1
|
Pahlavani M, Pham K, Kalupahana NS, Morovati A, Ramalingam L, Abidi H, Kiridana V, Moustaid-Moussa N. Thermogenic adipose tissues: Promising therapeutic targets for metabolic diseases. J Nutr Biochem 2025; 137:109832. [PMID: 39653156 DOI: 10.1016/j.jnutbio.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
The ongoing increase in the prevalence of obesity and its comorbidities such as cardiovascular disease, type 2 diabetes (T2D) and dyslipidemia warrants discovery of novel therapeutic options for these metabolic diseases. Obesity is characterized by white adipose tissue expansion due to chronic positive energy balance as a result of excessive energy intake and/or reduced energy expenditure. Despite various efforts to prevent or reduce obesity including lifestyle and behavioral interventions, surgical weight reduction approaches and pharmacological methods, there has been limited success in significantly reducing obesity prevalence. Recent research has shown that thermogenic adipocyte (brown and beige) activation or formation, respectively, could potentially act as a therapeutic strategy to ameliorate obesity and its related disorders. This can be achieved through the ability of these thermogenic cells to enhance energy expenditure and regulate circulating levels of glucose and lipids. Thus, unraveling the molecular mechanisms behind the formation and activation of brown and beige adipocytes holds the potential for probable therapeutic paths to combat obesity. In this review, we provide a comprehensive update on the development and regulation of different adipose tissue types. We also emphasize recent interventions in harnessing therapeutic potential of thermogenic adipocytes by bioactive compounds and new pharmacological anti-obesity agents.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Sciences, Texas Woman's University, Dallas, Texas, USA
| | - Kenneth Pham
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Ashti Morovati
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Studies, Syracuse University, Syracuse, New York, USA
| | - Hussain Abidi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Vasana Kiridana
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Institute for One Health Innovation, Texas Tech University and Texas Tech Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|
2
|
Takada M, Kawarasaki S, Kwon J, Ni Z, Takahashi H, Inoue K, Goto T. Lipid metabolism and food ingredients from the perspective of thermogenic adipocytes. Biosci Biotechnol Biochem 2025; 89:193-200. [PMID: 39521946 DOI: 10.1093/bbb/zbae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The high heat-producing capacity of brown and beige adipocytes, collectively known as thermogenic adipocytes, contributes to whole-body energy expenditure and is an attractive target for the management of obesity. It has been revealed that the functions of thermogenic adipocytes are important for the regulation of whole-body carbohydrate and lipid metabolism, and the activation of thermogenic adipocytes seems to have beneficial effects for the management of obesity-related metabolic disorders, such as dyslipidemia. Recent studies have showed that specific food ingredients have the potential to activate thermogenic adipocytes via various mechanisms. Some of these are effective not only in rodents, but also in humans, and effective prevention of obesity using these food ingredients is expected. In this review, we introduce the recent findings on the regulatory mechanisms of lipid metabolism by thermogenic adipocytes and food ingredients, demonstrating the potential to activate thermogenic adipocytes and their underlying mechanisms.
Collapse
Affiliation(s)
- Mai Takada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Jungin Kwon
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Zheng Ni
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Takahashi H. Application of mass spectrometry data for health evaluation. Biosci Biotechnol Biochem 2025; 89:215-223. [PMID: 39611358 DOI: 10.1093/bbb/zbae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Proper diet is crucial for obesity prevention. Food health research primarily focuses on two aspects: the pathogenesis of lifestyle-related diseases caused by obesity and the identification of dietary components that can aid in the prevention and treatment of lifestyle-related diseases. Substantial knowledge has been accumulated regarding these aspects via health function evaluations based on biological experiments. However, the intricate causal relationships and specific biological metabolites or food compounds that affect health remain unclear. To address these issues, my recent studies have incorporated mass spectrometry data, particularly metabolomic data obtained via comprehensive component analysis, to enhance health function evaluation via biological experiments. These studies have revealed various biological and healthy compounds derived from different food materials for the management of obesity-induced metabolic disorders.
Collapse
|
4
|
Obo T, Hashiguchi H, Matsuda E, Kawade S, Ogiso K, Iwai H, Ataka K, Yasuda O, Arimura A, Deguchi T, Morino K, Asakawa A, Nishio Y. The Anti-Obesity Effect of Fish Oil in Diet-Induced Obese Mice Occurs via Both Decreased Food Intake and the Induction of Heat Production Genes in Brown but Not White Adipose Tissue. Int J Mol Sci 2024; 26:302. [PMID: 39796158 PMCID: PMC11719521 DOI: 10.3390/ijms26010302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Omega-3 (ω-3) polyunsaturated fatty acids in fish oil have been shown to prevent diet-induced obesity in lean mice and to promote heat production in adipose tissue. However, the effects of fish oil on obese animals remain unclear. This study investigated the effects of fish oil in obese mice. C57BL/6J mice were fed a lard-based high-fat diet (LD) for 8 weeks and then assigned to either a fish oil-based high-fat diet (FOD) or continued the LD for additional 8 weeks. A control group was fed a standard diet for 16 weeks. Mice fed the FOD showed weight loss, reduced adipose tissue mass, and lower plasma insulin and leptin levels compared to those fed the LD. Rectal temperatures were higher in the FOD and LD groups compared to the control group. Energy intake was lower in the FOD group than the LD group but similar to the control group. The FOD and LD groups exhibited increased expression of heat-producing genes such as Ppargc1a, Ucp1, Adrb3, and Ppara in brown adipose tissue but not in white adipose tissue. The FOD reduced food consumption and increased rectal temperature and heat-producing genes in brown adipose tissue. Fish oil may therefore be a potential therapeutic approach to obesity.
Collapse
MESH Headings
- Animals
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- Fish Oils/pharmacology
- Obesity/metabolism
- Obesity/genetics
- Obesity/drug therapy
- Mice
- Male
- Diet, High-Fat/adverse effects
- Mice, Inbred C57BL
- Thermogenesis/drug effects
- Thermogenesis/genetics
- Eating/drug effects
- Mice, Obese
- Uncoupling Protein 1/metabolism
- Uncoupling Protein 1/genetics
- Anti-Obesity Agents/pharmacology
- Anti-Obesity Agents/therapeutic use
- Leptin/metabolism
- Leptin/blood
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- PPAR alpha/metabolism
- PPAR alpha/genetics
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
- Gene Expression Regulation/drug effects
Collapse
Affiliation(s)
- Takahiko Obo
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| | - Hiroshi Hashiguchi
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| | - Eriko Matsuda
- Department of Gene Therapy and Regenerative Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shigeru Kawade
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| | - Kazuma Ogiso
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Koji Ataka
- Department of Health and Nutrition, Faculty of Nursing and Nutrition, Kagoshima Immaculate Heart University, Kagoshima 895-0011, Japan;
| | - Osamu Yasuda
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kanoya 891-2311, Japan;
| | - Aiko Arimura
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| | - Takahisa Deguchi
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| | - Katsutaro Morino
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Yoshihiko Nishio
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| |
Collapse
|
5
|
Yonemoto E, Ihara R, Tanaka E, Mitani T. Cocoa extract induces browning of white adipocytes and improves glucose intolerance in mice fed a high-fat diet. Biosci Biotechnol Biochem 2024; 88:1188-1198. [PMID: 39025807 DOI: 10.1093/bbb/zbae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Cocoa extract (CE) offers several health benefits, such as antiobesity and improved glucose intolerance. However, the mechanisms remain unclear. Adipose tissue includes white adipose tissue (WAT) and brown adipose tissue. Brown adipose tissue leads to body fat reduction by metabolizing lipids to heat via uncoupling protein 1 (UCP1). The conversion of white adipocytes into brown-like adipocytes (beige adipocytes) is called browning, and it contributes to the anti-obesity effect and improved glucose tolerance. This study aimed to evaluate the effect of CE on glucose tolerance in terms of browning. We found that dietary supplementation with CE improved glucose intolerance in mice fed a high-fat diet, and it increased the expression levels of Ucp1 and browning-associated gene in inguinal WAT. Furthermore, in primary adipocytes of mice, CE induced Ucp1 expression through β3-adrenergic receptor stimulation. These results suggest that dietary CE improves glucose intolerance by inducing browning in WAT.
Collapse
MESH Headings
- Animals
- Diet, High-Fat/adverse effects
- Glucose Intolerance/drug therapy
- Glucose Intolerance/metabolism
- Cacao/chemistry
- Plant Extracts/pharmacology
- Mice
- Uncoupling Protein 1/metabolism
- Uncoupling Protein 1/genetics
- Male
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Mice, Inbred C57BL
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
Collapse
Affiliation(s)
- Eito Yonemoto
- D ivision of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Risa Ihara
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Kamiina, Nagano, Japan
| | - Emi Tanaka
- D ivision of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Takakazu Mitani
- D ivision of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Kamiina, Nagano, Japan
| |
Collapse
|
6
|
Prapaharan B, Lea M, Beaudry JL. Weighing in on the role of brown adipose tissue for treatment of obesity. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13157. [PMID: 39087083 PMCID: PMC11290130 DOI: 10.3389/jpps.2024.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Brown adipose tissue (BAT) activation is an emerging target for obesity treatments due to its thermogenic properties stemming from its ability to shuttle energy through uncoupling protein 1 (Ucp1). Recent rodent studies show how BAT and white adipose tissue (WAT) activity can be modulated to increase the expression of thermogenic proteins. Consequently, these alterations enable organisms to endure cold-temperatures and elevate energy expenditure, thereby promoting weight loss. In humans, BAT is less abundant in obese subjects and impacts of thermogenesis are less pronounced, bringing into question whether energy expending properties of BAT seen in rodents can be translated to human models. Our review will discuss pharmacological, hormonal, bioactive, sex-specific and environmental activators and inhibitors of BAT to determine the potential for BAT to act as a therapeutic strategy. We aim to address the feasibility of utilizing BAT modulators for weight reduction in obese individuals, as recent studies suggest that BAT's contributions to energy expenditure along with Ucp1-dependent and -independent pathways may or may not rectify energy imbalance characteristic of obesity.
