1
|
Yuan Y, Liu H, Dai Z, He C, Qin S, Su Z. From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury. Neurosci Bull 2025; 41:131-154. [PMID: 39080102 PMCID: PMC11748647 DOI: 10.1007/s12264-024-01258-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 01/19/2025] Open
Abstract
In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.
Collapse
Affiliation(s)
- Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
de Jaime-Soguero A, Hattemer J, Bufe A, Haas A, van den Berg J, van Batenburg V, Das B, di Marco B, Androulaki S, Böhly N, Landry JJM, Schoell B, Rosa VS, Villacorta L, Baskan Y, Trapp M, Benes V, Chabes A, Shahbazi M, Jauch A, Engel U, Patrizi A, Sotillo R, van Oudenaarden A, Bageritz J, Alfonso J, Bastians H, Acebrón SP. Developmental signals control chromosome segregation fidelity during pluripotency and neurogenesis by modulating replicative stress. Nat Commun 2024; 15:7404. [PMID: 39191776 DOI: 10.1038/s41467-024-51821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Human development relies on the correct replication, maintenance and segregation of our genetic blueprints. How these processes are monitored across embryonic lineages, and why genomic mosaicism varies during development remain unknown. Using pluripotent stem cells, we identify that several patterning signals-including WNT, BMP, and FGF-converge into the modulation of DNA replication stress and damage during S-phase, which in turn controls chromosome segregation fidelity in mitosis. We show that the WNT and BMP signals protect from excessive origin firing, DNA damage and chromosome missegregation derived from stalled forks in pluripotency. Cell signalling control of chromosome segregation declines during lineage specification into the three germ layers, but re-emerges in neural progenitors. In particular, we find that the neurogenic factor FGF2 induces DNA replication stress-mediated chromosome missegregation during the onset of neurogenesis, which could provide a rationale for the elevated chromosomal mosaicism of the developing brain. Our results highlight roles for morphogens and cellular identity in genome maintenance that contribute to somatic mosaicism during mammalian development.
Collapse
Affiliation(s)
| | - Janina Hattemer
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Anja Bufe
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Alexander Haas
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jeroen van den Berg
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Vincent van Batenburg
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Biswajit Das
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Barbara di Marco
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefania Androulaki
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Nicolas Böhly
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Brigitte Schoell
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Laura Villacorta
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yagmur Baskan
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | | | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ulrike Engel
- Nikon Imaging Center at the University of Heidelberg, Bioquant, Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Josephine Bageritz
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Holger Bastians
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Bansal P, Banda EC, Glatt-Deeley HR, Stoddard CE, Linsley JW, Arora N, Deleschaux C, Ahern DT, Kondaveeti Y, Massey RE, Nicouleau M, Wang S, Sabariego-Navarro M, Dierssen M, Finkbeiner S, Pinter SF. A dynamic in vitro model of Down syndrome neurogenesis with trisomy 21 gene dosage correction. SCIENCE ADVANCES 2024; 10:eadj0385. [PMID: 38848354 PMCID: PMC11160455 DOI: 10.1126/sciadv.adj0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Excess gene dosage from chromosome 21 (chr21) causes Down syndrome (DS), spanning developmental and acute phenotypes in terminal cell types. Which phenotypes remain amenable to intervention after development is unknown. To address this question in a model of DS neurogenesis, we derived trisomy 21 (T21) human induced pluripotent stem cells (iPSCs) alongside, otherwise, isogenic euploid controls from mosaic DS fibroblasts and equipped one chr21 copy with an inducible XIST transgene. Monoallelic chr21 silencing by XIST is near-complete and irreversible in iPSCs. Differential expression reveals that T21 neural lineages and iPSCs share suppressed translation and mitochondrial pathways and activate cellular stress responses. When XIST is induced before the neural progenitor stage, T21 dosage correction suppresses a pronounced skew toward astrogenesis in neural differentiation. Because our transgene remains inducible in postmitotic T21 neurons and astrocytes, we demonstrate that XIST efficiently represses genes even after terminal differentiation, which will empower exploration of cell type-specific T21 phenotypes that remain responsive to chr21 dosage.
Collapse
Affiliation(s)
- Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Erin C. Banda
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Heather R. Glatt-Deeley
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Christopher E. Stoddard
- Cell and Genome Engineering Core, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Jeremy W. Linsley
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Neha Arora
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Cécile Deleschaux
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Darcy T. Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Rachael E. Massey
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Michael Nicouleau
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Shijie Wang
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Miguel Sabariego-Navarro
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA, USA
- Neuroscience and Biomedical Sciences Graduate Programs, University of California San Francisco, San Francisco, CA, USA
| | - Stefan F. Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
4
|
Ni P, Fan L, Jiang Y, Zhou C, Chung S. From cells to insights: the power of human pluripotent stem cell-derived cortical interneurons in psychiatric disorder modeling. Front Psychiatry 2023; 14:1336085. [PMID: 38188058 PMCID: PMC10768008 DOI: 10.3389/fpsyt.2023.1336085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Psychiatric disorders, such as schizophrenia (SCZ) and autism spectrum disorders (ASD), represent a global health challenge with their poorly understood and complex etiologies. Cortical interneurons (cINs) are the primary inhibitory neurons in the cortex and their subtypes, especially those that are generated from the medial ganglionic emission (MGE) region, have been shown to play an important role in the pathogenesis of these psychiatric disorders. Recent advances in induced pluripotent stem cell (iPSC) technologies provide exciting opportunities to model and study these disorders using human iPSC-derived cINs. In this review, we present a comprehensive overview of various methods employed to generate MGE-type cINs from human iPSCs, which are mainly categorized into induction by signaling molecules vs. direct genetic manipulation. We discuss their advantages, limitations, and potential applications in psychiatric disorder modeling to aid researchers in choosing the appropriate methods based on their research goals. We also provide examples of how these methods have been applied to study the pathogenesis of psychiatric disorders. In addition, we discuss ongoing challenges and future directions in the field. Overall, iPSC-derived cINs provide a powerful tool to model the developmental pathogenesis of psychiatric disorders, thus aiding in uncovering disease mechanisms and potential therapeutic targets. This review article will provide valuable resources for researchers seeking to navigate the complexities of cIN generation methods and their applications in the study of psychiatric disorders.
Collapse
Affiliation(s)
- Peiyan Ni
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, State Key Laboratory of Brain-Machine Intelligence, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Lingyi Fan
- The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Youhui Jiang
- The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Chuqing Zhou
- The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
5
|
Prajapati A, Mehan S, Khan Z. The role of Smo-Shh/Gli signaling activation in the prevention of neurological and ageing disorders. Biogerontology 2023:10.1007/s10522-023-10034-1. [PMID: 37097427 DOI: 10.1007/s10522-023-10034-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Sonic hedgehog (Shh) signaling is an essential central nervous system (CNS) pathway involved during embryonic development and later life stages. Further, it regulates cell division, cellular differentiation, and neuronal integrity. During CNS development, Smo-Shh signaling is significant in the proliferation of neuronal cells such as oligodendrocytes and glial cells. The initiation of the downstream signalling cascade through the 7-transmembrane protein Smoothened (Smo) promotes neuroprotection and restoration during neurological disorders. The dysregulation of Smo-Shh is linked to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which suppresses target gene expression, leading to the disruption of cell growth processes. Smo-Shh aberrant signalling is responsible for several neurological complications contributing to physiological alterations like increased oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis. Moreover, activating Shh receptors in the brain promotes axonal elongation and increases neurotransmitters released from presynaptic terminals, thereby exerting neurogenesis, anti-oxidation, anti-inflammatory, and autophagy responses. Smo-Shh activators have been shown in preclinical and clinical studies to help prevent various neurodegenerative and neuropsychiatric disorders. Redox signalling has been found to play a critical role in regulating the activity of the Smo-Shh pathway and influencing downstream signalling events. In the current study ROS, a signalling molecule, was also essential in modulating the SMO-SHH gli signaling pathway in neurodegeneration. As a result of this investigation, dysregulation of the pathway contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).Thus, Smo-Shh signalling activators could be a potential therapeutic intervention to treat neurocomplications of brain disorders.
