1
|
Intaruck K, Tabata K, Itakura Y, Kawaguchi N, Kishimoto M, Setiyono A, Handharyani E, Harima H, Kimura T, Hall WW, Orba Y, Sawa H, Sasaki M. Characterization of a mammalian orthoreovirus isolated from the large flying fox, Pteropus vampyrus, in Indonesia. J Gen Virol 2024; 105. [PMID: 39319430 DOI: 10.1099/jgv.0.002028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Fruit bats serve as an important reservoir for many zoonotic pathogens, including Nipah virus, Hendra virus, Marburg virus and Lyssavirus. To gain a deeper insight into the virological characteristics, pathogenicity and zoonotic potential of bat-borne viruses, recovery of infectious viruses from field samples is important. Here, we report the isolation and characterization of a mammalian orthoreovirus (MRV) from a large flying fox (Pteropus vampyrus) in Indonesia, which is the first detection of MRV in Southeast Asia. MRV was recovered from faecal samples of three different P. vampyrus in Central Java. Nucleotide sequence analysis revealed that the genome of the three MRV isolates shared more than 99% nucleotide sequence identity. We tentatively named one isolated strain as MRV12-52 for further analysis and characterization. Among 10 genome segments, MRV12-52 S1 and S4, which encode the cell-attachment protein and outer capsid protein, had 93.6 and 95.1% nucleotide sequence identities with known MRV strains, respectively. Meanwhile, the remaining genome segments of MRV12-52 were divergent with 72.9-80.7 % nucleotide sequence identities. Based on the nucleotide sequence of the S1 segment, MRV12-52 was grouped into serotype 2, and phylogenetic analysis demonstrated evidence of past reassortment events. In vitro characterization of MRV12-52 showed that the virus efficiently replicated in BHK-21, HEK293T and A549 cells. In addition, experimental infection of laboratory mice with MRV12-52 caused severe pneumonia with 75% mortality. This study highlights the presence of pathogenic MRV in Indonesia, which could serve as a potential animal and public health concern.
Collapse
Affiliation(s)
- Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Koshiro Tabata
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Nijiho Kawaguchi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mai Kishimoto
- Laboratory of Veterinary Microbiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Japan
| | - Agus Setiyono
- Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Ekowati Handharyani
- Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Hayato Harima
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - William W Hall
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Gulkis M, Luo M, Chipman P, Mietzsch M, Söderlund-Venermo M, Bennett A, McKenna R. Structural Characterization of Human Bufavirus 1: Receptor Binding and Endosomal pH-Induced Changes. Viruses 2024; 16:1258. [PMID: 39205232 PMCID: PMC11360561 DOI: 10.3390/v16081258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Bufaviruses (BuV) are members of the Parvoviridae of the Protoparvovirus genus. They are non-enveloped, T = 1 icosahedral ssDNA viruses isolated from patients exhibiting acute diarrhea. The lack of treatment options and a limited understanding of their disease mechanisms require studying these viruses on a molecular and structural level. In the present study, we utilize glycan arrays and cell binding assays to demonstrate that BuV1 capsid binds terminal sialic acid (SIA) glycans. Furthermore, using cryo-electron microscopy (cryo-EM), SIA is shown to bind on the 2/5-fold wall of the capsid surface. Interestingly, the capsid residues stabilizing SIA binding are conserved in all human BuVs identified to date. Additionally, biophysical assays illustrate BuV1 capsid stabilization during endo-lysosomal (pH 7.4-pH 4) trafficking and capsid destabilization at pH 3 and less, which correspond to the pH of the stomach. Hence, we determined the cryo-EM structures of BuV1 capsids at pH 7.4, 4.0, and 2.6 to 2.8 Å, 3.2 Å, and 2.7 Å, respectively. These structures reveal capsid structural rearrangements during endo-lysosomal escape and provide a potential mechanism for this process. The structural insights gained from this study will add to the general knowledge of human pathogenic parvoviruses. Furthermore, the identification of the conserved SIA receptor binding site among BuVs provides a possible targetable surface-accessible pocket for the design of small molecules to be developed as anti-virals for these viruses.
Collapse
Affiliation(s)
- Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA; (M.G.); (M.L.); (P.C.); (M.M.)
| | - Mengxiao Luo
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA; (M.G.); (M.L.); (P.C.); (M.M.)
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA; (M.G.); (M.L.); (P.C.); (M.M.)
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA; (M.G.); (M.L.); (P.C.); (M.M.)
| | - Maria Söderlund-Venermo
- Department of Virology, University of Helsinki, P.O. Box 21 (Haartmaninkatu 3), FIN-00014 Helsinki, Finland;
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA; (M.G.); (M.L.); (P.C.); (M.M.)