Collapse
Affiliation(s)
| | | | - Jacqueline L. Beaudry
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Dakic T, Jeremic D, Lakic I, Jasnic N, Ruzicic A, Vujovic P, Jevdjovic T. Walnut supplementation increases levels of UCP1 and CD36 in brown adipose tissue independently of diet type. Mol Cell Biochem 2024; 479:1735-1745. [PMID: 38478220 DOI: 10.1007/s11010-024-04981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2023] [Accepted: 02/28/2024] [Indexed: 07/18/2024]
Abstract
Dietary interventions that modulate the brown adipose tissue (BAT) thermogenic activity could represent a promising therapy for metabolic disorders. In order to examine if dietary walnuts intake regulates the expression of BAT thermogenic markers levels in healthy and metabolically challenged (fructose fed) animals, rats were initially divided into the control and fructose-fed groups. After nine weeks, these groups were subdivided into the one kept on the original regimens and the other supplemented with walnuts. High-fructose diet resulted in an increased relative BAT mass and no change in UCP1 content, while the walnut supplementation increased the amount of UCP1 in BAT, but did not affect 5-HT, NA, DHPG content and DHPG/NA ratio regardless of the diet. Moreover, the CD36 levels were increased following the walnut consumption, unlike FATP1, GLUT1, GLUT4, and glycogen content which remained unchanged. Additionally, the BAT levels of activated IR and Akt were not affected by walnut consumption, while ERK signaling was decreased. Overall, we found that walnut consumption increased UCP1 and CD36 content in the BAT of both control and metabolically challenged rats, suggesting that FFAs represent the BAT preferred substrate under the previously described circumstances. This further implies that incorporating walnuts into the everyday diet may help to alleviate some symptoms of the metabolic disorder.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia
| | - Dusan Jeremic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia
| | - Iva Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia
| | - Nebojsa Jasnic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia
| | - Aleksandra Ruzicic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia.
| |
Collapse
|
8
|
Komiya Y, Sakazaki Y, Goto T, Kawabata F, Suzuki T, Sato Y, Sawano S, Nakamura M, Tatsumi R, Ikeuchi Y, Arihara K, Mizunoya W. Eicosapentaenoic acid increases proportion of type 1 muscle fibers through PPARδ and AMPK pathways in rats. iScience 2024; 27:109816. [PMID: 38779480 PMCID: PMC11108975 DOI: 10.1016/j.isci.2024.109816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Muscle fiber type composition (% slow-twitch and % fast-twitch fibers) is associated with metabolism, with increased slow-twitch fibers alleviating metabolic disorders. Previously, we reported that dietary fish oil intake induced a muscle fiber-type transition in a slower direction in rats. The aim of this study was to determine the functionality of eicosapentaenoic acid (EPA), a unique fatty acid in fish oil, to skeletal muscle fiber type and metabolism in rats. Here, we showed that dietary EPA promotes whole-body oxidative metabolism and improves muscle function by increasing proportion of slow-twitch type 1 fibers in rats. Transcriptomic and metabolomic analyses revealed that EPA supplementation activated the peroxisome proliferator-activated receptor δ (PPARδ) and AMP-activated protein kinase (AMPK) pathways in L6 myotube cultures, which potentially increasing slow-twitch fiber share. This highlights the role of EPA as an exercise-mimetic dietary component that improves metabolism and muscle function, with potential benefits for health and athletic performance.
Collapse
Affiliation(s)
- Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Yuka Sakazaki
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Tsuyoshi Goto
- Division of Food Science & Biotechnology, Kyoto University, Kyoto, Japan
| | - Fuminori Kawabata
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yusuke Sato
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Shoko Sawano
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Keizo Arihara
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Wataru Mizunoya
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
9
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
10
|
Zhan H, Wang W, Ge Y, Liang Y, Wang J, Xu Y, Wu S, Peng L, He Z. trans-Palmitoleic acid promotes adipose thermogenesis to reduce obesity via hypothalamic FFAR1 signaling. Food Funct 2024; 15:4627-4641. [PMID: 38592736 DOI: 10.1039/d4fo00452c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/10/2024]
Abstract
Diet-induced thermogenesis (DIT) is crucial for maintaining body weight homeostasis, and the role of dietary fatty acids in modulating DIT is essential. However, the underlying mechanism of fatty acid regulated diet-induced thermogenesis remains elusive. Utilizing the diet- and genetic ablation-induced obese mice models, we found that the C16 unsaturated fatty acids, trans-palmitoleic acid (TPA) and cis-palmitoleic acid (CPA), significantly increased the energy expenditure by promoting the thermogenesis of brown adipose tissues and the production of beige cells in white adipose. As a result, there is a significant reduction in the occurrence of obesity, associated hepatic steatosis and hyperglycemia. Notably, TPA exhibited more potent effects on promoting DIT and alleviating obesity than CPA did. Using inhibitor and gene deletion mice models, we unveiled that TPA acted as a signaling molecule to play a biological function, which could be sensed by the hypothalamic FFAR1 to activate the sympathetic nervous system in promoting adipose tissue thermogenesis. Together, these results demonstrate the underlying mechanism of free fatty acids associated-DIT and will provide fresh insights into the roles of trans-fatty acids in the development of obesity.
Collapse
Affiliation(s)
- Huidong Zhan
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wanjing Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yueping Ge
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yixiao Liang
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Wang
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Xu
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanshan Wu
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Peng
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
11
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
12
|
González-Alva P, Solís-Suárez DL, Cifuentes-Mendiola SE, García-Hernández AL. A diet rich in omega-3 fatty acid improves periodontitis and tissue destruction by MMP2- and MMP9-linked inflammation in a murine model. Odontology 2024; 112:185-199. [PMID: 37378834 PMCID: PMC10776722 DOI: 10.1007/s10266-023-00831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Periodontitis is an oral-cavity inflammatory disease and is the principal cause associated with tooth loss. Matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) are important proteases involved in periodontal tissue destruction. The omega-3 polyunsaturated fatty acids (ω-3 PUFA) have been demonstrated to possess immunoregulatory properties in periodontitis. The aim of the study was to investigate the effects of ω-3 PUFA on inflammation and on the expression of MMP-2 and -9 in a murine periodontitis model. Twenty-four male C57BL/6 mice were divided into control mice (Control), control mice treated with ω-3 PUFA (O3), mice with periodontitis (P), and mice with periodontitis treated with ω-3 PUFA (P + O3). ω-3 PUFA were administered orally once a day for 70 days. Periodontitis in mice was induced by Porphyromonas gingivalis-infected ligature placement around the second maxillary molar. The mice were sacrificed, and blood and maxillary samples were collected. Flow cytometry was used to quantify tumor necrosis factor-alpha (TNFα), interleukin (IL)-2, IL-4, IL-5, and interferon-gamma. Histologic analysis and immunohistochemistry for MMP-2 and -9 were performed. The data were statistically evaluated using analysis of variance (ANOVA) and the Tukey post hoc test. Histological analysis showed that ω-3 PUFA supplementation prevented inflammation and tissue destruction and revealed that bone destruction was more extensive in the P group than in the P + O3 group (p < 0.05). Also, it decreased the serum expressions of TNFα and IL-2 and the tissue expression of MMP-2 and -9 in the periodontitis-induced model (p < 0.05). ω-3 PUFA supplementation prevented alveolar bone loss and periodontal destruction, probably by decreasing the expression of MMP-2 and MMP-9 and its immunoregulatory properties.
Collapse
Affiliation(s)
- Patricia González-Alva
- Laboratory of Tissue Bioengineering, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Diana Laura Solís-Suárez
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, 54714, Cuautitlán Izcalli, Mexico
- Postgraduate Course in Dental Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Saúl Ernesto Cifuentes-Mendiola
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, 54714, Cuautitlán Izcalli, Mexico
| | - Ana Lilia García-Hernández
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, 54714, Cuautitlán Izcalli, Mexico.
| |
Collapse
|
13
|
Jia M, Xu T, Xu YJ, Liu Y. Dietary fatty acids activate or deactivate brown and beige fat. Life Sci 2023; 330:121978. [PMID: 37516433 DOI: 10.1016/j.lfs.2023.121978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2022] [Revised: 06/10/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Brown adipose tissue (BAT) and beige fat have been documented to rapidly consume fatty acids (FAs) rather than deposit of lipid, and they have high capacity to dissipate energy via nonshivering thermogenesis, making BAT and beige fat potential organs to fight obesity and related chronic diseases. As the main substrate for thermogenesis and the basic constituent unit of triacylglycerol, FAs could modify BAT and remodel white adipose tissue (WAT) to beige fat. However, there are few comprehensive review covering the link between dietary FAs and thermogenic adipocyte..In this review, we described the metabolism of thermogenic adipose upon activation and comprehensively summarized publications on the dietary FAs that activate or deactivate BAT and beige fat. Specifically, eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA), α-linolenic acid (α-ALA), conjugated linoleic acid (CLA), oleic acid (OA), long-chain saturated fatty acid (LC-SFA) and medium-chain fatty acid (MCFA). in addition, the influences on BAT function, WAT remodeling, and lipid metabolism, as well as delineated the possible mechanisms are also reviewed. Characterizing thermogenic or obesogenic dietary FAs may offer novel insight into dietary oil and nutritional treatment.
Collapse
Affiliation(s)
- Min Jia
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 23788 Gongyebei Road, Jinan 250100, Shandong, PR China
| | - Tongcheng Xu
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 23788 Gongyebei Road, Jinan 250100, Shandong, PR China
| | - Yong-Jiang Xu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Yuanfa Liu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
14
|
Azad AM, Bernhard A, Shen A, Myrmel LS, Lundebye AK, Lecaudey LA, Fjære E, Tri Ho Q, Sveier H, Kristiansen K, Limborg MT, Madsen L. Metabolic effects of diet containing blue mussel (Mytilus edulis) and blue mussel-fed salmon in a mouse model of obesity. Food Res Int 2023; 169:112927. [PMID: 37254353 DOI: 10.1016/j.foodres.2023.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023]
Abstract
Alternative feed ingredients for farmed salmon are warranted due to increasing pressure on wild fish stocks. As locally farmed blue mussels may represent an environmentally sustainable substitute with a lower carbon footprint, we aimed to test the potential and safety of substituting fish meal with blue mussel meal in feed for Atlantic salmon. Salmon were fed diets in which fish meal was partially replaced with blue mussel meal in increments, accounting for up to 13.1 % of the ingredients. Fillets from the salmon were subsequently used to prepare obesity-promoting western diets for a 13-weeks mouse feeding trial. In a second mouse trial, we tested the effects of inclusion of up to 8% blue mussel meal directly in a meat-based western diet. Partial replacement of fish meal with blue mussel meal in fish feed preserved the n-3 polyunsaturated fatty acid (PUFA) content in salmon fillets. The observed blue mussel-induced changes in the fatty acid profiles in salmon fillets did not translate into similar changes in the livers of mice that consumed the salmon, and no clear dose-dependent responses were found. The relative levels of the marine n-3 fatty acids, EPA, and DHA were not reduced, and the n-3/n-6 PUFA ratios in livers from all salmon-fed mice were unchanged. The inclusion of blue mussel meal in a meat-based western diet led to a small, but dose-dependent increase in the n-3/n-6 PUFA ratios in mice livers. Diet-induced obesity, glucose intolerance, and hepatic steatosis were unaffected in both mice trials and no blue mussel-induced adverse effects were observed. In conclusion, our results suggest that replacing fish meal with blue mussel meal in salmon feed will not cause adverse effects in those who consume the salmon fillets.