Collapse
Affiliation(s)
- Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
6
|
Message in a Scaffold: Natural Biomaterials for Three-Dimensional (3D) Bioprinting of Human Brain Organoids. Biomolecules 2022; 13:biom13010025. [PMID: 36671410 PMCID: PMC9855696 DOI: 10.3390/biom13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Brain organoids are invaluable tools for pathophysiological studies or drug screening, but there are still challenges to overcome in making them more reproducible and relevant. Recent advances in three-dimensional (3D) bioprinting of human neural organoids is an emerging approach that may overcome the limitations of self-organized organoids. It requires the development of optimal hydrogels, and a wealth of research has improved our knowledge about biomaterials both in terms of their intrinsic properties and their relevance on 3D culture of brain cells and tissue. Although biomaterials are rarely biologically neutral, few articles have reviewed their roles on neural cells. We here review the current knowledge on unmodified biomaterials amenable to support 3D bioprinting of neural organoids with a particular interest in their impact on cell homeostasis. Alginate is a particularly suitable bioink base for cell encapsulation. Gelatine is a valuable helper agent for 3D bioprinting due to its viscosity. Collagen, fibrin, hyaluronic acid and laminin provide biological support to adhesion, motility, differentiation or synaptogenesis and optimize the 3D culture of neural cells. Optimization of specialized hydrogels to direct differentiation of stem cells together with an increased resolution in phenotype analysis will further extend the spectrum of possible bioprinted brain disease models.
Collapse
|
7
|
Lu K, Hong Y, Tao M, Shen L, Zheng Z, Fang K, Yuan F, Xu M, Wang C, Zhu D, Guo X, Liu Y. Depressive patient-derived GABA interneurons reveal abnormal neural activity associated with HTR2C. EMBO Mol Med 2022; 15:e16364. [PMID: 36373384 PMCID: PMC9832822 DOI: 10.15252/emmm.202216364] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Major depressive disorder with suicide behavior (sMDD) is a server mood disorder, bringing tremendous burden to family and society. Although reduced gamma amino butyric acid (GABA) level has been observed in postmortem tissues of sMDD patients, the molecular mechanism by which GABA levels are altered remains elusive. In this study, we generated induced pluripotent stem cells (iPSC) from five sMDD patients and differentiated the iPSCs to GABAergic interneurons (GINs) and ventral forebrain organoids. sMDD GINs exhibited altered neuronal morphology and increased neural firing, as well as weakened calcium signaling propagation, compared with controls. Transcriptomic sequencing revealed that a decreased expression of serotoninergic receptor 2C (5-HT2C) may cause the defected neuronal activity in sMDD. Furthermore, targeting 5-HT2C receptor, using a small molecule agonist or genetic approach, restored neuronal activity deficits in sMDD GINs. Our findings provide a human cellular model for studying the molecular mechanisms and drug discoveries for sMDD.
Collapse
Affiliation(s)
- Kaiqin Lu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Yuan Hong
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Luping Shen
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Zhilong Zheng
- Department of NeurobiologyKey Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Kaiheng Fang
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Fang Yuan
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Dongya Zhu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Xing Guo
- Department of NeurobiologyKey Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina,Co‐innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| |
Collapse
|
8
|
Baldassari S, Cervetto C, Amato S, Fruscione F, Balagura G, Pelassa S, Musante I, Iacomino M, Traverso M, Corradi A, Scudieri P, Maura G, Marcoli M, Zara F. Vesicular Glutamate Release from Feeder-FreehiPSC-Derived Neurons. Int J Mol Sci 2022; 23:ijms231810545. [PMID: 36142455 PMCID: PMC9501332 DOI: 10.3390/ijms231810545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) represent one of the main and powerful tools for the in vitro modeling of neurological diseases. Standard hiPSC-based protocols make use of animal-derived feeder systems to better support the neuronal differentiation process. Despite their efficiency, such protocols may not be appropriate to dissect neuronal specific properties or to avoid interspecies contaminations, hindering their future translation into clinical and drug discovery approaches. In this work, we focused on the optimization of a reproducible protocol in feeder-free conditions able to generate functional glutamatergic neurons. This protocol is based on a generation of neuroprecursor cells differentiated into human neurons with the administration in the culture medium of specific neurotrophins in a Geltrex-coated substrate. We confirmed the efficiency of this protocol through molecular analysis (upregulation of neuronal markers and neurotransmitter receptors assessed by gene expression profiling and expression of the neuronal markers at the protein level), morphological analysis, and immunfluorescence detection of pre-synaptic and post-synaptic markers at synaptic boutons. The hiPSC-derived neurons acquired Ca2+-dependent glutamate release properties as a hallmark of neuronal maturation. In conclusion, our study describes a new methodological approach to achieve feeder-free neuronal differentiation from hiPSC and adds a new tool for functional characterization of hiPSC-derived neurons.
Collapse
Affiliation(s)
- Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Chiara Cervetto
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56100 Pisa, Italy
- Correspondence: (C.C.); (M.M.)
| | - Sarah Amato
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Floriana Fruscione
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Ganna Balagura
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| | - Simone Pelassa
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Ilaria Musante
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Monica Traverso
- Paediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Anna Corradi
- Department of Experimental Medicine, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| | - Guido Maura
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56100 Pisa, Italy
- Center of Excellence for Biomedical Research, Viale Benedetto XV, 16132 Genova, Italy
- Correspondence: (C.C.); (M.M.)
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| |
Collapse
|
9
|
Allen GE, Dhanda AS, Julian LM. Emerging Methods in Modeling Brain Development and Disease with Human Pluripotent Stem Cells. Methods Mol Biol 2022; 2515:319-342. [PMID: 35776361 DOI: 10.1007/978-1-0716-2409-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Nobel Prize-winning discovery that human somatic cells can be readily reprogrammed into pluripotent cells has revolutionized our potential to understand the human brain. The rapid technological progression of this field has made it possible to easily obtain human neural cells and even intact tissues, offering invaluable resources to model human brain development. In this chapter, we present a brief history of hPSC-based approaches to study brain development and then, provide new insights into neurological diseases, focusing on those driven by aberrant cell death. Furthermore, we will shed light on the latest technologies and highlight the methods that researchers can use to employ established hPSC approaches in their research. Our intention is to demonstrate that hPSC-based modeling is a technical approach accessible to all researchers who seek a deeper understanding of the human brain.
Collapse
Affiliation(s)
- George E Allen
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Aaron S Dhanda
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
10
|
Nayak R, Rosh I, Kustanovich I, Stern S. Mood Stabilizers in Psychiatric Disorders and Mechanisms Learnt from In Vitro Model Systems. Int J Mol Sci 2021; 22:9315. [PMID: 34502224 PMCID: PMC8431659 DOI: 10.3390/ijms22179315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Bipolar disorder (BD) and schizophrenia are psychiatric disorders that manifest unusual mental, behavioral, and emotional patterns leading to suffering and disability. These disorders span heterogeneous conditions with variable heredity and elusive pathophysiology. Mood stabilizers such as lithium and valproic acid (VPA) have been shown to be effective in BD and, to some extent in schizophrenia. This review highlights the efficacy of lithium and VPA treatment in several randomized, controlled human trials conducted in patients suffering from BD and schizophrenia. Furthermore, we also address the importance of using induced pluripotent stem cells (iPSCs) as a disease model for mirroring the disease's phenotypes. In BD, iPSC-derived neurons enabled finding an endophenotype of hyperexcitability with increased hyperpolarizations. Some of the disease phenotypes were significantly alleviated by lithium treatment. VPA studies have also reported rescuing the Wnt/β-catenin pathway and reducing activity. Another significant contribution of iPSC models can be attributed to studying the molecular etiologies of schizophrenia such as abnormal differentiation of patient-derived neural stem cells, decreased neuronal connectivity and neurite number, impaired synaptic function, and altered gene expression patterns. Overall, despite significant advances using these novel models, much more work remains to fully understand the mechanisms by which these disorders affect the patients' brains.
