1
|
Ehrhardt SE, Wards Y, Rideaux R, Marjańska M, Jin J, Cloos MA, Deelchand DK, Zöllner HJ, Saleh MG, Hui SCN, Ali T, Shaw TB, Barth M, Mattingley JB, Filmer HL, Dux PE. Neurochemical Predictors of Generalized Learning Induced by Brain Stimulation and Training. J Neurosci 2024; 44:e1676232024. [PMID: 38531634 PMCID: PMC11112648 DOI: 10.1523/jneurosci.1676-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Methods of cognitive enhancement for humans are most impactful when they generalize across tasks. However, the extent to which such "transfer" is possible via interventions is widely debated. In addition, the contribution of excitatory and inhibitory processes to such transfer is unknown. Here, in a large-scale neuroimaging individual differences study with humans (both sexes), we paired multitasking training and noninvasive brain stimulation (transcranial direct current stimulation, tDCS) over multiple days and assessed performance across a range of paradigms. In addition, we varied tDCS dosage (1.0 and 2.0 mA), electrode montage (left or right prefrontal regions), and training task (multitasking vs a control task) and assessed GABA and glutamate concentrations via ultrahigh field 7T magnetic resonance spectroscopy. Generalized benefits were observed in spatial attention, indexed by visual search performance, when multitasking training was combined with 1.0 mA stimulation targeting either the left or right prefrontal cortex (PFC). This transfer effect persisted for ∼30 d post intervention. Critically, the transferred benefits associated with right prefrontal tDCS were predicted by pretraining concentrations of glutamate in the PFC. Thus, the effects of this combined stimulation and training protocol appear to be linked predominantly to excitatory brain processes.
Collapse
Affiliation(s)
- Shane E Ehrhardt
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yohan Wards
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Reuben Rideaux
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Małgorzata Marjańska
- Department of Radiology, Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jin Jin
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- Siemens Healthcare Pty Ltd., Brisbane, Queensland 4006, Australia
| | - Martijn A Cloos
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Dinesh K Deelchand
- Department of Radiology, Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Helge J Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Muhammad G Saleh
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Steve C N Hui
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Tonima Ali
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2050, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Thomas B Shaw
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
2
|
Wards Y, Ehrhardt SE, Garner KG, Mattingley JB, Filmer HL, Dux PE. Stimulating prefrontal cortex facilitates training transfer by increasing representational overlap. Cereb Cortex 2024; 34:bhae209. [PMID: 38771242 PMCID: PMC11654026 DOI: 10.1093/cercor/bhae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
A recent hypothesis characterizes difficulties in multitasking as being the price humans pay for our ability to generalize learning across tasks. The mitigation of these costs through training has been associated with reduced overlap of constituent task representations within frontal, parietal, and subcortical regions. Transcranial direct current stimulation, which can modulate functional brain activity, has shown promise in generalizing performance gains when combined with multitasking training. However, the relationship between combined transcranial direct current stimulation and training protocols with task-associated representational overlap in the brain remains unexplored. Here, we paired prefrontal cortex transcranial direct current stimulation with multitasking training in 178 individuals and collected functional magnetic resonance imaging data pre- and post-training. We found that 1 mA transcranial direct current stimulation applied to the prefrontal cortex paired with multitasking training enhanced training transfer to spatial attention, as assessed via a visual search task. Using machine learning to assess the overlap of neural activity related to the training task in task-relevant brain regions, we found that visual search gains were predicted by changes in classification accuracy in frontal, parietal, and cerebellar regions for participants that received left prefrontal cortex stimulation. These findings demonstrate that prefrontal cortex transcranial direct current stimulation may interact with training-related changes to task representations, facilitating the generalization of learning.
Collapse
Affiliation(s)
- Yohan Wards
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
| | - Shane E Ehrhardt
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
| | - Kelly G Garner
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
- Queensland Brain Institute, The University of Queensland,
Building 79, Upland Road, St Lucia, Queensland 4072, Australia
- School of Psychology, University of New South Wales,
Mathews Building, Gate 11, Botany Street, Randwick, New South Wales
2052, Australia
- School of Psychology, University of Birmingham,
Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, United Kingdom
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
- Queensland Brain Institute, The University of Queensland,
Building 79, Upland Road, St Lucia, Queensland 4072, Australia
- School of Psychology, University of Birmingham,
Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, United Kingdom
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
| |
Collapse
|
3
|
Corrêa FI, Kunitake AI, Segheto W, Duarte de Oliveira M, Fregni F, Ferrari Corrêa JC. The effect of transcranial direct current stimulation associated with video game training on the postural balance of older women in the community: A blind, randomized, clinical trial. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2024; 29:e2046. [PMID: 37608641 DOI: 10.1002/pri.2046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/03/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Falls are frequent in older adults and can cause trauma, injury, and death. Fall prevention with virtual reality presents good results in improving postural control. Transcranial Direct Current Stimulation (tDCS) has been used with the same aim; however, the combination of the two techniques has still been little studied. PURPOSE To assess whether tDCS can enhance the effect of video game training (VGT) on improving the postural balance of healthy older women. METHOD A blinded, randomized, controlled clinical trial was conducted with 57 older women who were randomized to three balance training groups: Control Group (VGT), Anodal Group (VGT combined with anodic tDCS-atDCS), and Sham Group (VGT combined with sham tDCS-stDCS). Balance training was performed twice a week for four weeks, totalizing eight 20-min sessions using VGT associated with tDCS. Postural balance was assessed pre-and post-training and 30 days after the end of the eight sessions using the Mini-Balance Evaluation Systems Test. RESULTS Compared to pre-intervention the Mini BEST test increased similarly in the three groups in post-intervention (control: pre 23.7 ± 2.8 to post 27.0 ± 2.2; anodal: pre 24.4 ± 1 to post 27.7 ± 0.8 and sham: pre 24.2 ± 1.9 to post 26.5 ± 1.6; p < 0.001) and follow-up (control: pre 23.7 ± 2.8 to follow-up 26.8 ± 2.3; anodal: pre 24.4 ± 1 to follow-up 27.3 ± 1.4 and sham: pre 24.2 ± 1.9 to follow-up 26.8 ± 1.5; p < 0.001). CONCLUSION There was an improvement in the postural balance of the three training groups that were independent of tDCS. DISCUSSION Some studies have shown the positive tDCS effects associated with other tasks to improve balance. However, these results convey the effects of only anodic-tDCS compared to sham-tDCS. Possibly, the effect of VGT surpassed the tDCS effects, promoting a ceiling effect from the combination of these two therapies. However, studies with other therapies combined with tDCS for older adults deserve to be investigated, as well as in frail older people.
Collapse
Affiliation(s)
- Fernanda Ishida Corrêa
- Doctoral and Master's Programs in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Andre Issao Kunitake
- Doctoral and Master's Programs in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Wellington Segheto
- Doctoral and Master's Programs in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Max Duarte de Oliveira
- Doctoral and Master's Programs in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
4
|
Wards Y, Ehrhardt SE, Filmer HL, Mattingley JB, Garner KG, Dux PE. Neural substrates of individual differences in learning generalization via combined brain stimulation and multitasking training. Cereb Cortex 2023; 33:11679-11694. [PMID: 37930735 DOI: 10.1093/cercor/bhad406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
A pervasive limitation in cognition is reflected by the performance costs we experience when attempting to undertake two tasks simultaneously. While training can overcome these multitasking costs, the more elusive objective of training interventions is to induce persistent gains that transfer across tasks. Combined brain stimulation and cognitive training protocols have been employed to improve a range of psychological processes and facilitate such transfer, with consistent gains demonstrated in multitasking and decision-making. Neural activity in frontal, parietal, and subcortical regions has been implicated in multitasking training gains, but how the brain supports training transfer is poorly understood. To investigate this, we combined transcranial direct current stimulation of the prefrontal cortex and multitasking training, with functional magnetic resonance imaging in 178 participants. We observed transfer to a visual search task, following 1 mA left or right prefrontal cortex transcranial direct current stimulation and multitasking training. These gains persisted for 1-month post-training. Notably, improvements in visual search performance for the right hemisphere stimulation group were associated with activity changes in the right hemisphere dorsolateral prefrontal cortex, intraparietal sulcus, and cerebellum. Thus, functional dynamics in these task-general regions determine how individuals respond to paired stimulation and training, resulting in enhanced performance on an untrained task.
Collapse
Affiliation(s)
- Yohan Wards
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| | - Shane E Ehrhardt
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Queensland 4072, Australia
- Canadian Institute for Advanced Research, MaRS Centre, West tower, 661 University Ave., Suite 505, Toronto, Ontario M5G 1M1, Canada
| | - Kelly G Garner
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Queensland 4072, Australia
- School of Psychology, University of New South Wales, Mathews Building, Gate 11, Botany Street, Randwick, New South Wales 2052, Australia
- School of Psychology, University of Birmingham, Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, United Kingdom
| | - Paul E Dux
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| |
Collapse
|
5
|
Henschke A. When Enhancements need Therapy: disenhancements, Iatrogenesis, and the responsibility of Military Institutions. New Bioeth 2022:10.1007/s40592-022-00169-1. [PMID: 36550227 PMCID: PMC9778449 DOI: 10.1007/s40592-022-00169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Adam Henschke
- grid.6214.10000 0004 0399 8953University of Twente Enschede, Overijssel, Netherlands
| |
Collapse
|
6
|
Garg S, Williams S, Jung J, Pobric G, Nandi T, Lim B, Vassallo G, Green J, Evans DG, Stagg CJ, Parkes LM, Stivaros S. Non-invasive brain stimulation modulates GABAergic activity in neurofibromatosis 1. Sci Rep 2022; 12:18297. [PMID: 36316421 PMCID: PMC9622815 DOI: 10.1038/s41598-022-21907-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Neurofibromatosis 1 (NF1) is a single-gene disorder associated with cognitive phenotypes common to neurodevelopmental conditions such as autism. GABAergic dysregulation underlies working memory impairments seen in NF1. This mechanistic experimental study investigates whether application of anodal transcranial direct current stimulation (atDCS) can modulate GABA and working memory in NF1. Thirty-one NF1 adolescents 11-18 years, were recruited to this single-blind sham-controlled cross-over randomized trial. AtDCS or sham stimulation was applied to the left Dorsolateral Prefrontal Cortex (DLPFC) and MR Spectroscopy was collected before and after intervention in the left DLPFC and occipital cortex. Task-related functional MRI was collected before, during, and after stimulation. Higher baseline GABA+ in the left DLPFC was associated with faster response times on baseline working memory measures. AtDCS was seen to significantly reduced GABA+ and increase brain activation in the left DLPFC as compared to sham stimulation. Task performance was worse in the aTDCS group during stimulation but no group differences in behavioural outcomes were observed at the end of stimulation. Although our study suggests aTDCS modulates inhibitory activity in the DLPFC, further work is needed to determine whether repeated sessions of atDCS and strategies such as alternating current stimulation offer a better therapeutic approach.