Collapse
Affiliation(s)
| | | | - Anne Shen
- Institute of Marine Research, Norway
| | | | | | - Laurène Alicia Lecaudey
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; SINTEF Ocean, Aquaculture Department, Trondheim, Norway; Department of Natural History, NTNU University Museum, Trondheim, Norway
| | | | | | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Tønsberg Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lise Madsen
- Institute of Marine Research, Norway; Department of Clinical Medicine, University of Bergen, Norway
| |
Collapse
|
15
|
Kaur J, Singh DP, Kumar V, Kaur S, Bhunia RK, Kondepudi KK, Kuhad A, Bishnoi M. Transient Receptor Potential (TRP) based polypharmacological combination stimulates energy expending phenotype to reverse HFD-induced obesity in mice. Life Sci 2023; 324:121704. [PMID: 37075945 DOI: 10.1016/j.lfs.2023.121704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND & AIM Obesity is a worldwide epidemic leading to decreased quality of life, higher medical expenses and significant morbidity. Enhancing energy expenditure and substrate utilization in adipose tissues through dietary constituents and polypharmacological approaches is gaining importance for the prevention and therapeutics of obesity. An important factor in this regard is Transient Receptor Potential (TRP) channel modulation and resultant activation of "brite" phenotype. Various dietary TRP channel agonists like capsaicin (TRPV1), cinnamaldehyde (TRPA1), and menthol (TRPM8) have shown anti-obesity effects, individually and in combination. We aimed to determine the therapeutic potential of such combination of sub-effective doses of these agents against diet-induced obesity, and explore the involved cellular processes. KEY FINDINGS The combination of sub-effective doses of capsaicin, cinnamaldehyde and menthol induced "brite" phenotype in differentiating 3T3-L1 cells and subcutaneous white adipose tissue of HFD-fed obese mice. The intervention prevented adipose tissue hypertrophy and weight gain, enhanced the thermogenic potential, mitochondrial biogenesis and overall activation of brown adipose tissue. These changes observed in vitro as well as in vivo, were linked to increased phosphorylation of kinases, AMPK and ERK. In the liver, the combination treatment enhanced insulin sensitivity, improved gluconeogenic potential and lipolysis, prevented fatty acid accumulation and enhanced glucose utilization. SIGNIFICANCE We report on the discovery of therapeutic potential of TRP-based dietary triagonist combination against HFD-induced abnormalities in metabolic tissues. Our findings indicate that a common central mechanism may affect multiple peripheral tissues. This study opens up avenues of development of therapeutic functional foods for obesity.
Collapse
Affiliation(s)
- Jasleen Kaur
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Dhirendra Pratap Singh
- Neurotoxicology and Immunotoxicology Laboratory, Division of Biological Sciences, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat 380016, India
| | - Vijay Kumar
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Simranjit Kaur
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Rupam Kumar Bhunia
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Anurag Kuhad
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
16
|
Yavari M, Ramalingam L, Harris BN, Kahathuduwa CN, Chavira A, Biltz C, Mounce L, Maldonado KA, Scoggin S, Zu Y, Kalupahana NS, Yosofvand M, Moussa H, Moustaid-Moussa N. Eicosapentaenoic Acid Protects against Metabolic Impairments in the APPswe/PS1dE9 Alzheimer's Disease Mouse Model. J Nutr 2023; 153:1038-1051. [PMID: 36781072 PMCID: PMC10273166 DOI: 10.1016/j.tjnut.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by amyloid-β (Aβ) plaques. Systemic inflammation and obesity may exacerbate AD pathogenesis. We previously reported anti-inflammatory and anti-obesity effects of EPA in mice. OBJECTIVES We aimed to determine whether EPA reduces obesity-associated metabolic dysfunctions and Aβ accumulation in AD amyloidogenic mice. METHODS Two-mo-old APPswe/PS1dE9 transgenic (TG) mice and non-TG littermates were randomly assigned to low fat (LF; 10% kcal fat), high fat (HF; 45% kcal fat), or EPA (36 g/kg)-supplemented HF diets. Body composition, glucose tolerance, and energy expenditure were measured, and serum and brain metabolic markers were tested 38 wk postintervention. Outcomes were statistically analyzed via 3-factor ANOVA, modeling genotype, sex, and diet interactions. RESULTS HF-fed males gained more weight than females (Δ = 61 mg; P < 0.001). Compared with LF, HF increased body weights of wild-type (WT) males (Δ = 31 mg; P < 0.001). EPA reduced HF-induced weight gain in WT males (Δ = 24 mg; P = 0.054) but not in females. HF mice showed decreased glucose clearance and respiratory energy compared with LF-fed groups (Δ = -1.31 g/dL; P < 0.001), with no significant effects of EPA. However, EPA conferred metabolic improvements by decreasing serum leptin and insulin (Δ = -2.51 g/mL and Δ = -0.694 ng/mL, respectively compared with HF, P ≤ 0.05) and increasing adiponectin (Δ = 21.6 ng/mL; P < 0.001). As we expected, TG mice expressed higher serum and brain Aβ than WT mice (Δ = 0.131 ng/mL; P < 0.001 and Δ = 0.56%; P < 0.01, respectively), and EPA reduced serum Aβ1-40 in TG males compared with HF (Δ = 0.053 ng/mL; P ≤ 0.05). CONCLUSIONS To our knowledge, this is the first report that EPA reduces serum Aβ1-40 in obese AD male mice, warranting further investigations into tissue-specific mechanisms of EPA in AD.
Collapse
Affiliation(s)
- Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Breanna N Harris
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Chanaka Nadeeshan Kahathuduwa
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Angela Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Physiology, University of Peradeniya, Sri Lanka
| | - Mohammad Yosofvand
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
17
|
Xue S, Lee D, Berry DC. Thermogenic adipose tissue in energy regulation and metabolic health. Front Endocrinol (Lausanne) 2023; 14:1150059. [PMID: 37020585 PMCID: PMC10067564 DOI: 10.3389/fendo.2023.1150059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/23/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to generate thermogenic fat could be a targeted therapy to thwart obesity and improve metabolic health. Brown and beige adipocytes are two types of thermogenic fat cells that regulate energy balance. Both adipocytes share common morphological, biochemical, and thermogenic properties. Yet, recent evidence suggests unique features exist between brown and beige adipocytes, such as their cellular origin and thermogenic regulatory processes. Beige adipocytes also appear highly plastic, responding to environmental stimuli and interconverting between beige and white adipocyte states. Additionally, beige adipocytes appear to be metabolically heterogenic and have substrate specificity. Nevertheless, obese and aged individuals cannot develop beige adipocytes in response to thermogenic fat-inducers, creating a key clinical hurdle to their therapeutic promise. Thus, elucidating the underlying developmental, molecular, and functional mechanisms that govern thermogenic fat cells will improve our understanding of systemic energy regulation and strive for new targeted therapies to generate thermogenic fat. This review will examine the recent advances in thermogenic fat biogenesis, molecular regulation, and the potential mechanisms for their failure.
Collapse
Affiliation(s)
| | | | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
18
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
19
|
Srinivas V, Molangiri A, Varma S, Mallepogu A, Kona SR, Ibrahim A, Duttaroy AK, Basak S. Maternal omega-3 fatty acid deficiency affects fetal thermogenic development and postnatal musculoskeletal growth in mice. J Nutr Biochem 2023; 112:109218. [PMID: 36375730 DOI: 10.1016/j.jnutbio.2022.109218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Maternal omega-3 (n-3) polyunsaturated fatty acids (PUFAs) deficiency can affect offspring's adiposity and metabolism by modulating lipid and glucose metabolism. However, the impact of n-3 PUFA deficiency on the development of fetal thermogenesis and its consequences is not reported. Using an n-3 PUFA deficient mice, we assessed fetal interscapular brown adipose tissue (iBAT), body fat composition, insulin growth factor-1 (IGF-1), glucose transporters (GLUTs), and expression of lipid storage & metabolic proteins in the offspring. The n-3 PUFA deficiency did not change the pups' calorie intake, organ weight, and body weight. However, the offspring's skeletal growth was altered due to excess fat to lean mass, reduced tibia & femur elongation, dysregulated IGF-1 in the mother and pups (P< .05). Localization of uncoupling protein 1 (UCP1) in iBAT exhibited a reduced expression in the deficient fetus. Further, UCP1, GLUT1, GPR120 were downregulated while FABP3, ADRP, GLUT4 expressions were upregulated in the BAT of the deficient offspring (P< .05). The deficiency decreased endogenous conversion of the n-3 LCPUFAs from their precursors and upregulated SCD1, FASN, and MFSD2A mRNAs in the liver (P< .05). An altered musculoskeletal growth in the offspring is associated with impaired browning of the fetal adipose, dysregulated thermogenesis, growth hormone, and expression of glucose and fatty acid metabolic mediators due to maternal n-3 PUFA deficiency. BAT had higher metabolic sensitivity compared to WAT in n-3 PUFA deficiency. Maternal n-3 PUFA intake may prevent excess adiposity by modulating fetal development of thermogenesis and skeletal growth dynamics in the mice offspring.
Collapse
Affiliation(s)
- Vilasagaram Srinivas
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Archana Molangiri
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Aswani Mallepogu
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Suryam Reddy Kona
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ahamed Ibrahim
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Sanjay Basak
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| |
Collapse
|
20
|
Raj RR, Lofquist S, Lee MJ. Remodeling of Adipose Tissues by Fatty Acids: Mechanistic Update on Browning and Thermogenesis by n-3 Polyunsaturated Fatty Acids. Pharm Res 2023; 40:467-480. [PMID: 36050546 DOI: 10.1007/s11095-022-03377-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Enhancing thermogenesis by increasing the amount and activity of brown and brite adipocytes is a potential therapeutic target for obesity and its associated diseases. Diet plays important roles in energy metabolism and a myriad of dietary components including lipids are known to regulate thermogenesis through recruitment and activation of brown and brite adipocytes. Depending on types of fatty acids (FAs), the major constituent in lipids, their health benefits differ. Long-chain polyunsaturated FAs (PUFAs), especially n-3 PUFAs remodel adipose tissues in a healthier manner with reduced inflammation and enhanced thermogenesis, while saturated FAs exhibit contrasting effects. Lipid mediators derived from FAs act as autocrine/paracrine as well as endocrine factors to regulate thermogenesis. We discuss lipid mediators that may contribute to the differential effects of FAs on adipose tissue remodeling and hence, cardiometabolic diseases. We also discuss current understanding of molecular and cellular mechanisms through which n-3 PUFAs enhance thermogenesis. Elucidating molecular details of beneficial effects of n-3 PUFAs on thermogenesis is expected to provide information that can be used for development of novel therapeutics for obesity and its associated diseases.
