1
|
Raveendran VA, Serranilla M, Asgarihafshejani A, de Saint-Rome M, Cherednychenko M, Mullany S, Mitchell JA, Pressey JC, Woodin MA. SNARE protein SNAP25 regulates the chloride-transporter KCC2 in neurons. iScience 2024; 27:111156. [PMID: 39507243 PMCID: PMC11539599 DOI: 10.1016/j.isci.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Inhibitory synaptic neurotransmission mediated by GABA requires a low concentration of chloride ions (Cl-) in neurons, which is established and maintained by the potassium-chloride co-transporter 2 (KCC2). While KCC2-interacting proteins are known to regulate KCC2 protein level and function, specific KCC2-interacting partners are still being identified and characterized. We asked whether SNAP25, an integral component of the SNARE-complex and a novel KCC2 interactor, regulates KCC2 protein and function in mice. We demonstrated that SNAP25 interacts with KCC2, and that this interaction is regulated by protein kinase C (PKC)-mediated phosphorylation. We also discovered that SNAP25 knockdown decreases total KCC2 in cortical neurons, and reduces the strength of synaptic inhibition, as demonstrated through a depolarization of the reversal potential for GABA (EGABA), indicating reduced KCC2 function. Our biochemical and electrophysiological data combined demonstrate that SNAP25 regulates KCC2 membrane expression and function, and in doing so, regulates inhibitory synaptic transmission.
Collapse
Affiliation(s)
| | - Melissa Serranilla
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Azam Asgarihafshejani
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Mariia Cherednychenko
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Shanelle Mullany
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jennifer A. Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jessica C. Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Melanie A. Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
2
|
Ikehata Y, Oshima E, Hayashi Y, Tanaka Y, Sato H, Hitomi S, Shiratori-Hayashi M, Urata K, Kimura Y, Shibuta I, Ohba S, Iwata K, Mizuta K, Shirota T, Shinoda M. Fibroblast-derived IL-33 exacerbates orofacial neuropathic pain via the activation of TRPA1 in trigeminal ganglion neurons. Brain Behav Immun 2024; 123:982-996. [PMID: 39500418 DOI: 10.1016/j.bbi.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/02/2024] [Accepted: 11/02/2024] [Indexed: 11/11/2024] Open
Abstract
Damage to the peripheral nerves of trigeminal ganglion (TG) neurons leads to intractable orofacial neuropathic pain through the induction of neuroinflammation. However, the details of this process are not yet fully understood. Here, we found that fibroblast-derived interleukin (IL)-33 was required for the development of mechanical allodynia in whisker pad skin following infraorbital nerve injury (IONI). The amount of IL-33 in the TG increased after IONI when the mice exhibited mechanical allodynia. Neutralization of IL-33 in the TG inhibited the development of IONI-induced mechanical allodynia. Conversely, intra-TG administration of recombinant human IL-33 (rhIL-33) elicited mechanical allodynia in naïve mice. IL-33 and its receptor were exclusively expressed in fibroblasts and neurons, respectively, in the TG. Fibroblast ablation caused the loss of IL-33 in the TG and delayed the development of mechanical allodynia after IONI. rhIL-33 elicited an increase in intracellular Ca2+ concentration and subsequent enhancement of Ca2+ influx via transient receptor potential ankyrin 1 (TRPA1) in primary cultured TG neurons. Additionally, rhIL-33 facilitated membrane translocation of TRPA1 in the TG. Mechanical allodynia caused by intra-TG administration of rhIL-33 was significantly inhibited by pharmacological blockade or gene silencing of TRPA1 in the TG. Inhibition of protein kinase A abrogated TRPA1 membrane translocation and delayed mechanical allodynia after IONI. Substance P stimulation caused upregulation of IL-33 expression in primary cultured fibroblasts. Preemptive administration of a neurokinin-1 receptor antagonist in the TG attenuated mechanical allodynia and IL-33 expression following IONI. Taken together, these results indicate that fibroblast-derived IL-33 exacerbates TG neuronal excitability via suppression of tumorigenicity 2 (ST2)-TRPA1 signaling, ultimately leading to orofacial neuropathic pain.
Collapse
Affiliation(s)
- Yousuke Ikehata
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 142-8515, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Eri Oshima
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 142-8515, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Yukinori Tanaka
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Seiryomachi 4-1, Aoba-ku, Sendai 980-8575, Japan
| | - Hitoshi Sato
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 142-8515, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Miho Shiratori-Hayashi
- Department of Molecular and Systems Pharmacology, Faculty of Pharmacy, Juntendo University, 6-8-1, Hinode, Urayasu, Chiba 279-0013, Japan; Juntendo Itch Research Center, Institute for Environmental and Gender-Specific Medicine, Graduate School of Medicine, Juntendo University, 2-1-1, Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Kentaro Urata
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yuki Kimura
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Seigo Ohba
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 142-8515, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kentaro Mizuta
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Seiryomachi 4-1, Aoba-ku, Sendai 980-8575, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 142-8515, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| |
Collapse
|
3
|
Nobeyama Y. Rosacea in East Asian populations: Clinical manifestations and pathophysiological perspectives for accurate diagnosis. J Dermatol 2024; 51:1143-1156. [PMID: 39126257 DOI: 10.1111/1346-8138.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Rosacea is a chronic inflammatory disorder primarily affecting the facial skin, prominently involving the cheeks, nose, chin, forehead, and periorbital area. Cutaneous manifestations encompass persistent facial erythema, phymas, papules, pustules, telangiectasia, and flushing. The pathogenesis of rosacea is associated with various exacerbating or triggering factors, including microbial infestation, temperature fluctuations, sunlight exposure, physical exertion, emotional stress, consumption of hot beverages and spicy foods, and exposure to airborne pollen. These environmental factors interact with genetic predispositions in the development of rosacea. The roles of the lipophilic microbiome, ultraviolet radiation, nociceptive responses, and vascular alterations have been proposed as significant factors in the pathogenesis. These insights contribute to understanding the anatomical specificity of facial involvement and the progressive nature of rosacea. East Asian skin, predominantly classified as Fitzpatrick skin phototypes III to IV, is characterized by relatively diminished skin barrier function and increased sensitivity to irritants. Airborne pollen exposure may particularly act as a trigger in East Asian individuals, possibly mediated through toll-like receptors. The lack of specificity in objective clinical and histopathological findings leads to diagnostic challenges for individuals with colored skin, including East Asians, particularly when erythema is the sole objective manifestation. An alternative diagnostic scheme may thus be necessary. A diagnostic approach emphasizing vascular manifestations and nociceptive symptoms potentially holds promise for individuals with darker skin tones. More research focusing on potential variations in skin physiology across different racial groups is essential to establish more effective diagnostic schemes applicable to both dark and light skin colors.
Collapse
Affiliation(s)
- Yoshimasa Nobeyama
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Kantarci H, Elvira PD, Thottumkara AP, O'Connell EM, Iyer M, Donovan LJ, Dugan MQ, Ambiel N, Granados A, Zeng H, Saw NL, Brosius Lutz A, Sloan SA, Gray EE, Tran KV, Vichare A, Yeh AK, Münch AE, Huber M, Agrawal A, Morri M, Zhong H, Shamloo M, Anderson TA, Tawfik VL, Du Bois J, Zuchero JB. Schwann cell-secreted PGE 2 promotes sensory neuron excitability during development. Cell 2024; 187:4690-4712.e30. [PMID: 39142281 DOI: 10.1016/j.cell.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.
Collapse
Affiliation(s)
- Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pablo D Elvira
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Emma M O'Connell
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren J Donovan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Micaela Quinn Dugan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Hong Zeng
- Transgenic, Knockout and Tumor model Center (TKTC), Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, University Hospital, Bern, Switzerland
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erin E Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Khanh V Tran
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aditi Vichare
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley K Yeh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Max Huber
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Anthony Anderson
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Koh DS, Stratiievska A, Jana S, Otto SC, Swanson TM, Nhim A, Carlson S, Raza M, Naves LA, Senning EN, Mehl RA, Gordon SE. Genetic code expansion, click chemistry, and light-activated PI3K reveal details of membrane protein trafficking downstream of receptor tyrosine kinases. eLife 2024; 12:RP91012. [PMID: 39162616 PMCID: PMC11335347 DOI: 10.7554/elife.91012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
Collapse
Affiliation(s)
- Duk-Su Koh
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | | | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Shauna C Otto
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Teresa M Swanson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Anthony Nhim
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Sara Carlson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Marium Raza
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Ligia Araujo Naves
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Eric N Senning
- Department of Neuroscience, University of Texas at AustinAustinUnited States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Sharona E Gordon
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| |
Collapse
|
6
|
Al-Saigh NN, Harb AA, Abdalla S. Receptors Involved in COVID-19-Related Anosmia: An Update on the Pathophysiology and the Mechanistic Aspects. Int J Mol Sci 2024; 25:8527. [PMID: 39126095 PMCID: PMC11313362 DOI: 10.3390/ijms25158527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Olfactory perception is an important physiological function for human well-being and health. Loss of olfaction, or anosmia, caused by viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has received considerable attention, especially in persistent cases that take a long time to recover. This review discusses the integration of different components of the olfactory epithelium to serve as a structural and functional unit and explores how they are affected during viral infections, leading to the development of olfactory dysfunction. The review mainly focused on the role of receptors mediating the disruption of olfactory signal transduction pathways such as angiotensin converting enzyme 2 (ACE2), transmembrane protease serine type 2 (TMPRSS2), neuropilin 1 (NRP1), basigin (CD147), olfactory, transient receptor potential vanilloid 1 (TRPV1), purinergic, and interferon gamma receptors. Furthermore, the compromised function of the epithelial sodium channel (ENaC) induced by SARS-CoV-2 infection and its contribution to olfactory dysfunction are also discussed. Collectively, this review provides fundamental information about the many types of receptors that may modulate olfaction and participate in olfactory dysfunction. It will help to understand the underlying pathophysiology of virus-induced anosmia, which may help in finding and designing effective therapies targeting molecules involved in viral invasion and olfaction. To the best of our knowledge, this is the only review that covered all the receptors potentially involved in, or mediating, the disruption of olfactory signal transduction pathways during COVID-19 infection. This wide and complex spectrum of receptors that mediates the pathophysiology of olfactory dysfunction reflects the many ways in which anosmia can be therapeutically managed.