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA; (M.G.); (M.L.); (P.C.); (M.M.)
| |
Collapse
|
3
|
Chukwudozie KI, Wang H, Wang X, Lu C, Xue J, Zhang W, Shan T. Viral metagenomic analysis reveals diverse viruses and a novel bocaparvovirus in the enteric virome of snow leopard ( Panthera uncia). Heliyon 2024; 10:e29799. [PMID: 38681641 PMCID: PMC11053277 DOI: 10.1016/j.heliyon.2024.e29799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
The enteric virome, comprising a complex community of viruses inhabiting the gastrointestinal tract, plays a significant role in health and disease dynamics. In this study, the fecal sample of a wild snow leopard was subjected to viral metagenomic analysis using a double barcode Illumina MiSeq platform. The resulting reads were de novo assembled into contigs with SOAPdenovo2 version r240. Additional bioinformatic analysis of the assembled genome and genome annotation was done using the Geneious prime software (version 2022.0.2). Following viral metagenomic analysis and bioinformatic analysis, a total of 7 viral families and a novel specie of bocaparvovirus tentatively named Panthera uncia bocaparvovirus (PuBOV) with GenBank accession number OQ627713 were identified. The complete genome of PuBOV was predicted to contain 3 open reading frames (ORFs), contains 5433 nucleotides and has a G + C content of 47.40 %. BLASTx analysis and pairwise sequence comparison indicated the novel virus genome was a new species in the genus Bocaparvovirus based on the species demarcation criteria of the International Committee on the Taxonomy of Viruses. This study provides valuable insights into the diversity and composition of the enteric virome in wild endangered snow leopards. The identification and characterization of viruses in wildlife is crucial for developing effective strategies to manage and mitigate potential zoonotic and other viral disease threats to human and animal health.
Collapse
Affiliation(s)
- Kingsley Ikechukwu Chukwudozie
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang. Zip code: 212300, PR China
- Department of Microbiology, University of Nigeria, Zip code: 410001, PR China
| | - Haoning Wang
- Heilongjiang cold Region Wetland Ecology and Environment Research key laboratory, school of geography and tourism, Harbin university, 109 zhongxing Road, Harbin, 150086, Heilongjiang province, PR China
- School of Geography and Tourism, Harbin University, Harbin 150086, Heilongjiang province, PR China
| | - Xiaolong Wang
- The Key Laboratory of Wildlife Diseases and Biosecurity Management of Heilongjiang Province. Zip code: 154100, PR China
| | - Chunying Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang. Zip code: 212300, PR China
| | - Jiaxin Xue
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang. Zip code: 212300, PR China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang. Zip code: 212300, PR China
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| |
Collapse
|
4
|
Sarchese V, Palombieri A, Prandi I, Robetto S, Bertolotti L, Capucchio MT, Orusa R, Mauthe von Degerfeld M, Quaranta G, Vacchetta M, Martella V, Di Martino B, Di Profio F. Molecular Surveillance for Bocaparvoviruses and Bufaviruses in the European Hedgehog ( Erinaceus europaeus). Microorganisms 2024; 12:189. [PMID: 38258015 PMCID: PMC10819369 DOI: 10.3390/microorganisms12010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The presence of bocaparvoviruses (BoVs) and bufaviruses (BuVs) in the European hedgehog (Erinaceus europaeus) was investigated by screening duodenal and liver samples collected from 183 carcasses, delivered to wildlife rescue centers located in northwestern Italy. BoV DNA was detected in 15 animals (8.2%), with prevalences of 7.1% (13/183) and 2.7% (5/183) in intestine and liver samples, respectively. Upon the sequence analyses of the NS1 gene, two highly divergent BoVs (65.5-67.8% nt identities) were identified. Fourteen strains showed the highest identity (98.3-99.4% nt) to the hedgehog BoV strains recently detected in China in Amur hedgehogs (Erinaceus amurensis), whilst four strains were genetically related (98.9-99.4% nt identities) to the porcine BoVs identified in pigs and classified in the species Bocaparvovirus ungulate 4, which included related viruses also found in rats, minks, shrews, and mice. BuV DNA was detected in the duodenal samples of two hedgehogs, with a prevalence rate of 1.1%. The nearly full-length genome of two BuV strains, Hedgehog/331DU-2022/ITA and Hedgehog/1278DU/2019/ITA, was reconstructed. Upon phylogenetic analysis based on the NS and VP aa sequences, the Italian hedgehog BuVs tightly clustered with the BuVs recently identified in the Chinese Amur hedgehogs, within a potential novel candidate species of the genus Protoparvovirus.
Collapse
Affiliation(s)
- Vittorio Sarchese
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, TE, Italy; (V.S.); (A.P.); (B.D.M.)
| | - Andrea Palombieri
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, TE, Italy; (V.S.); (A.P.); (B.D.M.)
| | - Ilaria Prandi
- Centro Animali Non Convenzionali (C.A.N.C.), Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.P.); (M.T.C.); (M.M.v.D.); (G.Q.)
| | - Serena Robetto
- Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria e della Valle d’Aosta, 11020 Quart, AO, Italy; (S.R.); (R.O.)
| | - Luigi Bertolotti
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy;
| | - Maria Teresa Capucchio
- Centro Animali Non Convenzionali (C.A.N.C.), Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.P.); (M.T.C.); (M.M.v.D.); (G.Q.)
| | - Riccardo Orusa
- Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria e della Valle d’Aosta, 11020 Quart, AO, Italy; (S.R.); (R.O.)
| | - Mitzy Mauthe von Degerfeld
- Centro Animali Non Convenzionali (C.A.N.C.), Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.P.); (M.T.C.); (M.M.v.D.); (G.Q.)
| | - Giuseppe Quaranta
- Centro Animali Non Convenzionali (C.A.N.C.), Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.P.); (M.T.C.); (M.M.v.D.); (G.Q.)
| | | | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, BA, Italy;
| | - Barbara Di Martino
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, TE, Italy; (V.S.); (A.P.); (B.D.M.)
| | - Federica Di Profio
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, TE, Italy; (V.S.); (A.P.); (B.D.M.)