Collapse
Affiliation(s)
- Radha Raman Raj
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA
| | - Sydney Lofquist
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA
| | - Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA.
| |
Collapse
|
21
|
Armani A, Feraco A, Camajani E, Gorini S, Lombardo M, Caprio M. Nutraceuticals in Brown Adipose Tissue Activation. Cells 2022; 11:cells11243996. [PMID: 36552762 PMCID: PMC9776638 DOI: 10.3390/cells11243996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity and its associated comorbidities have become pandemic, and challenge the global healthcare system. Lifestyle changes, nutritional interventions and phamaceuticals should be differently combined in a personalized strategy to tackle such a public health burden. Altered brown adipose tissue (BAT) function contributes to the pathophysiology of obesity and glucose metabolism dysfunctions. BAT thermogenic activity burns glucose and fatty acids to produce heat through uncoupled respiration, and can dissipate the excessive calorie intake, reduce glycemia and circulate fatty acids released from white adipose tissue. Thus, BAT activity is expected to contribute to whole body energy homeostasis and protect against obesity, diabetes and alterations in lipid profile. To date, pharmacological therapies aimed at activating brown fat have failed in clinical trials, due to cardiovascular side effects or scarce efficacy. On the other hand, several studies have identified plant-derived chemical compounds capable of stimulating BAT thermogenesis in animal models, suggesting the translational applications of dietary supplements to fight adipose tissue dysfunctions. This review describes several nutraceuticals with thermogenic properties and provides indications, at a molecular level, of the regulation of the adipocyte thermogenesis by the mentioned phytochemicals.
Collapse
Affiliation(s)
- Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
- Correspondence:
| | - Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Stefania Gorini
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| |
Collapse
|
22
|
Bertoncini-Silva C, Zingg JM, Fassini PG, Suen VMM. Bioactive dietary components-Anti-obesity effects related to energy metabolism and inflammation. Biofactors 2022; 49:297-321. [PMID: 36468445 DOI: 10.1002/biof.1921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 12/10/2022]
Abstract
Obesity is the result of the long-term energy imbalance between the excess calories consumed and the few calories expended. Reducing the intake of energy dense foods (fats, sugars), and strategies such as fasting and caloric restriction can promote body weight loss. Not only energy in terms of calories, but also the specific composition of the diet can affect the way the food is absorbed and how its energy is stored, used or dissipated. Recent research has shown that bioactive components of food, such as polyphenols and vitamins, can influence obesity and its pathologic complications such as insulin resistance, inflammation and metabolic syndrome. Individual micronutrients can influence lipid turnover but for long-term effects on weight stability, dietary patterns containing several micronutrients may be required. At the molecular level, these molecules modulate signaling and the expression of genes that are involved in the regulation of energy intake, lipid metabolism, adipogenesis into white, beige and brown adipose tissue, thermogenesis, lipotoxicity, adipo/cytokine synthesis, and inflammation. Higher concentrations of these molecules can be reached in the intestine, where they can modulate the composition and action of the microbiome. In this review, the molecular mechanisms by which bioactive compounds and vitamins modulate energy metabolism, inflammation and obesity are discussed.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Hao L, Nie YH, Chen CY, Li XY, Kaliannan K, Kang JX. Omega-3 Polyunsaturated Fatty Acids Protect against High-Fat Diet-Induced Morphological and Functional Impairments of Brown Fat in Transgenic Fat-1 Mice. Int J Mol Sci 2022; 23:ijms231911903. [PMID: 36233205 PMCID: PMC9570395 DOI: 10.3390/ijms231911903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
The role of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in the regulation of energy homeostasis remains poorly understood. In this study, we used a transgenic fat-1 mouse model, which can produce n-3 PUFAs endogenously, to investigate how n-3 PUFAs regulate the morphology and function of brown adipose tissue (BAT). We found that high-fat diet (HFD) induced a remarkable morphological change in BAT, characterized by “whitening” due to large lipid droplet accumulation within BAT cells, associated with obesity in wild-type (WT) mice, whereas the changes in body fat mass and BAT morphology were significantly alleviated in fat-1 mice. The expression of thermogenic markers and lypolytic enzymes was significantly higher in fat-1 mice than that in WT mice fed with HFD. In addition, fat-1 mice had significantly lower levels of inflammatory markers in BAT and lipopolysaccharide (LPS) in plasma compared with WT mice. Furthermore, fat-1 mice were resistant to LPS-induced suppression of UCP1 and PGC-1 expression and lipid deposits in BAT. Our data has demonstrated that high-fat diet-induced obesity is associated with impairments of BAT morphology (whitening) and function, which can be ameliorated by elevated tissue status of n-3 PUFAs, possibly through suppressing the effects of LPS on inflammation and thermogenesis.
Collapse
Affiliation(s)
- Lei Hao
- Laboratory for Lipid Medicine and Technology (LLMT), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Department of Nursing and Allied Health Professions, Indiana University of Pennsylvania, Indiana, PA 15705, USA
| | - Yong-Hui Nie
- Laboratory for Lipid Medicine and Technology (LLMT), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology (LLMT), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Xiang-Yong Li
- Laboratory for Lipid Medicine and Technology (LLMT), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Kanakaraju Kaliannan
- Laboratory for Lipid Medicine and Technology (LLMT), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology (LLMT), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Correspondence: ; Tel.: +1-(617)-726-8509; Fax: +1-(617)-726-6144
| |
Collapse
|
24
|
Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, Magalhães KG. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond) 2022; 19:61. [PMID: 36068578 PMCID: PMC9446768 DOI: 10.1186/s12986-022-00694-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
Adipose tissues are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. Although white adipose tissue and brown adipose tissue are currently considered key endocrine organs, they differ functionally and morphologically. The existence of the beige or brite adipocytes, cells displaying intermediary characteristics between white and brown adipocytes, illustrates the plastic nature of the adipose tissue. These cells are generated through white adipose tissue browning, a process associated with augmented non-shivering thermogenesis and metabolic capacity. This process involves the upregulation of the uncoupling protein 1, a molecule that uncouples the respiratory chain from Adenosine triphosphate synthesis, producing heat. β-3 adrenergic receptor system is one important mediator of white adipose tissue browning, during cold exposure. Surprisingly, hyperthermia may also induce beige activation and white adipose tissue beiging. Physical exercising copes with increased levels of specific molecules, including Beta-Aminoisobutyric acid, irisin, and Fibroblast growth factor 21 (FGF21), which induce adipose tissue browning. FGF21 is a stress-responsive hormone that interacts with beta-klotho. The central roles played by hormones in the browning process highlight the relevance of the individual lifestyle, including circadian rhythm and diet. Circadian rhythm involves the sleep-wake cycle and is regulated by melatonin, a hormone associated with UCP1 level upregulation. In contrast to the pro-inflammatory and adipose tissue disrupting effects of the western diet, specific food items, including capsaicin and n-3 polyunsaturated fatty acids, and dietary interventions such as calorie restriction and intermittent fasting, favor white adipose tissue browning and metabolic efficiency. The intestinal microbiome has also been pictured as a key factor in regulating white tissue browning, as it modulates bile acid levels, important molecules for the thermogenic program activation. During embryogenesis, in which adipose tissue formation is affected by Bone morphogenetic proteins that regulate gene expression, the stimuli herein discussed influence an orchestra of gene expression regulators, including a plethora of transcription factors, and chromatin remodeling enzymes, and non-coding RNAs. Considering the detrimental effects of adipose tissue browning and the disparities between adipose tissue characteristics in mice and humans, further efforts will benefit a better understanding of adipose tissue plasticity biology and its applicability to managing the overwhelming burden of several chronic diseases.
Collapse
Affiliation(s)
- Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | | | - Debora Santos da Silva
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Gabriel Ribeiro Farias
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Luana Borges Baptista
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
25
|
The Role and Regulatory Mechanism of Brown Adipose Tissue Activation in Diet-Induced Thermogenesis in Health and Diseases. Int J Mol Sci 2022; 23:ijms23169448. [PMID: 36012714 PMCID: PMC9408971 DOI: 10.3390/ijms23169448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Brown adipose tissue (BAT) has been considered a vital organ in response to non-shivering adaptive thermogenesis, which could be activated during cold exposure through the sympathetic nervous system (SNS) or under postprandial conditions contributing to diet-induced thermogenesis (DIT). Humans prefer to live within their thermal comfort or neutral zone with minimal energy expenditure created by wearing clothing, making shelters, or using an air conditioner to regulate their ambient temperature; thereby, DIT would become an important mechanism to counter-regulate energy intake and lipid accumulation. In addition, there has been a long interest in the intriguing possibility that a defect in DIT predisposes one to obesity and other metabolic diseases. Due to the recent advances in methodology to evaluate the functional activity of BAT and DIT, this updated review will focus on the role and regulatory mechanism of BAT biology in DIT in health and diseases and whether these mechanisms are applicable to humans.
Collapse
|
26
|
Shin S. Regulation of Adipose Tissue Biology by Long-Chain Fatty Acids: Metabolic Effects and Molecular Mechanisms. J Obes Metab Syndr 2022; 31:147-160. [PMID: 35691686 PMCID: PMC9284576 DOI: 10.7570/jomes22014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/22/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Long-chain fatty acids (LCFA) modulate metabolic, oxidative, and inflammatory responses, and the physiological effects of LCFA are determined by chain length and the degree of saturation. Adipose tissues comprise multiple cell types, and play a significant role in energy storage and expenditure. Fatty acid uptake and oxidation are the pathways through which fatty acids participate in the regulation of energy homeostasis, and their dysregulation can lead to the development of obesity and chronic obesity-related disorders, including type 2 diabetes, cardiovascular diseases, and certain types of cancer. Numerous studies have reported that many aspects of adipose tissue biology are influenced by the number and position of double bonds in LCFA, and these effects are mediated by various signaling pathways, including those regulating adipocyte differentiation (adipogenesis), thermogenesis, and inflammation in adipose tissue. This review aims to describe the underlying molecular mechanisms by which different types of LCFA influence adipose tissue metabolism, and to further clarify their relevance to metabolic dysregulation associated with obesity. A better understanding of the effects of LCFA on adipose tissue metabolism may lead to improved nutraceutical strategies to address obesity and obesity-associated diseases.