Collapse
Affiliation(s)
- Shruti Garg
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Child and Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.
| | - Steve Williams
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - JeYoung Jung
- School of Psychology, Precision Imaging Beacon, University of Nottingham, Nottingham, UK
| | - Gorana Pobric
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tulika Nandi
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ben Lim
- Child and Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Grace Vassallo
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jonathan Green
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Child and Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Stavros Stivaros
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Academic Unit of Paediatric Radiology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
7
|
Sansevere KS, Wooten T, McWilliams T, Peach S, Hussey EK, Brunyé TT, Ward N. Self-reported Outcome Expectations of Non-invasive Brain Stimulation Are Malleable: a Registered Report that Replicates and Extends Rabipour et al. (2017). JOURNAL OF COGNITIVE ENHANCEMENT 2022. [DOI: 10.1007/s41465-022-00250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Antal A, Luber B, Brem AK, Bikson M, Brunoni AR, Cohen Kadosh R, Dubljević V, Fecteau S, Ferreri F, Flöel A, Hallett M, Hamilton RH, Herrmann CS, Lavidor M, Loo C, Lustenberger C, Machado S, Miniussi C, Moliadze V, Nitsche MA, Rossi S, Rossini PM, Santarnecchi E, Seeck M, Thut G, Turi Z, Ugawa Y, Venkatasubramanian G, Wenderoth N, Wexler A, Ziemann U, Paulus W. Non-invasive brain stimulation and neuroenhancement. Clin Neurophysiol Pract 2022; 7:146-165. [PMID: 35734582 PMCID: PMC9207555 DOI: 10.1016/j.cnp.2022.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Attempts to enhance human memory and learning ability have a long tradition in science. This topic has recently gained substantial attention because of the increasing percentage of older individuals worldwide and the predicted rise of age-associated cognitive decline in brain functions. Transcranial brain stimulation methods, such as transcranial magnetic (TMS) and transcranial electric (tES) stimulation, have been extensively used in an effort to improve cognitive functions in humans. Here we summarize the available data on low-intensity tES for this purpose, in comparison to repetitive TMS and some pharmacological agents, such as caffeine and nicotine. There is no single area in the brain stimulation field in which only positive outcomes have been reported. For self-directed tES devices, how to restrict variability with regard to efficacy is an essential aspect of device design and function. As with any technique, reproducible outcomes depend on the equipment and how well this is matched to the experience and skill of the operator. For self-administered non-invasive brain stimulation, this requires device designs that rigorously incorporate human operator factors. The wide parameter space of non-invasive brain stimulation, including dose (e.g., duration, intensity (current density), number of repetitions), inclusion/exclusion (e.g., subject's age), and homeostatic effects, administration of tasks before and during stimulation, and, most importantly, placebo or nocebo effects, have to be taken into account. The outcomes of stimulation are expected to depend on these parameters and should be strictly controlled. The consensus among experts is that low-intensity tES is safe as long as tested and accepted protocols (including, for example, dose, inclusion/exclusion) are followed and devices are used which follow established engineering risk-management procedures. Devices and protocols that allow stimulation outside these parameters cannot claim to be "safe" where they are applying stimulation beyond that examined in published studies that also investigated potential side effects. Brain stimulation devices marketed for consumer use are distinct from medical devices because they do not make medical claims and are therefore not necessarily subject to the same level of regulation as medical devices (i.e., by government agencies tasked with regulating medical devices). Manufacturers must follow ethical and best practices in marketing tES stimulators, including not misleading users by referencing effects from human trials using devices and protocols not similar to theirs.
Collapse
Key Words
- AD, Alzheimer’s Disease
- BDNF, brain derived neurotrophic factor
- Cognitive enhancement
- DARPA, Defense Advanced Research Projects Agency
- DIY stimulation
- DIY, Do-It-Yourself
- DLPFC, dorsolateral prefrontal cortex
- EEG, electroencephalography
- EMG, electromyography
- FCC, Federal Communications Commission
- FDA, (U.S.) Food and Drug Administration
- Home-stimulation
- IFCN, International Federation of Clinical Neurophysiology
- LTD, long-term depression
- LTP, long-term potentiation
- MCI, mild cognitive impairment
- MDD, Medical Device Directive
- MDR, Medical Device Regulation
- MEP, motor evoked potential
- MRI, magnetic resonance imaging
- NIBS, noninvasive brain stimulation
- Neuroenhancement
- OTC, Over-The-Counter
- PAS, paired associative stimulation
- PET, positron emission tomography
- PPC, posterior parietal cortex
- QPS, quadripulse stimulation
- RMT, resting motor threshold
- SAE, serious adverse event
- SMA, supplementary motor cortex
- TBS, theta-burst stimulation
- TMS, transcranial magnetic stimulation
- Transcranial brain stimulation
- rTMS, repetitive transcranial magnetic stimulation
- tACS
- tACS, transcranial alternating current stimulation
- tDCS
- tDCS, transcranial direct current stimulation
- tES, transcranial electric stimulation
- tRNS, transcranial random noise stimulation
Collapse
Affiliation(s)
- Andrea Antal
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna-Katharine Brem
- University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Marom Bikson
- Biomedical Engineering at the City College of New York (CCNY) of the City University of New York (CUNY), NY, USA
| | - Andre R. Brunoni
- Departamento de Clínica Médica e de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Veljko Dubljević
- Science, Technology and Society Program, College of Humanities and Social Sciences, North Carolina State University, Raleigh, NC, USA
| | - Shirley Fecteau
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, Centre intégré universitaire en santé et services sociaux de la Capitale-Nationale, Quebec City, Quebec, Canada
| | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17475 Greifswald, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Michal Lavidor
- Department of Psychology and the Gonda Brain Research Center, Bar Ilan University, Israel
| | - Collen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales; The George Institute; Sydney, Australia
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sergio Machado
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Physical Activity Neuroscience, Neurodiversity Institute, Queimados-RJ, Brazil
| | - Carlo Miniussi
- Center for Mind/Brain Sciences – CIMeC and Centre for Medical Sciences - CISMed, University of Trento, Rovereto, Italy
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at TU, Dortmund, Germany
- Dept. Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Paolo M. Rossini
- Department of Neuroscience and Neurorehabilitation, Brain Connectivity Lab, IRCCS-San Raffaele-Pisana, Rome, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Margitta Seeck
- Department of Clinical Neurosciences, Hôpitaux Universitaires de Genève, Switzerland
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, EEG & Epolepsy Unit, University of Glasgow, United Kingdom
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | | | - Nicole Wenderoth
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - Anna Wexler
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Walter Paulus
- Department of of Neurology, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
9
|
Au J, Smith-Peirce RN, Carbone E, Moon A, Evans M, Jonides J, Jaeggi SM. Effects of Multisession Prefrontal Transcranial Direct Current Stimulation on Long-term Memory and Working Memory in Older Adults. J Cogn Neurosci 2022; 34:1015-1037. [PMID: 35195728 PMCID: PMC9836784 DOI: 10.1162/jocn_a_01839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive form of electrical brain stimulation popularly used to augment the effects of working memory (WM) training. Although success has been mixed, some studies report enhancements in WM performance persisting days, weeks, or even months that are actually more reminiscent of consolidation effects typically observed in the long-term memory (LTM) domain, rather than WM improvements per se. Although tDCS has been often reported to enhance both WM and LTM, these effects have never been directly compared within the same study. However, given their considerable neural and behavioral overlap, this is a timely comparison to make. This study reports results from a multisession intervention in older adults comparing active and sham tDCS over the left dorsolateral pFC during training on both an n-back WM task and a word learning LTM task. We found strong and robust effects on LTM, but mixed effects on WM that only emerged for those with lower baseline ability. Importantly, mediation analyses showed an indirect effect of tDCS on WM that was mediated by improvements in consolidation. We conclude that tDCS over the left dorsolateral pFC can be used as an effective intervention to foster long-term learning and memory consolidation in aging, which can manifest in performance improvements across multiple memory domains.
Collapse
Affiliation(s)
- Jacky Au
- School of Education, University of California, Irvine, Irvine CA, 92697, USA
| | | | - Elena Carbone
- Department of General Psychology, University of Padova, Padova, 35131, Italy
| | - Austin Moon
- Department of Psychology, University of California, Riverside, Riverside CA, 92521, USA
| | - Michelle Evans
- Department of Psychology, University of Michigan, Ann Arbor MI, 48109, USA
| | - John Jonides
- Department of Psychology, University of Michigan, Ann Arbor MI, 48109, USA
| | - Susanne M. Jaeggi
- School of Education, University of California, Irvine, Irvine CA, 92697, USA
| |
Collapse
|
10
|
Lazzaro G, Fucà E, Caciolo C, Battisti A, Costanzo F, Varuzza C, Vicari S, Menghini D. Understanding the Effects of Transcranial Electrical Stimulation in Numerical Cognition: A Systematic Review for Clinical Translation. J Clin Med 2022; 11:jcm11082082. [PMID: 35456176 PMCID: PMC9032363 DOI: 10.3390/jcm11082082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Atypical development of numerical cognition (dyscalculia) may increase the onset of neuropsychiatric symptoms, especially when untreated, and it may have long-term detrimental social consequences. However, evidence-based treatments are still lacking. Despite plenty of studies investigating the effects of transcranial electrical stimulation (tES) on numerical cognition, a systematized synthesis of results is still lacking. In the present systematic review (PROSPERO ID: CRD42021271139), we found that the majority of reports (20 out of 26) showed the effectiveness of tES in improving both number (80%) and arithmetic (76%) processing. In particular, anodal tDCS (regardless of lateralization) over parietal regions, bilateral tDCS (regardless of polarity/lateralization) over frontal regions, and tRNS (regardless of brain regions) strongly enhance number processing. While bilateral tDCS and tRNS over parietal and frontal regions and left anodal tDCS over frontal regions consistently improve arithmetic skills. In addition, tACS seems to be more effective than tDCS at ameliorating arithmetic learning. Despite the variability of methods and paucity of clinical studies, tES seems to be a promising brain-based treatment to enhance numerical cognition. Recommendations for clinical translation, future directions, and limitations are outlined.
Collapse
Affiliation(s)
- Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Cristina Caciolo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Andrea Battisti
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
- Department of Human Science, LUMSA University, 00193 Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Cristiana Varuzza
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Centro di Riabilitazione Casa San Giuseppe, Opera Don Guanella, 00165 Rome, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
- Correspondence: ; Tel.: +39-066-859-7091
| |
Collapse
|
11
|
Medina R, Bouhaben J, de Ramón I, Cuesta P, Antón-Toro L, Pacios J, Quintero J, Quiroga AR, Maestú F. Alfa band power increases in posterior brain regions in attention deficit hyperactivity disorder after digital cognitive stimulation treatment. Brain Commun 2022; 4:fcac038. [PMID: 35402910 PMCID: PMC8984701 DOI: 10.1093/braincomms/fcac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/11/2021] [Accepted: 02/15/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
The changes triggered by pharmacological treatments in resting-state alpha-band (8–14 Hz) oscillations have been widely studied in attention deficit hyperactivity disorder. However, to date, there has been no evidence regarding the possible changes in cognitive stimulation treatments on these oscillations. This paper sets out to verify whether cognitive stimulation treatments based on progressive increases in cognitive load can be effective in triggering changes in alpha-band power in attention deficit hyperactivity disorder. With this objective, we compared a cognitive stimulation treatment (n = 13) to placebo treatment (n = 13) for 12 weeks (36 sessions of 15 min) in child patients (8–11 years old) with attention deficit hyperactivity disorder. Two magnetoencephalographic recordings were acquired for all the participants. In order to extract the areas with changes in alpha power between both magnetoencephalographic recordings, the differences in the power ratio (pre/post-condition) were calculated using an Analysis of Covariance test adjusted for the age variable. The results show an increase in the post-treatment power ratio in the experimental group versus the placebo group (P < 0.01) in posterior regions and the default mode network. In addition, these alpha changes were related to measures of attention, working memory and cognitive flexibility. The results seem to indicate that cognitive stimulation treatment based on progressive increases in cognitive load triggers alpha-band power changes in child attention deficit hyperactivity disorder patients in the direction of their peers without this disorder.