| |
Collapse
|
5
|
Intaruck K, Itakura Y, Kishimoto M, Chambaro HM, Setiyono A, Handharyani E, Uemura K, Harima H, Taniguchi S, Saijo M, Kimura T, Orba Y, Sawa H, Sasaki M. Isolation and characterization of an orthoreovirus from Indonesian fruit bats. Virology 2022; 575:10-19. [PMID: 35987079 DOI: 10.1016/j.virol.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Nelson Bay orthoreovirus (NBV) is an emerging bat-borne virus and causes respiratory tract infections in humans sporadically. Over the last two decades, several strains genetically related to NBV were isolated from humans and various bat species, predominantly in Southeast Asia (SEA), suggesting a high prevalence of the NBV species in this region. In this study, an orthoreovirus (ORV) belonging to the NBV species was isolated from Indonesian fruit bats' feces, tentatively named Paguyaman orthoreovirus (PgORV). Serological studies revealed that 81.2% (108/133) of Indonesian fruit bats sera had neutralizing antibodies against PgORV. Whole-genome sequencing and phylogenetic analysis of PgORV suggested the occurrence of past reassortments with other NBV strains isolated in SEA, indicating the dispersal and circulation of NBV species among bats in this region. Intranasal PgORV inoculation of laboratory mice caused severe pneumonia. Our study characterized PgORV's unique genetic background and highlighted the potential risk of PgORV-related diseases in Indonesia.
Collapse
Affiliation(s)
- Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mai Kishimoto
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Herman M Chambaro
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Agus Setiyono
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Ekowati Handharyani
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Kentaro Uemura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan; Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hayato Harima
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Satoshi Taniguchi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Global Virus Network, Baltimore, MD, USA
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
6
|
Ganji VK, Buddala B, Yella NR, Putty K. First report of canine bufavirus in India. Arch Virol 2022; 167:1145-1149. [PMID: 35235060 PMCID: PMC8889056 DOI: 10.1007/s00705-022-05398-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/16/2022] [Indexed: 11/11/2022]
Abstract
Canine bufavirus (CBuV), a novel protoparvovirus of dogs that is associated with enteric and respiratory symptoms, has been reported only in Italy and China. The enteric prevalence of CBuV in India was investigated, and the nearly complete genome sequence (4292 bp) was amplified and reconstructed for one strain. A nucleotide sequence alignment indicated 93.42–98.81% identity to the other available CBuV sequences and 70.88–73.39% and 54.4–54.8% identity to human bufavirus and canine parvovirus 2 (CPV-2), respectively. The current strain is most closely related to Chinese CBuV strains, which together form an Asian lineage. This first report of the prevalence of CBuV in India emphasizes the need for further epidemiological surveillance.
Collapse
Affiliation(s)
- Vishweshwar Kumar Ganji
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Hyderabad-30, 500030, Rajendranagar, Hyderabad, India
| | - Bhagyalakshmi Buddala
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Hyderabad-30, 500030, Rajendranagar, Hyderabad, India
| | - Narasimha Reddy Yella
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Hyderabad-30, 500030, Rajendranagar, Hyderabad, India
| | - Kalyani Putty
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Hyderabad-30, 500030, Rajendranagar, Hyderabad, India.
| |
Collapse
|
7
|
Sasaki M. [Investigation of viruses harbored by wild animals: toward pre-emptive measures against future zoonotic diseases]. Uirusu 2022; 72:79-86. [PMID: 37899234 DOI: 10.2222/jsv.72.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Zoonoses are caused by pathogens transmitted from animals. To prepare mitigating measures against emerging zoonoses, it is imperative to identify animal reservoirs that carry potential pathogens and also elucidate the transmission routes of these pathogens. Under the continuous collaboration with counterparts from Zambia and Indonesia, we have so far identified various viruses in wild animals. Some of the identified viruses were phylogenetically distinct from known virus species and this finding led to approved new virus species by the International Committee on Taxonomy of Viruses (ICTV). Our studies provided new insights into the divergence, natural hosts and lifecycle of viruses. Through the exploration and characterization of viruses in animals, we will endeavor to contribute to the existing knowledge on viral pathogens in wild animals. This is cardinal for evidence-based preemptive measures against future zoonoses.
Collapse
Affiliation(s)
- Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control,Hokkaido University
| |
Collapse
|
8
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
9
|
Wang Y, Guo X, Zhang D, Sun J, Li W, Fu Z, Liu G, Li Y, Jiang S. Genetic and phylogenetic analysis of canine bufavirus from Anhui Province, Eastern China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 86:104600. [PMID: 33091576 PMCID: PMC7573632 DOI: 10.1016/j.meegid.2020.104600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023]
Abstract
Bufavirus is a novel virus associated with canine gastroenteritis. Three strains of bufavirus were first detected in dog feces collected from Anhui province in Eastern China. The near-complete genome sequences were amplified. Sequence alignment showed 98.3-99.5% homology between the three bufavirus strains and reference strains. Phylogenetic analysis showed the distributed viruses forming a cluster of close relationships. Selective pressure analysis of the VP2 region indicated that the canine bufavirus (CBuV) was mainly subject to negative selection during evolution. The negative selection site was located on the residue of B-cell epitopes, indicating minimal change to the virus's immunogenicity. Since this is the first report of CBuV circulating in Anhui Province, this study will provide further understanding of the phylogenetic and molecular characteristics of CBuV and serve as a reference for prevention and vaccine development.