Collapse
Affiliation(s)
- Sunhye Shin
- Major of Food and Nutrition, Division of Applied Food System, Seoul Women's University, Seoul, Korea
| |
Collapse
|
27
|
Ghnaimawi S, Zhang S, Baum JI, Huang Y. The Effects of Maternal Intake of EPA and DHA Enriched Diet During Pregnancy and Lactation on Offspring's Muscle Development and Energy Homeostasis. Front Physiol 2022; 13:881624. [PMID: 35733999 PMCID: PMC9207413 DOI: 10.3389/fphys.2022.881624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
EPA and DHA are n-3 long-chain polyunsaturated fatty acids with a diversity of health benefits on offspring. The objective of this study was to test the in vivo effect of maternal ingestion of EPA and DHA on fetal and offspring muscle development and energy balance. Two groups of female C57BL/6 mice were fed EPA and DHA enriched diet (FA) and diet devoid of EPA and DHA (CON) respectively throughout the entire period of gestation and lactation. Embryos at E13 and offspring at age of D1 and D21 were selected for sample collection and processing. No change in birth number and body weight were observed between groups at D1 and D21. Transient increase in the expression levels of myogenesis regulating genes was detected at D1 (p < 0.05) in FA group. Most of the expression of muscle protein synthesis regulating genes were comparable (p > 0.05) between FA and CON groups at D1 and D21. The significant increase in MHC4, and IGF-1 was not linked to increased muscle mass. A persistent increase in ISR expression (p < 0.05) but not in GLUT-4 (p > 0.05) was detected in offspring. Up-regulation of adipogenesis regulating genes was accompanied by increasing intramuscular fat accumulation in the offspring of FA group. Considerable increase in transcripts of genes regulating lipid catabolism and thermogenesis in liver (p < 0.05) was noticed in FA group at D21; whereas, only the levels of carnitine palmitoyl transferase 1A (Cpt1α) and Enoyl-CoA Hydratase And 3-Hydroxyacyl CoA Dehydrogenase (Ehhadh) increased at D1. Similarly, genes regulating lipolysis were highly expressed at D21 in FA group. EPA and DHA treatment promoted BAT development and activity by increasing the expression of BAT signature genes (p < 0.05). Also, maternal intake of EPA and DHA enriched diet enhanced browning of sWAT. Taken together, maternal ingestion of EPA/DHA may be suggested as a therapeutic option to improve body composition and counteract childhood obesity- related metabolic disorders and confer lifelong positive metabolic impact on offspring.
Collapse
Affiliation(s)
- Saeed Ghnaimawi
- Medical Laboratory Techniques Department, Kut University College, Alkut, Iraq
| | - Shilei Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jamie I. Baum
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
28
|
Doukbi E, Soghomonian A, Sengenès C, Ahmed S, Ancel P, Dutour A, Gaborit B. Browning Epicardial Adipose Tissue: Friend or Foe? Cells 2022; 11:991. [PMID: 35326442 PMCID: PMC8947372 DOI: 10.3390/cells11060991] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
The epicardial adipose tissue (EAT) is the visceral fat depot of the heart which is highly plastic and in direct contact with myocardium and coronary arteries. Because of its singular proximity with the myocardium, the adipokines and pro-inflammatory molecules secreted by this tissue may directly affect the metabolism of the heart and coronary arteries. Its accumulation, measured by recent new non-invasive imaging modalities, has been prospectively associated with the onset and progression of coronary artery disease (CAD) and atrial fibrillation in humans. Recent studies have shown that EAT exhibits beige fat-like features, and express uncoupling protein 1 (UCP-1) at both mRNA and protein levels. However, this thermogenic potential could be lost with age, obesity and CAD. Here we provide an overview of the physiological and pathophysiological relevance of EAT and further discuss whether its thermogenic properties may serve as a target for obesity therapeutic management with a specific focus on the role of immune cells in this beiging phenomenon.
Collapse
Affiliation(s)
- Elisa Doukbi
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
| | - Astrid Soghomonian
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, F-13005 Marseille, France
| | - Coralie Sengenès
- Stromalab, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, University of Toulouse, F-31100 Toulouse, France;
- Institut National de la Santé et de la Recherche Médicale, University Paul Sabatier, F-31100 Toulouse, France
| | - Shaista Ahmed
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
| | - Patricia Ancel
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
| | - Anne Dutour
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, F-13005 Marseille, France
| | - Bénédicte Gaborit
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, F-13005 Marseille, France
| |
Collapse
|
29
|
PET/MRI-evaluated brown adipose tissue activity may be related to dietary MUFA and omega-6 fatty acids intake. Sci Rep 2022; 12:4112. [PMID: 35260768 PMCID: PMC8904502 DOI: 10.1038/s41598-022-08125-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
An investigation of new ways to activate brown adipose tissue (BAT) is highly valuable, as it is a possible tool for obesity prevention and treatment. The aim of our study was to evaluate the relationships between dietary intake and BAT activity. The study group comprised 28 healthy non-smoking males aged 21–42 years. All volunteers underwent a physical examination and 75-g OGTT and completed 3-day food intake diaries to evaluate macronutrients and fatty acid intake. Body composition measurements were assessed using DXA scanning. An FDG-18 PET/MR was performed to visualize BAT activity. Brown adipose tissue was detected in 18 subjects (67% normal-weight individuals and 33% overweight/obese). The presence of BAT corresponded with a lower visceral adipose tissue (VAT) content (p = 0.04, after adjustment for age, daily kcal intake, and DXA Lean mass). We noted significantly lower omega-6 fatty acids (p = 0.03) and MUFA (p = 0.02) intake in subjects with detected BAT activity after adjustment for age, daily average kcal intake, and DXA Lean mass, whereas omega-3 fatty acids intake was comparable between the two groups. BAT presence was positively associated with the concentration of serum IL-6 (p = 0.01) during cold exposure. Our results show that BAT activity may be related to daily omega-6 fatty acids intake.
Collapse
|
30
|
Yang X, Yi X, Zhang F, Li F, Lang L, Ling M, Lai X, Chen L, Quan L, Fu Y, Feng S, Shu G, Wang L, Zhu X, Gao P, Jiang Q, Wang S. Cytochrome P450 epoxygenase-derived EPA and DHA oxylipins 17,18-epoxyeicosatetraenoic acid and 19,20-epoxydocosapentaenoic acid promote BAT thermogenesis and WAT browning through the GPR120-AMPKα signaling pathway. Food Funct 2022; 13:1232-1245. [PMID: 35019933 DOI: 10.1039/d1fo02608a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
The mechanisms whereby fish oil rich in EPA and DHA promotes BAT thermogenesis and WAT browning are not fully understood. Thus, this study aimed to investigate the effects of cytochrome P450 (CYP) epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE on BAT thermogenesis and WAT browning and explore the underlying mechanism. Stromal vascular cells (SVCs) were subjected to 17,18-EpETE or 19,20-EpDPE treatment and mice were treated with the CYP epoxygenase inhibitor, the thermogenic marker genes were detected and the involvement of GPR120 and AMPKα were assessed. The in vitro results indicated that 17,18-EpETE and 19,20-EpDPE induced brown and beige adipocyte thermogenesis, with increased expression of thermogenic marker gene UCP1 in differentiated SVCs. Meanwhile, the expression of GPR120 and phosphorylation of AMPKα were increased in response to these two oxylipins. However, the inhibition of GPR120 and AMPKα inhibited the promotion of adipocyte thermogenesis. In addition, in the presence of CYP epoxygenase inhibitor MS-PPOH, EPA and DHA had no effect on increasing UCP1 expression in differentiated SVCs. Consistent with the in vitro results, the in vivo findings demonstrated that fish oil had no body fat-lowering effects and no effects on enhancing energy metabolism, iBAT thermogenesis and iWAT browning in mice fed HFD after intraperitoneal injection of CYP epoxygenase inhibitor SKF-525A. Moreover, fish oil had no effect on the elevation of GPR120 expression and activation of AMPKα in iBAT and iWAT in mice fed HFD after intraperitoneal injection of SKF-525A. In summary, our results showed that CYP epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE promoted BAT thermogenesis and WAT browning through the GPR120-AMPKα signaling pathway, which might contribute to the thermogenic and anti-obesity effects of fish oil.
Collapse
Affiliation(s)
- Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Limin Lang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xumin Lai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lulu Quan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yiming Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Shengchun Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
31
|
Wiśniewski O, Rajczewski A, Szumigała A, Gibas-Dorna M. Diet-Induced Adipocyte Browning. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/143164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
|
32
|
Theobromine enhances the conversion of white adipocytes into beige adipocytes in a PPARγ activation-dependent manner. J Nutr Biochem 2021; 100:108898. [PMID: 34748921 DOI: 10.1016/j.jnutbio.2021.108898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The adipocytes play an important role in driving the obese-state-white adipose tissue (WAT) stores the excess energy as fat, wherein brown adipose tissue (BAT) is responsible for energy expenditure via the thermoregulatory function of uncoupling protein 1 (UCP1)-the imbalance between these two onsets obesity. Moreover, the anti-obesity effects of brown-like-adipocytes (beige) in WAT are well documented. Browning, the process of transformation of energy-storing into energy-dissipating adipocytes, is a potential preventive strategy against obesity and its related diseases. In the present study, to explore an alternative source of natural products in the regulation of adipocyte transformation, we assessed the potential of theobromine (TB), a bitter alkaloid of the cacao plant, inducing browning in mice (in vivo) and primary adipocytes (in vitro). Dietary supplementation of TB significantly increased skin temperature of the inguinal region in mice and induced the expression of UCP1 protein. It also increased the expression levels of mitochondrial marker proteins in subcutaneous adipose tissues but not in visceral adipose tissues. The microarray analysis showed that TB supplementation upregulated multiple thermogenic and beige adipocyte marker genes in subcutaneous adipose tissue. Furthermore, in mouse-derived primary adipocytes, TB upregulated the expression of the UCP1 protein and mitochondrial mass in a PPARγ ligand-dependent manner. It also increased the phosphorylation levels of PPARγ coactivator 1α without affecting its protein expression. These results indicate that dietary supplementation of TB induces browning in subcutaneous WAT and enhances PPARγ-induced UCP1 expression in vitro, suggesting its potential to treat obesity.
Collapse
|
33
|
Hosomi R, Matsudo A, Sugimoto K, Shimono T, Kanda S, Nishiyama T, Yoshida M, Fukunaga K. Dietary Eicosapentaenoic Acid and Docosahexaenoic Acid Ethyl Esters Influence the Gut Microbiota and Bacterial Metabolites in Rats. J Oleo Sci 2021; 70:1469-1480. [PMID: 34497184 DOI: 10.5650/jos.ess21189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
Dietary fish oil containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been reported to affect the diversity and composition of gut microbiota and bacterial metabolites. However, few reports have focused on the effects of EPA and DHA on gut microbiota diversity and bacterial metabolites. This study evaluated the effects of dietary EPA-ethyl ester (EE) and DHA-EE on steroid metabolism, gut microbiota, and bacterial metabolites in Wistar rats. Male rats were fed the experimental diets containing 5% (w/w) soybean oil-EE (SOY diet), EPA-EE (EPA diet), and DHA-EE (DHA diet) for four weeks. The lipid contents in the serum and liver, mRNA expression levels in the liver, and the diversity, composition, and metabolites of the gut microbiota were evaluated. The EPA and DHA diets decreased serum and liver cholesterol contents compared to the SOY diet. In addition, there were no significant changes in gene expression levels related to steroid metabolism in the liver between the EPA and DHA groups. Rats fed the DHA diet had lower microbiota diversity indices, such as Simpson and Shannon indices, than rats fed the SOY and EPA diets. In addition, rats fed EPA and DHA had significant differences in the relative abundance of microbiota at the genus level, such as Phascolarctobacterium, Turicibacter, and [Eubacterium]. Therefore, it was concluded that EPA and DHA have different effects on the diversity and composition of gut microbiota under the experimental conditions employed herein.
