1
|
Ma Y, Shih CH, Cheng J, Chen HC, Wang LJ, Tan Y, Chiu YC, Chen YC. High-Throughput Empirical and Virtual Screening to Discover Novel Inhibitors of Polyploid Giant Cancer Cells in Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614522. [PMID: 39386568 PMCID: PMC11463688 DOI: 10.1101/2024.09.23.614522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Therapy resistance in breast cancer is increasingly attributed to polyploid giant cancer cells (PGCCs), which arise through whole-genome doubling and exhibit heightened resilience to standard treatments. Characterized by enlarged nuclei and increased DNA content, these cells tend to be dormant under therapeutic stress, driving disease relapse. Despite their critical role in resistance, strategies to effectively target PGCCs are limited, largely due to the lack of high-throughput methods for assessing their viability. Traditional assays lack the sensitivity needed to detect PGCC-specific elimination, prompting the development of novel approaches. To address this challenge, we developed a high-throughput single-cell morphological analysis workflow designed to differentiate compounds that selectively inhibit non-PGCCs, PGCCs, or both. Using this method, we screened a library of 2,726 FDA Phase 1-approved drugs, identifying promising anti-PGCC candidates, including proteasome inhibitors, FOXM1, CHK, and macrocyclic lactones. Notably, RNA-Seq analysis of cells treated with the macrocyclic lactone Pyronaridine revealed AXL inhibition as a potential strategy for targeting PGCCs. Although our single-cell morphological analysis pipeline is powerful, empirically testing all existing compounds is impractical and inefficient. To overcome this limitation, we trained a machine learning model to predict anti-PGCC efficacy in silico, integrating chemical fingerprints and compound descriptions from prior publications and databases. The model demonstrated a high correlation with experimental outcomes and predicted efficacious compounds in an expanded library of over 6,000 drugs. Among the top-ranked predictions, we experimentally validated two compounds as potent PGCC inhibitors. These findings underscore the synergistic potential of integrating high-throughput empirical screening with machine learning-based virtual screening to accelerate the discovery of novel therapies, particularly for targeting therapy-resistant PGCCs in breast cancer.
Collapse
Affiliation(s)
- Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Chien-Hung Shih
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
| | - Hsiao-Chun Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Li-Ju Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
| | - Yanhao Tan
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Division of Malignant Hematology and Medical Oncology, Department of Medicine, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Yu-Chiao Chiu
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Division of Malignant Hematology and Medical Oncology, Department of Medicine, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Chen HC, Ma Y, Cheng J, Chen YC. Advances in Single-Cell Techniques for Linking Phenotypes to Genotypes. CANCER HETEROGENEITY AND PLASTICITY 2024; 1:0004. [PMID: 39156821 PMCID: PMC11328949 DOI: 10.47248/chp2401010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Single-cell analysis has become an essential tool in modern biological research, providing unprecedented insights into cellular behavior and heterogeneity. By examining individual cells, this approach surpasses conventional population-based methods, revealing critical variations in cellular states, responses to environmental cues, and molecular signatures. In the context of cancer, with its diverse cell populations, single-cell analysis is critical for investigating tumor evolution, metastasis, and therapy resistance. Understanding the phenotype-genotype relationship at the single-cell level is crucial for deciphering the molecular mechanisms driving tumor development and progression. This review highlights innovative strategies for selective cell isolation based on desired phenotypes, including robotic aspiration, laser detachment, microraft arrays, optical traps, and droplet-based microfluidic systems. These advanced tools facilitate high-throughput single-cell phenotypic analysis and sorting, enabling the identification and characterization of specific cell subsets, thereby advancing therapeutic innovations in cancer and other diseases.
Collapse
Affiliation(s)
- Hsiao-Chun Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
Chiang CC, Anne R, Chawla P, Shaw RM, He S, Rock EC, Zhou M, Cheng J, Gong YN, Chen YC. Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics. LAB ON A CHIP 2024; 24:3169-3182. [PMID: 38804084 PMCID: PMC11165951 DOI: 10.1039/d4lc00197d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Despite recent advances in cancer treatment, refining therapeutic agents remains a critical task for oncologists. Precise evaluation of drug effectiveness necessitates the use of 3D cell culture instead of traditional 2D monolayers. Microfluidic platforms have enabled high-throughput drug screening with 3D models, but current viability assays for 3D cancer spheroids have limitations in reliability and cytotoxicity. This study introduces a deep learning model for non-destructive, label-free viability estimation based on phase-contrast images, providing a cost-effective, high-throughput solution for continuous spheroid monitoring in microfluidics. Microfluidic technology facilitated the creation of a high-throughput cancer spheroid platform with approximately 12 000 spheroids per chip for drug screening. Validation involved tests with eight conventional chemotherapeutic drugs, revealing a strong correlation between viability assessed via LIVE/DEAD staining and phase-contrast morphology. Extending the model's application to novel compounds and cell lines not in the training dataset yielded promising results, implying the potential for a universal viability estimation model. Experiments with an alternative microscopy setup supported the model's transferability across different laboratories. Using this method, we also tracked the dynamic changes in spheroid viability during the course of drug administration. In summary, this research integrates a robust platform with high-throughput microfluidic cancer spheroid assays and deep learning-based viability estimation, with broad applicability to various cell lines, compounds, and research settings.
Collapse
Affiliation(s)
- Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Rajiv Anne
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Pooja Chawla
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Rachel M Shaw
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Sarah He
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Carnegie Mellon University, Department of Biological Sciences, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Yi-Nan Gong
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Fotinós J, Marks MP, Barberis L, Vellón L. Assessing the distribution of cancer stem cells in tumorspheres. Sci Rep 2024; 14:11013. [PMID: 38745039 PMCID: PMC11094167 DOI: 10.1038/s41598-024-61558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Cancer Stem Cells presumably drive tumor growth and resistance to conventional cancer treatments. From a previous computational model, we inferred that these cells are not uniformly distributed in the bulk of a tumorsphere. To confirm this result, we cultivated tumorspheres enriched in stem cells, and performed immunofluorescent detection of the stemness marker SOX2 using confocal microscopy. In this article, we present an image processing method that reconstructs the amount and location of the Cancer Stem Cells in the spheroids. Its advantage is the use of a statistical criterion to classify the cells in Stem and Differentiated, instead of setting an arbitrary threshold. Moreover, the analysis of the experimental images presented in this work agrees with the results from our computational models, thus enforcing the notion that the distribution of Cancer Stem Cells in a tumorsphere is non-homogeneous. Additionally, the method presented here provides a useful tool for analyzing any image in which different kinds of cells are stained with different markers.
Collapse
Affiliation(s)
- Jerónimo Fotinós
- IFEG-CONICET and FAMAF, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Lucas Barberis
- IFEG-CONICET and FAMAF, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | |
Collapse
|
5
|
Wang X, He T, Chen Z, Chen J, Luo Y, Lin D, Li X, Liu D. Selective expansion of renal cancer stem cells using microfluidic single-cell culture arrays for anticancer drug testing. LAB ON A CHIP 2024; 24:1702-1714. [PMID: 38321884 DOI: 10.1039/d3lc00922j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The suboptimal prognosis associated with drug therapy for renal cancer can be attributed to the presence of stem-cell-like renal cancer cells. However, the limited number of these cells prevents conventional drug screening assays from effectively assessing the response of renal cancer stem cells to anti-cancer agents. To address this issue, the present study employed microfluidic single-cell culture arrays to expand renal cancer stem cells by exploiting the anti-apoptosis and self-renewal properties of tumor stem cells. A microfluidic chip with 18 000 hydrophilic microwells was designed and fabricated to establish the single-cell culture array. Over a 7 day culture, the large-scale single-cell culture yielded a limited quantity of single-cell-derived tumorspheres. The sphere formation rates for Caki-1, 786-O, and ACHN cells were determined to be 8.74 ± 0.53%, 12.02 ± 1.43%, and 4.98 ± 1.68%, respectively. The expanded cells exhibited stemness characteristics, as indicated by immunofluorescence, flow cytometry, serial passaging, and in vitro differentiation assays. Additionally, the comparative transcriptomic analysis showed significant differences in the gene expression patterns of the expanded cells compared to the differentiated renal cancer cells. The drug testing indicated that renal cancer stem cells exhibited reduced sensitivity towards the tyrosine kinase inhibitors sorafenib and sunitinib, compared to differentiated renal cancer cells. This reduced sensitivity can be attributed to the elevated expression levels of tyrosine kinase in renal cancer stem cells. This present study provides evidence that the utilization of microfluidic single-cell culture arrays for selective cell expansion can facilitate drug testing of renal cancer stem cells.