Collapse
Affiliation(s)
- Yong Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Xu Guo
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Da Zhang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Jianfei Sun
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Wei Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ziteng Fu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yongdong Li
- Municipal Key Laboratory of Virology, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, PR China.
| | - Shudong Jiang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
10
|
Di Martino B, Sarchese V, Di Profio F, Palombieri A, Melegari I, Fruci P, Aste G, Bányai K, Fulvio M, Martella V. Genetic heterogeneity of canine bufaviruses. Transbound Emerg Dis 2020; 68:802-812. [PMID: 32688446 DOI: 10.1111/tbed.13746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 11/30/2022]
Abstract
Canine bufavirus (CBuV) is a protoparvovirus, genetically related to human and non-human primate bufaviruses and distantly related to canine parvovirus type 2 (CPV-2). CBuV was initially identified from young dogs with respiratory signs but subsequent studies revealed that this virus is also a common component of the canine enteric virome. In this survey, by assessing archival and recent collections of dogs faecal samples, CBuV DNA was detected with a higher prevalence rate (8.8%) in animals with enteritis than in control animals (5.0%), although this difference was not statistically significant. The rate of co-infections with other enteric viruses in diarrhoeic dogs was high (84.6%), mostly in association with canine parvovirus CPV-2 (90.1%). The complete ORF2 gene was determined in five samples, and the nearly full-length genome was reconstructed for three strains, 62/2017/ITA, 9AS/2005/ITA and 35/2018/ITA. Upon sequence comparison, the viruses appeared highly conserved in the NS1 (97.2%-97.9% nt and 97.5%-98.1% aa identities). In the complete VP2 coding region, three strains were similar to the prototype viruses (99.7-99.8 nt and 99.6%-99.8% aa) whilst strains 9AS/2005/ITA and 35/2016/ITA were distantly related (87.6%-89.3% nt and 93.9%-95.1% aa identities). Interestingly, genetic diversification occurred downstream conserved regions such as the VP1/VP2 splicing signals and/or the G-rich motif in the N terminus of the VP2, suggesting a potential recombination nature. Upon phylogenetic analysis, the two divergent CBuV strains formed a distinct cluster/genotype.
Collapse
Affiliation(s)
- Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Vittorio Sarchese
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Irene Melegari
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Paola Fruci
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Giovanni Aste
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Krisztián Bányai
- Hungarian Academy of Sciences Centre for Agricultural Research Institute for Veterinary Medical Research, Budapest, Hungary
| | - Marsilio Fulvio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| |
Collapse
|
11
|
Abstract
BACKGROUND Bufavirus is a newly discovered zoonotic virus reported in numerous mammals and humans. However, the epidemiological and genetic characteristics of porcine bufaviruses (PBuVs) in China remain unclear. METHODS To detect PBuVs in China, 384 samples (92 fecal and 292 serum specimens) were collected from 2017 to 2018, covering six provinces in China, and were evaluated by nested PCR. Further, the positive samples from different provinces were selected to obtain the complete genome of Chinese PBuVs. RESULTS The prevalence rate of PBuV was 16.7% in Chinese domestic pigs in the Guangdong, Guangxi, Fujian, Jiangxi, Anhui, and Henan provinces. Additionally, the positive rate of fecal specimens was higher than that of the serum samples. Next, we sequenced nine near-complete genomes of Chinese field PBuV strains from different provinces. Homology and phylogenetic analyses indicated that Chinese PBuVs have high genetic variation (93.3-99.2%), showed higher nucleotide identity with an Austrian PBuV strain (KU867071.1), and developed into different branches within the same cluster. CONCLUSION To our knowledge, this is the first report on PBuV in China, expanding the geographic boundaries of PBuV circulation. Our data demonstrate that PBuVs are widely distributed in the six Chinese provinces. Moreover, these Chinese PBuVs exhibit genetic variation and continuous evolution characteristics. Taken together, our findings provide a foundation for future studies on bufaviruses.
Collapse
|
12
|
Gonzalez G, Bair CR, Lamson DM, Watanabe H, Panto L, Carr MJ, Kajon AE. Genomic characterization of human adenovirus type 4 strains isolated worldwide since 1953 identifies two separable phylogroups evolving at different rates from their most recent common ancestor. Virology 2019; 538:11-23. [PMID: 31550608 DOI: 10.1016/j.virol.2019.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/29/2022]
Abstract
Species Human mastadenovirus E (HAdV-E) comprises several simian types and a single human type: HAdV-E4, a respiratory and ocular pathogen. RFLP analysis for the characterization of intratypic genetic variability has previously distinguished two HAdV-E4 clusters: prototype (p)-like and a-like. Our analysis of whole genome sequences confirmed two distinct lineages, which we refer to as phylogroups (PGs). PGs I and II comprise the p- and a-like genomes, respectively, and differ significantly in their G + C content (57.7% ± 0.013 vs 56.3% ± 0.015). Sequence differences distinguishing the two clades map to several regions of the genome including E3 and ITR. Bayesian analyses showed that the two phylogroups diverged approximately 602 years before the present. A relatively faster evolutionary rate was identified for PG II. Our data provide a rationale for the incorporation of phylogroup identity to HAdV-E4 strain designation to reflect the identified unique genetic characteristics that distinguish PGs I and II.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| | - Camden R Bair
- Infectious Disease Program, Lovelace Respiratory Research Institute, New Mexico, USA
| | - Daryl M Lamson
- Wadsworth Center, New York State Department of Health, New York, USA
| | - Hidemi Watanabe
- Graduate School of Information Science and Technology, Hokkaido University, Japan
| | - Laura Panto
- Graduate School of Information Science and Technology, Hokkaido University, Japan
| | - Michael J Carr
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Japan; National Virus Reference Laboratory, School of Medicine, University College Dublin, Ireland
| | - Adriana E Kajon
- Infectious Disease Program, Lovelace Respiratory Research Institute, New Mexico, USA.