Collapse
Affiliation(s)
- Ryota Hosomi
- Department of Life Science and Biotechnology, Kansai University
| | - Anna Matsudo
- Department of Life Science and Biotechnology, Kansai University
| | - Koki Sugimoto
- Department of Life Science and Biotechnology, Kansai University
| | - Takaki Shimono
- Department of Hygiene and Public Health, Kansai Medical University
| | - Seiji Kanda
- Department of Hygiene and Public Health, Kansai Medical University
| | | | | | - Kenji Fukunaga
- Department of Life Science and Biotechnology, Kansai University
| |
Collapse
|
34
|
Yang Y, Xu X, Wu H, Yang J, Chen J, Morisseau C, Hammock BD, Bettaieb A, Zhao L. Differential Effects of 17,18-EEQ and 19,20-EDP Combined with Soluble Epoxide Hydrolase Inhibitor t-TUCB on Diet-Induced Obesity in Mice. Int J Mol Sci 2021; 22:ijms22158267. [PMID: 34361032 PMCID: PMC8347952 DOI: 10.3390/ijms22158267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
17,18-Epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) are bioactive epoxides produced from n-3 polyunsaturated fatty acid eicosapentaenoic acid and docosahexaenoic acid, respectively. However, these epoxides are quickly metabolized into less active diols by soluble epoxide hydrolase (sEH). We have previously demonstrated that an sEH inhibitor, t-TUCB, decreased serum triglycerides (TG) and increased lipid metabolic protein expression in the brown adipose tissue (BAT) of diet-induced obese mice. This study investigates the preventive effects of t-TUCB (T) alone or combined with 19,20-EDP (T + EDP) or 17,18-EEQ (T + EEQ) on BAT activation in the development of diet-induced obesity and metabolic disorders via osmotic minipump delivery in mice. Both T + EDP and T + EEQ groups showed significant improvement in fasting glucose, serum triglycerides, and higher core body temperature, whereas heat production was only significantly increased in the T + EEQ group. Moreover, both the T + EDP and T + EEQ groups showed less lipid accumulation in the BAT. Although UCP1 expression was not changed, PGC1α expression was increased in all three treated groups. In contrast, the expression of CPT1A and CPT1B, which are responsible for the rate-limiting step for fatty acid oxidation, was only increased in the T + EDP and T + EEQ groups. Interestingly, as a fatty acid transporter, CD36 expression was only increased in the T + EEQ group. Furthermore, both the T + EDP and T + EEQ groups showed decreased inflammatory NFκB signaling in the BAT. Our results suggest that 17,18-EEQ or 19,20-EDP combined with t-TUCB may prevent high-fat diet-induced metabolic disorders, in part through increased thermogenesis, upregulating lipid metabolic protein expression, and decreasing inflammation in the BAT.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA; (Y.Y.); (X.X.); (H.W.); (A.B.)
| | - Xinyun Xu
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA; (Y.Y.); (X.X.); (H.W.); (A.B.)
| | - Haoying Wu
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA; (Y.Y.); (X.X.); (H.W.); (A.B.)
| | - Jun Yang
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (J.Y.); (C.M.); (B.D.H.)
| | - Jiangang Chen
- Department of Public Health, University of Tennessee, Knoxville, TN 37996, USA;
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (J.Y.); (C.M.); (B.D.H.)
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (J.Y.); (C.M.); (B.D.H.)
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA; (Y.Y.); (X.X.); (H.W.); (A.B.)
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA; (Y.Y.); (X.X.); (H.W.); (A.B.)
- Correspondence: ; Tel.: +1-865-974-1833
| |
Collapse
|
35
|
Miller EK, Pahlavani M, Ramalingam L, Scoggin S, Moustaid-Moussa N. Uncoupling protein 1-independent effects of eicosapentaenoic acid in brown adipose tissue of diet-induced obese female mice. J Nutr Biochem 2021; 98:108819. [PMID: 34271101 DOI: 10.1016/j.jnutbio.2021.108819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2020] [Revised: 04/29/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Brown adipose tissue (BAT) plays a key role in energy expenditure through its thermogenic function, making its activation a popular target to reduce obesity. We recently reported that male mice housed at thermoneutrality with uncoupling protein 1 (UCP1) deficiency had increased weight gain and glucose intolerance, but eicosapentaenoic acid (EPA) ameliorated these effects. Whether female mice respond similarly to lack of UCP1 and to EPA remains unknown. We hypothesize that the effects of EPA on BAT activation are independent of UCP1 expression. We used female wild type (WT) and UCP1 knockout (KO) mice housed at thermoneutrality (30°C) as an obesogenic environment and fed them high fat (HF) diets with or without EPA for up to 14 weeks. Body weight (BW), body composition, and insulin and glucose tolerance tests were performed during the feeding trial. At termination, serum and BAT were harvested for further analyses. Mice in the KO-EPA group had significantly lower BW than KO-HF mice. In addition, KO-HF mice displayed significantly impaired glucose tolerance compared to their WT-HF littermates. However, EPA significantly enhanced glucose clearance in the KO mice compared to KO-HF mice. Protein levels of the mitochondrial cytochrome C oxidase subunits I, II, and IV were significantly lower in KO mice compared to WT. Our findings support that ablation of UCP1 is detrimental to energy metabolism of female mice in thermoneutral conditions. However, unexpectedly, EPA's protective effects against diet-induced obesity and glucose intolerance in these mice were independent of UCP1.
Collapse
Affiliation(s)
- Emily K Miller
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas
| | - Mandana Pahlavani
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas
| | - Latha Ramalingam
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas; Department of Nutrition and Food Studies, Syracuse University, Syracuse, New York ,13210
| | - Shane Scoggin
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
36
|
Fridén M, Rosqvist F, Kullberg J, Ahlström H, Lind L, Risérus U. Associations between fatty acid composition in serum cholesteryl esters and liver fat, basal fat oxidation, and resting energy expenditure: a population-based study. Am J Clin Nutr 2021; 114:1743-1751. [PMID: 34225361 PMCID: PMC8574708 DOI: 10.1093/ajcn/nqab221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND We have repeatedly shown in short-term feeding trials that a high intake of dietary n-6 PUFAs, i.e. linoleic acid, prevents liver fat accumulation compared with saturated fat. However, population-based data is lacking and the mechanisms behind such effects are unclear. OBJECTIVE To investigate associations between serum cholesteryl ester (CE) fatty acids and liver fat, basal fat oxidation [respiratory quotient (RQ)], and resting energy expenditure (REE). We hypothesized that PUFA in particular is inversely associated with liver fat and that such a relation is partly explained by a PUFA-induced increase in basal fat oxidation or REE. METHODS Cross-sectional analyses using linear regression models in a population-based cohort with data on serum CE fatty acid composition and liver fat (n = 308). RESULTS Linoleic acid (18:2n-6) (β = -0.03, 95% CI: -0.06, -0.001) and Δ5 desaturase index were inversely associated, whereas, γ-linolenic acid (18:3n-6) (β = 0.59, 95% CI: 0.28, 0.90), dihomo-γ-linolenic acid (20:3n-6) (β = 1.20, 95% CI: 0.65, 1.75), arachidonic acid (20:4n-6) (β = 0.08, 95% CI: 0.002, 0.16), palmitoleic acid (16:1n-7) (β = 0.37, 95% CI: 0.04, 0.70), Δ6 desaturase, and stearoyl CoA desaturase-1 (SCD-1) index were directly associated with liver fat after adjustment for confounders. Several serum CE fatty acids were correlated with both liver fat and REE, but only the association between DHA (22:6n-3) and liver fat was clearly attenuated after adjustment for REE (from β = -0.63 95% CI: -1.24, -0.02 to β = -0.34, 95% CI: -0.95, 0.27). Palmitoleic acid and SCD-1 were weakly inversely correlated with RQ but could not explain a lower liver fat content. CONCLUSIONS Several serum CE fatty acids are associated with liver fat, among them linoleic acid. Although we identified novel associations between individual fatty acids and RQ and REE, our findings imply that PUFAs might prevent liver fat accumulation through mechanisms other than enhanced whole-body energy metabolism.
Collapse
Affiliation(s)
- Michael Fridén
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden,Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden,Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
37
|
Drapkina OM, Kim OT. Is brown adipose tissue a new target for obesity therapy? КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022] Open
Abstract
The rapid increase in the prevalence of obesity and related diseases has prompted researchers to seek novel effective therapeutic targets. Recently, brown adipose tissue has been in the spotlight as a potential target for treatment of metabolic diseases due to its ability to increase energy expenditure and regulate glucose and lipid homeostasis. The review presents the latest data on approaches aimed at activating and expanding brown adipose tissue in order to combat obesity.
Collapse
Affiliation(s)
- O. M. Drapkina
- National Research Center for Therapy and Preventive Medicine
| | - O. T. Kim
- National Research Center for Therapy and Preventive Medicine
| |
Collapse
|
38
|
Shin S, Ajuwon KM. Effect of lipopolysaccharide on peripheral tissue and hypothalamic expression of metabolic and inflammatory markers in mice fed high-fat diets with distinct 18-carbon fatty acid composition. Lipids 2021; 56:509-519. [PMID: 34212398 DOI: 10.1002/lipd.12318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023]
Abstract
Physiological and metabolic effects of fatty acids are determined by their degree of saturation and chain length. Effects of 18-carbon fatty acids with various degrees of saturation on inflammatory, oxidative, and neuropeptide gene transcription, especially in the hypothalamus, in response to LPS-induced acute inflammation have not been well studied. We conducted this study to test whether diets with distinct 18-carbon fatty acid differentially affect inflammatory and metabolic response to LPS exposure in the hypothalamus, liver, and muscle tissues. Four experimental diets were fed for 4 weeks to male C57BL/6J mice, and a terminal 4-h lipopolysaccharide (LPS) injection was administered. Diets included a control diet (CON) containing 5.6% kcal fat from lard and 4.4% kcal fat from soybean oil, and three high-fat diets (HFD) containing 25% kcal fat from lard and 20% kcal fat from either shea butter (SHB; saturated fatty acid-rich fat), olive oil (OLO; monounsaturated fatty acid-rich oil), or soybean oil (SBO; polyunsaturated fatty acid-rich fat). Compared to CON, HFD-fed mice had higher weight gain and body fat accumulation. The SBO group had lowest Cpt1b expression in the liver, and OLO group had the lowest Pomc and the highest Lepr expression in the hypothalamus. LPS challenge increased pro-inflammatory cytokine mRNA expression in the brain and peripheral tissues. However, the diets did not exert distinguishable effects on LPS-induced inflammatory responses. Therefore, saturation degree of 18-carbon fatty acids may not play a critical role in their effects on inflammatory and metabolic indicators in response to acute inflammation induced by LPS.