Collapse
Affiliation(s)
| | | | | | - Shani Stern
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel; (R.N.); (I.R.); (I.K.)
| |
Collapse
|
11
|
RHOA signaling defects result in impaired axon guidance in iPSC-derived neurons from patients with tuberous sclerosis complex. Nat Commun 2021; 12:2589. [PMID: 33972524 PMCID: PMC8110792 DOI: 10.1038/s41467-021-22770-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
Patients with Tuberous Sclerosis Complex (TSC) show aberrant wiring of neuronal connections formed during development which may contribute to symptoms of TSC, such as intellectual disabilities, autism, and epilepsy. Yet models examining the molecular basis for axonal guidance defects in developing human neurons have not been developed. Here, we generate human induced pluripotent stem cell (hiPSC) lines from a patient with TSC and genetically engineer counterparts and isogenic controls. By differentiating hiPSCs, we show that control neurons respond to canonical guidance cues as predicted. Conversely, neurons with heterozygous loss of TSC2 exhibit reduced responses to several repulsive cues and defective axon guidance. While TSC2 is a known key negative regulator of MTOR-dependent protein synthesis, we find that TSC2 signaled through MTOR-independent RHOA in growth cones. Our results suggest that neural network connectivity defects in patients with TSC may result from defects in RHOA-mediated regulation of cytoskeletal dynamics during neuronal development. Patients with Tuberous Sclerosis Complex (TSC) show aberrant wiring of neuronal connections. Here, the authors generate iPSC-derived neurons from patients with TSC. TSC2 +/− neurons show impaired mTOR-independent RhoA signaling-mediated axon guidance.
Collapse
|
12
|
Rana T, Behl T, Sehgal A, Sachdeva M, Mehta V, Sharma N, Singh S, Bungau S. Exploring Sonic Hedgehog Cell Signaling in Neurogenesis: Its Potential Role in Depressive Behavior. Neurochem Res 2021; 46:1589-1602. [PMID: 33786718 DOI: 10.1007/s11064-021-03307-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Depression is the most prevalent form of neuropsychiatric disorder affecting all age groups globally. As per the estimation of the World Health Organization (WHO), depression will develop into the foremost reason for disability globally by the year 2030. The primary neurobiological mechanism implicated in depression remains ambiguous; however, dysregulation of molecular and signaling transductions results in depressive disorders. Several theories have been developed to explain the pathogenesis of depression, however, none of them completely explained all aspects of depressive-pathogenesis. In the current review, we aimed to explore the role of the sonic hedgehog (Shh) signaling pathway in the development of the depressive disorder and its potential as the therapeutic target. Shh signaling has a crucial function in neurogenesis and neural tube patterning during the development of the central nervous system (CNS). Shh signaling performs a basic function in embryogenesis and hippocampal neurogenesis. Moreover, antidepressants are also known to enhance neurogenesis in the hippocampus, which further suggests the potential of Shh signaling. Furthermore, there is decreased expression of a glioma-associated oncogene (Gli1) and Smoothened (Smo) in depression. Moreover, antidepressants also regulate brain-derived neurotrophic factor (BDNF) and wingless protein (Wnt) signaling, therefore, Shh may be implicated in the pathogenesis of the depressive disorder. Deregulation of Shh signaling in CNS results in neurological disorders such as depression.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Distt. Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
13
|
Simultaneous and quantitative monitoring transcription factors in human embryonic stem cell differentiation using mass spectrometry-based targeted proteomics. Anal Bioanal Chem 2021; 413:2081-2089. [PMID: 33655347 DOI: 10.1007/s00216-021-03160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 11/27/2022]
Abstract
Human embryonic stem cells (hESCs) can be self-propagated indefinitely in culture while holding the capacity to generate almost all cell types. Although this powerful differentiation ability of hESCs has become a potential source of cell replacement therapies, application of stem cells in clinical practice relies heavily on the exquisite control of their developmental fate. In general, an essential first step in differentiation is to exit the pluripotent state, which is precariously balanced and depends on a variety of factors, mainly centering on the core transcriptional mechanism. To date, much evidence has indicated that transcription factors such as Sox2, Oct4, and Nanog control the self-renewal and pluripotency of hESCs. Their expression displays a restricted spatial-temporal pattern and their small changes in level can significantly affect directed differentiation and the cell type derived. So far, few assays have been developed to monitor this process. Herein, we provided a mass spectrometry (MS)-based approach for simultaneous and quantitative monitoring of these transcription factors, in an attempt to provide insight into their contributions in hESC differentiation.
Collapse
|
14
|
Human cerebral organoids establish subcortical projections in the mouse brain after transplantation. Mol Psychiatry 2021; 26:2964-2976. [PMID: 33051604 PMCID: PMC8505255 DOI: 10.1038/s41380-020-00910-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/12/2020] [Accepted: 10/02/2020] [Indexed: 11/08/2022]
Abstract
Numerous studies have used human pluripotent stem cell-derived cerebral organoids to elucidate the mystery of human brain development and model neurological diseases in vitro, but the potential for grafted organoid-based therapy in vivo remains unknown. Here, we optimized a culturing protocol capable of efficiently generating small human cerebral organoids. After transplantation into the mouse medial prefrontal cortex, the grafted human cerebral organoids survived and extended projections over 4.5 mm in length to basal brain regions within 1 month. The transplanted cerebral organoids generated human glutamatergic neurons that acquired electrophysiological maturity in the mouse brain. Importantly, the grafted human cerebral organoids functionally integrated into pre-existing neural circuits by forming bidirectional synaptic connections with the mouse host neurons. Furthermore, compared to control mice, the mice transplanted with cerebral organoids showed an increase in freezing time in response to auditory conditioned stimuli, suggesting the potentiation of the startle fear response. Our study showed that subcortical projections can be established by microtransplantation and may provide crucial insights into the therapeutic potential of human cerebral organoids for neurological diseases.
Collapse
|
15
|
Muckom RJ, Sampayo RG, Johnson HJ, Schaffer DV. Advanced Materials to Enhance Central Nervous System Tissue Modeling and Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002931. [PMID: 33510596 PMCID: PMC7840150 DOI: 10.1002/adfm.202002931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 05/04/2023]
Abstract
The progressively deeper understanding of mechanisms underlying stem cell fate decisions has enabled parallel advances in basic biology-such as the generation of organoid models that can further one's basic understanding of human development and disease-and in clinical translation-including stem cell based therapies to treat human disease. Both of these applications rely on tight control of the stem cell microenvironment to properly modulate cell fate, and materials that can be engineered to interface with cells in a controlled and tunable manner have therefore emerged as valuable tools for guiding stem cell growth and differentiation. With a focus on the central nervous system (CNS), a broad range of material solutions that have been engineered to overcome various hurdles in constructing advanced organoid models and developing effective stem cell therapeutics is reviewed. Finally, regulatory aspects of combined material-cell approaches for CNS therapies are considered.
Collapse
Affiliation(s)
- Riya J Muckom
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Hunter J Johnson
- Department of Bioengineering, UC Berkeley, Berkeley, CA 94704, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
16
|
Walsh P, Truong V, Nayak S, Saldías Montivero M, Low WC, Parr AM, Dutton JR. Accelerated differentiation of human pluripotent stem cells into neural lineages via an early intermediate ectoderm population. Stem Cells 2020; 38:1400-1408. [PMID: 32745311 PMCID: PMC7693041 DOI: 10.1002/stem.3260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Differentiation of human pluripotent stem cells (hPSCs) into ectoderm provides neurons and glia useful for research, disease modeling, drug discovery, and potential cell therapies. In current protocols, hPSCs are traditionally differentiated into an obligate rostro-dorsal ectodermal fate expressing PAX6 after 6 to 12 days in vitro when protected from mesendoderm inducers. This rate-limiting step has performed a long-standing role in hindering the development of rapid differentiation protocols for ectoderm-derived cell types, as any protocol requires 6 to 10 days in vitro to simply initiate. Here, we report efficient differentiation of hPSCs into a naive early ectodermal intermediate within 24 hours using combined inhibition of bone morphogenic protein and fibroblast growth factor signaling. The induced population responds immediately to morphogen gradients to upregulate rostro-caudal neurodevelopmental landmark gene expression in a generally accelerated fashion. This method can serve as a new platform for the development of novel, rapid, and efficient protocols for the manufacture of hPSC-derived neural lineages.