Collapse
Affiliation(s)
- Xiaogang Wang
- Department of Urology, The Second Affiliated Hospital, Dalian Medical University, 467, Zhongshan Road, Shahekou District, Dalian 116021, Liaoning, China.
| | - Tao He
- Department of Urology, The Second Affiliated Hospital, Dalian Medical University, 467, Zhongshan Road, Shahekou District, Dalian 116021, Liaoning, China.
| | - Zihe Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510180, China
| | - Jueming Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510180, China
| | - Yanzhang Luo
- Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510180, China
| | - Dongguo Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510180, China
| | - Xiancheng Li
- Department of Urology, The Second Affiliated Hospital, Dalian Medical University, 467, Zhongshan Road, Shahekou District, Dalian 116021, Liaoning, China.
| | - Dayu Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| |
Collapse
|
6
|
Zhou M, Ma Y, Chiang CC, Rock EC, Butler SC, Anne R, Yatsenko S, Gong Y, Chen YC. Single-cell morphological and transcriptome analysis unveil inhibitors of polyploid giant breast cancer cells in vitro. Commun Biol 2023; 6:1301. [PMID: 38129519 PMCID: PMC10739852 DOI: 10.1038/s42003-023-05674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Considerable evidence suggests that breast cancer therapeutic resistance and relapse can be driven by polyploid giant cancer cells (PGCCs). The number of PGCCs increases with the stages of disease and therapeutic stress. Given the importance of PGCCs, it remains challenging to eradicate them. To discover effective anti-PGCC compounds, there is an unmet need to rapidly distinguish compounds that kill non-PGCCs, PGCCs, or both. Here, we establish a single-cell morphological analysis pipeline with a high throughput and great precision to characterize dynamics of individual cells. In this manner, we screen a library to identify promising compounds that inhibit all cancer cells or only PGCCs (e.g., regulators of HDAC, proteasome, and ferroptosis). Additionally, we perform scRNA-Seq to reveal altered cell cycle, metabolism, and ferroptosis sensitivity in breast PGCCs. The combination of single-cell morphological and molecular investigation reveals promising anti-PGCC strategies for breast cancer treatment and other malignancies.
Collapse
Affiliation(s)
- Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, USA
| | - Samuel Charles Butler
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Rajiv Anne
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, USA
| | - Svetlana Yatsenko
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Magee Womens Research Institute, Pittsburgh, PA, USA
| | - Yinan Gong
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, USA.
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
7
|
Hetzel LA, Ali A, Corbo V, Hankemeier T. Microfluidics and Organoids, the Power Couple of Developmental Biology and Oncology Studies. Int J Mol Sci 2023; 24:10882. [PMID: 37446057 DOI: 10.3390/ijms241310882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Organoids are an advanced cell model that hold the key to unlocking a deeper understanding of in vivo cellular processes. This model can be used in understanding organ development, disease progression, and treatment efficacy. As the scientific world embraces the model, it must also establish the best practices for cultivating organoids and utilizing them to the greatest potential in assays. Microfluidic devices are emerging as a solution to overcome the challenges of organoids and adapt assays. Unfortunately, the various applications of organoids often depend on specific features in a device. In this review, we discuss the options and considerations for features and materials depending on the application and development of the organoid.
Collapse
Affiliation(s)
- Laura Ann Hetzel
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Ahmed Ali
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, ARC-Net Research Centre, University of Verona, 37134 Verona, Italy
| | - Thomas Hankemeier
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
8
|
Karami Fath M, Akhavan Masouleh R, Afifi N, Loghmani S, Tamimi P, Fazeli A, Mousavian SA, Falsafi MM, Barati G. PI3K/AKT/mTOR signaling pathway modulation by circular RNAs in breast cancer progression. Pathol Res Pract 2023; 241:154279. [PMID: 36584499 DOI: 10.1016/j.prp.2022.154279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The PI3K/Akt/mTOR signaling pathway is responsible for many cellular behaviors, including survival, growth, and proliferation. A newly identified RNA, circular RNA (circRNA), plays a crucial role in the regulation of gene expression. The upregulation of the PI3K/Akt pathway through dysregulated circRNAs promotes breast tumor initiation, growth, and progression. The dysregulation of PI3K/Akt-regulating circRNAs seems to be directly correlated with breast cancer clinical features, including overall survival, tumor size, cancer stage, and lymph node metastasis. In addition, targeting these circRNAs may be a promising option in cancer-targeted therapy. Understanding the molecular pathogenesis of the circRNA-PI3K/AKT axis may give the insight to develop new therapeutic and diagnostic approaches for breast cancer therapy. Here we reviewed the expression and functions of PI3K/AKT-regulating circRNAs, and their correlation with breast cancer clinical features. In addition, the potential of PI3K/AKT-regulating circRNAs as diagnostic/prognostic biomarkers or therapeutic targets was discussed.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Negin Afifi
- School of Medicine, Islamic Azad University, Qeshm Branch, Qeshm, Iran
| | - Shirin Loghmani
- Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Parham Tamimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Fazeli
- Department of Medical Education, Medical Education Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Mousavian
- Pharmacy Department, EMU(Eastern Mediterranean University), Famagusta, North Cyprus, Republic of Cyprus
| | | | - Ghasem Barati
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; Stem Cell Technology Research Center, Tehran, Iran.
| |
Collapse
|
9
|
Lamichhane A, Shahi Thakuri P, Singh S, Rafsanjani Nejad P, Heiss J, Luker GD, Tavana H. Therapeutic Targeting of Cancer Stem Cells Prevents Resistance of Colorectal Cancer Cells to MEK Inhibition. ACS Pharmacol Transl Sci 2022; 5:724-734. [PMID: 36110381 PMCID: PMC9469186 DOI: 10.1021/acsptsci.1c00257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Indexed: 11/30/2022]
Abstract
Drug resistance is a leading cause for the failure of cancer treatments. Plasticity of cancer cells to acquire stem cell-like properties enables them to escape drug toxicity through different adaptive mechanisms. Eliminating cancer stem cells (CSCs) can potentially improve treatment outcomes for patients. To determine the role of CSCs in resistance of colorectal cancer cells to targeted therapies and identify treatment strategies, we treated spheroids of BRAFmut and KRASmut colorectal cancer cells with inhibitors of the mitogen-activated protein kinase pathway and studied resistance mechanisms through gene and protein expression analyses. We found that treatments activated several oncogenic pathways and expression of CSC markers CD166 and ALDH1A3. We identified a specific combination treatment using trametinib and mithramycin A to simultaneously inhibit the CSC phenotype and activities of several pathways in cancer cells. This study demonstrates the feasibility of therapeutic targeting of CSCs as a strategy to block tumorigenic activities of cancer cells.
Collapse
Affiliation(s)
- Astha Lamichhane
- Department
of Biomedical Engineering, The University
of Akron, Akron, Ohio 44325, United States
| | - Pradip Shahi Thakuri
- Department
of Biomedical Engineering, The University
of Akron, Akron, Ohio 44325, United States
| | - Sunil Singh
- Department
of Biomedical Engineering, The University
of Akron, Akron, Ohio 44325, United States
| | - Pouria Rafsanjani Nejad
- Department
of Biomedical Engineering, The University
of Akron, Akron, Ohio 44325, United States
| | - Jacob Heiss
- Department
of Biomedical Engineering, The University
of Akron, Akron, Ohio 44325, United States
| | - Gary D. Luker
- Department
of Radiology, Microbiology and Immunology, Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Hossein Tavana
- Department
of Biomedical Engineering, The University
of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
10
|
Cell Cycle Regulation by Integrin-Mediated Adhesion. Cells 2022; 11:cells11162521. [PMID: 36010598 PMCID: PMC9406542 DOI: 10.3390/cells11162521] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Cell cycle and cell adhesion are two interdependent cellular processes regulating each other, reciprocally, in every cell cycle phase. The cell adhesion to the extracellular matrix (ECM) via integrin receptors triggers signaling pathways required for the cell cycle progression; the passage from the G1 to S phase and the completion of cytokinesis are the best-understood events. Growing evidence, however, suggests more adhesion-dependent regulatory aspects of the cell cycle, particularly during G2 to M transition and early mitosis. Conversely, the cell cycle machinery regulates cell adhesion in manners recently shown driven mainly by cyclin-dependent kinase 1 (CDK1). This review summarizes the recent findings regarding the role of integrin-mediated cell adhesion and its downstream signaling components in regulating the cell cycle, emphasizing the cell cycle progression through the G2 and early M phases. Further investigations are required to raise our knowledge about the molecular mechanisms of crosstalk between cell adhesion and the cell cycle in detail.