Collapse
Affiliation(s)
| | | | - Ignacio de Ramón
- Sincrolab, Ltd., Madrid 28033, Spain
- Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid, Madrid 28660, Spain
| | - Pablo Cuesta
- Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid, Madrid 28660, Spain
| | - Luis Antón-Toro
- Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid, Madrid 28660, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid 28223, Spain
| | - Javier Pacios
- Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid, Madrid 28660, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid 28223, Spain
| | - Javier Quintero
- Department of Psychiatry, University Hospital Infanta Leonor, Madrid 28031, Spain
| | | | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid, Madrid 28660, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid 28223, Spain
| |
Collapse
|
12
|
Fabio RA, Ingrassia M, Massa M. Transient and Long-Term Improvements in Cognitive Processes following Video Games: An Italian Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:78. [PMID: 35010337 PMCID: PMC8751166 DOI: 10.3390/ijerph19010078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
Abstract
The aim of the present study is to compare the short- and long-term effects of video-gaming by using the same measurements. More precisely, habitual and occasional video-gamers were compared so as to analyze the long-term effects. An ABABABA design was used to analyze the short-term effects. The first A refers to baseline measurements: Visual RT, Auditory RT, Aim trainer RT, Go/No-Go RT and N-Back RT. The first B refers to 30 min of gaming, the second A refers to the measurements used in the baseline, the second B refers to 60 min of a video game, the third A refers to the same measurements used in the baseline, the third B refers to a 30-min rest, and finally, the fourth A refers to the measurements used in the baseline. Seventy participants, twenty-nine habitual video-gamers and forty-one occasional video-gamers, participated in the study. The results showed a temporary improvement of cognitive functions (Visual RT, Auditory RT, Aim trainer RT, Go/No-Go RT and N-Back RT) in the short term and a strong enhancement of cognitive functions in the long term. The results are discussed in light of Flow Theory and the automatization process. Contribution of the study: The contribution of this research is to highlight that despite there being a transient enhancement of executive and cognitive functions through the use of mobile video games in the short-term period, with a decrease of performance after a 30-min rest, there is a strong increase of cognitive performance in the long-term period. Flow Theory and the automatization process together can explain this apparent inconsistency between the positive increase of long-term performance and the transient increase of short-term performance. One limitation of the present research is that it is not possible to distinguish whether the long-term enhancements can be attributed either to continued practice in the use of video games compared to non-gamers, or to the possibility that gamers are already predisposed to video game playing. Future research should address this issue.
Collapse
Affiliation(s)
- Rosa Angela Fabio
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy; (M.I.); (M.M.)
| | | | | |
Collapse
|
13
|
Medina R, Bouhaben J, de Ramón I, Cuesta P, Antón-Toro L, Pacios J, Quintero J, Ramos-Quiroga JA, Maestú F. Electrophysiological Brain Changes Associated With Cognitive Improvement in a Pediatric Attention Deficit Hyperactivity Disorder Digital Artificial Intelligence-Driven Intervention: Randomized Controlled Trial. J Med Internet Res 2021; 23:e25466. [PMID: 34842533 PMCID: PMC8665400 DOI: 10.2196/25466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/11/2020] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cognitive stimulation therapy appears to show promising results in the rehabilitation of impaired cognitive processes in attention deficit hyperactivity disorder. OBJECTIVE Encouraged by this evidence and the ever-increasing use of technology and artificial intelligence for therapeutic purposes, we examined whether cognitive stimulation therapy implemented on a mobile device and controlled by an artificial intelligence engine can be effective in the neurocognitive rehabilitation of these patients. METHODS In this randomized study, 29 child participants (25 males) underwent training with a smart, digital, cognitive stimulation program (KAD_SCL_01) or with 3 commercial video games for 12 weeks, 3 days a week, 15 minutes a day. Participants completed a neuropsychological assessment and a preintervention and postintervention magnetoencephalography study in a resting state with their eyes closed. In addition, information on clinical symptoms was collected from the child´s legal guardians. RESULTS In line with our main hypothesis, we found evidence that smart, digital, cognitive treatment results in improvements in inhibitory control performance. Improvements were also found in visuospatial working memory performance and in the cognitive flexibility, working memory, and behavior and general executive functioning behavioral clinical indexes in this group of participants. Finally, the improvements found in inhibitory control were related to increases in alpha-band power in all participants in the posterior regions, including 2 default mode network regions of the interest: the bilateral precuneus and the bilateral posterior cingulate cortex. However, only the participants who underwent cognitive stimulation intervention (KAD_SCL_01) showed a significant increase in this relationship. CONCLUSIONS The results seem to indicate that smart, digital treatment can be effective in the inhibitory control and visuospatial working memory rehabilitation in patients with attention deficit hyperactivity disorder. Furthermore, the relation of the inhibitory control with alpha-band power changes could mean that these changes are a product of plasticity mechanisms or changes in the neuromodulatory dynamics. TRIAL REGISTRATION ISRCTN Registry ISRCTN71041318; https://www.isrctn.com/ISRCTN71041318.
Collapse
Affiliation(s)
| | | | - Ignacio de Ramón
- Sincrolab Ltd, Madrid, Spain
- Laboratory of Computational and Cognitive Neuroscience, Centre for Biomedical Technology, Polytechnic University of Madrid, Pozuelo de Alarcón, Spain
- Faculty of Health, Camilo Jose Cela University, Villafranca del Castillo, Spain
| | - Pablo Cuesta
- Laboratory of Computational and Cognitive Neuroscience, Centre for Biomedical Technology, Polytechnic University of Madrid, Pozuelo de Alarcón, Spain
- Radiology Rehabilitation and Physiotherapy, Complutense University of Madrid, Madrid, Spain
| | - Luis Antón-Toro
- Laboratory of Computational and Cognitive Neuroscience, Centre for Biomedical Technology, Polytechnic University of Madrid, Pozuelo de Alarcón, Spain
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Javier Pacios
- Laboratory of Computational and Cognitive Neuroscience, Centre for Biomedical Technology, Polytechnic University of Madrid, Pozuelo de Alarcón, Spain
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry, University Hospital Infanta Leonor, Madrid, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health, Barcelona, Spain
| | - Fernando Maestú
- Laboratory of Computational and Cognitive Neuroscience, Centre for Biomedical Technology, Polytechnic University of Madrid, Pozuelo de Alarcón, Spain
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
14
|
Mosbacher JA, Halverscheid S, Pustelnik K, Danner M, Prassl C, Brunner C, Vogel SE, Nitsche MA, Grabner RH. Theta Band Transcranial Alternating Current Stimulation Enhances Arithmetic Learning: A Systematic Comparison of Different Direct and Alternating Current Stimulations. Neuroscience 2021; 477:89-105. [PMID: 34648868 DOI: 10.1016/j.neuroscience.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022]
Abstract
Over the last decades, interest in transcranial electrical stimulation (tES) has grown, as it might allow for causal investigations of the associations between cortical activity and cognition as well as to directly influence cognitive performance. The main objectives of the present work were to assess whether tES can enhance the acquisition and application of arithmetic abilities, and whether it enables a better assessment of underlying neurophysiological processes. To this end, the present, double-blind, sham-controlled study assessed the effects of six active stimulations (three tES protocols: anodal transcranial direct current stimulation (tDCS), alpha band transcranial alternating current stimulation (tACS), and theta band tACS; targeting the left dorsolateral prefrontal cortex or the left posterior parietal cortex) on the acquisition of an arithmetic procedure, arithmetic facts, and event-related synchronization/desynchronization (ERS/ERD) patterns. 137 healthy adults were randomly assigned to one of seven groups, each receiving one of the tES-protocols during learning. Results showed that frontal theta band tACS reduced the repetitions needed to learn novel facts and both, frontal and parietal theta band tACS accelerated the decrease in calculation times in fact learning problems. The beneficial effect of frontal theta band tACS may reflect enhanced executive functions, allowing for better control and inhibition processes and hence, a faster acquisition and integration of novel fact knowledge. However, there were no significant effects of the stimulations on procedural learning or ERS/ERD patterns. Overall, theta band tACS appears promising as a support for arithmetic fact training, but effects on procedural calculations and neurophysiological processes remain ambiguous.
Collapse
Affiliation(s)
- Jochen A Mosbacher
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria.
| | | | - Kolja Pustelnik
- Mathematics Institute, University of Göttingen, Göttingen, Germany
| | - Martina Danner
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Christina Prassl
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Clemens Brunner
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Stephan E Vogel
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Roland H Grabner
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| |
Collapse
|
15
|
Au J, Katz B, Moon A, Talati S, Abagis TR, Jonides J, Jaeggi SM. Post-training stimulation of the right dorsolateral prefrontal cortex impairs working memory training performance. J Neurosci Res 2021; 99:2351-2363. [PMID: 33438297 PMCID: PMC8273206 DOI: 10.1002/jnr.24784] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/23/2020] [Indexed: 11/08/2022]
Abstract
Research investigating transcranial direct current stimulation (tDCS) to enhance cognitive training augments both our understanding of its long-term effects on cognitive plasticity as well as potential applications to strengthen cognitive interventions. Previous work has demonstrated enhancement of working memory training while applying concurrent tDCS to the dorsolateral prefrontal cortex (DLPFC). However, the optimal stimulation parameters are still unknown. For example, the timing of tDCS delivery has been shown to be an influential variable that can interact with task learning. In the present study, we used tDCS to target the right DLPFC while participants trained on a visuospatial working memory task. We sought to compare the relative efficacy of online stimulation delivered during training to offline stimulation delivered either immediately before or afterwards. We were unable to replicate previously demonstrated benefits of online stimulation; however, we did find evidence that offline stimulation delivered after training can actually be detrimental to training performance relative to sham. We interpret our results in light of evidence suggesting a role of the right DLPFC in promoting memory interference, and conclude that while tDCS may be a promising tool to influence the results of cognitive training, more research and an abundance of caution are needed before fully endorsing its use for cognitive enhancement. This work suggests that effects can vary substantially in magnitude and direction between studies, and may be heavily dependent on a variety of intervention protocol parameters such as the timing and location of stimulation delivery, about which our understanding is still nascent.
Collapse
Affiliation(s)
- Jacky Au
- School of Education, University of California, Irvine, Irvine, CA, 92697, USA
| | - Benjamin Katz
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Austin Moon
- School of Education, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sheebani Talati
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tessa R. Abagis
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Jonides
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susanne M. Jaeggi
- School of Education, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
16
|
van Bueren NER, Reed TL, Nguyen V, Sheffield JG, van der Ven SHG, Osborne MA, Kroesbergen EH, Cohen Kadosh R. Personalized brain stimulation for effective neurointervention across participants. PLoS Comput Biol 2021; 17:e1008886. [PMID: 34499639 PMCID: PMC8454957 DOI: 10.1371/journal.pcbi.1008886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/21/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence from human-based research has highlighted that the prevalent one-size-fits-all approach for neural and behavioral interventions is inefficient. This approach can benefit one individual, but be ineffective or even detrimental for another. Studying the efficacy of the large range of different parameters for different individuals is costly, time-consuming and requires a large sample size that makes such research impractical and hinders effective interventions. Here an active machine learning technique is presented across participants-personalized Bayesian optimization (pBO)-that searches available parameter combinations to optimize an intervention as a function of an individual's ability. This novel technique was utilized to identify transcranial alternating current stimulation (tACS) frequency and current strength combinations most likely to improve arithmetic performance, based on a subject's baseline arithmetic abilities. The pBO was performed across all subjects tested, building a model of subject performance, capable of recommending parameters for future subjects based on their baseline arithmetic ability. pBO successfully searches, learns, and recommends parameters for an effective neurointervention as supported by behavioral, simulation, and neural data. The application of pBO in human-based research opens up new avenues for personalized and more effective interventions, as well as discoveries of protocols for treatment and translation to other clinical and non-clinical domains.