Collapse
Affiliation(s)
- Patrick Walsh
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Vincent Truong
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Sushmita Nayak
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Walter C. Low
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ann M. Parr
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - James R. Dutton
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
17
|
Nieves MD, Furmanski O, Doughty ML. Host sex and transplanted human induced pluripotent stem cell phenotype interact to influence sensorimotor recovery in a mouse model of cortical contusion injury. Brain Res 2020; 1748:147120. [PMID: 32926852 DOI: 10.1016/j.brainres.2020.147120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022]
Abstract
Traumatic brain injury (TBI) is a substantial cause of disability and death worldwide. Primary head trauma triggers chronic secondary injury mechanisms in the brain that are a focus of therapeutic efforts to treat TBI. Currently, there is no successful clinical strategy to repair brain injury. Cell transplantation therapies have demonstrated promise in attenuating secondary injury mechanisms of neuronal death and dysfunction in animal models of brain injury. In this study, we used a unilateral cortical contusion injury (CCI) model of sensorimotor brain injury to examine the effects of human induced pluripotent stem cell (hiPSC) transplantation on pathology in male and female adult mice. We determined transplanted hiPSC-derived neural stem cells (NSCs) and neuroblasts but not astrocytes best tolerate the injured host environment. Surviving NSC and neuroblast cells were clustered at the site of injection within the deep layers of the cortex and underlying corpus callosum. Cell grafts extended neuritic processes that crossed the midline into the contralateral corpus callosum or continued laterally within the external capsule to enter the ipsilateral entorhinal cortex. To determine the effect of transplantation on neuropathology, we performed sensorimotor behavior testing and stereological estimation of host neurons, astrocytes, and microglia within the contused cortex. These measures did not reveal a consistent effect of transplantation on recovery post-injury. Rather the positive and negative effects of cell transplantation were dependent on the host sex, highlighting the importance of developing patient-specific approaches to treat TBI. Our study underscores the complex interactions of sex, neuroimmune responses and cell therapy in a common experimental model of TBI.
Collapse
Affiliation(s)
- Michael D Nieves
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Orion Furmanski
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Martin L Doughty
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
18
|
Tao Y, Cao J, Li M, Hoffmann B, Xu K, Chen J, Lu X, Guo F, Li X, Phillips MJ, Gamm DM, Chen H, Zhang SC. PAX6D instructs neural retinal specification from human embryonic stem cell-derived neuroectoderm. EMBO Rep 2020; 21:e50000. [PMID: 32700445 DOI: 10.15252/embr.202050000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 11/09/2022] Open
Abstract
PAX6 is essential for neural retina (NR) and forebrain development but how PAX6 instructs NR versus forebrain specification remains unknown. We found that the paired-less PAX6, PAX6D, is expressed in NR cells during human eye development and along human embryonic stem cell (hESC) specification to retinal cells. hESCs deficient for PAX6D failed to enter NR specification. Induced expression of PAX6D but not PAX6A in a PAX6-null background restored the NR specification capacity. ChIP-Seq, confirmed by functional assays, revealed a set of retinal genes and non-retinal neural genes that are potential targets of PAX6D, including WNT8B. Inhibition of WNTs or knocking down of WNT8B restored the NR specification capacity of neuroepithelia with PAX6D knockout, whereas activation of WNTs blocked NR specification even when PAX6D was induced. Thus, PAX6D specifies neuroepithelia to NR cells via the regulation of WNT8B.
Collapse
Affiliation(s)
- Yunlong Tao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jingyuan Cao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Mingxing Li
- Department of Rehabilitation of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Brianna Hoffmann
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ke Xu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Chen
- Department of Rehabilitation of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Lu
- Wuhan No. 1 Hospital, Wuhan, China
| | - Fangliang Guo
- Neurological Department of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - M Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Hong Chen
- Department of Rehabilitation of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Neuroscience, Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.,Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, Singapore City, Singapore
| |
Collapse
|
19
|
In Vitro Differentiated Human Stem Cell-Derived Neurons Reproduce Synaptic Synchronicity Arising during Neurodevelopment. Stem Cell Reports 2020; 15:22-37. [PMID: 32559460 PMCID: PMC7363884 DOI: 10.1016/j.stemcr.2020.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/24/2022] Open
Abstract
Neurons differentiated from induced pluripotent stem cells (iPSCs) typically show regular spiking and synaptic activity but lack more complex network activity critical for brain development, such as periodic depolarizations including simultaneous involvement of glutamatergic and GABAergic neurotransmission. We generated human iPSC-derived neurons exhibiting spontaneous oscillatory activity after cultivation of up to 6 months, which resembles early oscillations observed in rodent neurons. This behavior was found in neurons generated using a more “native” embryoid body protocol, in contrast to a “fast” protocol based on NGN2 overexpression. A comparison with published data indicates that EB-derived neurons reach the maturity of neurons of the third trimester and NGN2-derived neurons of the second trimester of human gestation. Co-culturing NGN2-derived neurons with astrocytes only led to a partial compensation and did not reliably induce complex network activity. Our data will help selection of the appropriate iPSC differentiation assay to address specific questions related to neurodevelopmental disorders. Spontaneous oscillatory activity in iPSC-derived neurons after 4–6 months in culture The activity resembled early oscillations seen in rodent neurons during development Cell growth affects developmental changes of neuronal excitability Biological age of neurons is determined based on electrophysiological activity
Collapse
|
20
|
Lee EH, Kim SM, Kim CH, Pagire SH, Pagire HS, Chung HY, Ahn JH, Park CH. Dopamine neuron induction and the neuroprotective effects of thyroid hormone derivatives. Sci Rep 2019; 9:13659. [PMID: 31541140 PMCID: PMC6754465 DOI: 10.1038/s41598-019-49876-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/24/2019] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive movement disturbances caused by the selective loss of dopamine (DA) neurons in the substantia nigra. Despite the identification of the causal mechanisms underlying the pathogenesis of PD, effective treatments remain elusive. In this study, we observed that a low level of fetal bovine serum (FBS) effectively induced DA neurons in rat neural precursor cells (NPCs) by enhancing nuclear receptor-related 1 protein (NURR1) expression. Among the various components of FBS, the thyroid hormones triiodothyronine (T3) and thyroxine (T4) were identified as key factors for the induction of DA neurons. Since an overdose of thyroid hormones can cause hyperthyroidism, we synthesized several thyroid hormone derivatives that can partially activate thyroid hormone receptors and induce the complete differentiation of NPCs into DA neurons. Two derivatives (#3 and #9) showed positive effects on the induction and maturation of DA neurons without showing significant affinity for the thyroid hormone receptor. They also effectively protected and restored DA neurons from neurotoxic insults. Taken together, these observations demonstrate that thyroid hormone derivatives can strongly induce DA neuron differentiation while avoiding excessive thyroid stimulation and might therefore be useful candidates for PD treatment.
Collapse
Affiliation(s)
- Eun-Hye Lee
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, 04763, Korea
| | - Sang-Mi Kim
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, 04763, Korea
| | | | - Suvarna H Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Haushabhau S Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Hee Yong Chung
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, 04763, Korea. .,Department of Microbiology, College of Medicine, Hanyang University, Seoul, 04763, Korea. .,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Korea.
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| | - Chang-Hwan Park
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, 04763, Korea. .,Department of Microbiology, College of Medicine, Hanyang University, Seoul, 04763, Korea. .,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
21
|
Alia C, Terrigno M, Busti I, Cremisi F, Caleo M. Pluripotent Stem Cells for Brain Repair: Protocols and Preclinical Applications in Cortical and Hippocampal Pathologies. Front Neurosci 2019; 13:684. [PMID: 31447623 PMCID: PMC6691396 DOI: 10.3389/fnins.2019.00684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Brain injuries causing chronic sensory or motor deficit, such as stroke, are among the leading causes of disability worldwide, according to the World Health Organization; furthermore, they carry heavy social and economic burdens due to decreased quality of life and need of assistance. Given the limited effectiveness of rehabilitation, novel therapeutic strategies are required to enhance functional recovery. Since cell-based approaches have emerged as an intriguing and promising strategy to promote brain repair, many efforts have been made to study the functional integration of neurons derived from pluripotent stem cells (PSCs), or fetal neurons, after grafting into the damaged host tissue. PSCs hold great promises for their clinical applications, such as cellular replacement of damaged neural tissues with autologous neurons. They also offer the possibility to create in vitro models to assess the efficacy of drugs and therapies. Notwithstanding these potential applications, PSC-derived transplanted neurons have to match the precise sub-type, positional and functional identity of the lesioned neural tissue. Thus, the requirement of highly specific and efficient differentiation protocols of PSCs in neurons with appropriate neural identity constitutes the main challenge limiting the clinical use of stem cells in the near future. In this Review, we discuss the recent advances in the derivation of telencephalic (cortical and hippocampal) neurons from PSCs, assessing specificity and efficiency of the differentiation protocols, with particular emphasis on the genetic and molecular characterization of PSC-derived neurons. Second, we address the remaining challenges for cellular replacement therapies in cortical brain injuries, focusing on electrophysiological properties, functional integration and therapeutic effects of the transplanted neurons.