Collapse
|
11
|
In Vitro Growth Inhibition, Caspase-Dependent Apoptosis, and S and G2/M Phase Arrest in Breast Cancer Cells Induced by Fluorine-Incorporated Gold I Compound, Ph3PAu[SC(OMe)=NC6H4F-3]. Int J Breast Cancer 2022; 2022:7168210. [PMID: 35910309 PMCID: PMC9334116 DOI: 10.1155/2022/7168210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Gold-based anticancer compounds have been attracting increasing research interest due to their ability to kill cancer cells resistant to platinum-based compounds. Gold I- and gold III-based complexes have shown satisfactory anticancer activities. In this study, two new fluorine-incorporated gold (I) compounds such as Ph3PAu[SC(OMe)=NC6H4F-3] and DPPFeAu2[(SC(OMe)=NC6H4F-3)]2 were evaluated for their in vitro activities against human breast cancer cell lines, primary breast cancer cells, and breast cancer stem cells (parental breast cancer stem cells, BCSC-P, and breast cancer stem cells, BCSC). Assays for growth inhibition and cytotoxicity, including real-time cell analysis, were carried out to screen effective antibreast cancer compounds. In addition, further in vitro assays such as apoptosis, caspase 3/7 activity, and cell cycle analysis were performed to observe the action and mechanism of killing breast cancer cells by the selected gold I compound, Ph3PAu[SC(OMe)=NC6H4F-3]. The gold (I) compound, Ph3PAu[SC(OMe)=NC6H4F-3], showed low toxicity to H9c2 normal cells and significant growth inhibition in MDA-MB-231 and MCF-7 cells, primary breast cancer cells, and breast cancer stem cells (BCSC-P and BCSC). The IC50 doses of the gold (I) compound Ph3PAu[SC(OMe)=NC6H4F-3] against the breast cancer cell lines MDA-MB-231 and MCF-7 were approximately 6-fold lower than that of cisplatin (cis-diamineplatinum (II) dichloride, CDDP). Moreover, the compound Ph3PAu[SC(OMe)=NC6H4F-3] induced caspase 3/7-dependent apoptosis and cell cycle arrest at S and G2/M phases. Ph3PAu[SC(OMe)=NC6H4F-3], a gold (I) compound incorporated with fluorine, is a potential candidate for the treatment of breast cancer.
Collapse
|
12
|
Fath MK, Ebrahimi M, Nourbakhsh E, Hazara AZ, Mirzaei A, Shafieyari S, Salehi A, Hoseinzadeh M, Payandeh Z, Barati G. PI3K/Akt/mTOR Signaling Pathway in Cancer Stem Cells. Pathol Res Pract 2022; 237:154010. [DOI: 10.1016/j.prp.2022.154010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/30/2022]
|
13
|
Barbosa MAG, Xavier CPR, Pereira RF, Petrikaitė V, Vasconcelos MH. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers (Basel) 2021; 14:190. [PMID: 35008353 PMCID: PMC8749977 DOI: 10.3390/cancers14010190] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Today, innovative three-dimensional (3D) cell culture models have been proposed as viable and biomimetic alternatives for initial drug screening, allowing the improvement of the efficiency of drug development. These models are gaining popularity, given their ability to reproduce key aspects of the tumor microenvironment, concerning the 3D tumor architecture as well as the interactions of tumor cells with the extracellular matrix and surrounding non-tumor cells. The development of accurate 3D models may become beneficial to decrease the use of laboratory animals in scientific research, in accordance with the European Union's regulation on the 3R rule (Replacement, Reduction, Refinement). This review focuses on the impact of 3D cell culture models on cancer research, discussing their advantages, limitations, and compatibility with high-throughput screenings and automated systems. An insight is also given on the adequacy of the available readouts for the interpretation of the data obtained from the 3D cell culture models. Importantly, we also emphasize the need for the incorporation of additional and complementary microenvironment elements on the design of 3D cell culture models, towards improved predictive value of drug efficacy.
Collapse
Affiliation(s)
- Mélanie A. G. Barbosa
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Biofabrication Group, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickevičiaus g 9, LT-44307 Kaunas, Lithuania;
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
14
|
Chang TY, Wu CT, Sheu ML, Yang RS, Liu SH. CARMA3 Promotes Colorectal Cancer Cell Motility and Cancer Stemness via YAP-Mediated NF-κB Activation. Cancers (Basel) 2021; 13:cancers13235946. [PMID: 34885061 PMCID: PMC8657120 DOI: 10.3390/cancers13235946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary CARMA3 is overexpressed in most cancers, and its expression is positively associated with poor prognosis. In this study, we evaluated the detailed mechanisms of CARMA3-mediated CRC metastasis. We found that overexpression of CARMA3 induced the expression of YAP and NF-κB activation, then elicited EMT induction to enhance cell migration and invasion. We demonstrate for the first time that YAP is a critical downstream regulator of CARMA3 in CRC. Our findings reveal a regulation axis between CARMA3 and Hippo oncoprotein YAP and further support the potential role of CARMA3 in the metastasis and cancer stemness of CRC. Abstract CARD-recruited membrane-associated protein 3 (CARMA3) is overexpressed in various cancers and is associated with cancer cell proliferation, metastasis, and tumor progression; however, the underlying mechanisms of CARMA3 in colorectal cancer (CRC) metastasis remain unclear. Here, we found that higher CARMA3 expression was correlated with poor overall survival and metastasis in CRC patients from the TNMplot database and Human Tissue Microarray staining. Elevating CARMA3 expression promoted cell proliferation, epithelial-mesenchymal transition (EMT) induction, migration/invasion abilities, sphere formation, and cancer stem cell markers expression. Knockdown of CARMA3 decreased these processes via the EMT-related transcription factor Slug. Moreover, CARMA3 depletion significantly reduced tumor growth in mice that were consistent with the in vitro results. CRC migration/invasion could be regulated by CARMA3/YAP/Slug signaling axis using genetic inhibition of Yes-associated protein (YAP). Interestingly, CARMA3 induced activation of nuclear factor (NF)-κB through YAP expression, contributing to upregulation of Slug. YAP expression positively correlated with CARMA3, NF-κB, and Slug gene expression and poor clinical outcomes in CRC patients. Our findings demonstrate for the first time that CARMA3 plays an important role in CRC progression, which may serve as a potential diagnostic biomarker and candidate therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Cheng-Tien Wu
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan;
- Master Program for Food and Drug Safety, China Medical University, Taichung 406040, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Rong-Sen Yang
- Department of Orthopedics, National Taiwan University Hospital, Taipei 10051, Taiwan
- Correspondence: (R.-S.Y.); (S.-H.L.)
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei 10051, Taiwan
- Correspondence: (R.-S.Y.); (S.-H.L.)
| |
Collapse
|
15
|
Herzog AE, Warner KA, Zhang Z, Bellile E, Bhagat MA, Castilho RM, Wolf GT, Polverini PJ, Pearson AT, Nör JE. The IL-6R and Bmi-1 axis controls self-renewal and chemoresistance of head and neck cancer stem cells. Cell Death Dis 2021; 12:988. [PMID: 34689150 PMCID: PMC8542035 DOI: 10.1038/s41419-021-04268-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Despite major progress in elucidating the pathobiology of head and neck squamous cell carcinoma (HNSCC), the high frequency of disease relapse correlates with unacceptably deficient patient survival. We previously showed that cancer stem-like cells (CSCs) drive tumorigenesis and progression of HNSCC. Although CSCs constitute only 2–5% of total tumor cells, CSCs contribute to tumor progression by virtue of their high tumorigenic potential and their resistance to chemo-, radio-, and immunotherapy. Not only are CSCs resistant to therapy, but cytotoxic agents actually enhance cancer stemness by activating transcription of pluripotency factors and by inducing expression of Bmi-1, a master regulator of stem cell self-renewal. We hypothesized therapeutic inhibition of interleukin-6 receptor (IL-6R) suppresses Bmi-1 to overcome intrinsic chemoresistance of CSCs. We observed that high Bmi-1 expression correlates with decreased (p = 0.04) recurrence-free survival time in HNSCC patients (n = 216). Blockade of IL-6R by lentiviral knockdown or pharmacologic inhibition with a humanized monoclonal antibody (Tocilizumab) is sufficient to inhibit Bmi-1 expression, secondary sphere formation, and to decrease the CSC fraction even in Cisplatin-resistant HNSCC cells. IL-6R inhibition with Tocilizumab abrogates Cisplatin-mediated increase in CSC fraction and induction of Bmi-1 in patient-derived xenograft (PDX) models of HNSCC. Notably, Tocilizumab inhibits Bmi-1 and suppresses growth of xenograft tumors generated with Cisplatin-resistant HNSCC cells. Altogether, these studies demonstrate that therapeutic blockade of IL-6R suppresses Bmi-1 function and inhibits cancer stemness. These results suggest therapeutic inhibition of IL-6R might be a viable strategy to overcome the CSC-mediated chemoresistance typically observed in HNSCC patients.