Collapse
Affiliation(s)
- Nienke E. R. van Bueren
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Thomas L. Reed
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Vu Nguyen
- Department of Materials, University of Oxford, Oxford, United Kingdom
- Amazon, Adelaide, Australia
| | - James G. Sheffield
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | | | - Michael A. Osborne
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Evelyn H. Kroesbergen
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Roi Cohen Kadosh
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
17
|
Wischnewski M, Mantell KE, Opitz A. Identifying regions in prefrontal cortex related to working memory improvement: A novel meta-analytic method using electric field modeling. Neurosci Biobehav Rev 2021; 130:147-161. [PMID: 34418436 DOI: 10.1016/j.neubiorev.2021.08.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Altering cortical activity using transcranial direct current stimulation (tDCS) has been shown to improve working memory (WM) performance. Due to large inter-experimental variability in the tDCS montage configuration and strength of induced electric fields, results have been mixed. Here, we present a novel meta-analytic method relating behavioral effect sizes to electric field strength to identify brain regions underlying largest tDCS-induced WM improvement. Simulations on 69 studies targeting left prefrontal cortex showed that tDCS electric field strength in lower dorsolateral prefrontal cortex (Brodmann area 45/47) relates most strongly to improved WM performance. This region explained 7.8 % of variance, equaling a medium effect. A similar region was identified when correlating WM performance and electric field strength of right prefrontal tDCS studies (n = 18). Maximum electric field strength of five previously used tDCS configurations were outside of this location. We thus propose a new tDCS montage which maximizes the tDCS electric field strength in that brain region. Our findings can benefit future tDCS studies that aim to affect WM function.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States.
| | - Kathleen E Mantell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
18
|
Wang B, Xiao S, Yu C, Zhou J, Fu W. Effects of Transcranial Direct Current Stimulation Combined With Physical Training on the Excitability of the Motor Cortex, Physical Performance, and Motor Learning: A Systematic Review. Front Neurosci 2021; 15:648354. [PMID: 33897361 PMCID: PMC8062775 DOI: 10.3389/fnins.2021.648354] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 01/28/2023] Open
Abstract
Purpose: This systematic review aims to examine the efficacy of transcranial direct current stimulation (tDCS) combined with physical training on the excitability of the motor cortex, physical performance, and motor learning. Methods: A systematic search was performed on PubMed, Web of Science, and EBSCO databases for relevant research published from inception to August 2020. Eligible studies included those that used a randomized controlled design and reported the effects of tDCS combined with physical training to improve motor-evoked potential (MEP), dynamic posture stability index (DPSI), reaction time, and error rate on participants without nervous system diseases. The risk of bias was assessed by the Cochrane risk of bias assessment tool. Results: Twenty-four of an initial yield of 768 studies met the eligibility criteria. The risk of bias was considered low. Results showed that anodal tDCS combined with physical training can significantly increase MEP amplitude, decrease DPSI, increase muscle strength, and decrease reaction time and error rate in motor learning tasks. Moreover, the gain effect is significantly greater than sham tDCS combined with physical training. Conclusion: tDCS combined with physical training can effectively improve the excitability of the motor cortex, physical performance, and motor learning. The reported results encourage further research to understand further the synergistic effects of tDCS combined with physical training.
Collapse
Affiliation(s)
- Baofeng Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Songlin Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Changxiao Yu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Junhong Zhou
- The Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Weijie Fu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
19
|
Brambilla M, Dinkelbach L, Bigler A, Williams J, Zokaei N, Cohen Kadosh R, Brem AK. The Effect of Transcranial Random Noise Stimulation on Cognitive Training Outcome in Healthy Aging. Front Neurol 2021; 12:625359. [PMID: 33767658 PMCID: PMC7985554 DOI: 10.3389/fneur.2021.625359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Objective: Aging is associated with a decline in attentional and executive abilities, which are linked to physiological, structural, and functional brain changes. A variety of novel non-invasive brain stimulation methods have been probed in terms of their neuroenhancement efficacy in the last decade; one that holds significant promise is transcranial random noise stimulation (tRNS) that delivers an alternate current at random amplitude and frequency. The aim of this study was to investigate whether repeated sessions of tRNS applied as an add-on to cognitive training (CT) may induce long-term near and far transfer cognitive improvements. Methods: In this sham-controlled, randomized, double-blinded study forty-two older adults (age range 60-86 years) were randomly assigned to one of three intervention groups that received 20 min of 0.705 mA tRNS (N = 14), 1 mA tRNS (N = 14), or sham tRNS (N = 19) combined with 30 min of CT of executive functions (cognitive flexibility, inhibitory control, working memory). tRNS was applied bilaterally over the dorsolateral prefrontal cortices for five sessions. The primary outcome (non-verbal logical reasoning) and other cognitive functions (attention, memory, executive functions) were assessed before and after the intervention and at a 1-month follow-up. Results: Non-verbal logical reasoning, inhibitory control and reaction time improved significantly over time, but stimulation did not differentially affect this improvement. These changes occurred during CT, while no further improvement was observed during follow-up. Performance change in logical reasoning was significantly correlated with age in the group receiving 1 mA tRNS, indicating that older participants profited more from tRNS than younger participants. Performance change in non-verbal working memory was significantly correlated with age in the group receiving sham tRNS, indicating that in contrast to active tRNS, older participants in the sham group declined more than younger participants. Interpretation: CT induced cognitive improvements in all treatment groups, but tRNS did not modulate most of these cognitive improvements. However, the effect of tRNS depended on age in some cognitive functions. We discuss possible explanations leading to this result that can help to improve the design of future neuroenhancement studies in older populations.
Collapse
Affiliation(s)
- Michela Brambilla
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Biomedical and Clinical Sciences Department, Center for Research and Treatment on Cognitive Dysfunctions, “Luigi Sacco” Hospital, University of Milan, Milan, Italy
| | - Lars Dinkelbach
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Duesseldorf, Germany
| | - Annelien Bigler
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Joseph Williams
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Nahid Zokaei
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Anna-Katharine Brem
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Santos FH, Mosbacher JA, Menghini D, Rubia K, Grabner RH, Cohen Kadosh R. Effects of transcranial stimulation in developmental neurocognitive disorders: A critical appraisal. PROGRESS IN BRAIN RESEARCH 2021; 264:1-40. [PMID: 34167652 DOI: 10.1016/bs.pbr.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Non-invasive brain stimulation (NIBS) has been highlighted as a powerful tool to promote neuroplasticity, and an attractive approach to support cognitive remediation. Here we provide a systematic review of 26 papers using NIBS to ameliorate cognitive dysfunctions in three prevalent neurodevelopmental disorders: Attention-Deficit/Hyperactivity Disorder (ADHD), Developmental Dyslexia and Developmental Dyscalculia. An overview of the state of research shows a predominance of studies using repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) techniques, and an unequal distribution among clinical conditions. Regarding the utility of NIBS, the results are promising but also ambiguous. Twenty-three papers reported beneficial effects, but many of these effects were found only once or were only partially replicated and some studies even reported detrimental effects. Furthermore, most studies differed in at least one core aspect, the NIBS applied, the questionnaires and cognitive tests conducted, or the age group investigated, and sample sizes were mostly small. Hence, further studies are needed to rigorously examine the potential of NIBS in the remediation of cognitive functions. Finally, we discuss potential caveats and future directions. We reason that if adequately addressing these challenges NIBS can be feasible, with potential benefits in treating neurodevelopmental disorders.
Collapse
Affiliation(s)
- Flavia H Santos
- School of Psychology, University College Dublin, Dublin, Ireland
| | - Jochen A Mosbacher
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria.
| | - Deny Menghini
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Katya Rubia
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Roland H Grabner
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Ehrhardt SE, Filmer HL, Wards Y, Mattingley JB, Dux PE. The influence of tDCS intensity on decision-making training and transfer outcomes. J Neurophysiol 2020; 125:385-397. [PMID: 33174483 DOI: 10.1152/jn.00423.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to improve single- and dual-task performance in healthy participants and enhance transferable training gains following multiple sessions of combined stimulation and task practice. However, it has yet to be determined what the optimal stimulation dose is for facilitating such outcomes. We aimed to test the effects of different tDCS intensities, with a commonly used electrode montage, on performance outcomes in a multisession single/dual-task training and transfer protocol. In a preregistered study, 123 participants, who were pseudorandomized across four groups, each completed six sessions (pre- and posttraining sessions and four combined tDCS and training sessions) and received 20 min of prefrontal anodal tDCS at 0.7, 1.0, or 2.0 mA or 15-s sham stimulation. Response time and accuracy were assessed in trained and untrained tasks. The 1.0-mA group showed substantial improvements in single-task reaction time and dual-task accuracy, with additional evidence for improvements in dual-task reaction times, relative to sham performance. This group also showed near transfer to the single-task component of an untrained multitasking paradigm. The 0.7- and 2.0-mA intensities varied in which performance measures they improved on the trained task, but in sum, the effects were less robust than for the 1.0-mA group, and there was no evidence for the transfer of performance. Our study highlights that training performance gains are augmented by tDCS, but their magnitude and nature are not uniform across stimulation intensity.NEW & NOTEWORTHY Using techniques such as transcranial direct current stimulation to modulate cognitive performance is an alluring endeavor. However, the optimal parameters to augment performance are unknown. Here, in a preregistered study with a large sample (123 subjects), three different stimulation dosages (0.7, 1.0, and 2.0 mA) were applied during multitasking training. Different cognitive training performance outcomes occurred across the dosage conditions, with only one of the doses (1.0 mA) leading to training transfer.
Collapse
Affiliation(s)
- Shane E Ehrhardt
- School of Psychology, The University of Queensland, St. Lucia, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St. Lucia, Australia
| | - Yohan Wards
- School of Psychology, The University of Queensland, St. Lucia, Australia
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, St. Lucia, Australia.,Queensland Brain Institute, The University of Queensland, St. Lucia, Australia.,Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Paul E Dux
- School of Psychology, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
22
|
郭 娅, 李 启, 姜 劲, 曹 勇, 冯 静, 楚 洪, 王 宏, 焦 学. [Review of cognitive enhancement techniques based on the combination of cognitive training and transcranial direct current stimulation]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:903-909. [PMID: 33140616 PMCID: PMC10320545 DOI: 10.7507/1001-5515.201911079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 11/03/2022]
Abstract
Cognitive enhancement refers to the technology of enhancing or expanding the cognitive and emotional abilities of people without psychosis based on relevant knowledge of neurobiology. The common methods of cognitive enhancement include transcranial direct current stimulation (tDCS) and cognitive training (CT). tDCS takes effect quickly, with a short effective time, while CT takes longer to work, requiring several weeks of training, with a longer effective time. In recent years, some researchers have begun to use the method of tDCS combined with CT to regulate the cognitive function. This paper will sort out and summarize this topic from five aspects: perception, attention, working memory, decision-making and other cognitive abilities. Finally, the application prospect and challenges of technology are prospected.
Collapse
Affiliation(s)
- 娅美 郭
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
- 中国航天员科研训练中心 人因工程国防科技重点实验室(北京 100094)Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Centre, Beijing 100094, P.R.China
| | - 启杰 李
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
| | - 劲 姜
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
| | - 勇 曹
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
| | - 静达 冯
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
| | - 洪祚 楚
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
| | - 宏伟 王
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
| | - 学军 焦
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
| |
Collapse
|
23
|
Landin K, Benjaber M, Jamshed F, Stagg C, Denison T. Technology Integration Methods for Bi-directional Brain-computer Interfaces and XR-based Interventions. CONFERENCE PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS 2020; 2020:3695-3701. [PMID: 33707935 PMCID: PMC7116886 DOI: 10.1109/smc42975.2020.9282993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Brain stimulation therapies have been established as effective treatments for Parkinson's disease, essential tremor, and epilepsy, as well as having high diagnostic and therapeutic potential in a wide range of neurological and psychiatric conditions. Novel interventions such as extended reality (XR), video games and exergames that can improve physiological and cognitive functioning are also emerging as targets for therapeutic and rehabilitative treatments. Previous studies have proposed specific applications involving non-invasive brain stimulation (NIBS) and virtual environments, but to date these have been uni-directional and restricted to specific applications or proprietary hardware. Here, we describe technology integration methods that enable invasive and non-invasive brain stimulation devices to interface with a cross-platform game engine and development platform for creating bi-directional brain-computer interfaces (BCI) and XR-based interventions. Furthermore, we present a highly-modifiable software framework and methods for integrating deep brain stimulation (DBS) in 2D, 3D, virtual and mixed reality applications, as well as extensible applications for BCI integration in wireless systems. The source code and integrated brain stimulation applications are available online at https://github.com/oxfordbioelectronics/brain-stim-game.