Collapse
Affiliation(s)
- Sunhye Shin
- Major of Food and Nutrition, Division of Applied Food System, Seoul Women's University, Seoul, Korea.,Interdepartmental Nutrition Program, Purdue University, West Lafayette, Indiana, USA
| | - Kolapo M Ajuwon
- Interdepartmental Nutrition Program, Purdue University, West Lafayette, Indiana, USA.,Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
39
|
Sun W, Luo Y, Zhang F, Tang S, Zhu T. Involvement of TRP Channels in Adipocyte Thermogenesis: An Update. Front Cell Dev Biol 2021; 9:686173. [PMID: 34249940 PMCID: PMC8264417 DOI: 10.3389/fcell.2021.686173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 01/27/2023] Open
Abstract
Obesity prevalence became a severe global health problem and it is caused by an imbalance between energy intake and expenditure. Brown adipose tissue (BAT) is a major site of mammalian non-shivering thermogenesis or energy dissipation. Thus, modulation of BAT thermogenesis might be a promising application for body weight control and obesity prevention. TRP channels are non-selective calcium-permeable cation channels mainly located on the plasma membrane. As a research focus, TRP channels have been reported to be involved in the thermogenesis of adipose tissue, energy metabolism and body weight regulation. In this review, we will summarize and update the recent progress of the pathological/physiological involvement of TRP channels in adipocyte thermogenesis. Moreover, we will discuss the potential of TRP channels as future therapeutic targets for preventing and combating human obesity and related-metabolic disorders.
Collapse
Affiliation(s)
- Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yixuan Luo
- Department of Cardiovascular Surgery, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Fei Zhang
- Department of Cardiovascular Surgery, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shuo Tang
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tao Zhu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Crudele L, Piccinin E, Moschetta A. Visceral Adiposity and Cancer: Role in Pathogenesis and Prognosis. Nutrients 2021; 13:2101. [PMID: 34205356 PMCID: PMC8234141 DOI: 10.3390/nu13062101] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
The prevalence of being overweight and obese has been expanded dramatically in recent years worldwide. Obesity usually occurs when the energetic introit overtakes energy expenditure from metabolic and physical activity, leading to fat accumulation mainly in the visceral depots. Excessive fat accumulation represents a risk factor for many chronic diseases, including cancer. Adiposity, chronic low-grade inflammation, and hyperinsulinemia are essential factors of obesity that also play a crucial role in tumor onset. In recent years, several strategies have been pointed toward boundary fat accumulation, thus limiting the burden of cancer attributable to obesity. While remodeling fat via adipocytes browning seems a tempting prospect, lifestyle interventions still represent the main pathway to prevent cancer and enhance the efficacy of treatments. Specifically, the Mediterranean Diet stands out as one of the best dietary approaches to curtail visceral adiposity and, therefore, cancer risk. In this Review, the close relationship between obesity and cancer has been investigated, highlighting the biological mechanisms at the basis of this link. Finally, strategies to remodel fat, including browning and lifestyle interventions, have been taken into consideration as a major perspective to limit excess body weight and tumor onset.
Collapse
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (L.C.); (E.P.)
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (L.C.); (E.P.)
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (L.C.); (E.P.)
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
- National Cancer Center, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| |
Collapse
|
41
|
Félix-Soriano E, Sáinz N, Gil-Iturbe E, Collantes M, Fernández-Galilea M, Castilla-Madrigal R, Ly L, Dalli J, Moreno-Aliaga MJ. Changes in brown adipose tissue lipid mediator signatures with aging, obesity, and DHA supplementation in female mice. FASEB J 2021; 35:e21592. [PMID: 33960028 DOI: 10.1096/fj.202002531r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Brown adipose tissue (BAT) dysfunction in aging and obesity has been related to chronic unresolved inflammation, which could be mediated by an impaired production of specialized proresolving lipid mediators (SPMs), such as Lipoxins-LXs, Resolvins-Rvs, Protectins-PDs, and Maresins-MaRs. Our aim was to characterize the changes in BAT SPMs signatures and their association with BAT dysfunction during aging, especially under obesogenic conditions, and their modulation by a docosahexaenoic acid (DHA)-rich diet. Lipidomic, functional, and molecular studies were performed in BAT of 2- and 18-month-old lean (CT) female mice and in 18-month-old diet-induced obese (DIO) mice fed with a high-fat diet (HFD), or a DHA-enriched HFD. Aging downregulated Prdm16 and UCP1 levels, especially in DIO mice, while DHA partially restored them. Arachidonic acid (AA)-derived LXs and DHA-derived MaRs and PDs were the most abundant SPMs in BAT of young CT mice. Interestingly, the sum of LXs and of PDs were significantly lower in aged DIO mice compared to young CT mice. Some of the SPMs most significantly reduced in obese-aged mice included LXB4 , MaR2, 4S,14S-diHDHA, 10S,17S-diHDHA (a.k.a. PDX), and RvD6. In contrast, DHA increased DHA-derived SPMs, without modifying LXs. However, MicroPET studies showed that DHA was not able to counteract the impaired cold exposure response in BAT of obese-aged mice. Our data suggest that a defective SPMs production could underlie the decrease of BAT activity observed in obese-aged mice, and highlight the relevance to further characterize the physiological role and therapeutic potential of specific SPMs on BAT development and function.
Collapse
Affiliation(s)
- Elisa Félix-Soriano
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Neira Sáinz
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Eva Gil-Iturbe
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - María Collantes
- Radiopharmacy, Radionanopharmacology and Translational Molecular Imaging Research Group, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Marta Fernández-Galilea
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Rosa Castilla-Madrigal
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Lucy Ly
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Jesmond Dalli
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Center for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - María J Moreno-Aliaga
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
42
|
Mitchell CM, Piaggi P, O’Brien DM, Krakoff J, Votruba SB. Metabolic Characterization of Meat, Fish, and Soda Intake in Males: Secondary Results from a Randomized Inpatient Pilot Study. Obesity (Silver Spring) 2021; 29:995-1002. [PMID: 33938613 PMCID: PMC9528993 DOI: 10.1002/oby.23167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/01/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE This study aimed to evaluate whether a 12-week, weight-maintaining, macronutrient-stable dietary intervention that varies only by meat, fish, or soda consumption alters 24-hour energy expenditure (24hrEE) and substrate oxidation. METHODS Healthy males were recruited to participate in a 12-week inpatient study and were randomized to a weight-maintaining dietary intervention that contained varying combinations of meat (0% or 19%), fish (0% or 6%), or soda (0% or 14%) in a factorial design. Macronutrient composition across dietary intervention groups was as follows: 50% of energy from carbohydrates, 30% of energy from fat, and 20% of energy from protein. Whole-room indirect calorimetry at baseline and week 12 were used to measure 24hrEE and substrate oxidation. RESULTS Twenty-six males (mean [SEM], age: 46.6 [10.4] years; BMI: 26.9 [4.1] kg/m2 ) completed all measurements. Fish consumption resulted in higher 24hrEE by 126 (55) kcal/d compared with no fish consumption (P = 0.03), whereas 24hrEE for soda consumption was 132 (56) kcal/d (P = 0.03) lower. Approximately 80% of the decrease in 24hrEE with soda consumption was due to lower awake-inactive energy expenditure (EE; P = 0.001). No specific EE component accounted for the differences observed with fish consumption. CONCLUSIONS The data indicate that dietary sources of protein and carbohydrates appear to influence 24hrEE and inactive EE.
Collapse
Affiliation(s)
- Cassie M. Mitchell
- 4212 N. 16 Street, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85016 USA
| | - Paolo Piaggi
- 4212 N. 16 Street, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85016 USA
| | - Diane M. O’Brien
- 230 Artic Health Research Building, Center for Alaska Native Health Research, Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Jonathan Krakoff
- 4212 N. 16 Street, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85016 USA
| | - Susanne B. Votruba
- 4212 N. 16 Street, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85016 USA
| |
Collapse
|
43
|
Yamazaki T, Li D, Ikaga R. Fish Oil Increases Diet-Induced Thermogenesis in Mice. Mar Drugs 2021; 19:278. [PMID: 34067796 PMCID: PMC8156710 DOI: 10.3390/md19050278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing energy expenditure (EE) is beneficial for preventing obesity. Diet-induced thermogenesis (DIT) is one of the components of total EE. Therefore, increasing DIT is effective against obesity. We examined how much fish oil (FO) increased DIT by measuring absolute values of DIT in mice. C57BL/6J male mice were given diets of 30 energy% fat consisting of FO or safflower oil plus butter as control oil (Con). After administration for 9 days, respiration in mice was monitored, and then the data were used to calculate DIT and EE. DIT increased significantly by 1.2-fold in the FO-fed mice compared with the Con-fed mice. Body weight gain was significantly lower in the FO-fed mice. FO increased the levels of uncoupling protein 1 (Ucp1) mRNA and UCP1 protein in brown adipose tissue (BAT) by 1.5- and 1.2-fold, respectively. In subcutaneous white adipose tissue (subWAT), the levels of Ucp1 mRNA and UCP1 protein were increased by 6.3- and 2.7-fold, respectively, by FO administration. FO also significantly increased the expression of markers of browning in subWAT such as fibroblast growth factor 21 and cell death-inducing DNA fragmentation factor α-like effector a. Thus, dietary FO seems to increase DIT in mice via the increased expressions of Ucp1 in BAT and induced browning of subWAT. FO might be a promising dietary fat in the prevention of obesity by upregulation of energy metabolism.
Collapse
Affiliation(s)
- Tomomi Yamazaki
- Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan; (D.L.); (R.I.)
| | - Dongyang Li
- Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan; (D.L.); (R.I.)
- The Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Reina Ikaga
- Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan; (D.L.); (R.I.)
| |
Collapse
|
44
|
Verduci E, Calcaterra V, Di Profio E, Fiore G, Rey F, Magenes VC, Todisco CF, Carelli S, Zuccotti GV. Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review. Nutrients 2021; 13:nu13051450. [PMID: 33923364 PMCID: PMC8145569 DOI: 10.3390/nu13051450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric obesity remains a challenge in modern society. Recently, research has focused on the role of the brown adipose tissue (BAT) as a potential target of intervention. In this review, we revised preclinical and clinical works on factors that may promote BAT or browning of white adipose tissue (WAT) from fetal age to adolescence. Maternal lifestyle, type of breastfeeding and healthy microbiota can affect the thermogenic activity of BAT. Environmental factors such as exposure to cold or physical activity also play a role in promoting and activating BAT. Most of the evidence is preclinical, although in clinic there is some evidence on the role of omega-3 PUFAs (EPA and DHA) supplementation on BAT activation. Clinical studies are needed to dissect the early factors and their modulation to allow proper BAT development and functions and to prevent onset of childhood obesity.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Correspondence: (E.V.); (S.C.)