Collapse
Affiliation(s)
- Noor N. Al-Saigh
- Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Sciences, Amman 16197, Jordan;
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman 19111, Jordan;
| | - Shtaywy Abdalla
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
7
|
Cheng XL, Ruan YL, Dai JY, Fan HZ, Ling JY, Chen J, Lu WG, Gao XJ, Cao P. 8-shogaol derived from dietary ginger alleviated acute and inflammatory pain by targeting TRPV1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155500. [PMID: 38484627 DOI: 10.1016/j.phymed.2024.155500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/24/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
Ginger, a well-known spice plant, has been used widely in medicinal preparations for pain relief. However, little is known about its analgesic components and the underlying mechanism. Here, we ascertained, the efficacy of ginger ingredient 8-Shogaol (8S), on inflammatory pain and tolerance induced by morphine, and probed the role of TRPV1 in its analgesic action using genetic and electrophysiology approaches. Results showed that 8S effectively reduced nociceptive behaviors of mice elicited by chemical stimuli, noxious heat as well as inflammation, and antagonized morphine analgesic tolerance independent on opioid receptor function. Genetic deletion of TRPV1 significantly abolished 8S' analgesia action. Further calcium imaging and patch-clamp recording showed that 8S could specifically activate TRPV1 in TRPV1-expressing HEK293T cells and dorsal root ganglion (DRG) neurons. The increase of [Ca2+]i in DRG was primarily mediated through TRPV1. Mutational and computation studies revealed the key binding sites for the interactions between 8S and TRPV1 included Leu515, Leu670, Ile573, Phe587, Tyr511, and Phe591. Further studies showed that TRPV1 activation evoked by 8S resulted in channel desensitization both in vitro and in vivo, as may be attributed to TRPV1 degradation or TRPV1 withdrawal from the cell surface. Collectively, this work provides the first evidence for the attractive analgesia of 8S in inflammatory pain and morphine analgesic tolerance mediated by targeting pain-sensing TRPV1 channel. 8S from dietary ginger has potential as a candidate drug for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Xiao-Lan Cheng
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yong-Lan Ruan
- Department of Neurology, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, China
| | - Jing-Ya Dai
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China; Wanbei Health Vocational College, Suzhou, Anhui, 234000, China
| | - Hai-Zhen Fan
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China
| | - Jin-Ying Ling
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China
| | - Jiao Chen
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China
| | - Wu-Guang Lu
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China
| | - Xue-Jiao Gao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China.
| | - Peng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China; The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Road, Quzhou, Zhejiang 324000, China.
| |
Collapse
|
8
|
Tang J, Zhao S, Shi H, Li X, Ran L, Cao J, He Y. Effects on peripheral and central nervous system of key inflammatory intercellular signalling peptides and proteins in psoriasis. Exp Dermatol 2024; 33:e15104. [PMID: 38794817 DOI: 10.1111/exd.15104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Psoriasis is a chronic systemic inflammatory cutaneous disease. Where the immune system plays an important role in its pathogenesis, with key inflammatory intercellular signalling peptides and proteins including IL-17 and IL-23. The psychoneurological system also figures prominently in development of psoriasis. There is a high prevalence of comorbidity between psoriasis and mental health disorders such as depression, anxiety and mania. Patients with psoriasis often suffer from pathological pain in the lesions, and their neurological accidents could improve the lesions in innervated areas. The immune system and the psychoneurological system interact closely in the pathogenesis of psoriasis. Patients with psoriasis exhibit abnormal levels of neuropeptides both in circulating and localized lesion, acting as immunomodulators involved in the inflammatory response. Moreover, receptors for inflammatory factors are expressed in both peripheral and central nervous systems (CNSs), suggesting that nervous system can receive and be influenced by signals from immune system. Key inflammatory intercellular signalling peptides and proteins in psoriasis, such as IL-17 and IL-23, can be involved in sensory signalling and may affect synaptic plasticity and the blood-brain barrier of CNS through the circulation. This review provides an overview of the multiple effects on the peripheral and CNS under conditions of systemic inflammation in psoriasis, providing a framework and inspiration for in-depth studies of neuroimmunomodulation in psoriasis.
Collapse
Affiliation(s)
- Jue Tang
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Siqi Zhao
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huijuan Shi
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xuan Li
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Liwei Ran
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiali Cao
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yanling He
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Branch in Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
9
|
Hosseindoost S, Inanloo SH, Pestehei SK, Rahimi M, Yekta RA, Khajehnasiri A, Rad MA, Majedi H, Dehpour AR. Cellular and molecular mechanisms involved in the analgesic effects of botulinum neurotoxin: A literature review. Drug Dev Res 2024; 85:e22177. [PMID: 38528637 DOI: 10.1002/ddr.22177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Botulinum neurotoxins (BoNTs), derived from Clostridium botulinum, have been employed to treat a range of central and peripheral neurological disease. Some studies indicate that BoNT may be beneficial for pain conditions as well. It has been hypothesized that BoNTs may exert their analgesic effects by preventing the release of pain-related neurotransmitters and neuroinflammatory agents from sensory nerve endings, suppressing glial activation, and inhibiting the transmission of pain-related receptors to the neuronal cell membrane. In addition, there is evidence to suggest that the central analgesic effects of BoNTs are mediated through their retrograde axonal transport. The purpose of this review is to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions. Most of the studies reviewed in this article were conducted using BoNT/A. The PubMed database was searched from 1995 to December 2022 to identify relevant literature.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Inanloo
- Department of Urology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Khalil Pestehei
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Rahimi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Atef Yekta
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anesthesiology, Critical Care, and Pain, Dr. Ali Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khajehnasiri
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anesthesiology, Critical Care, and Pain, Dr. Ali Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Majedi
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Hwang CD, Hoftiezer YAJ, Raasveld FV, Gomez-Eslava B, van der Heijden EPA, Jayakar S, Black BJ, Johnston BR, Wainger BJ, Renthal W, Woolf CJ, Eberlin KR. Biology and pathophysiology of symptomatic neuromas. Pain 2024; 165:550-564. [PMID: 37851396 DOI: 10.1097/j.pain.0000000000003055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/07/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT Neuromas are a substantial cause of morbidity and reduction in quality of life. This is not only caused by a disruption in motor and sensory function from the underlying nerve injury but also by the debilitating effects of neuropathic pain resulting from symptomatic neuromas. A wide range of surgical and therapeutic modalities have been introduced to mitigate this pain. Nevertheless, no single treatment option has been successful in completely resolving the associated constellation of symptoms. While certain novel surgical techniques have shown promising results in reducing neuroma-derived and phantom limb pain, their effectiveness and the exact mechanism behind their pain-relieving capacities have not yet been defined. Furthermore, surgery has inherent risks, may not be suitable for many patients, and may yet still fail to relieve pain. Therefore, there remains a great clinical need for additional therapeutic modalities to further improve treatment for patients with devastating injuries that lead to symptomatic neuromas. However, the molecular mechanisms and genetic contributions behind the regulatory programs that drive neuroma formation-as well as the resulting neuropathic pain-remain incompletely understood. Here, we review the histopathological features of symptomatic neuromas, our current understanding of the mechanisms that favor neuroma formation, and the putative contributory signals and regulatory programs that facilitate somatic pain, including neurotrophic factors, neuroinflammatory peptides, cytokines, along with transient receptor potential, and ionotropic channels that suggest possible approaches and innovations to identify novel clinical therapeutics.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of General Surgery, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Yannick Albert J Hoftiezer
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, Radboudumc, Nijmegen, the Netherlands
| | - Floris V Raasveld
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Barbara Gomez-Eslava
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - E P A van der Heijden
- Department of Plastic, Reconstructive and Hand Surgery, Radboudumc, Nijmegen, the Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Jeroen Bosch Ziekenhuis, Den Bosch, the Netherlands
| | - Selwyn Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Bryan James Black
- Department of Biomedical Engineering, UMass Lowell, Lowell, MA, United States
| | - Benjamin R Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Brian J Wainger
- Departments of Anesthesia, Critical Care & Pain Medicine and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Kyle R Eberlin
- Division of Plastic and Reconstructive Surgery, Department of General Surgery, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| |
Collapse
|
11
|
Kordulewska NK, Król-Grzymała A. The Effect of Osthole on Transient Receptor Potential Channels: A Possible Alternative Therapy for Atopic Dermatitis. J Inflamm Res 2024; 17:881-898. [PMID: 38351985 PMCID: PMC10863468 DOI: 10.2147/jir.s425978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Chronic recurrent skin inflammation and severe itching in patients with atopic dermatitis (AD) significantly impair their quality of life. The H4 histamine receptor plays a key role in histamine-induced itching. During the skin inflammation associated with AD, pro-inflammatory mediators (interleukins, cytokines) are released from neurons. Ultimately, a cascade of reactions leads to the activation and sensitization of transient receptor potential channels (TRP), which exacerbate the inflammation and itching associated with AD. Osthole (OST) is a natural coumarin with a proven versatile pharmacological effect: anti-cancer, anti-inflammatory and immunomodulatory. However, the molecular mechanism of OST in relieving inflammation in histamine-mediated itching is not yet clear. Purpose In the studies presented, the possible effect of the OST action on the inhibition of the gene expression of the histamine H4 receptor and the key genes of the TRP channels as well as on the concentration of proinflammatory interleukins was analyzed. Methods Inflammation was induced in a 3D skin model and a keratinocyte cell line Normal Human Epidermal Keratinocytes (NHEK) identical to that of AD, and then OST was administered at various doses. The concentrations of IL-4/-13 were determined by ELISA. RNA was isolated from the 3D skin cells and the NHEK cell line, and the qPCR method was used to determine the expression of: IL-4α, H4R, TRPV1, TRPV4, TRPM8 analyzed. Results The study showed that OST significantly reduced the secretion of IL-4/-13 in a keratinocyte cell line and in a 3D skin model. In addition, OST was found to significantly decrease the gene expression of IL-4α, H4R, TRPV1, TRPV4 and increase TRPM8 in both the NHEK cell line and the organotypic 3D skin model. Conclusion The data obtained provide the first in vitro evidence of itch relief following the application of OST to atopic skin. Research on the use of OST as an active component of emollients in the treatment of AD should be continued in the future.
Collapse
Affiliation(s)
- Natalia Karolina Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, 10-719, Poland
| | - Angelika Król-Grzymała
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, 10-719, Poland
| |
Collapse
|
12
|
Weihrauch T, Gray N, Wiebe D, Schmelz M, Limberg MM, Raap U. TRPV1 Channel in Human Eosinophils: Functional Expression and Inflammatory Modulation. Int J Mol Sci 2024; 25:1922. [PMID: 38339203 PMCID: PMC10856050 DOI: 10.3390/ijms25031922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel expressed on sensory neurons and immune cells. We hypothesize that TRPV1 plays a role in human eosinophil function and is modulated by inflammatory conditions. TRPV1 expression on human eosinophils was examined by qPCR, flow cytometry, and immunohistochemistry, respectively. TRPV1 functionality was analyzed by investigating calcium flux, apoptosis, modulation by cytokines and acidic pH, and CD69 externalization using flow cytometry. Activation of TRPV1 induced calcium influx and prolonged survival. Although eosinophils were not directly activated by TRPV1 agonists, activation by IL-3 or GM-CSF was mainly restricted to TRPV1-positive eosinophils. TRPV1 surface content was increased by acidic pH, IL-3, IL-31, IL-33, TSLP, TNF-α, BDNF, and NGF-β. Interestingly, TRPV1 was also expressed by eosinophils located in proximity to peripheral nerves in atopic dermatitis (AD) skin. In conclusion, eosinophils express functional TRPV1 channels which are increased by extracellular acidification and AD-related cytokines. Since eosinophils also express TRPV1 in AD skin, our results indicate an important role of TRPV1 for neuroimmune interaction mechanisms in itchy, inflammatory skin diseases, like AD.
Collapse
Affiliation(s)
- Tobias Weihrauch
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Natalie Gray
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Division of Anatomy, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Daniela Wiebe
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, MCTN, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Maren M. Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- University Clinic of Dermatology and Allergy, Klinikum Oldenburg, University Oldenburg, 26133 Oldenburg, Germany
| |
Collapse
|
13
|
Zhang J, Gao Q, Hou S, Chi X, Zheng M, Zhang Q, Shan H, Zhang X, Kang C. Role of PAX6, TRPA1, BCL11B, MCOLN2, CUX1, EMX1 in colorectal cancer and osteosarcoma. Medicine (Baltimore) 2024; 103:e37056. [PMID: 38306561 PMCID: PMC10843516 DOI: 10.1097/md.0000000000037056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024] Open
Abstract
Colorectal cancer is a cancer that arises from the abnormal growth of cells in the colon or rectum. Osteosarcoma (OS) is a common primary bone tumor with high degree of malignancy. The configuration files for colorectal cancer dataset GSE142279 and OS datasets GSE197158 and GSE206448 were downloaded from Gene Expression Omnibus database using the platforms GPL20795, GPL20301, and GPL24676. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis (WGCNA) was performed. Construction and analysis of protein-protein interactions (PPI) network. Functional enrichment analysis, gene set enrichment analysis (GSEA) were performed. A heat map of gene expression was drawn. The Comparative Toxicogenomics Database (CTD) was used to find the diseases most associated with the core genes. TargetScan was used to screen miRNAs regulating DEGs. According to the Gene Ontology (GO) analysis, DEGs are mainly enriched in acetylcholine binding receptor activity involved in Wnt signaling pathway, cell polarity pathway, PI3K-Akt signaling pathway, receptor regulator activity, cytokine-cytokine receptor interaction, transcriptional misregulation in cancer, and inflammation-mediated regulation of tryptophan transport. In the Metascape enrichment analysis, GO enrichment items related to the regulation of Wnt signaling pathway, regulation of muscle system process, and regulation of actin filament-based movement. Eight core genes (CUX1, NES, BCL11B, PAX6, EMX1, MCOLN2, TRPA1, TRPC4) were identified. CTD showed that 4 genes (CUX1, EMX1, TRPA1, BCL11B) were associated with colorectal neoplasms, colorectal tumors, colonic diseases, multiple myeloma, OS, and inflammation. PAX6, TRPA1, BCL11B, MCOLN2, CUX1, and EMX1 are highly expressed in colorectal cancer and OS, and the higher the expression level, the worse the prognosis.