Collapse
Affiliation(s)
- Kei Landin
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Moaad Benjaber
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Fawad Jamshed
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Charlotte Stagg
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Zhuang W, Yin K, Zi Y, Liu Y. Non-Invasive Brain Stimulation: Augmenting the Training and Performance Potential in Esports Players. Brain Sci 2020; 10:brainsci10070454. [PMID: 32679797 PMCID: PMC7407750 DOI: 10.3390/brainsci10070454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
During the last two decades, esports, a highly competitive sporting activity, has gained increasing popularity. Both performance and competition in esports require players to have fine motor skills and physical and cognitive abilities in controlling and manipulating digital activities in a virtual environment. While strategies for building and improving skills and abilities are crucial for successful gaming performance, few effective training approaches exist in the fast-growing area of competitive esports. In this paper, we describe a non-invasive brain stimulation (NIBS) approach and highlight the relevance and potential areas for research while being cognizant of various technical, safety, and ethical issues related to NIBS when applied to esports.
Collapse
Affiliation(s)
| | | | | | - Yu Liu
- Correspondence: ; Tel.: +86-21-65507860
| |
Collapse
|
25
|
Palaus M, Viejo-Sobera R, Redolar-Ripoll D, Marrón EM. Cognitive Enhancement via Neuromodulation and Video Games: Synergistic Effects? Front Hum Neurosci 2020; 14:235. [PMID: 32636739 PMCID: PMC7319101 DOI: 10.3389/fnhum.2020.00235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique able to modulate cortical excitability. This modulation may influence areas and networks responsible for specific cognitive processes, and the repetition of the induced temporary changes can produce long-lasting effects. TMS effectiveness may be enhanced when used in conjunction with cognitive training focused on specific cognitive functions. Playing video games can be an optimal cognitive training since it involves different cognitive components and high levels of engagement and motivation. The goal of this study is to assess the synergistic effects of TMS and video game training to enhance cognition, specifically, working memory and executive functions. We conducted a randomized 2 × 3 repeated measures (stimulation × time) study, randomly assigning 27 healthy volunteers to an active intermittent theta-burst stimulation or a sham stimulation group. Participants were assessed using a comprehensive neuropsychological battery before, immediately after, and 15 days after finishing the video game+TMS training. The training consisted of 10 sessions where participants played a 3D platform video game for 1.5 h. After each gaming session, TMS was applied over the right dorsolateral prefrontal cortex (DLPFC). All participants improved their video gaming performance, but we did not find a synergistic effect of stimulation and video game training. Neither had we found cognitive improvements related to the stimulation. We explored possible confounding variables such as age, gender, and early video gaming experience through linear regression. The early video gaming experience was related to improvements in working memory and inhibitory control. This result, although exploratory, highlights the influence of individual variables and previous experiences on brain plasticity.
Collapse
Affiliation(s)
| | - Raquel Viejo-Sobera
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | | | | |
Collapse
|
26
|
Yang L, Zhang W, Wang W, Yang Z, Wang H, Deng Z, Li C, Qiu B, Zhang D, Kadosh RC, Li H, Zhang X. Neural and Psychological Predictors of Cognitive Enhancement and Impairment from Neurostimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902863. [PMID: 32099765 PMCID: PMC7029648 DOI: 10.1002/advs.201902863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Indexed: 05/05/2023]
Abstract
Modulating the temporoparietal junction (TPJ), especially the right counterpart, shows promises in enhancing social cognitive ability. However, it is ambiguous whether the functional lateralization of TPJ determines people's responsiveness to brain stimulation. Here, this issue is investigated with an individual difference approach. Forty-five participants attended three sessions of transcranial direct current stimulation (tDCS) experiments and one neuroimaging session. The results support the symmetric mechanism of left and right TPJ stimulation. First, the left and right TPJ stimulation effect are comparable in the group-level analysis. Second, the individual-level analysis reveals that a less right-lateralized TPJ is associated with a higher level of responsiveness. Participants could be classified into positive responders showing cognitive enhancement and negative responders showing cognitive impairment due to stimulation. The positive responders show weaker connectivity between bilateral TPJ and the medial prefrontal cortex, which mediates the prediction of offline responsiveness by the lateralization and the social-related trait. These findings call for a better characterization and predictive models for whom tDCS should be used for, and highlight the necessity and feasibility of prestimulation screening.
Collapse
Affiliation(s)
- Li‐Zhuang Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyCenter of Medical Physics and TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031China
- Cancer HospitalChinese Academy of ScienceHefeiAnhui230031China
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Wei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Wenjuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Zhiyu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyCenter of Medical Physics and TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031China
- Cancer HospitalChinese Academy of ScienceHefeiAnhui230031China
| | - Zhi‐De Deng
- Noninvasive Neuromodulation UnitExperimental Therapeutics & Pathophysiology BranchIntramural Research ProgramNational Institute of Mental HealthNational Institutes of HealthBethesdaMD20892‐9663USA
| | - Chuanfu Li
- Laboratory of Digital Medical ImagingMedical Imaging CenterFirst Affiliated HospitalAnhui University of Chinese MedicineHefeiAnhui230031China
| | - Bensheng Qiu
- Center for Biomedical EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Da‐Ren Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Roi Cohen Kadosh
- Department of Experimental PsychologyUniversity of OxfordOxfordOX1 3UDUK
| | - Hai Li
- Anhui Province Key Laboratory of Medical Physics and TechnologyCenter of Medical Physics and TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031China
- Cancer HospitalChinese Academy of ScienceHefeiAnhui230031China
| | - Xiaochu Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Center for Biomedical EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Academy of Psychology and BehaviorTianjin Normal UniversityTianjin300387China
- Hefei Medical Research Center on Alcohol AddictionAnhui Mental Health CenterHefei230022China
| |
Collapse
|
27
|
Martin AK, Su P, Meinzer M. Common and unique effects of HD-tDCS to the social brain across cultural groups. Neuropsychologia 2019; 133:107170. [PMID: 31425711 DOI: 10.1016/j.neuropsychologia.2019.107170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/22/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
Abstract
Cultural background influences social cognition, however no study has examined brain stimulation differences attributable to cultural background. 104 young adults [52 South-East Asian Singaporeans (SEA); 52 Caucasian Australians (CA)] received anodal high-definition transcranial direct current stimulation (HD-tDCS) to the dorsomedial prefrontal cortex (dmPFC) or the right temporoparietal junction (rTPJ). Participants completed tasks with varying demands on self-other processing including visual perspective taking (VPT)and episodic memory with self and other encoding. At baseline, SEA showed greater self-other integration than CA in the level one (line-of-sight) VPT task as indexed by greater interference from the alternate perspective. Anodal HD-tDCS to the dmPFC resulted in the CA performing closer to the SEA during egocentric perspective judgements. Baseline performance on level two (embodied rotation) VPT task and the self-reference effect (SRE) in episodic memory was comparable between the two groups. In the combined sample, HD-tDCS to the rTPJ decreased the interference from the egocentric perspective during level two VPT and dmPFC HD-tDCS removed the SRE in episodic memory. Stimulation effects were comparable when baseline performance was comparable. When baseline performance differed, stimulation differences were identified. Therefore, social cognitive differences due to cultural background are an important consideration in social brain stimulation studies.
Collapse
Affiliation(s)
- A K Martin
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Australia; Durham University, Department of Psychology, Durham, UK.
| | - P Su
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Australia
| | - M Meinzer
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Australia; University of Greifswald, Department of Neurology, Greifswald, Germany
| |
Collapse
|
28
|
Almquist JNF, Mathan S, Brem AK, Plessow F, McKanna J, Santarnecchi E, Pascual-Leone A, Cohen Kadosh R, Pavel M, Yeung N. FAST: A Novel, Executive Function-Based Approach to Cognitive Enhancement. Front Hum Neurosci 2019; 13:235. [PMID: 31427935 PMCID: PMC6687878 DOI: 10.3389/fnhum.2019.00235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/25/2019] [Indexed: 12/03/2022] Open
Abstract
The present study introduces a novel cognitive intervention aimed at improving fluid intelligence (Gf), based on a framework we refer to as FAST: Flexible, Adaptive, Synergistic Training. FAST leverages a combination of novel game-based executive function (EF) training—designed specifically to enhance the likelihood of transfer—and transcranial electrical stimulation (tES), with aims to synergistically activate and strengthen mechanisms of cognitive control critical to Gf. To test our intervention, we collected three Gf measures from 113 participants [the advanced short Bochumer Matrizen-Test (BOMAT), Raven’s Advanced Progressive Matrices (APM), and matrices similar to Raven’s generated by Sandia labs], prior to and following one of three interventions: (1) the FAST + tRNS intervention, a combination of 30 min of daily training with our novel training game, Robot Factory, and 20 min of concurrent transcranial random noise stimulation applied to bilateral dorsolateral prefrontal cortex (DLPFC); (2) an adaptively difficult Active Control intervention comprised of visuospatial tasks that specifically do not target Gf; or (3) a no-contact control condition. Analyses of changes in a Gf factor from pre- to post-test found numerical increases for the FAST + tRNS group compared to the two control conditions, with a 0.3 SD increase relative to Active Control (p = 0.07), and a 0.19 SD increase relative to a No-contact control condition (p = 0.26). This increase was found to be largely driven by significant differences in pre- and post-test Gf as measured on the BOMAT test. Progression through the FAST training game (Robot Factory) was significantly correlated with changes in Gf. This is in contrast with progress in the Active Control condition, as well as with changes in individual EFs during FAST training, which did not significantly correlate with changes in Gf. Taken together, this research represents a useful step forward in providing new insights into, and new methods for studying, the nature of Gf and its malleability. Though our results await replication and extension, they provide preliminary evidence that the crucial characteristic of Gf may, in fact, be the ability to combine EFs rapidly and adaptively according to changing demand, and that Gf may be susceptible to targeted training.
Collapse
Affiliation(s)
| | - Santosh Mathan
- Honeywell Labs, Honeywell Aerospace, Redmond, WA, United States
| | - Anna-Katharine Brem
- Department of Neurology, Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Division for Cognitive Neurology, Harvard Medical School, Boston, MA, United States.,Department of Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Franziska Plessow
- Department of Neurology, Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Division for Cognitive Neurology, Harvard Medical School, Boston, MA, United States
| | - James McKanna
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Emiliano Santarnecchi
- Department of Neurology, Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Division for Cognitive Neurology, Harvard Medical School, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Department of Neurology, Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Division for Cognitive Neurology, Harvard Medical School, Boston, MA, United States
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Misha Pavel
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Nick Yeung
- Department of Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Keci A, Tani K, Xhema J. Role of Rehabilitation in Neural Plasticity. Open Access Maced J Med Sci 2019; 7:1540-1547. [PMID: 31198470 PMCID: PMC6542405 DOI: 10.3889/oamjms.2019.295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 11/05/2022] Open
Abstract
AIM Verifying if physical therapy, neurostimulation techniques, aerobic fitness and video games can induce neural plasticity making it possible for cortical reorganisation, motor recovery in patients, improvement of cognitive functions and transfer of spatial knowledge in the everyday living environment. METHODS There have been revised scientific articles respectively focused on the role of pain, the role of physical therapy, neurostimulation techniques and video games in cortical reorganisation. Articles related to the role of pain have taken in the study subjects with pain, to observe its role in cortical reorganisation. Studies related to physical therapy and neurostimulation techniques after cerebrovascular accident consisted of the involvement of these subjects which exposed to different neurostimulations. Also, related to cognition and video games subjects exposed to these interventions for cognitive benefits. RESULTS From all articles reviewed there have been effective results of neurostimulation techniques, aerobic fitness and video games in cortical reorganisation inducing neural plasticity (p < 0.05) toward motor recovery, improvement of executive functions and transfer of spatial knowledge. CONCLUSION Rehabilitation through locomotor training and neurostimulation techniques, improves mobility in subjects after a cerebrovascular accident due to cortical reorganisation. Also, through aerobic fitness and video games, there have been improvements in cognitive functions. This way, rehabilitation dedicated to the promotion of well-being and health urges beneficial neuroplastic changes in brain corresponding in functional improvement.
