/ani11051207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022] Open
Abstract
Intramuscular fat is a real challenge for the experts of animal science to improve meat quality traits. Research on the mechanism of adipogenesis provides invaluable information for the improvement of meat quality traits. This study investigated the effect of bta-miR-149-5p and its underlying mechanism on lipid metabolism in bovine adipocytes. Bovine adipocytes were differentiated and transfected with bta-miR-149-5p mimics or its negative control (NC). A total of 115 DEGs including 72 upregulated and 43 downregulated genes were identified in bovine adipocytes. The unigenes and GO term biological processes were the most annotated unigene contributor parts at 80.08%, followed by cellular component at 13.4% and molecular function at 6.7%. The KEGG pathways regulated by the DEGs were PI3K-Akt signaling pathway, calcium signaling pathway, pathways in cancer, MAPK signaling pathway, lipid metabolism/metabolic pathway, PPAR signaling pathway, AMPK signaling pathway, TGF-beta signaling pathway, cAMP signaling pathway, cholesterol metabolism, Wnt signaling pathway, and FoxO signaling pathway. In addition to this, the most important reactome enrichment pathways were R-BTA-373813 receptor CXCR2 binding ligands CXCL1 to 7, R-BTA-373791 receptor CXCR1 binding CXCL6 and CXCL8 ligands, R-BTA-210991 basigin interactions, R-BTA-380108 chemokine receptors binding chemokines, R-BTA-445704 calcium binding caldesmon, and R-BTA-5669034 TNFs binding their physiological receptors. Furthermore, the expression trend of the DEGs in these pathways were also exploited. Moreover, the bta-miR-149-5p significantly (p < 0.01) downregulated the mRNA levels of adipogenic marker genes such as CCND2, KLF6, ACSL1, Cdk2, SCD, SIK2, and ZEB1 in bovine adipocytes. In conclusion, our results suggest that bta-miR-149-5p regulates lipid metabolism in bovine adipocytes. The results of this study provide a basis for studying the function and molecular mechanism of the bta-miR-149-5p in regulating bovine adipogenesis.
Collapse
|
49
|
Jin W, Zhao Y, Zhai B, Li Y, Fan S, Yuan P, Sun G, Jiang R, Wang Y, Liu X, Tian Y, Kang X, Li G. Characteristics and expression profiles of circRNAs during abdominal adipose tissue development in Chinese Gushi chickens. PLoS One 2021; 16:e0249288. [PMID: 33857153 PMCID: PMC8049301 DOI: 10.1371/journal.pone.0249288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) play important roles in adipogenesis. However, studies on circRNA expression profiles associated with the development of abdominal adipose tissue are lacking in chickens. In this study, 12 cDNA libraries were constructed from the abdominal adipose tissue of Chinese domestic Gushi chickens at 6, 14, 22, and 30 weeks. A total of 1,766 circRNAs were identified by Illumina HiSeq 2500 sequencing. These circRNAs were primarily distributed on chr1 through chr10 and sex chromosomes, and 84.95% of the circRNAs were from gene exons. Bioinformatic analysis showed that each circRNA has 35 miRNA binding sites on average, and 62.71% have internal ribosome entry site (IRES) elements. Meanwhile, these circRNAs were primarily concentrated in TPM < 0.1 and TPM > 60, and their numbers accounted for 18.90% and 80.51%, respectively, exhibiting specific expression patterns in chicken abdominal adipose tissue. In addition, 275 differentially expressed (DE) circRNAs were identified by comparison analysis. Functional enrichment analysis showed that the parental genes of DE circRNAs were primarily involved in biological processes and pathways related to lipid metabolism, such as regulation of fat cell differentiation, fatty acid homeostasis, and triglyceride homeostasis, as well as fatty acid biosynthesis, fatty acid metabolism, and glycerolipid metabolism. Furthermore, ceRNA regulatory networks related to abdominal adipose development were constructed. The results of this study indicated that circRNAs can regulate lipid metabolism, adipocyte proliferation and differentiation, and cell junctions during abdominal adipose tissue development in chickens through complex ceRNA networks between circRNAs, miRNAs, genes, and pathways. The results of this study may help to expand the number of known circRNAs in abdominal adipose tissue and provide a valuable resource for further research on the function of circRNAs in chicken abdominal adipose tissue.
Collapse
Affiliation(s)
- Wenjiao Jin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan Province, P.R. China
| | - Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yanbin Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
- * E-mail:
| |
Collapse
|
50
|
Jin X, Hao Z, Zhao M, Shen J, Ke N, Song Y, Qiao L, Lu Y, Hu L, Wu X, Wang J, Luo Y. MicroRNA-148a Regulates the Proliferation and Differentiation of Ovine Preadipocytes by Targeting PTEN. Animals (Basel) 2021; 11:ani11030820. [PMID: 33803986 PMCID: PMC7998426 DOI: 10.3390/ani11030820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) have been found to be involved in lipid deposition and metabolism. However, there have been no reports on the roles of miR-148a in the proliferation and adipogenesis of preadipocytes in sheep. In this study, the expression of miR-148a was profiled in the eight tissues of Tibetan ewes and differentiated preadipocytes, and the role of miR-148a in differentiation and proliferation of ovine preadipocytes was investigated using Oil Red O staining, CCK-8, EdU staining, cell cycle detection, and RT-qPCR. The effect of PTEN on the differentiation of ovine preadipocytes was also investigated. The miR-148a was widely expressed in the eight tissues investigated and had significantly increased expression in liver, spleen and subcutaneous adipose tissues, and the heart. The expression of miR-148a continued to increase with the differentiation of ovine preadipocytes. The over-expression of miR-148a significantly promoted differentiation but inhibited the proliferation of ovine preadipocytes. The inhibition of miR-148a had the opposite effect on the differentiation and proliferation of ovine preadipocytes with over-expressed miR-148a. The results from the dual luciferase reporter assays showed that miR-148a mimic significantly decreased the luciferase activity of PTEN-3'UTR dual luciferase reporter vector, suggesting that PTEN is a target gene of miR-148a. In over-expressed-PTEN preadipocytes, the number of lipid droplets remarkably decreased, and the expression levels of adipogenesis marker genes PPARγ, FASN, FATP4, GLUT4, C/EBPβ and LPL were also significantly down-regulated. These results suggest that miR-148a accelerated the adipogenic differentiation of ovine preadipocytes by inhibiting PTEN expression, and also inhibited the proliferation of ovine preadipocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jiqing Wang
- Correspondence: (J.W.); (Y.L.); Tel.: +86-931-763-2469 (J.W.); +86-931-763-2483 (Y.L.)
| | - Yuzhu Luo
- Correspondence: (J.W.); (Y.L.); Tel.: +86-931-763-2469 (J.W.); +86-931-763-2483 (Y.L.)
| |
Collapse
|