Collapse
Affiliation(s)
- Jie Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Qiang Gao
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Shiyang Hou
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Xiaoqian Chi
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Meiliang Zheng
- Department of Orthopedics, The Second Central Hospital of Baoding, Zhuozhou City, Hebei Province, P.R. China
| | - Qijun Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Haifeng Shan
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Xiaoyu Zhang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Chang’an District, Shijiazhuang City, Hebei Province, P.R. China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| |
Collapse
|
14
|
Vlachova V, Barvik I, Zimova L. Human Transient Receptor Potential Ankyrin 1 Channel: Structure, Function, and Physiology. Subcell Biochem 2024; 104:207-244. [PMID: 38963489 DOI: 10.1007/978-3-031-58843-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The transient receptor potential ion channel TRPA1 is a Ca2+-permeable nonselective cation channel widely expressed in sensory neurons, but also in many nonneuronal tissues typically possessing barrier functions, such as the skin, joint synoviocytes, cornea, and the respiratory and intestinal tracts. Here, the primary role of TRPA1 is to detect potential danger stimuli that may threaten the tissue homeostasis and the health of the organism. The ability to directly recognize signals of different modalities, including chemical irritants, extreme temperatures, or osmotic changes resides in the characteristic properties of the ion channel protein complex. Recent advances in cryo-electron microscopy have provided an important framework for understanding the molecular basis of TRPA1 function and have suggested novel directions in the search for its pharmacological regulation. This chapter summarizes the current knowledge of human TRPA1 from a structural and functional perspective and discusses the complex allosteric mechanisms of activation and modulation that play important roles under physiological or pathophysiological conditions. In this context, major challenges for future research on TRPA1 are outlined.
Collapse
Affiliation(s)
- Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Ivan Barvik
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
15
|
Corasaniti MT, Lawrence GW, Bagetta G, Iannacchero R, Tarsitano A, Monteleone A, Pagliaro M, Tonin P, Sandrini G, Nicotera P, Scuteri D. Combination of anti-CGRP/CGRP-R mAbs with onabotulinumtoxin A as a novel therapeutic approach for refractory chronic migraine: a retrospective study of real-world clinical evidence and a protocol for a double-blind, randomized clinical trial to establish the efficacy and safety. Front Pharmacol 2023; 14:1296577. [PMID: 38152694 PMCID: PMC10751376 DOI: 10.3389/fphar.2023.1296577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
Chronic migraine is a disabling neurovascular disorder that ranks amongst the top causes of years lived with disability worldwide. The duration and the frequency of migraine affect cognitive and affective domains, inducing worsening of memory, executive functions, orientation and causing anxiety. Population-based studies report a worrying level of resistance to treatments. Therefore, this study aims: 1) to assess efficacy of monoclonal antibodies (mAbs) directed towards the calcitonin gene-related peptide (CGRP) or its receptor (CGRP-R) for chronic migraine resistant to current preventatives; 2) to design a clinical trial protocol to evaluate the efficacy and safety of combination therapy utilizing anti-CGRP/CGRP-R together with onabotulinumtoxin A in patients suffering from resistant chronic migraine; 3) to provide a molecular rationale for combination therapy. A controlled trial is warranted as pooled analysis of real-world data from our group highlighted that combined treatment provides ≥50% reduction vs. baseline (onabotulinumtoxin A) of monthly headache days (MHDs) in up to 58.8% of patients, but there has been only sparse application of this combined therapy to date. The mAbs chosen are: erenumab, because its combination effect with onabotulinumtoxin A improved symptoms in 65% of patients; eptinezumab, due to its faster action. The results highlight that early diagnosis of migraine improves therapeutic outcomes with mAbs alone, confirming their effectiveness and the need for an adequately powered clinical trial evaluating the safety and potential superior effectiveness of eptinezumab/erenumab and onabotulinumtoxin A together.
Collapse
Affiliation(s)
- M. T. Corasaniti
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - G. W. Lawrence
- Department of Biotechnology, Dublin City University, Dublin, Ireland
| | - G. Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - R. Iannacchero
- Department of Neurology, Headache Center, Regional Hospital “Pugliese-Ciaccio”, Catanzaro, Italy
| | - A. Tarsitano
- Pain Therapy Center, Provincial Health Authority (ASP), Cosenza, Italy
| | - A. Monteleone
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - M. Pagliaro
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - P. Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - G. Sandrini
- Department of Brain and Behavioral Sciences, IRCCS C. Mondino Foundation Neurologic Institute, University of Pavia, Pavia, Italy
| | - P. Nicotera
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - D. Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| |
Collapse
|
16
|
Dai X, Li L, Yan X, Fan Q, Wang R, Zhang W, Chen W, Liu Y, Meng J, Wang J. Myeloid Vamp3 deletion attenuates CFA-induced inflammation and pain in mice via ameliorating macrophage infiltration and inflammatory cytokine production. Front Immunol 2023; 14:1239592. [PMID: 37965323 PMCID: PMC10641732 DOI: 10.3389/fimmu.2023.1239592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Persistent inflammation and associated pain significantly impact individuals' quality of life, posing substantial healthcare challenges. Proinflammatory cytokines, released by activated macrophages, play crucial roles in the development of chronic inflammatory conditions such as rheumatoid arthritis. To identify and evaluate potential therapeutic interventions targeting this process for mitigating inflammation and pain, we created myeloid cell-specific knockout of Vamp3 (vesicle-associated membrane protein 3) mice (Vamp3 Δmyel) by crossing LysM-Cre mice with newly engineered Vamp3flox/flox mice. Bone marrow-derived macrophages and peritoneal resident macrophages from Vamp3 Δmyel mice exhibited a significant reduction in TNF-α and IL-6 release compared to control mice. Moreover, Vamp3 deficiency led to decreased paw edema and ankle joint swelling induced by intraplantar injection of complete Freund's adjuvant (CFA). Furthermore, Vamp3 depletion also mitigated CFA-induced mechanical allodynia and thermal hyperalgesia. Mechanistically, Vamp3 loss ameliorated the infiltration of macrophages in peripheral sites of the hind paw and resulted in reduced levels of TNF-α and IL-6 in the CFA-injected paw and serum. RT-qPCR analysis demonstrated downregulation of various inflammation-associated genes, including TNF-α, IL-6, IL-1β, CXCL11, TIMP-1, COX-2, CD68, and CD54 in the injected paw at the test day 14 following CFA administration. These findings highlight the novel role of Vamp3 in regulating inflammatory responses and suggest it as a potential therapeutic target for the development of novel Vamp-inactivating therapeutics, with potential applications in the management of inflammatory diseases.
Collapse
Affiliation(s)
- Xiaolong Dai
- School of Life Sciences, Henan University, Kaifeng, China
| | - Lianlian Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Xinrong Yan
- School of Life Sciences, Henan University, Kaifeng, China
| | - Qianqian Fan
- School of Life Sciences, Henan University, Kaifeng, China
| | - Ruizhen Wang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Wenhao Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yang Liu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jianghui Meng
- School of Life Sciences, Henan University, Kaifeng, China
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jiafu Wang
- School of Life Sciences, Henan University, Kaifeng, China
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
17
|
Michot B, Casey SM, Lee CS, Erdogan O, Basu H, Chiu I, Gibbs JL. Lipopolysaccharide-Induced TRPA1 Upregulation in Trigeminal Neurons is Dependent on TLR4 and Vesicular Exocytosis. J Neurosci 2023; 43:6731-6744. [PMID: 37643860 PMCID: PMC10552941 DOI: 10.1523/jneurosci.0162-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Pain from bacterial infection was believed to be the consequence of inflammation induced by bacterial products. However recent studies have shown that bacterial products can directly activate sensory neurons and induce pain. The mechanisms by which bacteria induce pain are poorly understood, but toll-like receptor (TLR)4 and transient receptor potential A1 (TRPA1) receptors are likely important integrators of pain signaling induced by bacteria. Using male and female mice we show that sensory neuron activation by bacterial lipopolysaccharides (LPS) is mediated by both TRPA1 and TLR4 and involves the mobilization of extracellular and intracellular calcium. We also show that LPS induces neuronal sensitization in a process dependent on TLR4 receptors. Moreover, we show that TLR4 and TRPA1 are both involved in sensory neurons response to LPS stimulation. Activation of TLR4 in a subset of sensory neurons induces TRPA1 upregulation at the cell membrane through vesicular exocytosis, contributing to the initiation of neuronal sensitization and pain. Collectively these data highlight the importance of sensory neurons to pathogen detection, and their activation by bacterial products like LPS as potentially important to early immune and nociceptive responses.SIGNIFICANCE STATEMENT Bacterial infections are often painful and the recent discovery that bacteria can directly stimulate sensory neurons leading to pain sensation and modulation of immune system have highlighted the importance of nervous system in the response to bacterial infection. Here, we showed that lipopolysaccharide, a major bacterial by-product, requires both toll-like receptor (TLR)4 and transient receptor potential A1 (TRPA1) receptors for neuronal activation and acute spontaneous pain, but only TLR4 mediates sensory neurons sensitization. Moreover, we showed for the first time that TLR4 sensitize sensory neurons through a rapid upregulation of TRPA1 via vesicular exocytosis. Our data highlight the importance of sensory neurons to pathogen detection and suggests that TLR4 would be a potential therapeutic target to modulate early stage of bacteria-induced pain and immune response.
Collapse
Affiliation(s)
- Benoit Michot
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| | - Sharon M Casey
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| | - Caroline S Lee
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| | - Ozge Erdogan
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, Massachusetts 02215
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, Massachusetts 02215
| | - Jennifer L Gibbs
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| |
Collapse
|
18
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Epigenetic Connections of the TRPA1 Ion Channel in Pain Transmission and Neurogenic Inflammation - a Therapeutic Perspective in Migraine? Mol Neurobiol 2023; 60:5578-5591. [PMID: 37326902 PMCID: PMC10471718 DOI: 10.1007/s12035-023-03428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Persistent reprogramming of epigenetic pattern leads to changes in gene expression observed in many neurological disorders. Transient receptor potential cation channel subfamily A member 1 (TRPA1), a member of the TRP channels superfamily, is activated by many migraine triggers and expressed in trigeminal neurons and brain regions that are important in migraine pathogenesis. TRP channels change noxious stimuli into pain signals with the involvement of epigenetic regulation. The expression of the TRPA1 encoding gene, TRPA1, is modulated in pain-related syndromes by epigenetic alterations, including DNA methylation, histone modifications, and effects of non-coding RNAs: micro RNAs (miRNAs), long non-coding RNAs, and circular RNAs. TRPA1 may change epigenetic profile of many pain-related genes as it may modify enzymes responsible for epigenetic modifications and expression of non-coding RNAs. TRPA1 may induce the release of calcitonin gene related peptide (CGRP), from trigeminal neurons and dural tissue. Therefore, epigenetic regulation of TRPA1 may play a role in efficacy and safety of anti-migraine therapies targeting TRP channels and CGRP. TRPA1 is also involved in neurogenic inflammation, important in migraine pathogenesis. The fundamental role of TRPA1 in inflammatory pain transmission may be epigenetically regulated. In conclusion, epigenetic connections of TRPA1 may play a role in efficacy and safety of anti-migraine therapy targeting TRP channels or CGRP and they should be further explored for efficient and safe antimigraine treatment. This narrative/perspective review presents information on the structure and functions of TRPA1 as well as role of its epigenetic connections in pain transmission and potential in migraine therapy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, 90-236, Lodz, Poland.
| |
Collapse
|
19
|
Abstract
Botulinum neurotoxins (BoNTs) are multi-domain proteins whose potent and selective actions on nerve endings have led to innovations in both basic and clinical science. The various BoNT domains are responsible for binding to gangliosides and proteins associated with nerve cell membranes, internalization into the cell, and cleavage of one or more SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins necessary for vesicle docking and fusion. Novel modifications to BoNT molecules, such as the creation of chimeras, helped identify the protein domains responsible for various aspects of BoNT action, such as localized effects. Other molecular modifications have been introduced in attempts to increase the specificity of BoNTs for autonomic or sensory neurons, with the ultimate goal of optimizing therapeutic selectivity. This research, in turn, has led to the development of BoNT-based proteins that can target non-SNARE substrates such as phosphatase and tensin homolog (PTEN). Still others are developing different BoNT serotypes, subtypes, or variants that are longer- or shorter-acting or have faster onset for various clinical purposes. New formulations of BoNTs that provide convenience for both patients and physicians are under investigation. Novel clinical uses are being evaluated for onabotulinumtoxinA, including in the prevention of post-operative atrial fibrillation. All these innovations capitalize on the unique properties of BoNTs, which continue to intrigue scientists and clinicians across numerous fields of study.