| |
Collapse
|
13
|
Hanadhita D, Rahma A, Prawira AY, Mayasari NLPI, Satyaningtijas AS, Hondo E, Agungpriyono S. The spleen morphophysiology of fruit bats. Anat Histol Embryol 2019; 48:315-324. [PMID: 30968443 PMCID: PMC7159459 DOI: 10.1111/ahe.12442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/12/2019] [Accepted: 03/16/2019] [Indexed: 11/29/2022]
Abstract
Spleen is one of the important lymphoid organs with wide variations of morphological and physiological functions according to species. Morphology and function of the spleen in bats, which are hosts to several viral strains without exhibiting clinical symptoms, remain to be fully elucidated. This study aims to examine the spleen morphology of fruit bats associated with their physiological functions. Spleen histological observations were performed in three fruit bats species: Cynopterus titthaecheilus (n = 9), Rousettus leschenaultii (n = 3) and Pteropus vampyrus (n = 3). The spleens of these fruit bats were surrounded by a thin capsule. Red pulp consisted of splenic cord and wide vascular space filled with blood. Ellipsoids in all three studied species were found numerously and adjacent to one another forming macrophages aggregates. White pulp consisted of periarteriolar lymphoid sheaths (PALS), lymphoid follicles and marginal zone. The lymphoid follicle contained a germinal centre and a tingible body macrophage that might reflect an active immune system. The marginal zone was prominent and well developed. This study reports some differences in spleen structure of fruit bats compared to other bat species previously reported and discusses possible physiological implications of the spleen based on its morphology.
Collapse
Affiliation(s)
- Desrayni Hanadhita
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Anisa Rahma
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Andhika Yudha Prawira
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Ni Luh Putu Ika Mayasari
- Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Aryani Sismin Satyaningtijas
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | - Srihadi Agungpriyono
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| |
Collapse
|
14
|
Li J, Cui L, Deng X, Yu X, Zhang Z, Yang Z, Delwart E, Zhang W, Hua X. Canine bufavirus in faeces and plasma of dogs with diarrhoea, China. Emerg Microbes Infect 2019; 8:245-247. [PMID: 30866778 PMCID: PMC6455112 DOI: 10.1080/22221751.2018.1563457] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jingjiao Li
- a Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , People's Republic of China.,b Department of Microbiology, School of Medicine , Jiangsu University , Zhenjiang , People's Republic of China
| | - Li Cui
- a Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Xutao Deng
- c Blood Systems Research Institute , San Francisco , CA , USA
| | - Xiangqian Yu
- d Shanghai Pudong New Area Center for Animal Disease Prevention and Control , Shanghai , People's Republic of China
| | - Zhonghai Zhang
- d Shanghai Pudong New Area Center for Animal Disease Prevention and Control , Shanghai , People's Republic of China
| | - Zhibiao Yang
- a Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Eric Delwart
- c Blood Systems Research Institute , San Francisco , CA , USA.,e Department of Laboratory Medicine , University of California San Francisco , San Francisco , CA , USA
| | - Wen Zhang
- b Department of Microbiology, School of Medicine , Jiangsu University , Zhenjiang , People's Republic of China
| | - Xiuguo Hua
- a Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
15
|
Martella V, Lanave G, Mihalov-Kovács E, Marton S, Varga-Kugler R, Kaszab E, Di Martino B, Camero M, Decaro N, Buonavoglia C, Bányai K. Novel Parvovirus Related to Primate Bufaviruses in Dogs. Emerg Infect Dis 2019; 24:1061-1068. [PMID: 29774829 PMCID: PMC6004837 DOI: 10.3201/eid2406.171965] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A novel protoparvovirus species, related genetically to human bufaviruses, was identified in dogs with respiratory signs. The canine bufavirus was distantly related to the well-known canine protoparvovirus, canine parvovirus type 2, sharing low amino acid identities in the nonstructural protein 1 (40.6%) and in the capsid protein 1 (33.4%). By screening collections of fecal, nasal, and oropharyngeal samples obtained from juvenile dogs (<1 year of age), canine bufavirus DNA appeared as a common component of canine virome. The virus was common in the stool samples of dogs with or without enteric disease and in the nasal and oropharyngeal swab samples of dogs with respiratory signs. However, the virus was not detected in nasal and oropharyngeal swab samples from animals without clinical signs.