Collapse
|
30
|
Popescu T, Sader E, Schaer M, Thomas A, Terhune DB, Dowker A, Mars RB, Cohen Kadosh R. The brain-structural correlates of mathematical expertise. Cortex 2019; 114:140-150. [PMID: 30424836 PMCID: PMC6996130 DOI: 10.1016/j.cortex.2018.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/27/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
Abstract
Studies in several domains of expertise have established that experience-dependent plasticity brings about both functional and anatomical changes. However, little is known about how such changes come to shape the brain in the case of expertise acquired by professional mathematicians. Here, we aimed to identify cognitive and brain-structural (grey and white matter) characteristics of mathematicians as compared to non-mathematicians. Mathematicians and non-mathematician academics from the University of Oxford underwent structural and diffusion MRI scans, and were tested on a cognitive battery assessing working memory, attention, IQ, numerical and social skills. At the behavioural level, mathematical expertise was associated with better performance in domain-general and domain-specific dimensions. At the grey matter level, in a whole-brain analysis, behavioural performance correlated with grey matter density in left superior frontal gyrus - positively for mathematicians but negatively for non-mathematicians; in a region of interest analysis, we found in mathematicians higher grey matter density in the right superior parietal lobule, but lower grey matter density in the right intraparietal sulcus and in the left inferior frontal gyrus. In terms of white matter, there were no significant group differences in fractional anisotropy or mean diffusivity. These results reveal new insights into the relationship between mathematical expertise and grey matter metrics in brain regions previously implicated in numerical cognition, as well as in regions that have so far received less attention in this field. Further studies, based on longitudinal designs and cognitive training, could examine the conjecture that such cross-sectional findings arise from a bidirectional link between experience and structural brain changes that is itself subject to change across the lifespan.
Collapse
Affiliation(s)
- Tudor Popescu
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Integrative Neuroscience Centre, University of Oxford, Oxford, UK.
| | - Elie Sader
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Integrative Neuroscience Centre, University of Oxford, Oxford, UK
| | - Marie Schaer
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Adam Thomas
- Wellcome Integrative Neuroscience Centre, University of Oxford, Oxford, UK; FMRIF, NIMH, NIH, Bethesda, MD, USA
| | - Devin B Terhune
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Psychology, Goldsmiths, University of London, London, UK
| | - Ann Dowker
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Integrative Neuroscience Centre, University of Oxford, Oxford, UK; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Integrative Neuroscience Centre, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Dresler M, Sandberg A, Bublitz C, Ohla K, Trenado C, Mroczko-Wąsowicz A, Kühn S, Repantis D. Hacking the Brain: Dimensions of Cognitive Enhancement. ACS Chem Neurosci 2019; 10:1137-1148. [PMID: 30550256 PMCID: PMC6429408 DOI: 10.1021/acschemneuro.8b00571] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
In an increasingly complex information society, demands for cognitive functioning are growing steadily. In recent years, numerous strategies to augment brain function have been proposed. Evidence for their efficacy (or lack thereof) and side effects has prompted discussions about ethical, societal, and medical implications. In the public debate, cognitive enhancement is often seen as a monolithic phenomenon. On a closer look, however, cognitive enhancement turns out to be a multifaceted concept: There is not one cognitive enhancer that augments brain function per se, but a great variety of interventions that can be clustered into biochemical, physical, and behavioral enhancement strategies. These cognitive enhancers differ in their mode of action, the cognitive domain they target, the time scale they work on, their availability and side effects, and how they differentially affect different groups of subjects. Here we disentangle the dimensions of cognitive enhancement, review prominent examples of cognitive enhancers that differ across these dimensions, and thereby provide a framework for both theoretical discussions and empirical research.
Collapse
Affiliation(s)
- Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour , Radboud University Medical Centre , Nijmegen 6525 EN , The Netherlands
| | - Anders Sandberg
- Future of Humanity Institute , Oxford University , Oxford OX1 1PT , United Kingdom
| | | | - Kathrin Ohla
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM3) , Forschungszentrum Jülich , Jülich 52428 , Germany
| | - Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology , Heinrich Heine University Düsseldorf , Düsseldorf 40225 , Germany
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors , TU Dortmund , Dortmund 44139 , Germany
| | | | - Simone Kühn
- Max Planck Institute for Human Development , Berlin 14195 , Germany
- Department of Psychiatry and Psychotherapy , University Clinic Hamburg Eppendorf , Hamburg 20246 , Germany
| | - Dimitris Repantis
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin 12203 , Germany
| |
Collapse
|
32
|
Krause B, Dresler M, Looi CY, Sarkar A, Cohen Kadosh R. Neuroenhancement of High-Level Cognition: Evidence for Homeostatic Constraints of Non-invasive Brain Stimulation. JOURNAL OF COGNITIVE ENHANCEMENT 2019; 3:388-395. [PMID: 32190812 PMCID: PMC7055575 DOI: 10.1007/s41465-019-00126-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
Neuroenhancement aims to improve cognitive performance in typically and atypically functioning populations. However, it is currently debated whether it is also effective in exceptionally high-functioning individuals. Present theories suggest that homeostatic set points for learning and cortical plasticity limit the beneficial effects of neuroenhancement. To examine this possibility, we used transcranial random noise stimulation (tRNS) to non-invasively stimulate bilateral dorsolateral prefrontal cortices (DLPFC) of the world champion in mental calculation, G.M. TRNS did not change G.M.'s calculation performance compared to sham stimulation on an exceptionally complex arithmetic task. However, a sample of mathematicians who were not calculation prodigies (N = 6) showed reduced accuracy on a complex multiplication task in response to tRNS, relative to sham. Our findings suggest that there may be an upper limit for cognitive enhancement and that further attempts to enhance performance using tRNS (at least with the current parameters) may impair optimal functioning. The discussion of potential negative effects of brain stimulation for cognitive enhancement is critical, as it may lead to unintended impairments in different subgroups of the population.
Collapse
Affiliation(s)
- Beatrix Krause
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Late-Life Mood, Stress, and Wellness Research Program, Semel Insitute for Neuroscience and Human Behavior, Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Chung Yen Looi
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Amar Sarkar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
La Corte V, Sperduti M, Abichou K, Piolino P. Episodic Memory Assessment and Remediation in Normal and Pathological Aging Using Virtual Reality: A Mini Review. Front Psychol 2019; 10:173. [PMID: 30787898 PMCID: PMC6372520 DOI: 10.3389/fpsyg.2019.00173] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/18/2019] [Indexed: 11/18/2022] Open
Abstract
Life expectancy is constantly increasing in developed countries. Unfortunately, a longer life does not always correspond to a healthier life, as even normal aging is associated with cognitive decline and increased risk factors for neurodegenerative diseases. Episodic memory (EM) is one of the most vulnerable cognitive functions in aging, and its decline is the hallmark of typical Alzheimer's disease. This memory system is defined as the ability to acquire and recollect personally experienced episodes associated with a specific affective, spatial, and temporal context. However, most of the neuropsychological and experimental tasks currently employed to assess EM consist in learning simple material (e.g., list of words) in highly stereotyped contexts. In the same vein, classical paper-and-pencil or numeric remediation tools have shown their limitations in the transfer of acquired skills to daily life. Virtual reality (VR), thanks to its immersive properties, and the possibility of delivering realistic and complex scenarios, seems a promising tool to address the limitations of the assessment and remediation of EM. Here, we review existing studies employing VR in normal and pathological aging to assess and reeducate EM. Overall, we show that VR has been mainly used via non-immersive systems. Further studies should, therefore, test the impact of different degrees of immersion. Moreover, there is a lack of VR remediation tools specifically targeting EM. We propose that future studies should fill this gap, addressing in particular the adaptivity of VR remediation protocols.
Collapse
Affiliation(s)
- Valentina La Corte
- Memory and Cognition Laboratory, Institute of Psychology, Paris Descartes University, Paris, France
- Center for Psychiatry and Neuroscience, INSERM U894, Paris, France
- Institute of Memory and Alzheimer’s Disease, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France
| | - Marco Sperduti
- Memory and Cognition Laboratory, Institute of Psychology, Paris Descartes University, Paris, France
- Center for Psychiatry and Neuroscience, INSERM U894, Paris, France
| | - Kouloud Abichou
- Memory and Cognition Laboratory, Institute of Psychology, Paris Descartes University, Paris, France
- Center for Psychiatry and Neuroscience, INSERM U894, Paris, France
| | - Pascale Piolino
- Memory and Cognition Laboratory, Institute of Psychology, Paris Descartes University, Paris, France
- Center for Psychiatry and Neuroscience, INSERM U894, Paris, France
- University Institute of France, Paris, France
| |
Collapse
|
34
|
Pallavicini F, Ferrari A, Mantovani F. Video Games for Well-Being: A Systematic Review on the Application of Computer Games for Cognitive and Emotional Training in the Adult Population. Front Psychol 2018; 9:2127. [PMID: 30464753 PMCID: PMC6234876 DOI: 10.3389/fpsyg.2018.02127] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Although several excellent reviews and meta-analyses have investigated the effect of video game trainings as tools to enhance well-being, most of them specifically focused on the effects of digital games on brain plasticity or cognitive decline in children and seniors. On the contrary, only one meta-analysis results to be focused on the adult population, and it is restricted to examining the effects of training with a particular genre of games (action video games) on cognitive skills of healthy adults. Objectives: This systematic review was aimed to identify research evidences about the impact on cognitive [i.e., processing and reaction times (RTs), memory, task-switching/multitasking, and mental spatial rotation] and emotional skills of video games training in the healthy adult population. Methods: A multi-component analysis of variables related to the study, the video games, and the outcomes of the training was made on the basis of important previous works. Databases used in the search were PsycINFO, Web of Science (Web of Knowledge), PubMed, and Scopus. The search string was: [(“Video Games” OR “Computer Games” OR “Interactive Gaming”)] AND [(“Cognition”) OR (“Cognitive”) OR (“Emotion”) OR (“Emotion Regulation”)] AND [“Training”]. Results: Thirty-five studies met the inclusion criteria and were further classified into the different analysis' variables. The majority of the retrieved studies used commercial video games, and action games in particular, which resulted to be the most commonly used, closely followed by puzzle games. Effect sizes for training with video games on cognitive skills in general ranged from 0.06 to 3.43: from 0.141 to 3.43 for processing and RTs, 0.06 to 1.82 for memory, 0.54 to 1.91 for task switching/multitasking, and 0.3 to 3.2 for mental spatial rotation; regarding video games for the training of emotional skills, effect sizes ranged from 0.201 to 3.01. Conclusion: Overall, findings give evidences of benefits of video games training on cognitive and emotional skills in relation to the healthy adult population, especially on young adults. Efficacy has been demonstrated not only for non-commercial video games or commercial brain-training programs, but for commercial video games as well.