Collapse
Affiliation(s)
- Claudia Alia
- CNR Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Marco Terrigno
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Irene Busti
- CNR Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Department of Neuroscience, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, Florence, Italy
| | - Federico Cremisi
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy.,Biophysics Institute (IBF), National Research Council (CNR), Pisa, Italy
| | - Matteo Caleo
- CNR Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
22
|
Nguyen EH, Dombroe MJ, Fisk DL, Daly WT, Sorenson CM, Murphy WL, Sheibani N. Neurovascular Organotypic Culture Models Using Induced Pluripotent Stem Cells to Assess Adverse Chemical Exposure Outcomes. ACTA ACUST UNITED AC 2019; 5:92-110. [PMID: 32292797 DOI: 10.1089/aivt.2018.0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Human-induced pluripotent stem cells (iPSCs) represent a promising cell source for the construction of organotypic culture models for chemical toxicity screening and characterization. Materials and Methods: To characterize the effects of chemical exposure on the human neurovasculature, we constructed neurovascular unit (NVU) models consisting of endothelial cells (ECs) and astrocytes (ACs) derived from human-iPSCs, as well as human brain-derived pericytes (PCs). The cells were cocultured on synthetic poly(ethylene glycol) (PEG) hydrogels that guided the self-assembly of capillary-like vascular networks. High-content epifluorescence microscopy evaluated dose-dependent changes to multiple aspects of NVU morphology. Results: Cultured vascular networks underwent quantifiable morphological changes when incubated with vascular disrupting chemicals. The activity of predicted vascular disrupting chemicals from a panel of 38 compounds (U.S. Environmental Protection Agency) was ranked based on morphological features detected in the NVU model. In addition, unique morphological neurovascular disruption signatures were detected per chemical. A comparison of PEG-based NVU and Matrigel™-based NVU models found greater sensitivity and consistency in chemical detection by the PEG-based NVU models. Discussion: We suspect that specific morphological changes may be used for discerning adverse outcome pathways initiated by chemical exposure and rapid mechanistic characterization of chemical exposure to neurovascular function. Conclusion: The use of human stem cell-derived vascular tissue and PEG hydrogels in the construction of NVU models leads to rapid detection of adverse chemical effects on neurovascular stability. The use of multiple cell types in coculture elucidates potential mechanisms of action by chemicals applied to the model.
Collapse
Affiliation(s)
- Eric H Nguyen
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Micah J Dombroe
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | - Debra L Fisk
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - William T Daly
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Christine M Sorenson
- Department of Pediatrics, and University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - William L Murphy
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nader Sheibani
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
23
|
Liang S, Yin N, Faiola F. Human Pluripotent Stem Cells as Tools for Predicting Developmental Neural Toxicity of Chemicals: Strategies, Applications, and Challenges. Stem Cells Dev 2019; 28:755-768. [PMID: 30990109 DOI: 10.1089/scd.2019.0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human central nervous system (CNS) is very sensitive to perturbations, since it performs sophisticated biological processes and requires cooperation from multiple neural cell types. Subtle interference from exogenous chemicals, such as environmental pollutants, industrial chemicals, drug components, food additives, and cosmetic constituents, may initiate severe developmental neural toxicity (DNT). Human pluripotent stem cell (hPSC)-based neural differentiation assays provide effective and promising tools to help evaluate potential DNT caused by those toxicants. In fact, the specification of neural lineages in vitro recapitulates critical CNS developmental processes, such as patterning, differentiation, neurite outgrowth, synaptogenesis, and myelination. Hence, the established protocols to generate a repertoire of neural derivatives from hPSCs greatly benefit the in vitro evaluation of DNT. In this review, we first dissect the various differentiation protocols inducing neural cells from hPSCs, with an emphasis on the signaling pathways and endpoint markers defining each differentiation stage. We then highlight the studies with hPSC-based protocols predicting developmental neural toxicants, and discuss remaining challenges. We hope this review can provide insights for the further progress of DNT studies.
Collapse
Affiliation(s)
- Shengxian Liang
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Nuoya Yin
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Francesco Faiola
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Develop a 3D neurological disease model of human cortical glutamatergic neurons using micropillar-based scaffolds. Acta Pharm Sin B 2019; 9:557-564. [PMID: 31193866 PMCID: PMC6543078 DOI: 10.1016/j.apsb.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
Establishing an effective three-dimensional (3D) in vitro culture system to better model human neurological diseases is desirable, since the human brain is a 3D structure. Here, we demonstrated the development of a polydimethylsiloxane (PDMS) pillar-based 3D scaffold that mimicked the 3D microenvironment of the brain. We utilized this scaffold for the growth of human cortical glutamatergic neurons that were differentiated from human pluripotent stem cells. In comparison with the 2D culture, we demonstrated that the developed 3D culture promoted the maturation of human cortical glutamatergic neurons by showing significantly more MAP2 and less Ki67 expression. Based on this 3D culture system, we further developed an in vitro disease-like model of traumatic brain injury (TBI), which showed a robust increase of glutamate-release from the neurons, in response to mechanical impacts, recapitulating the critical pathology of TBI. The increased glutamate-release from our 3D culture model was attenuated by the treatment of neural protective drugs, memantine or nimodipine. The established 3D in vitro human neural culture system and TBI-like model may be used to facilitate mechanistic studies and drug screening for neurotrauma or other neurological diseases.
Collapse
|
25
|
Bell S, Hettige NC, Silveira H, Peng H, Wu H, Jefri M, Antonyan L, Zhang Y, Zhang X, Ernst C. Differentiation of Human Induced Pluripotent Stem Cells (iPSCs) into an Effective Model of Forebrain Neural Progenitor Cells and Mature Neurons. Bio Protoc 2019; 9:e3188. [PMID: 33654990 DOI: 10.21769/bioprotoc.3188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/11/2023] Open
Abstract
Induced Pluripotent Stem Cells (iPSCs) are pluripotent stem cells that can be generated from somatic cells, and provide a way to model the development of neural tissues in vitro. One particularly interesting application of iPSCs is the development of neurons analogous to those found in the human forebrain. Forebrain neurons play a central role in cognition and sensory processing, and deficits in forebrain neuronal activity contributes to a host of conditions, including epilepsy, Alzheimer's disease, and schizophrenia. Here, we present our protocol for differentiating iPSCs into forebrain neural progenitor cells (NPCs) and neurons, whereby neural rosettes are generated from stem cells without dissociation and NPCs purified from rosettes based on their adhesion, resulting in a more rapid generation of pure NPC cultures. Neural progenitor cells can be maintained as long-term cultures, or differentiated into forebrain neurons. This protocol provides a simplified and fast methodology of generating forebrain NPCs and neurons, and enables researchers to generate effective in vitro models to study forebrain disease and neurodevelopment. This protocol can also be easily adapted to generate other neural lineages.