Collapse
Affiliation(s)
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Mitchell F Brin
- Allergan/AbbVie, Irvine, CA, USA
- University of California, Irvine, CA, USA
| |
Collapse
|
20
|
Luostarinen S, Hämäläinen M, Pemmari A, Moilanen E. The regulation of TRPA1 expression and function by Th1 and Th2-type inflammation in human A549 lung epithelial cells. Inflamm Res 2023:10.1007/s00011-023-01750-y. [PMID: 37386145 DOI: 10.1007/s00011-023-01750-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Transient Receptor Potential Ankyrin 1 (TRPA1) is a cation channel that mediates pain, itch, cough, and neurogenic inflammation in response to pungent compounds such as acrolein in cigarette smoke. TRPA1 is also activated by endogenous factors and promotes inflammation in asthma models. We have recently shown that TRPA1 is upregulated by inflammatory cytokines in A549 human lung epithelial cells. Here, we explored the effects of Th1 and Th2-type inflammation on TRPA1. METHODS AND RESULTS TRPA1 expression and function was studied in A549 human lung epithelial cells. To induce inflammation, the cells were exposed to a combination of cytokines TNF-α and IL-1β; and to model Th1 or Th2-type responses, IFN-γ or IL-4/IL-13 was added, respectively. TRPA1 expression (measured by RT-PCR and Western blot) and function (assessed by Fluo-3AM intracellular calcium measurement) was enhanced under the influence of TNF-α + IL-1β. IFN-γ further enhanced TRPA1 expression and function, whereas IL-4 and IL-13 suppressed them. The effects of IFN-γ and IL-4 on TRPA1 expression were reversed by the Janus kinase (JAK) inhibitors baricitinib and tofacitinib, and those of IL-4 also by the STAT6 inhibitor AS1517499. The glucocorticoid dexamethasone downregulated TRPA1 expression, whereas the PDE4 inhibitor rolipram had no effect. Under all conditions, TRPA1 blockade was found to reduce the production of LCN2 and CXCL6. CONCLUSIONS TRPA1 expression and function in lung epithelial cells was upregulated under inflammatory conditions. IFN-γ further increased TRPA1 expression while IL-4 and IL-13 suppressed that in a JAK-STAT6 dependent manner which is novel. TRPA1 also modulated the expression of genes relevant to innate immunity and lung disease. We propose that the paradigm of Th1 and Th2 inflammation is a major determinant of TRPA1 expression and function, which should be considered when targeting TRPA1 for pharmacotherapy in inflammatory (lung) disease.
Collapse
Affiliation(s)
- Samu Luostarinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
21
|
Leese C, Christmas C, Mészáros J, Ward S, Maiaru M, Hunt SP, Davletov B. New botulinum neurotoxin constructs for treatment of chronic pain. Life Sci Alliance 2023; 6:e202201631. [PMID: 37041008 PMCID: PMC10098373 DOI: 10.26508/lsa.202201631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023] Open
Abstract
Chronic pain affects one in five people across human societies, with few therapeutic options available. Botulinum neurotoxin (BoNT) can provide long-lasting pain relief by inhibiting local release of neuropeptides and neurotransmitters, but its highly paralytic nature has limited its analgesic potential. Recent advances in protein engineering have raised the possibility of synthesising non-paralysing botulinum molecules for translation to pain sufferers. However, the synthesis of these molecules, via several synthetic steps, has been challenging. Here, we describe a simple platform for safe production of botulinum molecules for treating nerve injury-induced pain. We produced two versions of isopeptide-bonded BoNT from separate botulinum parts using an isopeptide bonding system. Although both molecules cleaved their natural substrate, SNAP25, in sensory neurons, the structurally elongated iBoNT did not cause motor deficit in rats. We show that the non-paralytic elongated iBoNT targets specific cutaneous nerve fibres and provides sustained pain relief in a rat nerve injury model. Our results demonstrate that novel botulinum molecules can be produced in a simple and safe manner and be useful for treating neuropathic pain.
Collapse
Affiliation(s)
- Charlotte Leese
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Claire Christmas
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Judit Mészáros
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Stephanie Ward
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Maria Maiaru
- Department of Pharmacology, School of Pharmacy, University of Reading, Whiteknights Campus, Reading, UK
| | - Stephen P Hunt
- Cell and Developmental Biology, University College London, London, UK
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
- Neuresta, Inc., San Diego, CA, USA
| |
Collapse
|
22
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
23
|
Haan KD, Park SJ, Nakamura Y, Fukami K, Fisher TE. Osmotically evoked PLCδ1-dependent translocation of ΔN-TRPV1 channels in rat supraoptic neurons. iScience 2023; 26:106258. [PMID: 36926650 PMCID: PMC10011827 DOI: 10.1016/j.isci.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Osmoregulation is an essential homeostatic process that requires constant release of vasopressin during sustained increases in plasma osmolality. The magnocellular neurosecretory cells (MNCs) respond to increases in external osmolality through increases in the activity of ΔN-TRPV1 channels, which leads to increased action potential firing and vasopressin release. We show that sustained exposure of acutely isolated rat and mouse MNCs to hypertonic solutions (90 min) causes a reversible translocation of ΔN-TRPV1 channels from internal stores to the plasma membrane that depends on the activation of phospholipase C and on SNARE-dependent exocytosis. ΔN-TRPV1 channel translocation is absent in MNCs isolated from transgenic mice lacking the PLCδ1 isoform, suggesting that PLCδ1 is essential for triggering this process. The translocation of ΔN-TRPV1 channels to the cell surface could contribute to the maintenance of MNC excitability during sustained increases in osmolality. Our data therefore have important implications for the mechanisms underlying mammalian osmoregulation.
Collapse
Affiliation(s)
- Kirk D Haan
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sung Jin Park
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Thomas E Fisher
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
24
|
Liu X, Gong R, Peng L, Zhao J. Toll-like receptor 4 signaling pathway in sensory neurons mediates remifentanil-induced postoperative hyperalgesia via transient receptor potential ankyrin 1. Mol Pain 2023; 19:17448069231158290. [PMID: 36733260 PMCID: PMC9926008 DOI: 10.1177/17448069231158290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background: Remifentanil-induced postoperative hyperalgesia (RIH) refers to a state of hyperalgesia or aggravated pre-existing pain after remifentanil exposure. There has been considerable interest in understanding and preventing RIH. However, the mechanisms responsible for RIH are still not completely understood. Toll-like receptor 4 (TLR4), a classic innate immune receptor, has been detected in sensory neurons and participates in various nociceptive conditions, whereas its role in RIH remains unclear. Transient receptor potential ankyrin 1 (TRPA1) always serves as a nociceptive channel, whereas its role in RIH has not yet been investigated. This study aimed to determine whether the TLR4 signaling pathway in sensory neurons engaged in the development of RIH and the possible involvement of TRPA1 during this process. Methods: A rat model of remifentanil-induced postoperative hyperalgesia (RIH) was established, which presented decreased paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL). The mRNA and protein expression levels of TLR4, phosphorylated NF-κB, and TRPA1 in the dorsal root ganglion (DRG) from RIH model were analyzed by real-time PCR, western blot, and immunofluorescence. The TLR4 antagonist TAK-242 and the TRPA1 antagonist HC-030031 were applied to determine the role of sensory neuron TLR4 signaling and TRPA1 in RIH. Results: Compared with control, PWMT and PWTL were significantly decreased in RIH model. Moreover, the mRNA and protein expression of TLR4 and TRPA1 in DRG were upregulated after remifentanil exposure together with increased NF-κB phosphorylation. TLR4 antagonist TAK-242 mitigated mechanical pain in RIH together with downregulated expression of TLR4, phosphorylated NF-κB, and TRPA1 in DRG neurons. In addition, TRPA1 antagonist HC-030031 also alleviated mechanical pain and decreased TRPA1 expression in RIH without affecting TLR4 signaling in DRG. Conclusions: Taken together, these results suggested that activation of TLR4 signaling pathway engaged in the development of RIH by regulating TRPA1 in DRG neurons. Blocking TLR4 and TRPA1 might serve as a promising therapeutic strategy for RIH.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Anesthesiology,
China-Japan Friendship Hospital,
Beijing, China
| | - Ruisong Gong
- Department of Anesthesiology,
Peking
Union Medical College Hospital,
Beijing, China
| | - Liang Peng
- Beijing Key Laboratory for
Immune-Mediated Inflammatory Diseases, Institute of Medical Science,
China-Japan Friendship Hospital,
Beijing, China
| | - Jing Zhao
- Department of Anesthesiology,
China-Japan Friendship Hospital,
Beijing, China,Jing Zhao, Department of Anesthesiology,
China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Beijing 100029,
China.
| |
Collapse
|
25
|
Moore AA, Nelson M, Wickware C, Choi S, Moon G, Xiong E, Orta L, Brideau-Andersen A, Brin MF, Broide RS, Liedtke W, Moore C. OnabotulinumtoxinA effects on trigeminal nociceptors. Cephalalgia 2023; 43:3331024221141683. [PMID: 36751871 PMCID: PMC10652784 DOI: 10.1177/03331024221141683] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND OnabotulinumtoxinA (onabotA) is approved globally for prevention of chronic migraine; however, the classical mechanism of action of onabotA in motor and autonomic neurons cannot fully explain the effectiveness of onabotulinumtoxinA in this sensory neurological disease. We sought to explore the direct effects of onabotulinumtoxinA on mouse trigeminal ganglion sensory neurons using an inflammatory soup-based model of sensitization. METHODS Primary cultured trigeminal ganglion neurons were pre-treated with inflammatory soup, then treated with onabotulinumtoxinA (2.75 pM). Treated neurons were used to examine transient receptor potential vanilloid subtype 1 and transient receptor potential ankyrin 1 cell-surface expression, calcium influx, and neuropeptide release. RESULTS We found that onabotulinumtoxinA cleaved synaptosomal-associated protein-25 kDa in cultured trigeminal ganglion neurons; synaptosomal-associated protein-25 kDa cleavage was enhanced by inflammatory soup pre-treatment, suggesting greater uptake of toxin under sensitized conditions. OnabotulinumtoxinA also prevented inflammatory soup-mediated increases in TRPV1 and TRPA1 cell-surface expression, without significantly altering TRPV1 or TRPA1 protein expression in unsensitized conditions. We observed similar inhibitory effects of onabotulinumtoxinA on TRP-mediated calcium influx and TRPV1- and TRPA1-mediated release of calcitonin gene-related peptide and prostaglandin 2 under sensitized, but not unsensitized control, conditions. CONCLUSIONS Our data deepen the understanding of the sensory mechanism of action of onabotulinumtoxinA and support the notion that, once endocytosed, the cytosolic light chain of onabotulinumtoxinA cleaves synaptosomal-associated protein-25 kDa to prevent soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated processes more generally in motor, autonomic, and sensory neurons.