Collapse
Affiliation(s)
- Federica Pallavicini
- Riccardo Massa Department of Human Sciences for Education, University of Milan Bicocca, Milan, Italy
| | - Ambra Ferrari
- Riccardo Massa Department of Human Sciences for Education, University of Milan Bicocca, Milan, Italy
| | - Fabrizia Mantovani
- Riccardo Massa Department of Human Sciences for Education, University of Milan Bicocca, Milan, Italy
| |
Collapse
|
35
|
Frank B, Harty S, Kluge A, Cohen Kadosh R. Learning while multitasking: short and long-term benefits of brain stimulation. ERGONOMICS 2018; 61:1454-1463. [PMID: 30587084 DOI: 10.1080/00140139.2018.1563722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/23/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
We employed a simulated production task that mimics the real-world skill acquisition required of operators working in control rooms of power plants to assess short and long-term effects of transcranial random noise stimulation (tRNS). tRNS has shown potential for enhancing learning and performance of cognitive skills. Forty subjects (24 female) learned how to execute the simulated production task during the training phase and were required to perform a secondary task during the skill acquisition phase while they received active (12 min) or sham tRNS on DLPFC. After 2 weeks they had to recall the task again without any stimulation. The results demonstrate that tRNS promoted better multitasking as reflected by better performance in a secondary task during and immediately after tRNS. However, 2 weeks later, beneficial effect of tRNS on retention was moderated by general mental ability. Particularly, tRNS benefited those with lower general mental ability. Practitioner summary: By using a simulated production task, we assessed the effects of tRNS on learning and skill retention. The study indicates that neurostimulation can enhance the learning of multiple complex tasks. Moreover, it shows that retention of those tasks can be supported by neurostimulation, especially for those with lower general mental ability.
Collapse
Affiliation(s)
- B Frank
- a Department of Work, Organisational and Business Psychology , Ruhr-University Bochum , Bochum , Germany
| | - S Harty
- b Department of Experimental Psychology , University of Oxford , Oxford , United Kingdom
| | - A Kluge
- a Department of Work, Organisational and Business Psychology , Ruhr-University Bochum , Bochum , Germany
| | - R Cohen Kadosh
- b Department of Experimental Psychology , University of Oxford , Oxford , United Kingdom
| |
Collapse
|
36
|
Campbell MJ, Toth AJ, Moran AP, Kowal M, Exton C. eSports: A new window on neurocognitive expertise? PROGRESS IN BRAIN RESEARCH 2018; 240:161-174. [PMID: 30390829 DOI: 10.1016/bs.pbr.2018.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding the neurological changes that take place as expertise develops is a central topic in both cognitive psychology and cognitive neuroscience. Here, we argue that video games, despite previous misconceptions, are an excellent model environment from which one can examine the development of neurocognitive expertise. Of particular relevance we argue is the area of esports, which encompass video/computer games played within the medium of cyberspace competitively and increasingly professionally. The massive scale of participation, controlled environments, structured skill ratings, pervasive social nature, and large repositories of data, together make esports potentially a very fruitful area for scientific research to increase our understanding of a new era of cognitive athletes. This chapter reviews the progress and prospects for esports research with a particular focus on the effects of gaming on neurocognition. We also outline some exciting new avenues and techniques from which we hope to further elucidate the benefits of esports on the brain.
Collapse
Affiliation(s)
- Mark J Campbell
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland; Lero Irish Software Research Centre, University of Limerick, Limerick, Ireland.
| | - Adam J Toth
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland; Lero Irish Software Research Centre, University of Limerick, Limerick, Ireland
| | - Aidan P Moran
- School of Psychology, University College Dublin, Dublin, Ireland
| | - Magdalena Kowal
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland; Lero Irish Software Research Centre, University of Limerick, Limerick, Ireland
| | - Chris Exton
- Lero Irish Software Research Centre, University of Limerick, Limerick, Ireland; Department of Computer Science, University of Limerick, Limerick, Ireland
| |
Collapse
|
37
|
Modulating fluid intelligence performance through combined cognitive training and brain stimulation. Neuropsychologia 2018; 118:107-114. [DOI: 10.1016/j.neuropsychologia.2018.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/31/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022]
|
38
|
Abstract
Transcranial direct current stimulation (tDCS) is a neuromodulatory approach that is affordable, safe, and well tolerated. This review article summarizes the research and clinically relevant findings from meta-analyses and studies investigating the cognitive effects of tDCS in healthy and clinical populations. We recapitulate findings from recent studies where cognitive performance paired with tDCS was compared with performance under placebo (sham stimulation) in single sessions and longitudinal designs where cognitive effects were evaluated following repeated sessions. In summary, the tDCS literature currently indicates that the effects of tDCS on cognitive measures are less robust and less predictable compared with the more consistent effects on motor outcomes. There is also a notable difference in the consistency of single-session and longitudinal designs. In single-session tDCS designs, there are small effects amid high variability confounded by individual differences and potential sham stimulation effects. In contrast, longitudinal studies provide more consistent benefits in healthy and clinical populations, particularly when tDCS is paired with a concurrent task. Yet, these studies are few in number, thereby impeding design optimization. While there is good evidence that tDCS can modulate cognitive functioning and potentially produce longer-term benefits, a major challenge to widespread translation of tDCS is the absence of a complete mechanistic account for observed effects. Significant future work is needed to identify a priori responders from nonresponders for every cognitive task and tDCS protocol.
Collapse
|
39
|
Andoh J, Matsushita R, Zatorre RJ. Insights Into Auditory Cortex Dynamics From Non-invasive Brain Stimulation. Front Neurosci 2018; 12:469. [PMID: 30057522 PMCID: PMC6053524 DOI: 10.3389/fnins.2018.00469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023] Open
Abstract
Non-invasive brain stimulation (NIBS) has been widely used as a research tool to modulate cortical excitability of motor as well as non-motor areas, including auditory or language-related areas. NIBS, especially transcranial magnetic stimulation (TMS) and transcranial direct current stimulation, have also been used in clinical settings, with however variable therapeutic outcome, highlighting the need to better understand the mechanisms underlying NIBS techniques. TMS was initially used to address causality between specific brain areas and related behavior, such as language production, providing non-invasive alternatives to lesion studies. Recent literature however suggests that the relationship is not as straightforward as originally thought, and that TMS can show both linear and non-linear modulation of brain responses, highlighting complex network dynamics. In particular, in the last decade, NIBS studies have enabled further advances in our understanding of auditory processing and its underlying functional organization. For instance, NIBS studies showed that even when only one auditory cortex is stimulated unilaterally, bilateral modulation may result, thereby highlighting the influence of functional connectivity between auditory cortices. Additional neuromodulation techniques such as transcranial alternating current stimulation or transcranial random noise stimulation have been used to target frequency-specific neural oscillations of the auditory cortex, thereby providing further insight into modulation of auditory functions. All these NIBS techniques offer different perspectives into the function and organization of auditory cortex. However, further research should be carried out to assess the mode of action and long-term effects of NIBS to optimize their use in clinical settings.
Collapse
Affiliation(s)
- Jamila Andoh
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada
| | - Reiko Matsushita
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada
| |
Collapse
|
40
|
Faundez V, De Toma I, Bardoni B, Bartesaghi R, Nizetic D, de la Torre R, Cohen Kadosh R, Herault Y, Dierssen M, Potier MC. Translating molecular advances in Down syndrome and Fragile X syndrome into therapies. Eur Neuropsychopharmacol 2018; 28:675-690. [PMID: 29887288 DOI: 10.1016/j.euroneuro.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 12/27/2022]
Abstract
Ongoing treatments for genetic developmental disorders of the central nervous system are mostly symptomatic and do not correct the genetic cause. Recent identification of common mechanisms between diseases has suggested that new therapeutic targets could be applied across intellectual disabilities with potential disease-modifying properties. The European Down syndrome and other genetic developmental disorders (DSG2D) network joined basic and clinical scientists to foster this research and carry out clinical trials. Here we discuss common mechanisms between several intellectual disabilities from genetic origin including Down's and Fragile X syndromes: i) how to model these complex diseases using neuronal cells and brain organoids derived from induced pluripotent stem cells; ii) how to integrate genomic, proteomic and interactome data to help defining common mechanisms and boundaries between diseases; iii) how to target common pathways for designing clinical trials and assessing their efficacy; iv) how to bring new neuro-therapies, such as noninvasive brain stimulations and cognitive training to clinical research. The basic and translational research efforts of the last years have utterly transformed our understanding of the molecular pathology of these diseases but much is left to be done to bring them to newborn babies and children to improve their quality of life.
Collapse
Affiliation(s)
- Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| | - Ilario De Toma
- Cellular and Systems Neurobiology, Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centro de Investigación Biomédica en Red CIBERER, Spain
| | - Barbara Bardoni
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Valbonne, France
| | - Renata Bartesaghi
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Barts and The London School of Medicine, Queen Mary University of London, United Kingdom
| | - Rafael de la Torre
- Integrated Pharmacology and Neurosciences Systems Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain; CIBEROBN, Madrid, Spain
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centro de Investigación Biomédica en Red CIBERER, Spain.
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France.
| |
Collapse
|
41
|
Cognitive and neuromodulation strategies for unhealthy eating and obesity: Systematic review and discussion of neurocognitive mechanisms. Neurosci Biobehav Rev 2018; 87:161-191. [PMID: 29432784 DOI: 10.1016/j.neubiorev.2018.02.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
|
42
|
Clayton MS, Yeung N, Cohen Kadosh R. The Effects of 10 Hz Transcranial Alternating Current Stimulation on Audiovisual Task Switching. Front Neurosci 2018; 12:67. [PMID: 29487500 PMCID: PMC5816909 DOI: 10.3389/fnins.2018.00067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Neural oscillations in the alpha band (7–13 Hz) are commonly associated with disengagement of visual attention. However, recent studies have also associated alpha with processes of attentional control and stability. We addressed this issue in previous experiments by delivering transcranial alternating current stimulation at 10 Hz over posterior cortex during visual tasks (alpha tACS). As this stimulation can induce reliable increases in EEG alpha power, and given that performance on each of our visual tasks was negatively associated with alpha power, we assumed that alpha tACS would reliably impair visual performance. However, alpha tACS was instead found to prevent both deteriorations and improvements in visual performance that otherwise occurred during sham & 50 Hz tACS. Alpha tACS therefore appeared to exert a stabilizing effect on visual attention. This hypothesis was tested in the current, pre-registered experiment by delivering alpha tACS during a task that required rapid switching of attention between motion, color, and auditory subtasks. We assumed that, if alpha tACS stabilizes visual attention, this stimulation should make it harder for people to switch between visual tasks, but should have little influence on transitions between auditory and visual subtasks. However, in contrast to this prediction, we observed no evidence of impairments in visuovisual vs. audiovisual switching during alpha vs. control tACS. Instead, we observed a trend-level reduction in visuoauditory switching accuracy during alpha tACS. Post-hoc analyses showed no effects of alpha tACS in response time variability, diffusion model parameters, or on performance of repeat trials. EEG analyses also showed no effects of alpha tACS on endogenous or stimulus-evoked alpha power. We discuss possible explanations for these results, as well as their broader implications for current efforts to study the roles of neural oscillations in cognition using tACS.
Collapse
Affiliation(s)
- Michael S Clayton
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Nick Yeung
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Beker S, Foxe JJ, Molholm S. Ripe for solution: Delayed development of multisensory processing in autism and its remediation. Neurosci Biobehav Rev 2018; 84:182-192. [PMID: 29162518 PMCID: PMC6389331 DOI: 10.1016/j.neubiorev.2017.11.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022]
Abstract
Difficulty integrating inputs from different sensory sources is commonly reported in individuals with Autism Spectrum Disorder (ASD). Accumulating evidence consistently points to altered patterns of behavioral reactions and neural activity when individuals with ASD observe or act upon information arriving through multiple sensory systems. For example, impairments in the integration of seen and heard speech appear to be particularly acute, with obvious implications for interpersonal communication. Here, we explore the literature on multisensory processing in autism with a focus on developmental trajectories. While much remains to be understood, some consistent observations emerge. Broadly, sensory integration deficits are found in children with an ASD whereas these appear to be much ameliorated, or even fully recovered, in older teenagers and adults on the spectrum. This protracted delay in the development of multisensory processing raises the possibility of applying early intervention strategies focused on multisensory integration, to accelerate resolution of these functions. We also consider how dysfunctional cross-sensory oscillatory neural communication may be one key pathway to impaired multisensory processing in ASD.