Collapse
|
16
|
Väisänen E, Mohanraj U, Kinnunen PM, Jokelainen P, Al-Hello H, Barakat AM, Sadeghi M, Jalilian FA, Majlesi A, Masika M, Mwaengo D, Anzala O, Delwart E, Vapalahti O, Hedman K, Söderlund-Venermo M. Global Distribution of Human Protoparvoviruses. Emerg Infect Dis 2019; 24:1292-1299. [PMID: 29912685 PMCID: PMC6038761 DOI: 10.3201/eid2407.172128] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Development of next-generation sequencing and metagenomics has revolutionized detection of novel viruses. Among these viruses are 3 human protoparvoviruses: bufavirus, tusavirus, and cutavirus. These viruses have been detected in feces of children with diarrhea. In addition, cutavirus has been detected in skin biopsy specimens of cutaneous T-cell lymphoma patients in France and in 1 melanoma patient in Denmark. We studied seroprevalences of IgG against bufavirus, tusavirus, and cutavirus in various populations (n = 840), and found a striking geographic difference in prevalence of bufavirus IgG. Although prevalence was low in adult populations in Finland (1.9%) and the United States (3.6%), bufavirus IgG was highly prevalent in populations in Iraq (84.8%), Iran (56.1%), and Kenya (72.3%). Conversely, cutavirus IgG showed evenly low prevalences (0%–5.6%) in all cohorts, and tusavirus IgG was not detected. These results provide new insights on the global distribution and endemic areas of protoparvoviruses.
Collapse
|
17
|
Sun W, Zhang S, Huang H, Wang W, Cao L, Zheng M, Yin Y, Zhang H, Lu H, Jin N. First identification of a novel parvovirus distantly related to human bufavirus from diarrheal dogs in China. Virus Res 2019; 265:127-131. [PMID: 30914299 DOI: 10.1016/j.virusres.2019.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Bufaviruses are small, nonenveloped, single-stranded DNA viruses belonging to the subfamily Parvovirinae. Human bufaviruses were first identified in 2012 in fecal samples from children with diarrhea. A new parvovirus of canines that was first detected in various samples from dogs with enteric and respiratory symptoms in Italy between 2014 and 2018 is closely related to the newly described human bufavirus. To explore the prevalence and genetic diversity of CBuV in Chinese dogs, 540 canine parvovirus (CPV)-positive serum and diarrhea samples were collected in Guangxi Province between 2016 and 2018. Among the samples, 6.25% (5/80) of rectal swabs and 2.5% (5/200) of CPV PCR-positive samples were positive for CBuV. However, the virus was not detected in CPV PCR-negative samples or nasal swabs. Two CBuV isolates were identified from CPV-positive fecal and serum samples by complete sequence analysis, with 99.8%-99.9% NS1 and VP2 protein identity to each another. Sequence analysis indicated that the CBuV GXNN01-2018 isolate VP2 protein shares 99.6% identity with the Italian CBuV ITA/2015/297 isolate and 62.3%-65.5% identity with human bufavirus. Phylogenetic analysis showed that CBuV was significantly distinct from other known bufaviruses and was most closely related to CBuV ITA/2015/297. This is the first report of the existence of CBuV in China, and our findings will strengthen the understanding of the epidemiology of bufaviruses in different animals.
Collapse
Affiliation(s)
- Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Shiheng Zhang
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Haixin Huang
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Wei Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China; College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Liang Cao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Min Zheng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Hongyun Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Huijun Lu
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.
| | - Ningyi Jin
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China; College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
18
|
Detection of adenovirus, papillomavirus and parvovirus in Brazilian bats of the species Artibeus lituratus and Sturnira lilium. Arch Virol 2019; 164:1015-1025. [PMID: 30740637 PMCID: PMC7086806 DOI: 10.1007/s00705-018-04129-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/27/2018] [Indexed: 01/21/2023]
Abstract
Bats play a significant role in maintaining their ecosystems through pollination, dispersal of seeds, and control of insect populations, but they are also known to host many microorganisms and have been described as natural reservoirs for viruses with zoonotic potential. The diversity of viruses in these animals remains largely unknown, however, because studies are limited by species, location, virus target, or sample type. Therefore, the aim of this study was to detect fragments of viral genomes in bat samples. We performed high-throughput sequencing analysis and specific PCR and RT-PCR on pools of anal and oropharyngeal swabs from Artibeus lituratus and Sturnira lilium collected in southern Brazil. As a result, a member of the family Adenoviridae related to human adenovirus C was detected in anal swabs from S. lilium. In addition, we detected a papillomavirus in an anal swab from A. lituratus. Our analyses also allowed the detection of adenoviruses and parvoviruses in oropharyngeal swabs collected from A. lituratus. These results increase our knowledge about viral diversity and illustrate the importance of conducting virus surveillance in bats.
Collapse
|
19
|
de Souza WM, Dennis T, Fumagalli MJ, Araujo J, Sabino-Santos G, Maia FGM, Acrani GO, Carrasco ADOT, Romeiro MF, Modha S, Vieira LC, Ometto T, Queiroz LH, Durigon EL, Nunes MRT, Figueiredo LTM, Gifford RJ. Novel Parvoviruses from Wild and Domestic Animals in Brazil Provide New Insights into Parvovirus Distribution and Diversity. Viruses 2018; 10:E143. [PMID: 29565808 PMCID: PMC5923437 DOI: 10.3390/v10040143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Parvoviruses (family Parvoviridae) are small, single-stranded DNA viruses. Many parvoviral pathogens of medical, veterinary and ecological importance have been identified. In this study, we used high-throughput sequencing (HTS) to investigate the diversity of parvoviruses infecting wild and domestic animals in Brazil. We identified 21 parvovirus sequences (including twelve nearly complete genomes and nine partial genomes) in samples derived from rodents, bats, opossums, birds and cattle in Pernambuco, São Paulo, Paraná and Rio Grande do Sul states. These sequences were investigated using phylogenetic and distance-based approaches and were thereby classified into eight parvovirus species (six of which have not been described previously), representing six distinct genera in the subfamily Parvovirinae. Our findings extend the known biogeographic range of previously characterized parvovirus species and the known host range of three parvovirus genera (Dependovirus, Aveparvovirus and Tetraparvovirus). Moreover, our investigation provides a window into the ecological dynamics of parvovirus infections in vertebrates, revealing that many parvovirus genera contain well-defined sub-lineages that circulate widely throughout the world within particular taxonomic groups of hosts.