Collapse
Affiliation(s)
- Alexandra E Herzog
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Kristy A Warner
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Zhaocheng Zhang
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Emily Bellile
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Meera A Bhagat
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Gregory T Wolf
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter J Polverini
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
| | - Alexander T Pearson
- Department of Hematology/Oncology, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA. .,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA. .,Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA. .,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Goodarzi S, Prunet A, Rossetti F, Bort G, Tillement O, Porcel E, Lacombe S, Wu TD, Guerquin-Kern JL, Delanoë-Ayari H, Lux F, Rivière C. Quantifying nanotherapeutic penetration using a hydrogel-based microsystem as a new 3D in vitro platform. LAB ON A CHIP 2021; 21:2495-2510. [PMID: 34110341 DOI: 10.1039/d1lc00192b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The huge gap between 2D in vitro assays used for drug screening and the in vivo 3D physiological environment hampered reliable predictions for the route and accumulation of nanotherapeutics in vivo. For such nanotherapeutics, multi-cellular tumour spheroids (MCTS) are emerging as a good alternative in vitro model. However, the classical approaches to produce MCTS suffer from low yield, slow process, difficulties in MCTS manipulation and compatibility with high-magnification fluorescence optical microscopy. On the other hand, spheroid-on-chip set-ups developed so far require a practical knowledge of microfluidics difficult to transfer to a cell biology laboratory. We present here a simple yet highly flexible 3D model microsystem consisting of agarose-based microwells. Fully compatible with the multi-well plate format conventionally used in cell biology, our simple process enables the formation of hundreds of reproducible spheroids in a single pipetting. Immunostaining and fluorescence imaging including live high-resolution optical microscopy can be performed in situ, with no manipulation of spheroids. As a proof of principle of the relevance of such an in vitro platform for nanotherapeutic evaluation, this study investigates the kinetics and localisation of nanoparticles within colorectal cancer MCTS cells (HCT-116). The nanoparticles chosen are sub-5 nm ultrasmall nanoparticles made of polysiloxane and gadolinium chelates that can be visualized in MRI (AGuIX®, currently implicated in clinical trials as effective radiosensitizers for radiotherapy) and confocal microscopy after addition of Cy5.5. We show that the amount of AGuIX® nanoparticles within cells is largely different in 2D and 3D. Using our flexible agarose-based microsystems, we are able to resolve spatially and temporally the penetration and distribution of AGuIX® nanoparticles within MCTS. The nanoparticles are first found in both extracellular and intracellular space of MCTS. While the extracellular part is washed away after a few days, we evidenced intracellular localisation of AGuIX®, mainly within the lysosomal compartment, but also occasionally within mitochondria. Hence, our agarose-based microsystem appears as a promising 3D in vitro user-friendly platform for investigation of nanotherapeutic transport, ahead of in vivo studies.
Collapse
Affiliation(s)
- Saba Goodarzi
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Audrey Prunet
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Fabien Rossetti
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Guillaume Bort
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Olivier Tillement
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Erika Porcel
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Sandrine Lacombe
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Ting-Di Wu
- Institut Curie, Université PSL, Paris, France and Université Paris-Saclay, CNRS, Inserm, Centre d'Imagerie Multimodale, 91401, Orsay, France
| | - Jean-Luc Guerquin-Kern
- Institut Curie, Université PSL, Paris, France and Université Paris-Saclay, CNRS, Inserm, Centre d'Imagerie Multimodale, 91401, Orsay, France
| | - Hélène Delanoë-Ayari
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - François Lux
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France. and Institut Universitaire de France (IUF), France
| | - Charlotte Rivière
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France. and Institut Universitaire de France (IUF), France
| |
Collapse
|
17
|
Yang QE. Human cancer xenografts in immunocompromised mice provide an advanced genuine tumor model for research and drug development-A revisit of murine models for human cancers. Biochim Biophys Acta Gen Subj 2021; 1865:129929. [PMID: 33991617 DOI: 10.1016/j.bbagen.2021.129929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Molecular and cell biology studies have proven that human cancers are an enormously heterogenous disease, even if they originate from the same organ and tissue with identical morphological characteristics. Cancer cells in tumors from different individuals exhibit somewhat different characteristics on multiple levels, such as with respect to 1) their genetic polymorphism; 2) epigenetic mechanisms; 3) group gene activation/inactivation; 4) cell metabolism behavior; 5) aberrant incomplete terminal differentiation; 6) proliferative potential; and 7) hierarchical structure. These multiple parameters and their different combinations determine the biological characteristics of the cancer cells and their malignant/metastatic manifestations. With progress in medical research, numerous unique vulnerable targets of cancer cells have been identified from different tumors. Modern anti-cancer drug development focuses on target-based cancer cell inhibition and elimination have greatly improved the outcome of patients with some specific cancers. The murine model of human cancer has proven to be an essential procedure for the evaluation of drug efficacy in mammalian and a key link in transferring anti-cancer drug from laboratory to clinics. As classical murine cancer xenograft models with different human cancer cell lines display limited value for personalized precision medicine, creating a complete human xenograft cancer bank with all levels of abnormalities in mice has become desperately needed. This article is a review of the pros and cons of different human x murine cancer models and an attempt to find a more suitable model for the study and discovery of new anti-cancer drugs and different combination therapies in this small animal model.
Collapse
Affiliation(s)
- Quan-En Yang
- Phycin, LLC., 4539 Metropolitan Court, Frederick, MD 21704, United States of America.
| |
Collapse
|
18
|
Maruyama M, Nakano Y, Nishimura T, Iwata R, Matsuda S, Hayashi M, Nakai Y, Nonaka M, Sugimoto T. PC3-Secreted Microprotein Is Expressed in Glioblastoma Stem-Like Cells and Human Glioma Tissues. Biol Pharm Bull 2021; 44:910-919. [PMID: 33896885 DOI: 10.1248/bpb.b20-00868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent malignant primary brain tumor with a high recurrence rate. Despite multimodal therapy including surgical resection, chemotherapy, and radiotherapy, the median survival time after the initial diagnosis of GBM is approximately 14 months. Since cancer stem cells (CSCs) are considered the leading cause of cancer recurrence, glioblastoma stem cell-targeted therapy is a promising strategy for the treatment of GBM. However, because CSC heterogeneity has been implicated in the difficulties of CSC-target therapy, more in-depth knowledge of CSC biology is still required to develop novel therapies. In this study, we established single cell-derived tumorspheres from human glioblastoma U87MG cells. One of these tumorspheres, P4E8 clone, showed CSC-like phenotypes, such as self-renewal capacity, expression of CSC markers, resistance to anti-cancer agents, and in vivo tumorigenicity. Therefore, we used P4E8 cells as a cell-based model of glioblastoma stem cells (GSCs). Gene expression analysis using microarray indicated that the most highly expressed genes in P4E8 cells compared to the parental U87MG were PC3-secreted microprotein (MSMP). Furthermore, MSMP was expressed in patient-derived GSCs and human glioma tissues at the protein level, implying that MSMP might contribute to glioma development and progression.