Collapse
Affiliation(s)
- Shlomit Beker
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States; Rose F. Kennedy Intellectual and Developmental Disabilities Research Center (IDDRC), Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - John J Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States; Rose F. Kennedy Intellectual and Developmental Disabilities Research Center (IDDRC), Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States; The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States; Rose F. Kennedy Intellectual and Developmental Disabilities Research Center (IDDRC), Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States; The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
44
|
Martin AK, Meinzer M, Lindenberg R, Sieg MM, Nachtigall L, Flöel A. Effects of Transcranial Direct Current Stimulation on Neural Networks in Young and Older Adults. J Cogn Neurosci 2017; 29:1817-1828. [PMID: 28707568 DOI: 10.1162/jocn_a_01166] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcranial direct current stimulation (tDCS) may be a viable tool to improve motor and cognitive function in advanced age. However, although a number of studies have demonstrated improved cognitive performance in older adults, other studies have failed to show restorative effects. The neural effects of beneficial stimulation response in both age groups is lacking. In the current study, tDCS was administered during simultaneous fMRI in 42 healthy young and older participants. Semantic word generation and motor speech baseline tasks were used to investigate behavioral and neural effects of uni- and bihemispheric motor cortex tDCS in a three-way, crossover, sham tDCS controlled design. Independent components analysis assessed differences in task-related activity between the two age groups and tDCS effects at the network level. We also explored whether laterality of language network organization was effected by tDCS. Behaviorally, both active tDCS conditions significantly improved semantic word retrieval performance in young and older adults and were comparable between groups and stimulation conditions. Network-level tDCS effects were identified in the ventral and dorsal anterior cingulate networks in the combined sample during semantic fluency and motor speech tasks. In addition, a shift toward enhanced left laterality was identified in the older adults for both active stimulation conditions. Thus, tDCS results in common network-level modulations and behavioral improvements for both age groups, with an additional effect of increasing left laterality in older adults.
Collapse
Affiliation(s)
| | | | | | - Mira M Sieg
- Charité University Medicine, Berlin, Germany
| | | | - Agnes Flöel
- Charité University Medicine, Berlin, Germany.,University of Greifswald
| |
Collapse
|
45
|
Looi CY, Lim J, Sella F, Lolliot S, Duta M, Avramenko AA, Cohen Kadosh R. Transcranial random noise stimulation and cognitive training to improve learning and cognition of the atypically developing brain: A pilot study. Sci Rep 2017; 7:4633. [PMID: 28680099 PMCID: PMC5498607 DOI: 10.1038/s41598-017-04649-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/18/2017] [Indexed: 12/27/2022] Open
Abstract
Learning disabilities that affect about 10% of human population are linked to atypical neurodevelopment, but predominantly treated by behavioural interventions. Behavioural interventions alone have shown little efficacy, indicating limited success in modulating neuroplasticity, especially in brains with neural atypicalities. Even in healthy adults, weeks of cognitive training alone led to inconsistent generalisable training gains, or "transfer effects" to non-trained materials. Meanwhile, transcranial random noise stimulation (tRNS), a painless and more direct neuromodulation method was shown to further promote cognitive training and transfer effects in healthy adults without harmful effects. It is unknown whether tRNS on the atypically developing brain might promote greater learning and transfer outcomes than training alone. Here, we show that tRNS over the bilateral dorsolateral prefrontal cortices (dlPFCs) improved learning and performance of children with mathematical learning disabilities (MLD) during arithmetic training compared to those who received sham (placebo) tRNS. Training gains correlated positively with improvement on a standardized mathematical diagnostic test, and this effect was strengthened by tRNS. These findings mirror those in healthy adults, and encourage replications using larger cohorts. Overall, this study offers insights into the concept of combining tRNS and cognitive training for improving learning and cognition of children with learning disabilities.
Collapse
Affiliation(s)
- Chung Yen Looi
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, United Kingdom
| | - Jenny Lim
- Fairley House School, London, SW1P 4AU, UK
| | - Francesco Sella
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, United Kingdom
| | - Simon Lolliot
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, United Kingdom
| | - Mihaela Duta
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, United Kingdom
| | | | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, United Kingdom.
| |
Collapse
|
46
|
McConathey EM, White NC, Gervits F, Ash S, Coslett HB, Grossman M, Hamilton RH. Baseline Performance Predicts tDCS-Mediated Improvements in Language Symptoms in Primary Progressive Aphasia. Front Hum Neurosci 2017; 11:347. [PMID: 28713256 PMCID: PMC5492829 DOI: 10.3389/fnhum.2017.00347] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 06/16/2017] [Indexed: 01/12/2023] Open
Abstract
Primary Progressive Aphasia (PPA) is a neurodegenerative condition characterized by insidious irreversible loss of language abilities. Prior studies suggest that transcranial direct current stimulation (tDCS) directed toward language areas of the brain may help to ameliorate symptoms of PPA. In the present sham-controlled study, we examined whether tDCS could be used to enhance language abilities (e.g., picture naming) in individuals with PPA variants primarily characterized by difficulties with speech production (non-fluent and logopenic). Participants were recruited from the Penn Frontotemporal Dementia Center to receive 10 days of both real and sham tDCS (counter-balanced, full-crossover design; participants were naïve to stimulation condition). A battery of language tests was administered at baseline, immediately post-tDCS (real and sham), and 6 weeks and 12 weeks following stimulation. When we accounted for individuals' baseline performance, our analyses demonstrated a stratification of tDCS effects. Individuals who performed worse at baseline showed tDCS-related improvements in global language performance, grammatical comprehension and semantic processing. Individuals who performed better at baseline showed a slight tDCS-related benefit on our speech repetition metric. Real tDCS may improve language performance in some individuals with PPA. Severity of deficits at baseline may be an important factor in predicting which patients will respond positively to language-targeted tDCS therapies. Clinicaltrials.gov ID: NCT02928848.
Collapse
Affiliation(s)
- Eric M McConathey
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, United States
| | - Nicole C White
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, United States
| | - Felix Gervits
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, United States
| | - Sherry Ash
- Penn Frontotemporal Degeneration CenterPhiladelphia, PA, United States
| | - H Branch Coslett
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, United States.,Neurology, Perelman School of MedicinePhiladelphia, PA, United States
| | - Murray Grossman
- Penn Frontotemporal Degeneration CenterPhiladelphia, PA, United States.,Neurology, Perelman School of MedicinePhiladelphia, PA, United States
| | - Roy H Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, United States.,Neurology, Perelman School of MedicinePhiladelphia, PA, United States
| |
Collapse
|
47
|
Nilsson J, Lebedev AV, Rydström A, Lövdén M. Direct-Current Stimulation Does Little to Improve the Outcome of Working Memory Training in Older Adults. Psychol Sci 2017; 28:907-920. [PMID: 28509625 DOI: 10.1177/0956797617698139] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The promise of transcranial direct-current stimulation (tDCS) as a modulator of cognition has appealed to researchers, media, and the general public. Researchers have suggested that tDCS may increase effects of cognitive training. In this study of 123 older adults, we examined the interactive effects of 20 sessions of anodal tDCS over the left prefrontal cortex (vs. sham tDCS) and simultaneous working memory training (vs. control training) on change in cognitive abilities. Stimulation did not modulate gains from pre- to posttest on latent factors of either trained or untrained tasks in a statistically significant manner. A supporting meta-analysis ( n = 266), including younger as well as older individuals, showed that, when combined with training, tDCS was not much more effective than sham tDCS at changing working memory performance ( g = 0.07, 95% confidence interval, or CI = [-0.21, 0.34]) and global cognition performance ( g = -0.01, 95% CI = [-0.29, 0.26]) assessed in the absence of stimulation. These results question the general usefulness of current tDCS protocols for enhancing the effects of cognitive training on cognitive ability.
Collapse
Affiliation(s)
- Jonna Nilsson
- Aging Research Center, Karolinska Institutet and Stockholm University
| | | | - Anders Rydström
- Aging Research Center, Karolinska Institutet and Stockholm University
| | - Martin Lövdén
- Aging Research Center, Karolinska Institutet and Stockholm University
| |
Collapse
|
48
|
Katz B, Au J, Buschkuehl M, Abagis T, Zabel C, Jaeggi SM, Jonides J. Individual Differences and Long-term Consequences of tDCS-augmented Cognitive Training. J Cogn Neurosci 2017; 29:1498-1508. [PMID: 28253083 DOI: 10.1162/jocn_a_01115] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A great deal of interest surrounds the use of transcranial direct current stimulation (tDCS) to augment cognitive training. However, effects are inconsistent across studies, and meta-analytic evidence is mixed, especially for healthy, young adults. One major source of this inconsistency is individual differences among the participants, but these differences are rarely examined in the context of combined training/stimulation studies. In addition, it is unclear how long the effects of stimulation last, even in successful interventions. Some studies make use of follow-up assessments, but very few have measured performance more than a few months after an intervention. Here, we utilized data from a previous study of tDCS and cognitive training [Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., et al. Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28, 1419-1432, 2016] in which participants trained on a working memory task over 7 days while receiving active or sham tDCS. A new, longer-term follow-up to assess later performance was conducted, and additional participants were added so that the sham condition was better powered. We assessed baseline cognitive ability, gender, training site, and motivation level and found significant interactions between both baseline ability and motivation with condition (active or sham) in models predicting training gain. In addition, the improvements in the active condition versus sham condition appear to be stable even as long as a year after the original intervention.
Collapse
Affiliation(s)
| | - Jacky Au
- University of California, Irvine.,MIND Research Institute, Irvine, CA
| | | | | | | | | | | |
Collapse
|
49
|
Passow S, Thurm F, Li SC. Activating Developmental Reserve Capacity Via Cognitive Training or Non-invasive Brain Stimulation: Potentials for Promoting Fronto-Parietal and Hippocampal-Striatal Network Functions in Old Age. Front Aging Neurosci 2017; 9:33. [PMID: 28280465 PMCID: PMC5322263 DOI: 10.3389/fnagi.2017.00033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/08/2017] [Indexed: 01/06/2023] Open
Abstract
Existing neurocomputational and empirical data link deficient neuromodulation of the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in processing noise and declines in various cognitive functions. Specifically, the theory of aging neuronal gain control postulates that aging-related suboptimal neuromodulation may attenuate neuronal gain control, which yields computational consequences on reducing the signal-to-noise-ratio of synaptic signal transmission and hampering information processing within and between cortical networks. Intervention methods such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct current stimulation (tDCS), have been considered as means to buffer cognitive functions or delay cognitive decline in old age. However, to date the reported effect sizes of immediate training gains and maintenance effects of a variety of cognitive trainings are small to moderate at best; moreover, training-related transfer effects to non-trained but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce aging-related cognitive impairments by inducing temporary changes in cortical excitability seem somewhat promising, evidence of effects on short- and long-term plasticity is still equivocal. In this article, we will review and critically discuss existing findings of cognitive training- and stimulation-related behavioral and neural plasticity effects in the context of cognitive aging, focusing specifically on working memory and episodic memory functions, which are subserved by the fronto-parietal and hippocampal-striatal networks, respectively. Furthermore, in line with the theory of aging neuronal gain control we will highlight that developing age-specific brain stimulation protocols and the concurrent applications of tDCS during cognitive training may potentially facilitate short- and long-term cognitive and brain plasticity in old age.
Collapse
Affiliation(s)
- Susanne Passow
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| | - Franka Thurm
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| |
Collapse
|
50
|
Schroeder PA, Dresler T, Bahnmueller J, Artemenko C, Cohen Kadosh R, Nuerk HC. Cognitive Enhancement of Numerical and Arithmetic Capabilities: a Mini-Review of Available Transcranial Electric Stimulation Studies. JOURNAL OF COGNITIVE ENHANCEMENT 2017. [DOI: 10.1007/s41465-016-0006-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|