Collapse
Affiliation(s)
- William Marciel de Souza
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo,14049-900 Ribeirão Preto, SP, Brazil.
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Tristan Dennis
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Marcílio Jorge Fumagalli
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo,14049-900 Ribeirão Preto, SP, Brazil.
| | - Jansen Araujo
- Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil.
| | - Gilberto Sabino-Santos
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo,14049-900 Ribeirão Preto, SP, Brazil.
| | - Felipe Gonçalves Motta Maia
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo,14049-900 Ribeirão Preto, SP, Brazil.
- Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil.
| | | | | | - Marilia Farignoli Romeiro
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo,14049-900 Ribeirão Preto, SP, Brazil.
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Luiz Carlos Vieira
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo,14049-900 Ribeirão Preto, SP, Brazil.
| | - Tatiana Ometto
- Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil.
| | - Luzia Helena Queiroz
- Faculty of Veterinary Medicine, São Paulo State University, Araçatuba, SP 16050-680, Brazil.
| | - Edison Luiz Durigon
- Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil.
| | - Márcio Roberto Teixeira Nunes
- Center for Technological Innovations, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará 67030-000, Pará, Brazil.
| | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo,14049-900 Ribeirão Preto, SP, Brazil.
| | | |
Collapse
|
20
|
Lau SKP, Ahmed SS, Tsoi HW, Yeung HC, Li KSM, Fan RYY, Zhao PSH, Lau CCC, Lam CSF, Choi KKF, Chan BCH, Cai JP, Wong SSY, Chen H, Zhang HL, Zhang L, Wang M, Woo PCY, Yuen KY. Bats host diverse parvoviruses as possible origin of mammalian dependoparvoviruses and source for bat-swine interspecies transmission. J Gen Virol 2017; 98:3046-3059. [PMID: 29106348 DOI: 10.1099/jgv.0.000969] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Compared to the enormous species diversity of bats, relatively few parvoviruses have been reported. We detected diverse and potentially novel parvoviruses from bats in Hong Kong and mainland China. Parvoviruses belonging to Amdoparvovirus, Bocaparvovirus and Dependoparvovirus were detected in alimentary, liver and spleen samples from 16 different chiropteran species of five families by PCR. Phylogenetic analysis of partial helicase sequences showed that they potentially belonged to 25 bocaparvovirus, three dependoparvovirus and one amdoparvovirus species. Nearly complete genome sequencing confirmed the existence of at least four novel bat bocaparvovirus species (Rp-BtBoV1 and Rp-BtBoV2 from Rhinolophus pusillus, Rs-BtBoV2 from Rhinolophus sinicus and Rol-BtBoV1 from Rousettus leschenaultii) and two novel bat dependoparvovirus species (Rp-BtAAV1 from Rhinolophus pusillus and Rs-BtAAV1 from Rhinolophus sinicus). Rs-BtBoV2 was closely related to Ungulate bocaparvovirus 5 with 93, 72.1 and 78.7 % amino acid identities in the NS1, NP1 and VP1/VP2 genes, respectively. The detection of bat bocaparvoviruses, including Rs-BtBoV2, closely related to porcine bocaparvoviruses, suggests recent interspecies transmission of bocaparvoviruses between bats and swine. Moreover, Rp-BtAAV1 and Rs-BtAAV1 were most closely related to human AAV1 with 48.7 and 57.5 % amino acid identities in the rep gene. The phylogenetic relationship between BtAAVs and other mammalian AAVs suggests bats as the ancestral origin of mammalian AAVs. Furthermore, parvoviruses of the same species were detected from multiple bat species or families, supporting the ability of bat parvoviruses to cross species barriers. The results extend our knowledge on the diversity of bat parvoviruses and the role of bats in parvovirus evolution and emergence in humans and animals.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Syed Shakeel Ahmed
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Hoi-Wah Tsoi
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Hazel C Yeung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Kenneth S M Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Rachel Y Y Fan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Pyrear S H Zhao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Candy C C Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Carol S F Lam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Kelvin K F Choi
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Ben C H Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Samson S Y Wong
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Hai-Lin Zhang
- Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, PR China.,Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali, Yunnan, PR China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangzhou, Guangdong Province, PR China.,Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangzhou, Guangdong Province, PR China.,Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, PR China
| | - Ming Wang
- Guangzhou Centre for Disease Control, Guangzhou, Guangdong Province, PR China
| | - Patrick C Y Woo
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
21
|
[Discovery of DNA viruses in wildlife in Zambia and Indonesia]. Uirusu 2017; 67:151-160. [PMID: 30369539 DOI: 10.2222/jsv.67.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Zoonoses originate from pathogens harbored in domestic and wild animals and therefore it is likely impossible to completely eradicate zoonotic diseases. For pre-emptive measures to attempt to predict the emergence of zoonosis outbreaks and the prevention of future epidemics and pandemics, it is imperative to identify natural host animals carrying potential pathogens and elucidate the routes of pathogen transmission into the human population. Our research team is conducting epidemiological research studies in Zambia and Indonesia for the control of viral zoonotic diseases. In this review, we present the research findings, including the discovery of orthopoxviruses and polyomaviruses in wildlife in Zambia and the identification of herpesviruses in bats in Indonesia among our activities.