Collapse
Affiliation(s)
- Masato Maruyama
- Department of Anatomy and Brain Science, Kansai Medical University
| | - Yousuke Nakano
- Department of Anatomy and Brain Science, Kansai Medical University
| | - Takuya Nishimura
- Department of Anatomy and Brain Science, Kansai Medical University
| | - Ryoichi Iwata
- Department of Neurosurgery, Kansai Medical University
| | - Satoshi Matsuda
- Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University
| | | | - Yuki Nakai
- Department of Anatomy and Brain Science, Kansai Medical University
| | | | - Tetsuo Sugimoto
- Department of Anatomy and Brain Science, Kansai Medical University
| |
Collapse
|
19
|
Benítez L, Barberis L, Vellón L, Condat CA. Understanding the influence of substrate when growing tumorspheres. BMC Cancer 2021; 21:276. [PMID: 33722191 PMCID: PMC7962376 DOI: 10.1186/s12885-021-07918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 11/18/2022] Open
Abstract
Background Cancer stem cells are important for the development of many solid tumors. These cells receive promoting and inhibitory signals that depend on the nature of their environment (their niche) and determine cell dynamics. Mechanical stresses are crucial to the initiation and interpretation of these signals. Methods A two-population mathematical model of tumorsphere growth is used to interpret the results of a series of experiments recently carried out in Tianjin, China, and extract information about the intraspecific and interspecific interactions between cancer stem cell and differentiated cancer cell populations. Results The model allows us to reconstruct the time evolution of the cancer stem cell fraction, which was not directly measured. We find that, in the presence of stem cell growth factors, the interspecific cooperation between cancer stem cells and differentiated cancer cells induces a positive feedback loop that determines growth, independently of substrate hardness. In a frustrated attempt to reconstitute the stem cell niche, the number of cancer stem cells increases continuously with a reproduction rate that is enhanced by a hard substrate. For growth on soft agar, intraspecific interactions are always inhibitory, but on hard agar the interactions between stem cells are collaborative while those between differentiated cells are strongly inhibitory. Evidence also suggests that a hard substrate brings about a large fraction of asymmetric stem cell divisions. In the absence of stem cell growth factors, the barrier to differentiation is broken and overall growth is faster, even if the stem cell number is conserved. Conclusions Our interpretation of the experimental results validates the centrality of the concept of stem cell niche when tumor growth is fueled by cancer stem cells. Niche memory is found to be responsible for the characteristic population dynamics observed in tumorspheres. The model also shows why substratum stiffness has a deep influence on the behavior of cancer stem cells, stiffer substrates leading to a larger proportion of asymmetric doublings. A specific condition for the growth of the cancer stem cell number is also obtained Supplementary Information The online version contains supplementary material available at (10.1186/s12885-021-07918-1).
Collapse
Affiliation(s)
- Lucía Benítez
- Instituto de Física Enrique Gaviola, CONICET, and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, X5000 HUA, Argentina
| | - Lucas Barberis
- Instituto de Física Enrique Gaviola, CONICET, and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, X5000 HUA, Argentina.
| | - Luciano Vellón
- Instituto de Biología y Medicina Experimental, CONICET., Buenos Aires, C1428 ADN, Argentina
| | - Carlos A Condat
- Instituto de Física Enrique Gaviola, CONICET, and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, X5000 HUA, Argentina
| |
Collapse
|
20
|
Wang M, Nai MH, Huang RYJ, Leo HL, Lim CT, Chen CH. High-throughput functional profiling of single adherent cells via hydrogel drop-screen. LAB ON A CHIP 2021; 21:764-774. [PMID: 33506832 DOI: 10.1039/d0lc01294g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Single-adherent-cell phenotyping on an extracellular matrix (ECM) is essential to determine cellular biological functions, such as morphological adaptations and biomolecule secretions, correlated to medical treatments and metastasis, yet there is no available platform for such high-throughput screening. Here, a novel hydrogel drop-screen device was developed to rapidly measure large-scale single-cell morphologies and multiple secretions on substrates for phenotype profiling. Single cells were first anchored to microfluidically fabricated gelatin particles providing mechanical stimulations similar to those from ECM in vivo. The cellular morphologies were then examined by quantifying the amount of cytoskeleton expressed on the particles. With droplet encapsulation, adherent single-cell multiplexed secretion analysis of a disintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs) was conducted at a throughput of ∼102 cells per second, revealing distinct functional heterogeneities associated with extracellular mechanical stimulations. The level of cell heterogeneity increased with increasing substrate stuffiness. Moreover, because of the promising screening capability, a database related to both nontumorigenic and tumorigenic breast cells (MCF10A, MCF-7, and MDA-MB-231) was constructed. The respective cell distributions and heterogeneities based on the morphologies and secreted bioindicators, such as MMP-2, MMP-3, MMP-9, and ADAM-8, were measured and found to correspond to the progress of tumor metastasis.
Collapse
Affiliation(s)
- Ming Wang
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, 21 Lower Kent Ridge Road, 119077 Singapore and Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore and Institute for Health Innovation and Technology (iHealthtech), MD6, 14 Medical Drive 14-01, 117599 Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
| | - Ruby Yun-Ju Huang
- College of Medicine, National Taiwan University, No.1 Jen-Ai Road, Taipei, 10051, Taiwan and Graduate Institute of Oncology, College of Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt road, Taipei, 10617, Taiwan and Department of Biomedical Engineering, National Taiwan University, No.1, Sec.1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Hwa Liang Leo
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, 21 Lower Kent Ridge Road, 119077 Singapore and Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
| | - Chwee Teck Lim
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, 21 Lower Kent Ridge Road, 119077 Singapore and Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore and Institute for Health Innovation and Technology (iHealthtech), MD6, 14 Medical Drive 14-01, 117599 Singapore and Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, Y6700, 83 Tat Chee Avenue, Hong Kong SAR, China.
| |
Collapse
|
21
|
Chen Y, Zhang S, Cui Q, Ni J, Wang X, Cheng X, Alem H, Tebon P, Xu C, Guo C, Nasiri R, Moreddu R, Yetisen AK, Ahadian S, Ashammakhi N, Emaminejad S, Jucaud V, Dokmeci MR, Khademhosseini A. Microengineered poly(HEMA) hydrogels for wearable contact lens biosensing. LAB ON A CHIP 2020; 20:4205-4214. [PMID: 33048069 DOI: 10.1039/d0lc00446d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microchannels in hydrogels play an essential role in enabling a smart contact lens. However, microchannels have rarely been created in commercial hydrogel contact lenses due to their sensitivity to conventional microfabrication techniques. Here, we report the fabrication of microchannels in poly(2-hydroxyethyl methacrylate) (poly(HEMA)) hydrogels that are used in commercial contact lenses with a three-dimensional (3D) printed mold. We investigated the corresponding capillary flow behaviors in these microchannels. We observed different capillary flow regimes in these microchannels, depending on their hydration level. In particular, we found that a peristaltic pressure could reinstate flow in a dehydrated channel, indicating that the motion of eye-blinking may help tears flow in a microchannel-containing contact lens. Colorimetric pH and electrochemical Na+ sensing capabilities were demonstrated in these microchannels. This work paves the way for the development of microengineered poly(HEMA) hydrogels for various biomedical applications such as eye-care and wearable biosensing.
Collapse
Affiliation(s)
- Yihang Chen
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Materials Science and Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Shiming Zhang
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA. and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Qingyu Cui
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jiahua Ni
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | - Xiaochen Wang
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | - Xuanbing Cheng
- Department of Materials Science and Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Electrical and Computer Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Halima Alem
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA. and Institut Jean Lamour, Université de Lorraine-CNRS, 54000 Nancy, France and Institut Universitaire de France, France
| | - Peyton Tebon
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | - Chun Xu
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | - Changliang Guo
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA. and Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Rosalia Moreddu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA. and Department of Radiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Sam Emaminejad
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA. and Department of Electrical and Computer Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Mehmet R Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA and Department of Radiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA. and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA and Department of Radiology, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Phenotype-based single cell sequencing identifies diverse genetic subclones in CD133 positive cancer stem cells. Biochem Biophys Res Commun 2020; 558:209-215. [PMID: 32958251 DOI: 10.1016/j.bbrc.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
Tumor heterogeneity is one of the ongoing huddles in the field of colon cancer therapy. It is evident that there are countless clones which exhibit different phenotypes and therefore, single cell analysis is inevitable. Cancer stem cells (CSCs) are rare cell population within tumor which is known to function in cancer metastasis and recurrence. Although there have been trials to prove intra-tumoral heterogeneity using single cell sequencing, that of CSCs has not been clearly elucidated. Here, we articulate the presence of heterogeneous subclones within CD133 positive cancer stem cells through single cell sequencing. As a proof of principle, we performed phenotype-based high-throughput laser isolation and single cell sequencing (PHLI-seq) of CD133 positive cells in a frozen tumor tissue obtained from a patient with colorectal cancer. The result proved that CD133 positive cells were shown to be heterogeneous both in copy number and mutational profiles. Single cancer stem cell specific mutations such as RNF144A, PAK2, PARP4, ADAM21, HYDIN, KRT38 and CELSR1 could be also detected in liver metastatic tumor of the same patient. Collectively, these data suggest that single cell analysis used to spot subclones with genetic variation within rare population, will lead to new strategies to tackle colon cancer metastasis.