Collapse
Affiliation(s)
- Ashley A Moore
- Department of Neurology, Duke University, Durham, NC, USA
| | | | | | - Shinbe Choi
- Department of Neurology, Duke University, Durham, NC, USA
| | - Gene Moon
- Department of Neurology, Duke University, Durham, NC, USA
| | - Emma Xiong
- Department of Neurology, Duke University, Durham, NC, USA
| | - Lily Orta
- Department of Neurology, Duke University, Durham, NC, USA
| | | | - Mitchell F Brin
- Allergan, an AbbVie company, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | | | - Wolfgang Liedtke
- Department of Neurology, Duke University, Durham, NC, USA
- Department of Molecular Pathobiology – Dental Pain Research, New York University College of Dentistry, New York, NY, USA
| | - Carlene Moore
- Department of Neurology, Duke University, Durham, NC, USA
| |
Collapse
|
26
|
Belinskaia M, Wang J, Kaza SK, Antoniazzi C, Zurawski T, Dolly JO, Lawrence GW. Bipartite Activation of Sensory Neurons by a TRPA1 Agonist Allyl Isothiocyanate Is Reflected by Complex Ca 2+ Influx and CGRP Release Patterns: Enhancement by NGF and Inhibition with VAMP and SNAP-25 Cleaving Botulinum Neurotoxins. Int J Mol Sci 2023; 24:ijms24021338. [PMID: 36674850 PMCID: PMC9865456 DOI: 10.3390/ijms24021338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The trafficking of transient receptor potential (TRP) channels to the plasma membrane and the release of calcitonin gene-related peptide (CGRP) from trigeminal ganglion neurons (TGNs) are implicated in some aspects of chronic migraines. These exocytotic processes are inhibited by cleavage of SNAREs with botulinum neurotoxins (BoNTs); moreover, type A toxin (/A) clinically reduces the frequency and severity of migraine attacks but not in all patients for unknown reasons. Herein, neonatal rat TGNs were stimulated with allyl isothiocyanate (AITC), a TRPA1 agonist, and dose relationships were established to link the resultant exocytosis of CGRP with Ca2+ influx. The CGRP release, quantified by ELISA, was best fit by a two-site model (EC50 of 6 and 93 µM) that correlates with elevations in intracellular Ca2+ [Ca2+]i revealed by time-lapse confocal microscopy of fluo-4-acetoxymethyl ester (Fluo-4 AM) loaded cells. These signals were all blocked by two TRPA1 antagonists, HC-030031 and A967079. At low [AITC], [Ca2+]i was limited because of desensitisation to the agonist but rose for concentrations > 0.1 mM due to a deduced non-desensitising second phase of Ca2+ influx. A recombinant BoNT chimera (/DA), which cleaves VAMP1/2/3, inhibited AITC-elicited CGRP release to a greater extent than SNAP-25-cleaving BoNT/A. /DA also proved more efficacious against CGRP efflux evoked by a TRPV1 agonist, capsaicin. Nerve growth factor (NGF), a pain-inducing sensitiser of TGNs, enhanced the CGRP exocytosis induced by low [AITC] only. Both toxins blocked NGF-induced neuropeptide secretion and its enhancement of the response to AITC. In conclusion, NGF sensitisation of sensory neurons involves TRPA1, elevated Ca2+ influx, and CGRP exocytosis, mediated by VAMP1/2/3 and SNAP-25 which can be attenuated by the BoNTs.
Collapse
|
27
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Khan S, Patra PH, Somerfield H, Benya-Aphikul H, Upadhya M, Zhang X. IQGAP1 promotes chronic pain by regulating the trafficking and sensitization of TRPA1 channels. Brain 2022:6881565. [PMID: 36477832 DOI: 10.1093/brain/awac462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
TRPA1 channels have been implicated in mechanical and cold hypersensitivity in chronic pain. But how TRPA1 mediates this process is unclear. Here we show that IQ-motif containing GTPase activating protein 1 (IQGAP1) is responsible using a combination of biochemical, molecular, Ca2+ imaging and behavioural approaches. TRPA1 and IQGAP1 bind to each other and are highly colocalised in sensory DRG neurons in mice. The expression of IQGAP1 but not TRPA1 is increased in chronic inflammatory and neuropathic pain. However, TRPA1 undergoes increased trafficking to the membrane of DRG neurons catalysed by the small GTPase Cdc42 associated with IQGAP1, leading to functional sensitization of the channel. Activation of PKA is also sufficient to evoke TRPA1 trafficking and sensitization. All these responses are, however, completely prevented in the absence of IQGAP1. Concordantly, deletion of IQGAP1 markedly reduces mechanical and cold hypersensitivity in chronic inflammatory and neuropathic pain in mice. IQGAP1 thus promotes chronic pain by coupling the trafficking and signalling machineries to TRPA1 channels.
Collapse
Affiliation(s)
- Shakil Khan
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Pabitra H Patra
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Hannah Somerfield
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Manoj Upadhya
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Xuming Zhang
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
29
|
Xu LL, Yan Y, Yuan YM, Li Y, Jiang J, Zhang LC. TRPV1 and GABAB1 in the Cerebrospinal Fluid-Contacting Nucleus are Jointly Involved in Chronic Inflammatory Pain in Rats. J Pain Res 2022; 15:3931-3939. [DOI: 10.2147/jpr.s385810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
|
30
|
Malange KF, Navia-Pelaez JM, Dias EV, Lemes JBP, Choi SH, Dos Santos GG, Yaksh TL, Corr M. Macrophages and glial cells: Innate immune drivers of inflammatory arthritic pain perception from peripheral joints to the central nervous system. FRONTIERS IN PAIN RESEARCH 2022; 3:1018800. [PMID: 36387416 PMCID: PMC9644179 DOI: 10.3389/fpain.2022.1018800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Millions of people suffer from arthritis worldwide, consistently struggling with daily activities due to debilitating pain evoked by this disease. Perhaps the most intensively investigated type of inflammatory arthritis is rheumatoid arthritis (RA), where, despite considerable advances in research and clinical management, gaps regarding the neuroimmune interactions that guide inflammation and chronic pain in this disease remain to be clarified. The pain and inflammation associated with arthritis are not isolated to the joints, and inflammatory mechanisms induced by different immune and glial cells in other tissues may affect the development of chronic pain that results from the disease. This review aims to provide an overview of the state-of-the-art research on the roles that innate immune, and glial cells play in the onset and maintenance of arthritis-associated pain, reviewing nociceptive pathways from the joint through the dorsal root ganglion, spinal circuits, and different structures in the brain. We will focus on the cellular mechanisms related to neuroinflammation and pain, and treatments targeting these mechanisms from the periphery and the CNS. A comprehensive understanding of the role these cells play in peripheral inflammation and initiation of pain and the central pathways in the spinal cord and brain will facilitate identifying new targets and pathways to aide in developing therapeutic strategies to treat joint pain associated with RA.
Collapse
Affiliation(s)
- Kaue Franco Malange
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | | | - Elayne Vieira Dias
- Department of Neurology, University of California, San Francisco, CA, United States
| | | | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, CA, United States
| | | | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
31
|
Stapelberg NJC, Branjerdporn G, Adhikary S, Johnson S, Ashton K, Headrick J. Environmental Stressors and the PINE Network: Can Physical Environmental Stressors Drive Long-Term Physical and Mental Health Risks? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13226. [PMID: 36293807 PMCID: PMC9603079 DOI: 10.3390/ijerph192013226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Both psychosocial and physical environmental stressors have been linked to chronic mental health and chronic medical conditions. The psycho-immune-neuroendocrine (PINE) network details metabolomic pathways which are responsive to varied stressors and link chronic medical conditions with mental disorders, such as major depressive disorder via a network of pathophysiological pathways. The primary objective of this review is to explore evidence of relationships between airborne particulate matter (PM, as a concrete example of a physical environmental stressor), the PINE network and chronic non-communicable diseases (NCDs), including mental health sequelae, with a view to supporting the assertion that physical environmental stressors (not only psychosocial stressors) disrupt the PINE network, leading to NCDs. Biological links have been established between PM exposure, key sub-networks of the PINE model and mental health sequelae, suggesting that in theory, long-term mental health impacts of PM exposure may exist, driven by the disruption of these biological networks. This disruption could trans-generationally influence health; however, long-term studies and information on chronic outcomes following acute exposure event are still lacking, limiting what is currently known beyond the acute exposure and all-cause mortality. More empirical evidence is needed, especially to link long-term mental health sequelae to PM exposure, arising from PINE pathophysiology. Relationships between physical and psychosocial stressors, and especially the concept of such stressors acting together to impact on PINE network function, leading to linked NCDs, evokes the concept of syndemics, and these are discussed in the context of the PINE network.
Collapse
Affiliation(s)
- Nicolas J. C. Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, QID 4101, Australia
| | - Susannah Johnson
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
| | - Kevin Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - John Headrick
- School of Medical Science, Griffith University, Gold Coast, QID 4215, Australia
| |
Collapse
|
32
|
Gazerani P. How Does Botulinum Toxin Inhibit Itch? Toxins (Basel) 2022; 14:701. [PMID: 36287970 PMCID: PMC9610088 DOI: 10.3390/toxins14100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Two decades after reports of the anti-pruritic effects of botulinum neurotoxins (BoNTs), there is still no approved product for the anti-itch indication of BoNTs, and most clinical case reports still focus on the off-label use of BoNTs for various itchy conditions. Few randomized clinical trials have been conducted with controversial results, and the beneficial effects of BoNTs against itch are mainly based on case studies and case series. These studies are valuable in presenting the potential application of BoNTs in chronic pruritic conditions, but due to the nature of these studies, they are categorized as providing lower levels of evidence or lower grades of recommendation. To obtain approval for the anti-pruritic indication of BoNTs, higher levels of evidence are required, which can be achieved through conducting large-scale and well-designed studies with proper control groups and established careful and reliable primary and secondary outcomes. In addition to clinical evidence, presenting the mechanism-based antipruritic action of BoNTs can potentially strengthen, accelerate, and facilitate the current efforts towards further investments in accelerating the field towards the potential approval of BoNTs for itchy conditions. This review, therefore, aimed to provide the state-of-the-art mechanisms underlying the anti-itch effect of BoNTs from basic studies that resemble various clinical conditions with itch as a hallmark. Evidence of the neuronal, glial, and immune modulatory actions of BoNTs in reducing the transmission of itch are presented, and future potential directions are outlined.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway; or
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, 9220 Aalborg East, Denmark
| |
Collapse
|
33
|
Konstantinou GN, Konstantinou GN, Koulias C, Petalas K, Makris M. Further Understanding of Neuro-Immune Interactions in Allergy: Implications in Pathophysiology and Role in Disease Progression. J Asthma Allergy 2022; 15:1273-1291. [PMID: 36117919 PMCID: PMC9473548 DOI: 10.2147/jaa.s282039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022] Open
Abstract
The complicated interaction between the central and the autonomic (sympathetic, parasympathetic, and enteric) nervous systems on the one hand and the immune system and its components, on the other hand, seems to substantially contribute to allergy pathophysiology, uncovering an under-recognized association that could have diagnostic and therapeutic potentials. Neurons connect directly with and regulate the function of many immune cells, including mast cells, the cells that have a leading role in allergic disorders. Proinflammatory mediators such as cytokines, neurotrophins, chemokines, and neuropeptides are released by immune cells, which stimulate sensory neurons. The release of neurotransmitters and neuropeptides caused by the activation of these neurons directly impacts the functional activity of immune cells and vice versa, playing a decisive role in this communication. Successful application of Pavlovian conditioning in allergic disorders supports the existence of a psychoneuroimmunological interplay in classical allergic hypersensitivity reactions. Activation of neuronal homeostatic reflexes, like sneezing in allergic rhinitis, coughing in allergic asthma, and vomiting in food allergy, offers additional evidence of a neuroimmunological interaction that aims to maintain homeostasis. Dysregulation of this interaction may cause overstimulation of the immune system that will produce profound symptoms and exaggerated hemodynamic responses that will lead to severe allergic pathophysiological events, including anaphylaxis. In this article, we have systematically reviewed and discussed the evidence regarding the role of the neuro-immune interactions in common allergic clinical modalities like allergic rhinitis, chronic rhinosinusitis, allergic asthma, food allergy, atopic dermatitis, and urticaria. It is essential to understand unknown – to most of the immunology and allergy experts – neurological networks that not only physiologically cooperate with the immune system to regulate homeostasis but also pathogenetically interact with more or less known immunological pathways, contribute to what is known as neuroimmunological inflammation, and shift homeostasis to instability and disease clinical expression. This understanding will provide recognition of new allergic phenotypes/endotypes and directions to focus on specialized treatments, as the era of personalized patient-centered medicine, is hastening apace.