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Carolina Federica Todisco
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
- Correspondence: (E.V.); (S.C.)
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| |
Collapse
|
45
|
Moss JWE, Williams JO, Al-Ahmadi W, O'Morain V, Chan YH, Hughes TR, Menendez-Gonzalez JB, Almotiri A, Plummer SF, Rodrigues NP, Michael DR, Ramji DP. Protective effects of a unique combination of nutritionally active ingredients on risk factors and gene expression associated with atherosclerosis in C57BL/6J mice fed a high fat diet. Food Funct 2021; 12:3657-3671. [PMID: 33900312 PMCID: PMC8359826 DOI: 10.1039/d0fo02867c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis, an inflammatory disorder of the vasculature and the underlying cause of cardiovascular disease, is responsible for one in three global deaths. Consumption of active food ingredients such as omega-3 polyunsaturated fatty acids, flavanols and phytosterols has many beneficial effects on cardiovascular disease. However, their combined actions on the risk factors for atherosclerosis remains poorly understood. We have previously shown that a formulation containing each of these active components at physiologically relevant doses modulated several monocyte/macrophage processes associated with atherosclerosis in vitro, including inhibition of cytokine-induced pro-inflammatory gene expression, chemokine-driven monocyte migration, expression of M1 phenotype markers, and promotion of cholesterol efflux. The objectives of the present study were to investigate whether the protective actions of the formulation extended in vivo and to delineate the potential underlying mechanisms. The formulation produced several favourable changes, including higher plasma levels of HDL and reduced levels of macrophages and myeloid-derived suppressor cells in the bone marrow. The mRNA expression of liver-X-receptor-α, peroxisome proliferator-activated receptor-γ and superoxide dismutase-1 was induced in the liver and that of interferon-γ and the chemokine (C-X-C motif) ligand 1 decreased, thereby suggesting the potential mechanisms for many beneficial effects. Other changes were also observed such as increased plasma levels of triglycerides and lipid peroxidation that may reflect potential activation of brown fat. This study provides new insights into the protective actions and the potential underlying mechanisms of the formulation in vivo, particularly in relation to risk factors together with changes in systemic inflammation and hepatic lipid alterations associated with atherosclerosis and metabolic syndrome, and supports further assessments in human trials.
Collapse
Affiliation(s)
- Joe W E Moss
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Jessica O Williams
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Wijdan Al-Ahmadi
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Victoria O'Morain
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Yee-Hung Chan
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Timothy R Hughes
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Juan B Menendez-Gonzalez
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Alhomidi Almotiri
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Sue F Plummer
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, SA12 7BZ, UK
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Daryn R Michael
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, SA12 7BZ, UK
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
46
|
Okue S, Ishikawa E, Nakahara R, Ito T, Okura T, Sakae M, Miura A, Ozaki-Masuzawa Y, Hosono T, Seki T. Fish oil suppresses obesity more potently in lean mice than in diet-induced obese mice but ameliorates steatosis in such obese mice. Biosci Biotechnol Biochem 2021; 85:421-429. [PMID: 33604637 DOI: 10.1093/bbb/zbaa038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2020] [Accepted: 08/18/2020] [Indexed: 11/14/2022]
Abstract
This study sought to clarify the antiobesity effects of fish oil (FO) in terms of prevention and amelioration. An isocaloric diet composed of lard or FO was given to lean C57BL/6J mice for the study of prevention and high-fat diet-induced obese (DIO) mice for the study of amelioration for 4 weeks. Body weight gain and food efficiency were potently suppressed by FO in lean mice compared to lard diet-fed mice. Uncoupling protein-1 (UCP-1) expression in inguinal white adipose tissue (WAT) was also significantly induced by FO in lean mice. FO also suppressed body weight gain and food efficiency in DIO mice but did not reduce body weight. FO ameliorated liver steatosis in DIO mice by mildly inducing UCP-1 in inguinal WAT. FO suppressed obesity more potently in lean mice than in DIO mice but ameliorated steatosis in the DIO mice.
Collapse
Affiliation(s)
- Sachiko Okue
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan
| | - Eimi Ishikawa
- Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Ren Nakahara
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan
| | - Tsubasa Ito
- Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Takumi Okura
- Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Mana Sakae
- Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Atsushi Miura
- Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Yori Ozaki-Masuzawa
- Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Takashi Hosono
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan.,Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Taiichiro Seki
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan.,Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| |
Collapse
|
47
|
Siannoto M, Nugraha GI, Lesmana R, Goenawan H, Tarawan VM, Khairani AF. The Nutraceuticals and White Adipose Tissue in Browning Process. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200731004318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Obesity has become a prominent epidemic disease since its worldwide prevalence has
shown a continuous rise over the past few decades. The primary aim of obesity treatment is to effectively
reduce the intake of energy, while simultaneously increasing energy expenditure. Increasing
thermogenesis is one of the methods to increase energy expenditure. Thermogenesis, which primarily
occurs in brown adipose tissue, can also be produced by beige adipose tissue, through a process
known as browning. The browning process has recently been attracting a great deal of attention as
a potential anti-obesity agent. Many well-researched inducers of the browning process are readily
available, including cold exposure, agonist β3-adrenergic, agonist peroxisome proliferator activated
receptor γ, fibroblast growth factor 21, irisin and several nutraceuticals (including resveratrol,
curcumin, quercetin, fish oils, green tea, etc.). This mini review summarizes the current knowledge
and the latest research of some nutraceuticals that are potentially involved in the browning process.
Collapse
Affiliation(s)
- Melisa Siannoto
- Graduate Program of Antiaging and Aesthetics Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Gaga I. Nugraha
- Division of Biochemistry and Biomolecular, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Hanna Goenawan
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Vita M. Tarawan
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Astrid F. Khairani
- Graduate Program of Antiaging and Aesthetics Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
48
|
Omega 3 fatty acids stimulate thermogenesis during torpor in the Arctic Ground Squirrel. Sci Rep 2021; 11:1340. [PMID: 33446684 PMCID: PMC7809411 DOI: 10.1038/s41598-020-78763-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022] Open
Abstract
Omega 3 polyunsaturated fatty acids (PUFAs) influence metabolism and thermogenesis in non-hibernators. How omega 3 PUFAs influence Arctic Ground Squirrels (AGS) during hibernation is unknown. Prior to hibernation we fed AGS chow composed of an omega 6:3 ratio approximately 1:1 (high in omega 3 PUFA, termed Balanced Diet), or an omega 6:3 ratio of 5:1 (Standard Rodent Chow), and measured the influence of diet on core body temperature (Tb), brown adipose tissue (BAT) mass, fatty acid profiles of BAT, white adipose tissue (WAT) and plasma as well as hypothalamic endocannabinoid and endocannabinoid-like bioactive fatty acid amides during hibernation. Results show feeding a diet high in omega 3 PUFAs, with a more balanced omega 6:3 ratio, increases AGS Tb in torpor. We found the diet-induced increase in Tb during torpor is most easily explained by an increase in the mass of BAT deposits of Balanced Diet AGS. The increase in BAT mass is associated with elevated levels of metabolites DHA and EPA in tissue and plasma suggesting that these omega 3 PUFAs may play a role in thermogenesis during torpor. While we did not observe diet-induced change in endocannabinoids, we do report altered hypothalamic levels of some endocannabinoids, and endocannabinoid-like compounds, during hibernation.
Collapse
|
49
|
Maurer SF, Dieckmann S, Lund J, Fromme T, Hess AL, Colson C, Kjølbaek L, Astrup A, Gillum MP, Larsen LH, Liebisch G, Amri EZ, Klingenspor M. No Effect of Dietary Fish Oil Supplementation on the Recruitment of Brown and Brite Adipocytes in Mice or Humans under Thermoneutral Conditions. Mol Nutr Food Res 2021; 65:e2000681. [PMID: 33274552 DOI: 10.1002/mnfr.202000681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Indexed: 01/06/2023]
Abstract
SCOPE Brown and brite adipocytes within the mammalian adipose organ provide non-shivering thermogenesis and thus, have an exceptional capacity to dissipate chemical energy as heat. Polyunsaturated fatty acids (PUFA) of the n3-series, abundant in fish oil, have been repeatedly demonstrated to enhance the recruitment of thermogenic capacity in these cells, consequently affecting body adiposity and glucose tolerance. These effects are scrutinized in mice housed in a thermoneutral environment and in a human dietary intervention trial. METHODS AND RESULTS Mice are housed in a thermoneutral environment eliminating the superimposing effect of mild cold-exposure on thermogenic adipocyte recruitment. Dietary fish oil supplementation in two different inbred mouse strains neither affects body mass trajectory nor enhances the recruitment of brown and brite adipocytes, both in the presence and absence of a β3-adrenoreceptor agonist imitating the effect of cold-exposure on adipocytes. In line with these findings, dietary fish oil supplementation of persons with overweight or obesity fails to recruit thermogenic adipocytes in subcutaneous adipose tissue. CONCLUSION Thus, the authors' data question the hypothesized potential of n3-PUFA as modulators of adipocyte-based thermogenesis and energy balance regulation.
Collapse
Affiliation(s)
- Stefanie F Maurer
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
| | - Sebastian Dieckmann
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| | - Jens Lund
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| | - Anne Lundby Hess
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Cécilia Colson
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, 06107, France
| | - Louise Kjølbaek
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Matthew Paul Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Lesli Hingstrup Larsen
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, 93053, Germany
| | - Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, 06107, France
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| |
Collapse
|
50
|
Abstract
Brown and beige adipose tissues possess the remarkable capacity to convert energy into heat, which potentially opens novel therapeutic perspectives targeting the epidemic of metabolic syndromes such as obesity and type 2 diabetes. These thermogenic fats implement mitochondrial oxidative phosphorylation and uncouple respiration to catabolize fatty acids and glucose, which leads to an increase in energy expenditure. In particular, beige adipocytes that arise in white adipose tissue display their thermogenic capacity through various noncanonical mechanisms. This review aims to summarize the general overview of thermogenic fat, especially including the UCP1-independent adaptive thermogenesis and the emerging mechanisms of "beiging", which may provide more evidence of targeting thermogenic fat to counteract obesity and other metabolic disorders in humans.
Collapse
Affiliation(s)
- Zhihan Wang
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Laboratory of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
| | - Xuefeng Yu
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yong Chen
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Laboratory of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
- *Correspondence: Yong Chen,
| |
Collapse
|