Collapse
|
23
|
Dillard C, Kiyohara M, Mah V, McDermott SP, Bazzoun D, Tsui J, Chan AM, Haddad G, Pellegrini M, Chang YL, Elshimali Y, Wu Y, Vadgama JV, Kim SR, Goodglick L, Law SM, Patel DD, Dhawan P, O'Brien NA, Gordon LK, Braun J, Lazar G, Wicha MS, Wadehra M. EMP2 Is a Novel Regulator of Stemness in Breast Cancer Cells. Mol Cancer Ther 2020; 19:1682-1695. [PMID: 32451329 PMCID: PMC7415657 DOI: 10.1158/1535-7163.mct-19-0850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023]
Abstract
Little is known about the role of epithelial membrane protein-2 (EMP2) in breast cancer development or progression. In this study, we tested the hypothesis that EMP2 may regulate the formation or self-renewal of breast cancer stem cells (BCSC) in the tumor microenvironment. In silico analysis of gene expression data demonstrated a correlation of EMP2 expression with known metastasis-related genes and markers of cancer stem cells (CSC) including aldehyde dehydrogenase (ALDH). In breast cancer cell lines, EMP2 overexpression increased and EMP2 knockdown decreased the proportion of stem-like cells as assessed by the expression of the CSC markers CD44+/CD24-, ALDH activity, or by tumor sphere formation. In vivo, upregulation of EMP2 promoted tumor growth, whereas knockdown reduced the ALDHhigh CSC population as well as retarded tumor growth. Mechanistically, EMP2 functionally regulated the response to hypoxia through the upregulation of HIF-1α, a transcription factor previously shown to regulate the self-renewal of ALDHhigh CSCs. Furthermore, in syngeneic mouse models and primary human tumor xenografts, mAbs directed against EMP2 effectively targeted CSCs, reducing the ALDH+ population and blocking their tumor-initiating capacity when implanted into secondary untreated mice. Collectively, our results show that EMP2 increases the proportion of tumor-initiating cells, providing a rationale for the continued development of EMP2-targeting agents.
Collapse
Affiliation(s)
- Christen Dillard
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Meagan Kiyohara
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Vei Mah
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Sean P McDermott
- Department of Internal Medicine-Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Dana Bazzoun
- Department of Internal Medicine-Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Jessica Tsui
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ann M Chan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Internal Medicine-Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Ghassan Haddad
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Matteo Pellegrini
- Department of Molecular, Cell & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Yu-Ling Chang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Yahya Elshimali
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
| | - Yanyuan Wu
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
| | - Jaydutt V Vadgama
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
| | - Sara R Kim
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Lee Goodglick
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Samuel M Law
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Deven D Patel
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | - Neil A O'Brien
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Lynn K Gordon
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Gary Lazar
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Max S Wicha
- Department of Internal Medicine-Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA.
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
24
|
García Alonso D, Yu M, Qu H, Ma L, Shen F. Advances in Microfluidics-Based Technologies for Single Cell Culture. ACTA ACUST UNITED AC 2020; 3:e1900003. [PMID: 32648694 DOI: 10.1002/adbi.201900003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/20/2019] [Indexed: 12/29/2022]
Abstract
Single cell culture has been considered one of the fundamental tools for single cell studies. Complex biological systems evolve from single cells, and the cells within biological systems are intrinsically heterogeneous. Therefore, culturing and understanding the behaviors of single cells are of great interest for both biological research and clinical studies. In recent years, advances in microfluidics-based technologies have demonstrated unprecedented capabilities for single cell studies, and they have made high-throughput single cell cultures possible. Microfluidic systems enable precise control of the microenvironment for single cell culture and monitoring of the behavior of single cells in real time. In addition, microfluidic devices can consist of upstream cell sorting and cell isolation, and they can also be seamlessly integrated with various downstream analysis methods. Therefore, microfluidic technologies can obtain data about the performance at the single-cell level, providing information that cannot be achieved by studying the ensemble behavior of cell colonies. In this review, the recent developments in droplet-based microfluidics, microwell-based microfluidics, trap-based microfluidics and SlipChip-based microfluidics for the study of single cell culture is focused on. Perspectives on future improvement regarding single cell culture and its related research opportunities are also provided.
Collapse
Affiliation(s)
- Daniel García Alonso
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Mengchao Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Haijun Qu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Liang Ma
- Thermo Fisher Scientific, 5781 Van Allen way, Carlsbad, CA, 92008, USA
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| |
Collapse
|
25
|
Chen YC, Zhang Z, Yoon E. Early Prediction of Single-Cell Derived Sphere Formation Rate Using Convolutional Neural Network Image Analysis. Anal Chem 2020; 92:7717-7724. [PMID: 32427465 DOI: 10.1021/acs.analchem.0c00710] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional identification of cancer stem-like cells (CSCs) is an established method to identify and study this cancer subpopulation critical for cancer progression and metastasis. The method is based on the unique capability of single CSCs to survive and grow to tumorspheres in harsh suspension culture environment. Recent advances in microfluidic technology have enabled isolating and culturing thousands of single cells on a chip. However, tumorsphere assay takes a relatively long period of time, limiting the throughput of this assay. In this work, we incorporated machine learning with single-cell analysis to expedite tumorsphere assay. We collected 1,710 single-cell events as the database and trained a convolutional neural network model that predicts whether a single cell could grow to a tumorsphere on Day 14 based on its Day 4 image. With this future-telling model, we precisely estimated the sphere formation rate of SUM159 breast cancer cells to be 17.8% based on Day 4 images. The estimation was close to the ground truth of 17.6% on Day 14. The preliminary work demonstrates not only the feasibility to significantly accelerate tumorsphere assay but also a synergistic combination between single-cell analysis with machine learning, which can be applied to many other biomedical applications.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States.,Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Zhixiong Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States.,Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, Michigan 48109-2099, United States.,Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
26
|
Chen YC, Jung S, Zhang Z, Wicha MS, Yoon E. Co-culture of functionally enriched cancer stem-like cells and cancer-associated fibroblasts for single-cell whole transcriptome analysis. Integr Biol (Camb) 2019; 11:353-361. [PMID: 31820801 PMCID: PMC11457749 DOI: 10.1093/intbio/zyz029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/26/2019] [Accepted: 07/01/2019] [Indexed: 10/09/2024]
Abstract
Considerable evidence suggests that breast cancer development and metastasis are driven by cancer stem-like cells (CSCs). Due to their unique role in tumor initiation, the interaction between CSCs and stromal cells is especially critical. In this work, we developed a platform to reliably isolate single cells in suspension and grow single-cell-derived spheres for functional enrichment of CSCs. The platform also allows adherent culture of stromal cells for cancer-stromal interaction. As a proof of concept, we grew SUM149 breast cancer cells and successfully formed single-cell-derived spheres. Cancer-associated fibroblasts (CAFs) as stromal cells were found to significantly enhance the formation and growth of cancer spheres, indicating elevated tumor-initiation potential. After on-chip culture for 14 days, we retrieved single-cell derived spheres with and without CAF co-culture for single-cell transcriptome sequencing. Whole transcriptome analysis highlights that CAF co-culture can boost cancer stemness especially ALDHhigh CSCs and alter epithelial/mesenchymal status. Single-cell resolution allows identification of individual CSCs and investigation of cancer cellular heterogeneity. Incorporating whole transcriptome sequencing data with public patient database, we discovered novel genes associated with cancer-CAF interaction and critical to patient survival. The preliminary works demonstrated a reliable platform for enrichment of CSCs and studies of cancer-stromal interaction.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Seungwon Jung
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
| | - Zhixiong Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
| | - Max S Wicha
- Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd. Ann Arbor, MI 48109-2099, USA
- Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
27
|
Ketpun D, Pimpin A, Tongmanee T, Bhanpattanakul S, Piyaviriyakul P, Srituravanich W, Sripumkhai W, Jeamsaksiri W, Sailasuta A. A Potential Application of Triangular Microwells to Entrap Single Cancer Cells: A Canine Cutaneous Mast Cell Tumor Model. MICROMACHINES 2019; 10:mi10120841. [PMID: 31805714 PMCID: PMC6953038 DOI: 10.3390/mi10120841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
Abstract
Cellular heterogeneity is a major hindrance, leading to the misunderstanding of dynamic cell biology. However, single cell analysis (SCA) has been used as a practical means to overcome this drawback. Many contemporary methodologies are available for single cell analysis; among these, microfluidics is the most attractive and effective technology, due to its advantages of low-volume specimen consumption, label-free evaluation, and real-time monitoring, among others. In this paper, a conceptual application for microfluidic single cell analysis for veterinary research is presented. A microfluidic device is fabricated with an elastomer substrate, polydimethylsiloxane (PDMS), under standard soft lithography. The performance of the microdevice is high-throughput, sensitive, and user-friendly. A total of 53.1% of the triangular microwells were able to trap single canine cutaneous mast cell tumor (MCT) cells. Of these, 38.82% were single cell entrapments, while 14.34% were multiple cell entrapments. The ratio of single-to-multiple cell trapping was high, at 2.7:1. In addition, 80.5% of the trapped cells were viable, indicating that the system was non-lethal. OCT4A-immunofluorescence combined with the proposed system can assess OCT4A expression in trapped single cells more precisely than OCT4A-immunohistochemistry. Therefore, the results suggest that microfluidic single cell analysis could potentially reduce the impact of cellular heterogeneity.