Collapse
Affiliation(s)
- Scott Bell
- Psychiatric Genetics Group, McGill University and Douglas Hospital Research Institute, Department of Psychiatry, Verdun, Montreal, QC H4H 1R3, Canada
| | - Nuwan C Hettige
- Psychiatric Genetics Group, McGill University and Douglas Hospital Research Institute, Department of Psychiatry, Verdun, Montreal, QC H4H 1R3, Canada
| | - Heika Silveira
- Psychiatric Genetics Group, McGill University and Douglas Hospital Research Institute, Department of Psychiatry, Verdun, Montreal, QC H4H 1R3, Canada
| | - Huashan Peng
- Psychiatric Genetics Group, McGill University and Douglas Hospital Research Institute, Department of Psychiatry, Verdun, Montreal, QC H4H 1R3, Canada
| | - Hanrong Wu
- Psychiatric Genetics Group, McGill University and Douglas Hospital Research Institute, Department of Psychiatry, Verdun, Montreal, QC H4H 1R3, Canada
| | - Malvin Jefri
- Psychiatric Genetics Group, McGill University and Douglas Hospital Research Institute, Department of Psychiatry, Verdun, Montreal, QC H4H 1R3, Canada
| | - Lilit Antonyan
- Psychiatric Genetics Group, McGill University and Douglas Hospital Research Institute, Department of Psychiatry, Verdun, Montreal, QC H4H 1R3, Canada
| | - Ying Zhang
- Psychiatric Genetics Group, McGill University and Douglas Hospital Research Institute, Department of Psychiatry, Verdun, Montreal, QC H4H 1R3, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, McGill University and Douglas Hospital Research Institute, Department of Psychiatry, Verdun, Montreal, QC H4H 1R3, Canada
| | - Carl Ernst
- Psychiatric Genetics Group, McGill University and Douglas Hospital Research Institute, Department of Psychiatry, Verdun, Montreal, QC H4H 1R3, Canada
| |
Collapse
|
26
|
Iwasawa C, Kuzumaki N, Suda Y, Kagawa R, Oka Y, Hattori N, Okano H, Narita M. Reduced expression of somatostatin in GABAergic interneurons derived from induced pluripotent stem cells of patients with parkin mutations. Mol Brain 2019; 12:5. [PMID: 30658665 PMCID: PMC6339354 DOI: 10.1186/s13041-019-0426-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is associated with both motor and non-motor symptoms, including constipation, sensory neuropathy, depression, dementia and sleep disorder. Somatostatin (SST) is considered to be a modulator of GABAergic inhibitory transmission, and its levels are reduced in cerebrospinal fluid of PD patients. In the present study, we evaluated the changes in the expression of SST in GABAergic neurons derived from induced pluripotent stem cells (iPSCs) of PD patients. Neural cells were co-treated with the Wnt antagonist IWP-2 and Shh during neurosphere formation to induce GABA-positive forebrain interneurons. Quantitative analyses showed no significant differences, but slight decreases, in the potency of differentiation into GABAergic neurons derived from iPSCs between healthy control and patients with PARK2 mutations, who have been classified as a type of early-onset familial PD due to mutations in the parkin gene. Under this condition, the mRNA level of SST in GABAergic interneurons derived from iPSCs of PARK2-specific PD patients significantly decreased as neural maturation progressed. We also found that SST-positive GABAergic neurons were clearly reduced in GABAergic neurons derived from iPSCs of patients with PARK2 mutations. These findings suggest that the reduction in the expression level of SST in GABAergic interneurons of PD may, at least partly, lead to complex PD-induced symptoms.
Collapse
Affiliation(s)
- Chizuru Iwasawa
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan. .,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Reiko Kagawa
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yuko Oka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan. .,Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
27
|
Zhao X, Bhattacharyya A. Human Models Are Needed for Studying Human Neurodevelopmental Disorders. Am J Hum Genet 2018; 103:829-857. [PMID: 30526865 DOI: 10.1016/j.ajhg.2018.10.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
The analysis of animal models of neurological disease has been instrumental in furthering our understanding of neurodevelopment and brain diseases. However, animal models are limited in revealing some of the most fundamental aspects of development, genetics, pathology, and disease mechanisms that are unique to humans. These shortcomings are exaggerated in disorders that affect the brain, where the most significant differences between humans and animal models exist, and could underscore failures in targeted therapeutic interventions in affected individuals. Human pluripotent stem cells have emerged as a much-needed model system for investigating human-specific biology and disease mechanisms. However, questions remain regarding whether these cell-culture-based models are sufficient or even necessary. In this review, we summarize human-specific features of neurodevelopment and the most common neurodevelopmental disorders, present discrepancies between animal models and human diseases, demonstrate how human stem cell models can provide meaningful information, and discuss the challenges that exist in our pursuit to understand distinctively human aspects of neurodevelopment and brain disease. This information argues for a more thoughtful approach to disease modeling through consideration of the valuable features and limitations of each model system, be they human or animal, to mimic disease characteristics.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| | - Anita Bhattacharyya
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| |
Collapse
|
28
|
Hatami M, Conrad S, Naghsh P, Alvarez-Bolado G, Skutella T. Cell-Biological Requirements for the Generation of Dentate Gyrus Granule Neurons. Front Cell Neurosci 2018; 12:402. [PMID: 30483057 PMCID: PMC6240695 DOI: 10.3389/fncel.2018.00402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022] Open
Abstract
The dentate gyrus (DG) receives highly processed information from the associative cortices functionally integrated in the trisynaptic hippocampal circuit, which contributes to the formation of new episodic memories and the spontaneous exploration of novel environments. Remarkably, the DG is the only brain region currently known to have high rates of neurogenesis in adults (Andersen et al., 1966, 1971). The DG is involved in several neurodegenerative disorders, including clinical dementia, schizophrenia, depression, bipolar disorder and temporal lobe epilepsy. The principal neurons of the DG are the granule cells. DG granule cells generated in culture would be an ideal model to investigate their normal development and the causes of the pathologies in which they are involved and as well as possible therapies. Essential to establish such in vitro models is the precise definition of the most important cell-biological requirements for the differentiation of DG granule cells. This requires a deeper understanding of the precise molecular and functional attributes of the DG granule cells in vivo as well as the DG cells derived in vitro. In this review we outline the neuroanatomical, molecular and cell-biological components of the granule cell differentiation pathway, including some growth- and transcription factors essential for their development. We summarize the functional characteristics of DG granule neurons, including the electrophysiological features of immature and mature granule cells and the axonal pathfinding characteristics of DG neurons. Additionally, we discuss landmark studies on the generation of dorsal telencephalic precursors from pluripotent stem cells (PSCs) as well as DG neuron differentiation in culture. Finally, we provide an outlook and comment critical aspects.
Collapse
Affiliation(s)
- Maryam Hatami
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | - Pooyan Naghsh
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | | | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
29
|
Yuan F, Chen X, Fang KH, Wang Y, Lin M, Xu SB, Huo HQ, Xu M, Ma L, Chen Y, He S, Liu Y. Induction of human somatostatin and parvalbumin neurons by expressing a single transcription factor LIM homeobox 6. eLife 2018; 7:37382. [PMID: 30251953 PMCID: PMC6181563 DOI: 10.7554/elife.37382] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023] Open
Abstract
Human GABAergic interneurons (GIN) are implicated in normal brain function and in numerous mental disorders. However, the generation of functional human GIN subtypes from human pluripotent stem cells (hPSCs) has not been established. By expressing LHX6, a transcriptional factor that is critical for GIN development, we induced hPSCs to form GINs, including somatostatin (SST, 29%) and parvalbumin (PV, 21%) neurons. Our RNAseq results also confirmed the alteration of GIN identity with the overexpression of LHX6. Five months after transplantation into the mouse brain, the human GABA precursors generated increased population of SST and PV neurons by overexpressing LHX6. Importantly, the grafted human GINs exhibited functional electrophysiological properties and even fast-spiking-like action potentials. Thus, expression of the single transcription factor LHX6 under our GIN differentiation condition is sufficient to robustly induce human PV and SST subtypes.