Collapse
|
22
|
Väisänen E, Paloniemi M, Kuisma I, Lithovius V, Kumar A, Franssila R, Ahmed K, Delwart E, Vesikari T, Hedman K, Söderlund-Venermo M. Epidemiology of two human protoparvoviruses, bufavirus and tusavirus. Sci Rep 2016; 6:39267. [PMID: 27966636 PMCID: PMC5155296 DOI: 10.1038/srep39267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/21/2016] [Indexed: 01/19/2023] Open
Abstract
Two human parvoviruses were recently discovered by metagenomics in Africa, bufavirus (BuV) in 2012 and tusavirus (TuV) in 2014. These viruses have been studied exclusively by PCR in stool and detected only in patients with diarrhoea, although at low prevalence. Three genotypes of BuV have been identified. We detected, by in-house EIA, BuV1-3 IgG antibodies in 7/228 children (3.1%) and 10/180 adults (5.6%), whereas TuV IgG was found in one child (0.4%). All children and 91% of the adults were Finnish, yet interestingly 3/6 adults of Indian origin were BuV-IgG positive. By competition EIA, no cross-reactivity between the BuVs was detected, indicating that the BuV genotypes represent distinct serotypes. Furthermore, we analysed by BuV qPCR stool and nasal swab samples from 955 children with gastroenteritis, respiratory illness, or both, and found BuV DNA in three stools (0.3%) and for the first time in a nasal swab (0.1%). This is the first study documenting the presence of BuV and TuV antibodies in humans. Although the seroprevalences of both viruses were low in Finland, our results indicate that BuV infections might be widespread in Asia. The BuV-specific humoral immune responses appeared to be strong and long-lasting, pointing to systemic infection in humans.
Collapse
Affiliation(s)
- Elina Väisänen
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
| | - Minna Paloniemi
- Vaccine Research Center, University of Tampere, Tampere 33520, Finland.,Fimlab laboratories ltd, Tampere 33520, Finland
| | - Inka Kuisma
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
| | - Väinö Lithovius
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
| | - Arun Kumar
- Department of Virology, University of Helsinki, Helsinki 00290, Finland.,Health Sciences North Research Institute, Sudbury, ON P3E 5J1, Canada
| | - Rauli Franssila
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
| | - Kamruddin Ahmed
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA 94118, USA.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| | - Timo Vesikari
- Vaccine Research Center, University of Tampere, Tampere 33520, Finland
| | - Klaus Hedman
- Department of Virology, University of Helsinki, Helsinki 00290, Finland.,Helsinki University Hospital, HUSLAB, Helsinki 00290, Finland
| | | |
Collapse
|
23
|
Phan TG, Dreno B, da Costa AC, Li L, Orlandi P, Deng X, Kapusinszky B, Siqueira J, Knol AC, Halary F, Dantal J, Alexander KA, Pesavento PA, Delwart E. A new protoparvovirus in human fecal samples and cutaneous T cell lymphomas (mycosis fungoides). Virology 2016; 496:299-305. [PMID: 27393975 DOI: 10.1016/j.virol.2016.06.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
Abstract
We genetically characterized seven nearly complete genomes in the protoparvovirus genus from the feces of children with diarrhea. The viruses, provisionally named cutaviruses (CutaV), varied by 1-6% nucleotides and shared ~76% and ~82% amino acid identity with the NS1 and VP1 of human bufaviruses, their closest relatives. Using PCR, cutavirus DNA was found in 1.6% (4/245) and 1% (1/100) of diarrhea samples from Brazil and Botswana respectively. In silico analysis of pre-existing metagenomics datasets then revealed closely related parvovirus genomes in skin biopsies from patients with epidermotropic cutaneous T-cell lymphoma (CTCL or mycosis fungoides). PCR of skin biopsies yielded cutavirus DNA in 4/17 CTCL, 0/10 skin carcinoma, and 0/21 normal or noncancerous skin biopsies. In situ hybridization of CTCL skin biopsies detected viral genome within rare individual cells in regions of neoplastic infiltrations. The influence of cutavirus infection on human enteric functions and possible oncolytic role in CTCL progression remain to be determined.
Collapse
Affiliation(s)
- Tung G Phan
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Brigitte Dreno
- Department of Dermatology, Nantes University Hospital, INSERM U 892, Nantes, France.
| | - Antonio Charlys da Costa
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Linlin Li
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, USA
| | | | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Beatrix Kapusinszky
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Juliana Siqueira
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Anne-Chantal Knol
- Department of Dermatology, Nantes University Hospital, INSERM U 892, Nantes, France
| | - Franck Halary
- Institute for Transplantation/Urology and Nephrology, Nantes University Hospital, Nantes F44093, France; INSERM, UMR 1064-Center for Research in Transplantation and Immunology, Nantes F44093, France; University of Nantes, Nantes F44093, France
| | - Jacques Dantal
- Department of Nephrology, Clinical Immunology, Transplantation, Nantes University Hospital, Nantes, France
| | - Kathleen A Alexander
- Department of Fisheries and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA; CARACAL, Centre for African Resources: Animals, Communities, and Land Use, Kasane, Botswana
| | - Patricia A Pesavento
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|