Collapse
Affiliation(s)
- Dettachai Ketpun
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (D.K.); (P.P.)
- Companion Animal Cancer-Research Unit (CAC-RU), Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10300, Thailand;
| | - Alongkorn Pimpin
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (A.P.); (T.T.); (W.S.)
| | - Tewan Tongmanee
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (A.P.); (T.T.); (W.S.)
| | - Sudchaya Bhanpattanakul
- Companion Animal Cancer-Research Unit (CAC-RU), Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10300, Thailand;
| | - Prapruddee Piyaviriyakul
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (D.K.); (P.P.)
- Companion Animal Cancer-Research Unit (CAC-RU), Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10300, Thailand;
| | - Weerayut Srituravanich
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (A.P.); (T.T.); (W.S.)
| | - Witsaroot Sripumkhai
- Thai Microelectronic Centre, Ministry of Science and Technology, Chachoengsao 24000, Thailand; (W.S.); (W.J.)
| | - Wutthinan Jeamsaksiri
- Thai Microelectronic Centre, Ministry of Science and Technology, Chachoengsao 24000, Thailand; (W.S.); (W.J.)
| | - Achariya Sailasuta
- Companion Animal Cancer-Research Unit (CAC-RU), Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10300, Thailand;
- Correspondence: ; Tel.: +6681-832-1342
| |
Collapse
|
28
|
Targeting TR4 nuclear receptor with antagonist bexarotene increases docetaxel sensitivity to better suppress the metastatic castration-resistant prostate cancer progression. Oncogene 2019; 39:1891-1903. [PMID: 31748715 PMCID: PMC7044111 DOI: 10.1038/s41388-019-1070-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/04/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in men in America, and there are no curative options for metastatic castration-resistant prostate cancer (mCRPC). Docetaxel (DTX) has been used as a standard chemotherapy for the mCRPC. However, resistance to DTX is a significant clinical problem as half of patients fail to respond to therapy. The TR4 nuclear receptor has been reported to play an important role in PCa progression, however, its linkage to the DTX resistance remains unclear. Here we found that TR4 was upregulated after DTX chemotherapy in the mCRPC cells and patients, and TR4 expression is correlated with DTX sensitivity with a higher level conferring chemo-resistance. Targeting TR4 with an antagonist bexarotene (Bex, a derivative of retinoid) suppressed the TR4 transactivation with increased DTX chemo-sensitivity. Mechanism dissection studies revealed that TR4 might alter the DTX chemo-sensitivity via modulating the TR4/lincRNA-p21/HIF-1α/VEGF-A signaling. Together, these results suggest that targeting this newly identified TR4/lincRNA-p21/HIF-1α/VEGF-A signaling with Bex, an FDA-approved drug, may increase the DTX chemo-sensitivity to better suppress the mCRPC progression.
Collapse
|
29
|
Zhang Z, Chen L, Wang Y, Zhang T, Chen YC, Yoon E. Label-Free Estimation of Therapeutic Efficacy on 3D Cancer Spheres Using Convolutional Neural Network Image Analysis. Anal Chem 2019; 91:14093-14100. [DOI: 10.1021/acs.analchem.9b03896] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhixiong Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Lili Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Yimin Wang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Tiantian Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
- Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, United States
- Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
30
|
Prodigiosin stimulates endoplasmic reticulum stress and induces autophagic cell death in glioblastoma cells. Apoptosis 2019; 23:314-328. [PMID: 29721785 DOI: 10.1007/s10495-018-1456-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prodigiosin, a secondary metabolite isolated from marine Vibrio sp., has antimicrobial and anticancer properties. This study investigated the cell death mechanism of prodigiosin in glioblastoma. Glioblastoma multiforme (GBM) is an aggressive primary cancer of the central nervous system. Despite treatment, or standard therapy, the median survival of glioblastoma patients is about 14.6 month. The results of the present study clearly showed that prodigiosin significantly reduced the cell viability and neurosphere formation ability of U87MG and GBM8401 human glioblastoma cell lines. Moreover, prodigiosin with fluorescence signals was detected in the endoplasmic reticulum and found to induce excessive levels of autophagy. These findings were confirmed by observation of LC3 puncta formation and acridine orange staining. Furthermore, prodigiosin caused cell death by activating the JNK pathway and decreasing the AKT/mTOR pathway in glioblastoma cells. Moreover, we found that the autophagy inhibitor 3-methyladenine reversed prodigiosin induced autophagic cell death. These findings of this study suggest that prodigiosin induces autophagic cell death and apoptosis in glioblastoma cells.
Collapse
|
31
|
Lee JW, Sung JS, Park YS, Chung S, Kim YH. Isolation of spheroid-forming single cells from gastric cancer cell lines: enrichment of cancer stem-like cells. Biotechniques 2019; 65:197-203. [PMID: 30284938 DOI: 10.2144/btn-2018-0046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Isolation of spheroid-forming cells is important to investigate cancer stem cell (CSC) characteristics. However, conventional tumor spheroid culture methods have not proven suitable because the aggregated spheroids generally maintain their original heterogeneity and harbor multiple cells with various characteristics. Here we cultured spheroids using a polydimethylsiloxane microwell-based method and a limiting dilution protocol. We then isolated and enriched for CSCs that formed single cell-derived spheroids from gastric cancer cell lines. Cells from the microwell demonstrated higher self-renewal, increased expression of stem cell markers and resistance to apoptosis compared with spheroid cells made by the traditional method. This novel approach allows efficient cancer stem cell isolation and represents a step forward in cancer stem cell studies.
Collapse
Affiliation(s)
- Jong Won Lee
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul 02841, Republic of Korea.,Cancer Research Institute, Korea University, Seoul 02841, Republic of Korea
| | - Jae Sook Sung
- Cancer Research Institute, Korea University, Seoul 02841, Republic of Korea
| | - Young Soo Park
- Cancer Research Institute, Korea University, Seoul 02841, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yeul Hong Kim
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul 02841, Republic of Korea.,Cancer Research Institute, Korea University, Seoul 02841, Republic of Korea.,Division of Medical Oncology, Department of Internal Medicine, Korea University Medical Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
32
|
Pang L, Ding J, Ge Y, Fan J, Fan SK. Single-Cell-Derived Tumor-Sphere Formation and Drug-Resistance Assay Using an Integrated Microfluidics. Anal Chem 2019; 91:8318-8325. [DOI: 10.1021/acs.analchem.9b01084] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Long Pang
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, 710021, China
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
| | - Jing Ding
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
| | - Yuxin Ge
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, 710021, China
| | - Jianglin Fan
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, 710021, China
| | - Shih-Kang Fan
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
33
|
Piechowski J. Plausibility of trophoblastic-like regulation of cancer tissue. Cancer Manag Res 2019; 11:5033-5046. [PMID: 31213916 PMCID: PMC6549421 DOI: 10.2147/cmar.s190932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/30/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Thus far, a well-established logical pattern of malignancy does not exist. The current approach to cancer properties is primarily descriptive with usually, for each of them, extensive analyses of the underlying associated biomolecular mechanisms. However, this remains a catalog and it would be valuable to determine the organizational chart that could account for their implementation, hierarchical links and input into tumor regulation. Hypothesis: Striking phenotypic similarities exist between trophoblast (invasive and expanding early placenta) and cancer regarding cell functions, logistics of development, means of protection and capacity to hold sway over the host organism. The concept of cancer cell trophoblastic-like transdifferentiation appears to be a rational proposal in an attempt to explain this analogy and provide a consistent insight into how cancer cells are functioning. Should this concept be validated, it could pave the way to promising research and therapeutic perspectives given that the trophoblastic properties are vital for the tumor while they are permanently epigenetically turned off in normal cells. Specifically targeting expression of the trophoblastic master genes could thereby be envisaged to jeopardize the tumor and its metastases without, in principle, inducing adverse side effects in the healthy tissues. Conclusion: A wide set of functional features of cancer tissue regulation, including some apparently paradoxical facts, was reviewed. Cancer cell misuse of physiological trophoblastic functions can clearly account for them, which identifies trophoblastic-like transdifferentiation as a likely key component of malignancy and makes it a potential relevant anticancer target.