Collapse
Affiliation(s)
- George N Konstantinou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Gerasimos N Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre of Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Christopher Koulias
- Allergy Unit, 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | | | - Michael Makris
- Allergy Unit, 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| |
Collapse
|
34
|
Critical Players and Therapeutic Targets in Chronic Itch. Int J Mol Sci 2022; 23:ijms23179935. [PMID: 36077340 PMCID: PMC9456029 DOI: 10.3390/ijms23179935] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic itch is one of the most prominent clinical characteristics of diverse systematic diseases. It is a devastating sensation in pathological diseases. Despite its importance, there are no FDA-labelled drugs specifically geared toward chronic itch. The associated complex pathogenesis and diverse causes escalate chronic itch to being one of the top challenges in healthcare. Humanized antibodies against IL-13, IL-4, and IL-31 proved effective in treatment of itch-associated atopic dermatitis but remain to be validated in chronic itch. There are still no satisfactory anti-itch therapeutics available toward itch-related neuropeptides including GRP, BNP, SST, CGRP, and SP. The newly identified potential itch targets including OSM, NMB, glutamate, periostin, and Serpin E1 have opened new avenues for therapeutic development. Proof-of-principle studies have been successfully performed on antagonists against these proteins and their receptors in itch treatment in animal models. Their translational interventions in humans need to be evaluated. It is of great importance to summarize and compare the newly emerging knowledge on chronic itch and its pathways to promote the development of novel anti-itch therapeutics. The goal of this review is to analyze the different physiologies and pathophysiologies of itch mediators, whilst assessing their suitability as new targets and discussing future therapeutic development.
Collapse
|
35
|
Wei N, Yu Y, Yang Y, Wang XL, Zhong ZJ, Chen XF, Yu YQ. Inhibitions and Down-Regulation of Motor Protein Eg5 Expression in Primary Sensory Neurons Reveal a Novel Therapeutic Target for Pathological Pain. Neurotherapeutics 2022; 19:1401-1413. [PMID: 35764763 PMCID: PMC9587155 DOI: 10.1007/s13311-022-01263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 10/17/2022] Open
Abstract
The motor protein Eg5, known as kif11 or kinesin-5, interacts with adjacent microtubules in the mitotic spindle and plays essential roles in cell division, yet the function of Eg5 in mature postmitotic neurons remains largely unknown. In this study, we investigated the contribution and molecular mechanism of Eg5 in pathological pain. Pharmacological inhibition of Eg5 and a specific shRNA-expressing viral vector reversed complete Freund's adjuvant (CFA)-induced pain and abrogated vanilloid receptor subtype 1 (VR1) expression in dorsal root ganglion (DRG) neurons. In the dorsal root, Eg5 inhibition promoted VR1 axonal transport and decreased VR1 expression. In the spinal cord, Eg5 inhibition suppressed VR1 expression in axon terminals and impaired synapse formation in superficial laminae I/II. Finally, we showed that Eg5 is necessary for PI3K/Akt signalling-mediated VR1 membrane trafficking and pathological pain. The present study provides compelling evidence of a noncanonical function of Eg5 in primary sensory neurons. These results suggest that Eg5 may be a potential therapeutic target for intractable pain.
Collapse
Affiliation(s)
- Na Wei
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Yang Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Zhen-Juan Zhong
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Xue-Feng Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Yao-Qing Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao, Xi'an, 710038, China.
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China.
| |
Collapse
|
36
|
Oehler B, Périer C, Martin V, Fisher A, Lezmi S, Kalinichev M, McMahon SB. Evaluation of Recombinant Botulinum Neurotoxin Type A1 Efficacy in Peripheral Inflammatory Pain in Mice. Front Mol Neurosci 2022; 15:909835. [PMID: 35694440 PMCID: PMC9179158 DOI: 10.3389/fnmol.2022.909835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Well-established efficacy of botulinum neurotoxin type A (BoNT/A) in aesthetic dermatology and neuromuscular hyperactivity disorders relies on canonical interruption of acetylcholine neurotransmission at the neuromuscular junction at the site of the injection. The mechanisms and the site of activity of BoNT/A in pain, on the other hand, remain elusive. Here, we explored analgesic activity of recombinant BoNT/A1 (rBoNT/A1; IPN10260) in a mouse model of inflammatory pain to investigate the potential role of peripheral sensory afferents in this activity. After confirming analgesic efficacy of rBoNT/A1 on CFA-induced mechanical hypersensitivity in C57Bl6J mice, we used GCaMP6s to perform in vivo calcium imaging in the ipsilateral dorsal root ganglion (DRG) neurons in rBoNT/A1 vs. vehicle-treated mice at baseline and following administration of a range of mechanical and thermal stimuli. Additionally, immunohisochemical studies were performed to detect cleaved SNAP25 in the skin, DRGs and the spinal cord. Injection of CFA resulted in reduced mechanical sensitivity threshold and increased calcium fluctuations in the DRG neurons. While rBoNT/A1 reduced mechanical hypersensitivity, calcium fluctuations in the DRG of rBoNT/A1- and vehicle-treated animals were similar. Cleaved SNAP25 was largely absent in the skin and the DRG but present in the lumbar spinal cord of rBoNT/A1-treated animals. Taken together, rBoNT/A1 ameliorates mechanical hypersensitivity related to inflammation, while the signal transmission from the peripheral sensory afferents to the DRG remained unchanged. This strengthens the possibility that spinal, rather than peripheral, mechanisms play a role in the mediation of analgesic efficacy of BoNT/A in inflammatory pain.
Collapse
Affiliation(s)
- Beatrice Oehler
- Wolfson Center of Age-Related Diseases, IoPPN, Health and Life Science, King’s College London, London, United Kingdom
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Beatrice Oehler
| | | | | | - Amy Fisher
- Transpharmation Ltd., London, United Kingdom
| | | | | | - Stephen B. McMahon
- Wolfson Center of Age-Related Diseases, IoPPN, Health and Life Science, King’s College London, London, United Kingdom
| |
Collapse
|
37
|
Triple gene expressions in yeast, Escherichia coli, and mammalian cells by transferring DNA fragments amplified from a mother yeast expression plasmid. J Biosci Bioeng 2022; 133:587-595. [DOI: 10.1016/j.jbiosc.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 11/22/2022]
|
38
|
Steinhoff M, Ahmad F, Pandey A, Datsi A, AlHammadi A, Al-Khawaga S, Al-Malki A, Meng J, Alam M, Buddenkotte J. Neuro-immune communication regulating pruritus in atopic dermatitis. J Allergy Clin Immunol 2022; 149:1875-1898. [PMID: 35337846 DOI: 10.1016/j.jaci.2022.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/13/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Atopic dermatitis (AD) is a common, chronic-relapsing inflammatory skin disease with significant disease burden. Genetic and environmental trigger factors contribute to AD, activating two of our largest organs, the nervous and immune system. Dysregulation of neuro-immune circuits plays a key role in the pathophysiology of AD causing inflammation, pruritus, pain, and barrier dysfunction. Sensory nerves can be activated by environmental or endogenous trigger factors transmitting itch stimuli to the brain. Upon stimulation, sensory nerve endings also release neuromediators into the skin contributing again to inflammation, barrier dysfunction and itch. Additionally, dysfunctional peripheral and central neuronal structures contribute to neuroinflammation, sensitization, nerve elongation, neuropathic itch, thus chronification and therapy-resistance. Consequently, neuro-immune circuits in skin and central nervous system may be targets to treat pruritus in AD. Cytokines, chemokines, proteases, lipids, opioids, ions excite/sensitize sensory nerve endings not only induce itch but further aggravate/perpetuate inflammation, skin barrier disruption, and pruritus. Thus, targeted therapies for neuro-immune circuits as well as pathway inhibitors (e.g., kinase inhibitors) may be beneficial to control pruritus in AD either in systemic and/or topical form. Understanding neuro-immune circuits and neuronal signaling will optimize our approach to control all pathological mechanisms in AD, inflammation, barrier dysfunction and pruritus.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; Qatar University, College of Medicine, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, USA.
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Atul Pandey
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Jianghui Meng
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
39
|
The Isolated Mouse Jejunal Afferent Nerve Assay as a Tool to Assess the Effect of Botulinum Neurotoxins in Visceral Nociception. Toxins (Basel) 2022; 14:toxins14030205. [PMID: 35324702 PMCID: PMC8953691 DOI: 10.3390/toxins14030205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
For the past two decades, botulinum neurotoxin A (BoNT/A) has been described as a strong candidate in the treatment of pain. With the production of modified toxins and the potential new applications at the visceral level, there is a real need for tools allowing the assessment of these compounds. In this study, we evaluated the jejunal mesenteric afferent nerve assay to investigate BoNT/A effects on visceral nociception. This ex vivo model allowed the continuous recording of neuronal activity in response to various stimuli. BoNT/A was applied intraluminally during three successive distensions, and the jejunum was distended every 15 min for 3 h. Finally, samples were exposed to external capsaicin. BoNT/A intoxication was validated at the molecular level with the presence of cleaved synaptosomal-associated protein of 25 (SNAP25) in nerve terminals in the mucosa and musculosa layers 3 h after treatment. BoNT/A had a progressive inhibitory effect on multiunit discharge frequency induced by jejunal distension, with a significant decrease from 1 h after application without change in jejunal compliance. The capsaicin-induced discharge was also affected by the toxin. This assay allowed the description of an inhibitory effect of BoNT/A on afferent nerve activity in response to distension and capsaicin, suggesting BoNT/A could alleviate visceral nociception.
Collapse
|
40
|
Kim Y, Jung YH, Park SB, Kim H, Kwon JY, Kim HK, Lee HJ, Jeon S, Kim E. TMI-1, TNF-α-Converting Enzyme Inhibitor, Protects Against Paclitaxel-Induced Neurotoxicity in the DRG Neuronal Cells In Vitro. Front Pharmacol 2022; 13:842779. [PMID: 35250589 PMCID: PMC8889072 DOI: 10.3389/fphar.2022.842779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022] Open
Abstract
Background: Chemotherapy-induced peripheral neuropathy (CIPN) negatively impacts cancer survivors’ quality of life and is challenging to treat with existing drugs for neuropathic pain. TNF-α is known to potentiate TRPV1 activity, which contributes to CIPN. Here, we assessed the role of TMI-1, a TNF-α-converting enzyme inhibitor, in paclitaxel (PAC)-induced neurotoxicity in dorsal root ganglion (DRG) cells. Materials and Methods: Immortalized DRG neuronal 50B11 cells were cultured and treated with PAC or PAC with TMI-1 following neuronal differentiation. Cell viability, analysis of neurite growth, immunofluorescence, calcium flow cytometry, western blotting, quantitative RT-PCR, and cytokine quantitation by ELISA were performed to determine the role of TMI-1 in neurotoxicity in neuronal cells. Results: PAC administration decreased the length of neurites and upregulated the expression of TRPV1 in 50B11 cells. TMI-1 administration showed a protective effect by suppressing inflammatory signaling, and secretion of TNF-α. Conclusion: TMI-1 partially protects against paclitaxel-induced neurotoxicity by reversing the upregulation of TRPV1 and decreasing levels of inflammatory cytokines, including TNF-α, IL-1β, and IL-6 in neuronal cells.