Collapse
Affiliation(s)
- Fang Yuan
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical Unveristy, Nanjing, China
| | - Xin Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kai-Heng Fang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Wang
- Department of Neuroscience, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Mingyan Lin
- Department of Neuroscience, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Shi-Bo Xu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hai-Qin Huo
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lixiang Ma
- Department of Human Anatomy and Histology, Institute of Stem Cells and Regenerative Medicine, Fudan University Shanghai Medical School, Shanghai, China
| | - Yuejun Chen
- Institute of Neuroscience, Chinese Academy of Sciences, Beijing, China
| | - Shuijin He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical Unveristy, Nanjing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Simão D, Silva MM, Terrasso AP, Arez F, Sousa MFQ, Mehrjardi NZ, Šarić T, Gomes-Alves P, Raimundo N, Alves PM, Brito C. Recapitulation of Human Neural Microenvironment Signatures in iPSC-Derived NPC 3D Differentiation. Stem Cell Reports 2018; 11:552-564. [PMID: 30057262 PMCID: PMC6094163 DOI: 10.1016/j.stemcr.2018.06.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Brain microenvironment plays an important role in neurodevelopment and pathology, where the extracellular matrix (ECM) and soluble factors modulate multiple cellular processes. Neural cell culture typically relies on heterologous matrices poorly resembling brain ECM. Here, we employed neurospheroids to address microenvironment remodeling during neural differentiation of human stem cells, without the confounding effects of exogenous matrices. Proteome and transcriptome dynamics revealed significant changes at cell membrane and ECM during 3D differentiation, diverging significantly from the 2D differentiation. Structural proteoglycans typical of brain ECM were enriched during 3D differentiation, in contrast to basement membrane constituents in 2D. Moreover, higher expression of synaptic and ion transport machinery was observed in 3D cultures, suggesting higher neuronal maturation in neurospheroids. This work demonstrates that 3D neural differentiation as neurospheroids promotes the expression of cellular and extracellular features found in neural tissue, highlighting its value to address molecular defects in cell-ECM interactions associated with neurological disorders.
Collapse
Affiliation(s)
- Daniel Simão
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta M Silva
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Terrasso
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Francisca Arez
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos F Q Sousa
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Narges Z Mehrjardi
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Patrícia Gomes-Alves
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Nuno Raimundo
- Universitätsmedizin Göttingen, Institut für Zellbiochemie, Göttingen, Germany
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
31
|
Golas MM. Human cellular models of medium spiny neuron development and Huntington disease. Life Sci 2018; 209:179-196. [PMID: 30031060 DOI: 10.1016/j.lfs.2018.07.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
The loss of gamma-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum is the hallmark of Huntington disease (HD), an incurable neurodegenerative disorder characterized by progressive motor, psychiatric, and cognitive symptoms. Transplantation of MSNs or their precursors represents a promising treatment strategy for HD. In initial clinical trials in which HD patients received fetal neurografts directly into the striatum without a pretransplant cell-differentiation step, some patients exhibited temporary benefits. Meanwhile, major challenges related to graft overgrowth, insufficient survival of grafted cells, and limited availability of donated fetal tissue remain. Thus, the development of approaches that allow modeling of MSN differentiation and HD development in cell culture platforms may improve our understanding of HD and translate, ultimately, into HD treatment options. Here, recent advances in the in vitro differentiation of MSNs derived from fetal neural stem cells/progenitor cells (NSCs/NPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and induced NSCs (iNSCs) as well as advances in direct transdifferentiation are reviewed. Progress in non-allele specific and allele specific gene editing of HTT is presented as well. Cell characterization approaches involving phenotyping as well as in vitro and in vivo functional assays are also discussed.
Collapse
Affiliation(s)
- Monika M Golas
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 3, Building 1233, DK-8000 Aarhus C, Denmark; Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
32
|
Hu Y, Fang KH, Shen LP, Cao SY, Yuan F, Su Y, Xu M, Pan Y, Chen Y, Liu Y. The telomerase inhibitor AZT enhances differentiation and prevents overgrowth of human pluripotent stem cell-derived neural progenitors. J Biol Chem 2018; 293:8722-8733. [PMID: 29628445 DOI: 10.1074/jbc.m117.809889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 03/27/2018] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-based cell-replacement therapy has emerged as a promising approach for addressing numerous neurological diseases. However, hPSC transplantation has the potential to cause human cell overgrowth and cancer, which represents a major obstacle to implementing hPSC-based therapies. Inhibition of the overgrowth of transplanted cells could help reduce the risk for hPSC transplantation-induced tumorigenesis. In this study, we report that the telomerase inhibitor azidothymidine (3'-azido-3'-deoxythymidine; AZT) enhances the differentiation of cortical neurons and significantly suppresses the proliferation of hPSC-derived cortical progenitors. Using human embryonic stem cells and induced pluripotent stem cells in culture, we found that AZT effectively reduces the number of dividing progenitors without inducing cell death. Furthermore, AZT promoted differentiation of cortical progenitors and maturation of cortical neurons. Of note, AZT-pretreated, hPSC-derived neural progenitors exhibited decreased proliferation and increased differentiation into cortical neurons when transplanted into the mouse brain. In summary, our findings indicate that AZT prevents the overgrowth of hPSC-derived neural precursors and enhances the differentiation of cortical neurons in both cell cultures and hPSC-transplanted mouse brain. We propose that our work could inform clinical applications of hPSC-based cell therapy.
Collapse
Affiliation(s)
- Yao Hu
- From the State Key Laboratory of Reproductive Medicine.,Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and.,Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Kai-Heng Fang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and
| | - Lu-Ping Shen
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and
| | - Shi-Ying Cao
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and
| | - Fang Yuan
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and
| | - Yuwen Su
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China, and
| | - Yaoyu Chen
- Division of Hematology, Jiangsu Provincial Traditional Chinese Medical Hospital, Nanjing, Jiangsu Province 210029, China
| | - Yan Liu
- From the State Key Laboratory of Reproductive Medicine, .,Institute for Stem Cell and Neural Regeneration, School of Pharmacy, and.,Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
33
|
Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation. Nat Neurosci 2018; 21:432-439. [PMID: 29434377 DOI: 10.1038/s41593-018-0079-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/27/2017] [Indexed: 01/23/2023]
Abstract
Analysis of chromatin accessibility can reveal transcriptional regulatory sequences, but heterogeneity of primary tissues poses a significant challenge in mapping the precise chromatin landscape in specific cell types. Here we report single-nucleus ATAC-seq, a combinatorial barcoding-assisted single-cell assay for transposase-accessible chromatin that is optimized for use on flash-frozen primary tissue samples. We apply this technique to the mouse forebrain through eight developmental stages. Through analysis of more than 15,000 nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell types. We further define cell-type-specific transcriptional regulatory sequences, infer potential master transcriptional regulators and delineate developmental changes in forebrain cellular composition. Our results provide insight into the molecular and cellular dynamics that underlie forebrain development in the mouse and establish technical and analytical frameworks that are broadly applicable to other heterogeneous tissues.
Collapse
|
34
|
Xie Y, Schutte RJ, Ng NN, Ess KC, Schwartz PH, O'Dowd DK. Reproducible and efficient generation of functionally active neurons from human hiPSCs for preclinical disease modeling. Stem Cell Res 2017; 26:84-94. [PMID: 29272856 PMCID: PMC5899925 DOI: 10.1016/j.scr.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/22/2017] [Accepted: 12/07/2017] [Indexed: 02/08/2023] Open
Abstract
The use of human induced pluripotent stem cell (hiPSC)-derived neuronal cultures to study the mechanisms of neurological disorders is often limited by low efficiency and high variability in differentiation of functional neurons. Here we compare the functional properties of neurons in cultures prepared with two hiPSC differentiation protocols, both plated on astroglial feeder layers. Using a protocol with an expandable intermediate stage, only a small percentage of cells with neuronal morphology were excitable by 21-23days in culture. In contrast, a direct differentiation strategy of the same hiPSC line produced cultures in which the majority of neurons fired action potentials as early as 4-5days. By 35-38days over 80% of the neurons fired repetitively and many fired spontaneously. Spontaneous post-synaptic currents were observed in ~40% of the neurons at 4-5days and in ~80% by 21-23days. The majority (75%) received both glutamatergic and GABAergic spontaneous postsynaptic currents. The rate and degree of maturation of excitability and synaptic activity was similar between multiple independent platings from a single hiPSC line, and between two different control hiPSC lines. Cultures of rapidly functional neurons will facilitate identification of cellular mechanisms underlying genetically defined neurological disorders and development of novel therapeutics.