Collapse
Affiliation(s)
- Yesul Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, South Korea
| | - Young-Hoon Jung
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, South Korea
| | - Seung-Bin Park
- Department of Anesthesia and Pain Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Heekee Kim
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Jae-Young Kwon
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, South Korea
| | - Hae-Kyu Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, South Korea
| | - Hyeon-Jeong Lee
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, South Korea
| | - Soeun Jeon
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, South Korea
| | - Eunsoo Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, South Korea.,Department of Anesthesia and Pain Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| |
Collapse
|
41
|
Xie AX, Iguchi N, Clarkson TC, Malykhina AP. Pharmacogenetic inhibition of lumbosacral sensory neurons alleviates visceral hypersensitivity in a mouse model of chronic pelvic pain. PLoS One 2022; 17:e0262769. [PMID: 35077502 PMCID: PMC8789164 DOI: 10.1371/journal.pone.0262769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The study investigated the cellular and molecular mechanisms in the peripheral nervous system (PNS) underlying the symptoms of urologic chronic pelvic pain syndrome (UCPPS) in mice. This work also aimed to test the feasibility of reversing peripheral sensitization in vivo in alleviating UCPPS symptoms. Intravesical instillation of vascular endothelial growth factor A (VEGFA) was used to induce UCPPS-like symptoms in mice. Spontaneous voiding spot assays and manual Von Frey tests were used to evaluate the severity of lower urinary tract symptoms (LUTS) and visceral hypersensitivity in VEGFA-instilled mice. Bladder smooth muscle strip contractility recordings (BSMSC) were used to identify the potential changes in myogenic and neurogenic detrusor muscle contractility at the tissue-level. Quantitative real-time PCR (qPCR) and fluorescent immunohistochemistry were performed to compare the expression levels of VEGF receptors and nociceptors in lumbosacral dorsal root ganglia (DRG) between VEGFA-instilled mice and saline-instilled controls. To manipulate primary afferent activity, Gi-coupled Designer Receptors Exclusively Activated by Designer Drugs (Gi-DREADD) were expressed in lumbosacral DRG neurons of TRPV1-Cre-ZGreen mice via targeted adeno-associated viral vector (AAVs) injections. A small molecule agonist of Gi-DREADD, clozapine-N-oxide (CNO), was injected into the peritoneum (i. p.) in awake animals to silence TRPV1 expressing sensory neurons in vivo during physiological and behavioral recordings of bladder function. Intravesical instillation of VEGFA in the urinary bladders increased visceral mechanical sensitivity and enhanced RTX-sensitive detrusor contractility. Sex differences were identified in the baseline detrusor contractility responses and VEGF-induced visceral hypersensitivity. VEGFA instillations in the urinary bladder led to significant increases in the mRNA and protein expression of transient receptor potential cation channel subfamily A member 1 (TRPA1) in lumbosacral DRG, whereas the expression levels of transient receptor potential cation channel subfamily V member 1 (TRPV1) and VEGF receptors (VEGFR1 and VEGFR2) remained unchanged when compared to saline-instilled animals. Importantly, the VEGFA-induced visceral hypersensitivity was reversed by Gi-DREADD-mediated neuronal silencing in lumbosacral sensory neurons. Activation of bladder VEGF signaling causes sensory neural plasticity and visceral hypersensitivity in mice, confirming its role of an UCPPS biomarker as identified by the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) research studies. Pharmacogenetic inhibition of lumbosacral sensory neurons in vivo completely reversed VEGFA-induced pelvic hypersensitivity in mice, suggesting the strong therapeutic potential for decreasing primary afferent activity in the treatment of pain severity in UCPPS patients.
Collapse
Affiliation(s)
- Alison Xiaoqiao Xie
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Nao Iguchi
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Taylor C. Clarkson
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Anna P. Malykhina
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| |
Collapse
|
42
|
Belinskaia M, Zurawski T, Kaza SK, Antoniazzi C, Dolly JO, Lawrence GW. NGF Enhances CGRP Release Evoked by Capsaicin from Rat Trigeminal Neurons: Differential Inhibition by SNAP-25-Cleaving Proteases. Int J Mol Sci 2022; 23:ijms23020892. [PMID: 35055082 PMCID: PMC8778182 DOI: 10.3390/ijms23020892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
Nerve growth factor (NGF) is known to intensify pain in various ways, so perturbing pertinent effects without negating its essential influences on neuronal functions could help the search for much-needed analgesics. Towards this goal, cultured neurons from neonatal rat trigeminal ganglia—a locus for craniofacial sensory nerves—were used to examine how NGF affects the Ca2+-dependent release of a pain mediator, calcitonin gene-related peptide (CGRP), that is triggered by activating a key signal transducer, transient receptor potential vanilloid 1 (TRPV1) with capsaicin (CAP). Measurements utilised neurons fed with or deprived of NGF for 2 days. Acute re-introduction of NGF induced Ca2+-dependent CGRP exocytosis that was inhibited by botulinum neurotoxin type A (BoNT/A) or a chimera of/E and/A (/EA), which truncated SNAP-25 (synaptosomal-associated protein with Mr = 25 k) at distinct sites. NGF additionally caused a Ca2+-independent enhancement of the neuropeptide release evoked by low concentrations (<100 nM) of CAP, but only marginally increased the peak response to ≥100 nM. Notably, BoNT/A inhibited CGRP exocytosis evoked by low but not high CAP concentrations, whereas/EA effectively reduced responses up to 1 µM CAP and inhibited to a greater extent its enhancement by NGF. In addition to establishing that sensitisation of sensory neurons to CAP by NGF is dependent on SNARE-mediated membrane fusion, insights were gleaned into the differential ability of two regions in the C-terminus of SNAP-25 (181–197 and 198–206) to support CAP-evoked Ca2+-dependent exocytosis at different intensities of stimulation.
Collapse
|
43
|
Ibrahim H, Maignel J, Hornby F, Daly D, Beard M. BoNT/A in the Urinary Bladder-More to the Story than Silencing of Cholinergic Nerves. Toxins (Basel) 2022; 14:53. [PMID: 35051030 PMCID: PMC8780360 DOI: 10.3390/toxins14010053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
Botulinum neurotoxin (BoNT/A) is an FDA and NICE approved second-line treatment for overactive bladder (OAB) in patients either not responsive or intolerant to anti-cholinergic drugs. BoNT/A acts to weaken muscle contraction by blocking release of the neurotransmitter acetyl choline (ACh) at neuromuscular junctions. However, this biological activity does not easily explain all the observed effects in clinical and non-clinical studies. There are also conflicting reports of expression of the BoNT/A protein receptor, SV2, and intracellular target protein, SNAP-25, in the urothelium and bladder. This review presents the current evidence of BoNT/A's effect on bladder sensation, potential mechanisms by which it might exert these effects and discusses recent advances in understanding the action of BoNT in bladder tissue.
Collapse
Affiliation(s)
- Hodan Ibrahim
- Department of Pharmacy and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, UK; (H.I.); (D.D.)
| | - Jacquie Maignel
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France;
| | - Fraser Hornby
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| | - Donna Daly
- Department of Pharmacy and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, UK; (H.I.); (D.D.)
| | - Matthew Beard
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| |
Collapse
|
44
|
Tmem160 contributes to the establishment of discrete nerve injury-induced pain behaviors in male mice. Cell Rep 2021; 37:110152. [PMID: 34936870 DOI: 10.1016/j.celrep.2021.110152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/01/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic pain is a prevalent medical problem, and its molecular basis remains poorly understood. Here, we demonstrate the significance of the transmembrane protein (Tmem) 160 for nerve injury-induced neuropathic pain. An extensive behavioral assessment suggests a pain modality- and entity-specific phenotype in male Tmem160 global knockout (KO) mice: delayed establishment of tactile hypersensitivity and alterations in self-grooming after nerve injury. In contrast, Tmem160 seems to be dispensable for other nerve injury-induced pain modalities, such as non-evoked and movement-evoked pain, and for other pain entities. Mechanistically, we show that global KO males exhibit dampened neuroimmune signaling and diminished TRPA1-mediated activity in cultured dorsal root ganglia. Neither these changes nor altered pain-related behaviors are observed in global KO female and male peripheral sensory neuron-specific KO mice. Our findings reveal Tmem160 as a sexually dimorphic factor contributing to the establishment, but not maintenance, of discrete nerve injury-induced pain behaviors in male mice.
Collapse
|
45
|
Duitama M, Moreno Y, Santander SP, Casas Z, Sutachan JJ, Torres YP, Albarracín SL. TRP Channels as Molecular Targets to Relieve Cancer Pain. Biomolecules 2021; 12:1. [PMID: 35053150 PMCID: PMC8774023 DOI: 10.3390/biom12010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential (TRP) channels are critical receptors in the transduction of nociceptive stimuli. The microenvironment of diverse types of cancer releases substances, including growth factors, neurotransmitters, and inflammatory mediators, which modulate the activity of TRPs through the regulation of intracellular signaling pathways. The modulation of TRP channels is associated with the peripheral sensitization observed in patients with cancer, which results in mild noxious sensory stimuli being perceived as hyperalgesia and allodynia. Secondary metabolites derived from plant extracts can induce the activation, blocking, and desensitization of TRP channels. Thus, these compounds could act as potential therapeutic agents, as their antinociceptive properties could be beneficial in relieving cancer-derived pain. In this review, we will summarize the role of TRPV1 and TRPA1 in pain associated with cancer and discuss molecules that have been reported to modulate these channels, focusing particularly on the mechanisms of channel activation associated with molecules released in the tumor microenvironment.
Collapse
Affiliation(s)
- Milena Duitama
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Yurany Moreno
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA;
| | - Sandra Paola Santander
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá 111111, Colombia;
| | - Zulma Casas
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Jhon Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Yolima P. Torres
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| |
Collapse
|
46
|
Erin N, Akman M. Effects of in-vitro modulation of TRPV1 activity on immune response of mice bearing metastatic breast carcinoma: Enhanced inflammatory response may hinder therapeutic potentials of TRPV1 agonists. Life Sci 2021; 287:120115. [PMID: 34740578 DOI: 10.1016/j.lfs.2021.120115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
AIMS Activation of transient receptor potential vanilloid 1 (TRPV1) ion channels inhibits inflammation, enhance cytotoxic immune response, and may have therapeutic potential in treatment of cancer characterized by increased systemic inflammation. We here determined how activation of TRPV1 alters immune response of tumor-bearing mice. MAIN METHODS Three different metastatic subset of 4 T1 breast carcinoma cells were used to induce tumors in Balb-c mice. Mix leukocyte cultures (MLCs) using spleens and draining lymph nodes were prepared and stimulated with various challenges. Effects TRPV1 agonists including capsaicin, antagonist (AMG9810) and Gambogic Amide (GA), a TrkA agonist that sensitizes TRPV1, on secreted levels of cytokines were determined. KEY FINDINGS MLCs of tumor-bearing mice secreted markedly higher levels of IL-6 and lower levels of IFN-γ compared to control mice. We observed differential effects of TRPV1 agonists in control and mice bearing different subset of metastatic cells. TRPV1 increased IFN-γ and IL-17 secretion in control mice while they markedly increased IL-6 secretion and suppressed IFN--γ secretion in tumor-bearing mice. Unexpectedly, AMG9810 acted as an inverse agonist and did not antagonize the effects of TRPV1 agonists. SIGNIFICANCE Our results demonstrate constitutive activity of TRPV1 in immune cells, suggesting cross activation. To prevent excessive chronic activation of TRPV1 in immune cells in the presence of metastatic breast carcinoma, lower doses of TRPV1 agonist should be considered. Unexpected findings further document that a drug can have multiple intrinsic activities depending on surrounding factors can act on the same receptor as an agonist, antagonist or inverse agonist.
Collapse
Affiliation(s)
- Nuray Erin
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey; Immunopharmacology and Immunooncology Unit, Antalya, Turkey.
| | - Muhlis Akman
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey; Immunopharmacology and Immunooncology Unit, Antalya, Turkey
| |
Collapse
|
47
|
Rouadi PW, Idriss SA, Bousquet J, Laidlaw TM, Azar CR, Sulaiman AL-Ahmad M, Yáñez A, AL-Nesf MAY, Nsouli TM, Bahna SL, Abou-Jaoude E, Zaitoun FH, Hadi UM, Hellings PW, Scadding GK, Smith PK, Morais-Almeida M, Gómez RM, González Díaz SN, Klimek L, Juvelekian GS, Riachy MA, Canonica GW, Peden D, Wong GW, Sublett J, Bernstein JA, Wang L, Tanno LK, Chikhladze M, Levin M, Chang YS, Martin BL, Caraballo L, Custovic A, Ortega-Martell JA, Jensen-Jarolim E, Ebisawa M, Fiocchi A, Ansotegui IJ. WAO-ARIA consensus on chronic cough - Part 1: Role of TRP channels in neurogenic inflammation of cough neuronal pathways. World Allergy Organ J 2021; 14:100617. [PMID: 34934475 PMCID: PMC8654622 DOI: 10.1016/j.waojou.2021.100617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cough features a complex peripheral and central neuronal network. The function of the chemosensitive and stretch (afferent) cough receptors is well described but partly understood. It is speculated that chronic cough reflects a neurogenic inflammation of the cough reflex, which becomes hypersensitive. This is mediated by neuromediators, cytokines, inflammatory cells, and a differential expression of neuronal (chemo/stretch) receptors, such as transient receptor potential (TRP) and purinergic P2X ion channels; yet the overall interaction of these mediators in neurogenic inflammation of cough pathways remains unclear. OBJECTIVES The World Allergy Organization/Allergic Rhinitis and its Impact on Asthma (WAO/ARIA) Joint Committee on Chronic Cough reviewed the current literature on neuroanatomy and pathophysiology of chronic cough. The role of TRP ion channels in pathogenic mechanisms of the hypersensitive cough reflex was also examined. OUTCOMES Chemoreceptors are better studied in cough neuronal pathways compared to stretch receptors, likely due to their anatomical overabundance in the respiratory tract, but also their distinctive functional properties. Central pathways are important in suppressive mechanisms and behavioral/affective aspects of chronic cough. Current evidence strongly suggests neurogenic inflammation induces a hypersensitive cough reflex marked by increased expression of neuromediators, mast cells, and eosinophils, among others. TRP ion channels, mainly TRP V1/A1, are important in the pathogenesis of chronic cough due to their role in mediating chemosensitivity to various endogenous and exogenous triggers, as well as a crosstalk between neurogenic and inflammatory pathways in cough-associated airways diseases.
Collapse
Affiliation(s)
- Philip W. Rouadi
- Department of Otolaryngology - Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Samar A. Idriss
- Department of Otolaryngology - Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
- Department of Audiology and Otoneurological Evaluation, Edouard Herriot Hospital, Lyon, France
| | - Jean Bousquet
- Hospital Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Berlin Institute of Health, Berlin, Germany
- Macvia France, Montpellier France
- Université Montpellier, Montpellier, France
| | - Tanya M. Laidlaw
- Department of Medicine, Harvard Medical School, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital Boston, MA, USA
| | - Cecilio R. Azar
- Department of Gastroenterology, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
- Department of Gastroenterology, Middle East Institute of Health (MEIH), Beirut, Lebanon
- Department of Gastroenterology, Clemenceau Medical Center (CMC), Beirut, Lebanon
| | | | - Anahí Yáñez
- INAER - Investigaciones en Alergia y Enfermedades Respiratorias, Buenos Aires, Argentina
| | - Maryam Ali Y. AL-Nesf
- Allergy and Immunology Section, Department of Medicine, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | | | - Sami L. Bahna
- Allergy & Immunology Section, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Fares H. Zaitoun
- Department of Allergy Otolaryngology, LAU-RIZK Medical Center, Beirut, Lebanon
| | - Usamah M. Hadi
- Clinical Professor Department of Otolaryngology Head and Neck Surgery, American University of Beirut, Lebanon
| | - Peter W. Hellings
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Allergy and Clinical Immunology, Leuven, Belgium
- University Hospitals Leuven, Department of Otorhinolaryngology, Leuven, Belgium
- University Hospital Ghent, Department of Otorhinolaryngology, Laboratory of Upper Airways Research, Ghent, Belgium
- Academic Medical Center, University of Amsterdam, Department of Otorhinolaryngology, Amsterdam, the Netherlands
| | | | - Peter K. Smith
- Clinical Medicine Griffith University, Southport Qld, 4215, Australia
| | | | | | - Sandra N. González Díaz
- Universidad Autónoma de Nuevo León, Hospital Universitario and Facultad de Medicina, Monterrey, Nuevo León, Mexico
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Georges S. Juvelekian
- Department of Pulmonary, Critical Care and Sleep Medicine at Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Moussa A. Riachy
- Department of Pulmonary and Critical Care, Hôtel-Dieu de France University Hospital, Beirut, Lebanon
| | - Giorgio Walter Canonica
- Humanitas University, Personalized Medicine Asthma & Allergy Clinic-Humanitas Research Hospital-IRCCS-Milano Italy
| | - David Peden
- UNC Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics UNS School of Medicine, USA
| | - Gary W.K. Wong
- Department of Pediatrics, Chinese University of Hong Kong, Hong Kong, China
| | - James Sublett
- Department of Pediatrics, Section of Allergy and Immunology, University of Louisville School of Medicine, 9800 Shelbyville Rd, Louisville, KY, USA
| | - Jonathan A. Bernstein
- University of Cincinnati College of Medicine, Department of Internal Medicine, Division of Immunology/Allergy Section, Cincinnati
| | - Lianglu Wang
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Disease, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing 100730, China
| | - Luciana Kase Tanno
- Université Montpellier, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, UMR UA-11, INSERM University of Montpellier, Montpellier, France
- WHO Collaborating Centre on Scientific Classification Support, Montpellier, France
| | - Manana Chikhladze
- Medical Faculty at Akaki Tsereteli State University, National Institute of Allergy, Asthma & Clinical Immunology, KuTaisi, Tskaltubo, Georgia
| | - Michael Levin
- Division of Paediatric Allergology, Department of Paediatrics, University of Cape Town, South Africa
| | - Yoon-Seok Chang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Bryan L. Martin
- Department of Otolaryngology, Division of Allergy & Immunology, The Ohio State University, Columbus, OH, USA
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena. Cartagena de Indias, Colombia
| | - Adnan Custovic
- National Heart and Lund Institute, Imperial College London, UK
| | | | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Austria
- The Interuniversity Messerli Research Institute, Medical University Vienna and Univ, of Veterinary Medicine Vienna, Austria
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology,National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Alessandro Fiocchi
- Translational Pediatric Research Area, Allergic Diseases Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Holy See
| | - Ignacio J. Ansotegui
- Department of Allergy and Immunology, Hospital Quironsalud Bizkaia, Bilbao, Spain
| |
Collapse
|
48
|
Go EJ, Ji J, Kim YH, Berta T, Park CK. Transient Receptor Potential Channels and Botulinum Neurotoxins in Chronic Pain. Front Mol Neurosci 2021; 14:772719. [PMID: 34776867 PMCID: PMC8586451 DOI: 10.3389/fnmol.2021.772719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022] Open
Abstract
Pain afflicts more than 1.5 billion people worldwide, with hundreds of millions suffering from unrelieved chronic pain. Despite widespread recognition of the importance of developing better interventions for the relief of chronic pain, little is known about the mechanisms underlying this condition. However, transient receptor potential (TRP) ion channels in nociceptors have been shown to be essential players in the generation and progression of pain and have attracted the attention of several pharmaceutical companies as therapeutic targets. Unfortunately, TRP channel inhibitors have failed in clinical trials, at least in part due to their thermoregulatory function. Botulinum neurotoxins (BoNTs) have emerged as novel and safe pain therapeutics because of their regulation of exocytosis and pro-nociceptive neurotransmitters. However, it is becoming evident that BoNTs also regulate the expression and function of TRP channels, which may explain their analgesic effects. Here, we summarize the roles of TRP channels in pain, with a particular focus on TRPV1 and TRPA1, their regulation by BoNTs, and briefly discuss the use of BoNTs for the treatment of chronic pain.
Collapse
Affiliation(s)
- Eun Jin Go
- Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| | - Jeongkyu Ji
- Gachon University College of Medicine, Incheon, South Korea
| | - Yong Ho Kim
- Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| | - Temugin Berta
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
49
|
Selective Expression of a SNARE-Cleaving Protease in Peripheral Sensory Neurons Attenuates Pain-Related Gene Transcription and Neuropeptide Release. Int J Mol Sci 2021; 22:ijms22168826. [PMID: 34445536 PMCID: PMC8396265 DOI: 10.3390/ijms22168826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic pain is a leading health and socioeconomic problem and an unmet need exists for long-lasting analgesics. SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are required for neuropeptide release and noxious signal transducer surface trafficking, thus, selective expression of the SNARE-cleaving light-chain protease of botulinum neurotoxin A (LCA) in peripheral sensory neurons could alleviate chronic pain. However, a safety concern to this approach is the lack of a sensory neuronal promoter to prevent the expression of LCA in the central nervous system. Towards this, we exploit the unique characteristics of Pirt (phosphoinositide-interacting regulator of TRP), which is expressed in peripheral nociceptive neurons. For the first time, we identified a Pirt promoter element and cloned it into a lentiviral vector driving transgene expression selectively in peripheral sensory neurons. Pirt promoter driven-LCA expression yielded rapid and concentration-dependent cleavage of SNAP-25 in cultured sensory neurons. Moreover, the transcripts of pain-related genes (TAC1, tachykinin precursor 1; CALCB, calcitonin gene-related peptide 2; HTR3A, 5-hydroxytryptamine receptor 3A; NPY2R, neuropeptide Y receptor Y2; GPR52, G protein-coupled receptor 52; SCN9A, sodium voltage-gated channel alpha subunit 9; TRPV1 and TRPA1, transient receptor potential cation channel subfamily V member 1 and subfamily A member 1) in pro-inflammatory cytokines stimulated sensory neurons were downregulated by viral mediated expression of LCA. Furthermore, viral expression of LCA yielded long-lasting inhibition of pain mediator release. Thus, we show that the engineered Pirt-LCA virus may provide a novel means for long lasting pain relief.
Collapse
|
50
|
Meng J, Li Y, Fischer MJM, Steinhoff M, Chen W, Wang J. Th2 Modulation of Transient Receptor Potential Channels: An Unmet Therapeutic Intervention for Atopic Dermatitis. Front Immunol 2021; 12:696784. [PMID: 34276687 PMCID: PMC8278285 DOI: 10.3389/fimmu.2021.696784] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a multifaceted, chronic relapsing inflammatory skin disease that affects people of all ages. It is characterized by chronic eczema, constant pruritus, and severe discomfort. AD often progresses from mild annoyance to intractable pruritic inflammatory lesions associated with exacerbated skin sensitivity. The T helper-2 (Th2) response is mainly linked to the acute and subacute phase, whereas Th1 response has been associated in addition with the chronic phase. IL-17, IL-22, TSLP, and IL-31 also play a role in AD. Transient receptor potential (TRP) cation channels play a significant role in neuroinflammation, itch and pain, indicating neuroimmune circuits in AD. However, the Th2-driven cutaneous sensitization of TRP channels is underappreciated. Emerging findings suggest that critical Th2-related cytokines cause potentiation of TRP channels, thereby exaggerating inflammation and itch sensation. Evidence involves the following: (i) IL-13 enhances TRPV1 and TRPA1 transcription levels; (ii) IL-31 sensitizes TRPV1 via transcriptional and channel modulation, and indirectly modulates TRPV3 in keratinocytes; (iii) The Th2-cytokine TSLP increases TRPA1 synthesis in sensory neurons. These changes could be further enhanced by other Th2 cytokines, including IL-4, IL-25, and IL-33, which are inducers for IL-13, IL-31, or TSLP in skin. Taken together, this review highlights that Th2 cytokines potentiate TRP channels through diverse mechanisms under different inflammatory and pruritic conditions, and link this effect to distinct signaling cascades in AD. This review strengthens the notion that interrupting Th2-driven modulation of TRP channels will inhibit transition from acute to chronic AD, thereby aiding the development of effective therapeutics and treatment optimization.
Collapse
Affiliation(s)
- Jianghui Meng
- School of Life Sciences, Henan University, Kaifeng, China.,National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Yanqing Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar.,Qatar University, College of Medicine, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
| | - Weiwei Chen
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jiafu Wang
- School of Life Sciences, Henan University, Kaifeng, China.,School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|