Collapse
Affiliation(s)
- Yunyao Xie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Ryan J Schutte
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Nathan N Ng
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Kevin C Ess
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Philip H Schwartz
- Children's Hospital of Orange County Research Institute, Orange, CA, United States
| | - Diane K O'Dowd
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
35
|
Cao SY, Hu Y, Chen C, Yuan F, Xu M, Li Q, Fang KH, Chen Y, Liu Y. Enhanced derivation of human pluripotent stem cell-derived cortical glutamatergic neurons by a small molecule. Sci Rep 2017; 7:3282. [PMID: 28607372 PMCID: PMC5468244 DOI: 10.1038/s41598-017-03519-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) play important role in studying the function of human glutamatergic neurons and related disease pathogenesis. However, the current hPSC-derived cortical system produced a significant number of inhibitory GABAergic neurons that reduced the purity of excitatory neurons. In this study, we established a robust hPSC-derived cortical neurogenesis system by applying the SHH inhibitor cyclopamine. Cyclopamine specified the dorsal cortical fate in a dose-dependent manner and enhanced the generation of cortical glutamatergic neurons, expressing PAX6, TBR1, TBR2, CTIP2, SATB2, and vesicular glutamate transporters (vGLUT). In contrast, the ventral patterning was inhibited and the GABAergic neurons were significantly reduced to 12% with the treatment of cyclopamine. In addition, we applied our current method to generate trisomy 21 iPSC-derived glutamatergic neurons that showed a robust reduction of vesicular glutamate transporters in the glutamatergic neurons with trisomy 21, revealing the developmental deficits in cortical glutamatergic neurons. Our method enriched the generation of cortical glutamatergic neurons which may facilitate the study of human neurological diseases and cell therapy.
Collapse
Affiliation(s)
- Shi-Ying Cao
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
- Department of Student Affairs, Kangda college of Nanjing Medical University, Lianyungang, China
| | - Yao Hu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Cheng Chen
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Fang Yuan
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Qi Li
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Kai-Heng Fang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yaoyu Chen
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
36
|
Irion S, Zabierowski SE, Tomishima MJ. Bringing Neural Cell Therapies to the Clinic: Past and Future Strategies. Mol Ther Methods Clin Dev 2017; 4:72-82. [PMID: 28344993 PMCID: PMC5363320 DOI: 10.1016/j.omtm.2016.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023]
Abstract
Cell replacement therapy in the nervous system has a rich history, with ∼40 years of research and ∼30 years of clinical experience. There is compelling evidence that appropriate cells can integrate and function in the dysfunctioning human nervous system, but the clinical results are mixed in practice. A number of factors conspire to vary patient outcome: the indication, cell source, patient selection, and team performing transplantation are all variables that can affect efficacy. Most early clinical trials have used fetal cells, a limited cell source that resists scale and standardization. Direct fetal cell transplantation creates significant challenges to commercialization that is the ultimate goal of an effective cell therapy. One approach to help scale and standardize fetal cell preparations is the expansion of neural cells in vitro. Expansion is achieved by transformation or through the application of mitogens before cryopreservation. Recently, neural cells derived from pluripotent stem cells have provided a scalable alternative. Pluripotent stem cells are desirable for manufacturing but present alternative concerns and manufacturing obstacles. All cell sources require robust and reproducible manufacturing to make nervous system cell replacement therapy an option for patients. Here, we discuss the challenges and opportunities for cell replacement in the nervous system. In this review, we give an overview of completed and ongoing neural cell transplantation clinical trials, and we discuss the challenges and opportunities for future cell replacement trials with a particular focus on pluripotent stem cell-derived therapies.
Collapse
Affiliation(s)
- Stefan Irion
- Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Susan E. Zabierowski
- Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY 10065, USA
- SKI Stem Cell Research Facility and Cell Therapy and Cell Engineering Facility, Sloan Kettering Institute, New York, NY 10065, USA
| | - Mark J. Tomishima
- Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY 10065, USA
- SKI Stem Cell Research Facility, Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
37
|
Niclis JC, Turner C, Durnall J, McDougal S, Kauhausen JA, Leaw B, Dottori M, Parish CL, Thompson LH. Long-Distance Axonal Growth and Protracted Functional Maturation of Neurons Derived from Human Induced Pluripotent Stem Cells After Intracerebral Transplantation. Stem Cells Transl Med 2017; 6:1547-1556. [PMID: 28198124 PMCID: PMC5689777 DOI: 10.1002/sctm.16-0198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
The capacity for induced pluripotent stem (iPS) cells to be differentiated into a wide range of neural cell types makes them an attractive donor source for autologous neural transplantation therapies aimed at brain repair. Translation to the in vivo setting has been difficult, however, with mixed results in a wide variety of preclinical models of brain injury and limited information on the basic in vivo properties of neural grafts generated from human iPS cells. Here we have generated a human iPS cell line constitutively expressing green fluorescent protein as a basis to identify and characterize grafts resulting from transplantation of neural progenitors into the adult rat brain. The results show that the grafts contain a mix of neural cell types, at various stages of differentiation, including neurons that establish extensive patterns of axonal growth and progressively develop functional properties over the course of 1 year after implantation. These findings form an important basis for the design and interpretation of preclinical studies using human stem cells for functional circuit re‐construction in animal models of brain injury. Stem Cells Translational Medicine2017;6:1547–1556
Collapse
Affiliation(s)
- Jonathan C Niclis
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| | - Christopher Turner
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| | - Jennifer Durnall
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| | - Stuart McDougal
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| | - Jessica A Kauhausen
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| | - Bryan Leaw
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| | - Mirella Dottori
- Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Royal Parade, Parkville, Victoria, Australia
| | - Clare L Parish
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| | - Lachlan H Thompson
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| |
Collapse
|
38
|
Patel SS, Tomar S, Sharma D, Mahindroo N, Udayabanu M. Targeting sonic hedgehog signaling in neurological disorders. Neurosci Biobehav Rev 2017; 74:76-97. [PMID: 28088536 DOI: 10.1016/j.neubiorev.2017.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/29/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Sonic hedgehog (Shh) signaling influences neurogenesis and neural patterning during the development of central nervous system. Dysregulation of Shh signaling in brain leads to neurological disorders like autism spectrum disorder, depression, dementia, stroke, Parkinson's diseases, Huntington's disease, locomotor deficit, epilepsy, demyelinating disease, neuropathies as well as brain tumors. The synthesis, processing and transport of Shh ligand as well as the localization of its receptors and signal transduction in the central nervous system has been carefully reviewed. Further, we summarize the regulation of small molecule modulators of Shh pathway with potential in neurological disorders. In conclusion, further studies are warranted to demonstrate the potential of positive and negative regulators of the Shh pathway in neurological disorders.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India
| | - Sunil Tomar
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Diksha Sharma
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Neeraj Mahindroo
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Malairaman Udayabanu
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India.
| |
Collapse
|
39
|
Lin H, Li Q, Lei Y. An Integrated Miniature Bioprocessing for Personalized Human Induced Pluripotent Stem Cell Expansion and Differentiation into Neural Stem Cells. Sci Rep 2017; 7:40191. [PMID: 28057917 PMCID: PMC5216399 DOI: 10.1038/srep40191] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/01/2016] [Indexed: 01/01/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are ideal cell sources for personalized cell therapies since they can be expanded to generate large numbers of cells and differentiated into presumably all the cell types of the human body in vitro. In addition, patient specific iPSC-derived cells induce minimal or no immune response in vivo. However, with current cell culture technologies and bioprocessing, the cost for biomanufacturing clinical-grade patient specific iPSCs and their derivatives are very high and not affordable for majority of patients. In this paper, we explored the use of closed and miniature cell culture device for biomanufacturing patient specific neural stem cells (NSCs) from iPSCs. We demonstrated that, with the assist of a thermoreversible hydrogel scaffold, the bioprocessing including iPSC expansion, iPSC differentiation into NSCs, the subsequent depletion of undifferentiated iPSCs from the NSCs, and concentrating and transporting the purified NSCs to the surgery room, could be integrated and completed within two closed 15 ml conical tubes.
Collapse
Affiliation(s)
- Haishuang Lin
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska, USA
| | - Qiang Li
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska, USA
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska, USA.,Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Fred &Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|