Collapse
|
34
|
Tsai MT, Huang BH, Yeh CC, Lei KF, Tsang NM. Non-Invasive Quantification of the Growth of Cancer Cell Colonies by a Portable Optical Coherence Tomography. MICROMACHINES 2019; 10:mi10010035. [PMID: 30621072 PMCID: PMC6356435 DOI: 10.3390/mi10010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
Investigation of tumor development is essential in cancer research. In the laboratory, living cell culture is a standard bio-technology for studying cellular response under tested conditions to predict in vivo cellular response. In particular, the colony formation assay has become a standard experiment for characterizing the tumor development in vitro. However, quantification of the growth of cell colonies under a microscope is difficult because they are suspended in a three-dimensional environment. Thus, optical coherence tomography (OCT) imaging was develop in this study to monitor the growth of cell colonies. Cancer cell line of Huh 7 was used and the cells were applied on a layer of agarose hydrogel, i.e., a non-adherent surface. Then, cell colonies were gradually formed on the surface. The OCT technique was used to scan the cell colonies every day to obtain quantitative data for describing their growth. The results revealed the average volume increased with time due to the formation of cell colonies day-by-day. Additionally, the distribution of cell colony volume was analyzed to show the detailed information of the growth of the cell colonies. In summary, the OCT provides a non-invasive quantification technique for monitoring the growth of the cell colonies. From the OCT images, objective and precise information is obtained for higher prediction of the in vivo tumor development.
Collapse
Affiliation(s)
- Meng-Tsan Tsai
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| | - Bo-Huei Huang
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chun-Chih Yeh
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Kin Fong Lei
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| | - Ngan-Ming Tsang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
- Department of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
35
|
Lim D, Byun WG, Park SB. Restoring Let-7 microRNA Biogenesis Using a Small-Molecule Inhibitor of the Protein-RNA Interaction. ACS Med Chem Lett 2018; 9:1181-1185. [PMID: 30613323 DOI: 10.1021/acsmedchemlett.8b00323] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Abnormal function of RNA-binding proteins can lead to dysregulation of RNA function, causing a variety of disease states. Thus, developing small-molecule modulators of protein-RNA interactions is one of the key challenges in chemical biology. Herein, we performed a high-throughput screening of chemical libraries using a Förster resonance energy transfer-based Lin28-let-7 interaction assay to identify a potent small-molecule inhibitor of the protein-microRNA interaction, as it is an important target implicated in stem cell-like phenotypes in cancer cells. The new inhibitor KCB3602 selectively restored cellular let-7 microRNA levels, decreased the expression of a panel of oncogenes responsible for cancer stem cell maintenance, and showed potential anticancer activities. We expect that our Lin28-let-7 interaction inhibitor will provide a good starting point for pharmacological eradication of cancer stem cells.
Collapse
Affiliation(s)
- Donghyun Lim
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Wan Gi Byun
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
36
|
Shinde P, Mohan L, Kumar A, Dey K, Maddi A, Patananan AN, Tseng FG, Chang HY, Nagai M, Santra TS. Current Trends of Microfluidic Single-Cell Technologies. Int J Mol Sci 2018; 19:E3143. [PMID: 30322072 PMCID: PMC6213733 DOI: 10.3390/ijms19103143] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
The investigation of human disease mechanisms is difficult due to the heterogeneity in gene expression and the physiological state of cells in a given population. In comparison to bulk cell measurements, single-cell measurement technologies can provide a better understanding of the interactions among molecules, organelles, cells, and the microenvironment, which can aid in the development of therapeutics and diagnostic tools. In recent years, single-cell technologies have become increasingly robust and accessible, although limitations exist. In this review, we describe the recent advances in single-cell technologies and their applications in single-cell manipulation, diagnosis, and therapeutics development.
Collapse
Affiliation(s)
- Pallavi Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Loganathan Mohan
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Amogh Kumar
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Koyel Dey
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Anjali Maddi
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Alexander N Patananan
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu City 30071, Taiwan.
| | - Hwan-You Chang
- Department of Medical Science, National Tsing Hua University, Hsinchu City 30071, Taiwan.
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan.
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| |
Collapse
|
37
|
Dixit C, Kadimisetty K, Rusling J. 3D-printed miniaturized fluidic tools in chemistry and biology. Trends Analyt Chem 2018; 106:37-52. [PMID: 32296252 PMCID: PMC7158885 DOI: 10.1016/j.trac.2018.06.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
3D printing (3DP), an additive manufacturing (AM) approach allowing for rapid prototyping and decentralized fabrication on-demand, has become a common method for creating parts or whole devices. The wide scope of the AM extends from organized sectors of construction, ornament, medical, and R&D industries to individual explorers attributed to the low cost, high quality printers along with revolutionary tools and polymers. While progress is being made but big manufacturing challenges are still there. Considering the quickly shifting narrative towards miniaturized analytical systems (MAS) we focus on the development/rapid prototyping and manufacturing of MAS with 3DP, and application dependent challenges in engineering designs and choice of the polymeric materials and provide an exhaustive background to the applications of 3DP in biology and chemistry. This will allow readers to perceive the most important features of AM in creating (i) various individual and modular components, and (ii) complete integrated tools.
Collapse
Affiliation(s)
- C.K. Dixit
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, United States
| | - K. Kadimisetty
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, United States
| | - J. Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, United States
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, United States
- Department of Surgery and Neag Cancer Centre, UConn Health, Farmington, CT 06030, United States
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
38
|
Luteolin attenuates Wnt signaling via upregulation of FZD6 to suppress prostate cancer stemness revealed by comparative proteomics. Sci Rep 2018; 8:8537. [PMID: 29867083 PMCID: PMC5986741 DOI: 10.1038/s41598-018-26761-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/15/2018] [Indexed: 12/28/2022] Open
Abstract
The mechanisms underlying luteolin-induced inhibition of prostate cancer (PCa) stemness have remained elusive. Here, we report that luteolin suppresses PCa stemness through Wnt signaling by upregulation of FZD6 (frizzled class receptor 6). Luteolin inhibits PCa cell proliferation, migration, self-renewal as well as the expression of prostate cancer stem cell markers in vitro. Through iTRAQ-based quantitative proteomics study, we identified 208 differentially expressed proteins in luteolin-treated PC-3 cells. Subsequent mechanistic analysis revealed that luteolin inhibits Wnt signaling by transcriptional upregulation of FZD6, and thereby suppressing the stemness of PCa cells. Furthermore, we identified FZD6 as a tumor suppressor that can abolish PCa stemness. In summary, our findings demonstrate that suppression of Wnt signaling by upregulation of FZD6 is a mechanism underlying luteolin-induced inhibition of PCa stemness. Our work suggests a new therapeutic strategy against human prostate cancer caused by aberrant activation of Wnt signaling.
Collapse
|
39
|
Belgorosky D, Fernández-Cabada T, Peñaherrera-Pazmiño AB, Langle Y, Booth R, Bhansali S, Pérez MS, Eiján AM, Lerner B. Analysis of tumoral spheres growing in a multichamber microfluidic device. J Cell Physiol 2018; 233:6327-6336. [PMID: 29574936 DOI: 10.1002/jcp.26519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/02/2018] [Indexed: 11/10/2022]
Abstract
Lab on a Chip (LOC) farming systems have emerged as a powerful tool for single cell studies combined with a non-adherent cell culture substrate and single cell capture chips for the study of single cell derived tumor spheres. Cancer is characterized by its cellular heterogeneity where only a small population of cancer stem cells (CSCs) are responsible for tumor metastases and recurrences. Thus, the in vitro strategy to the formation of a single cell-derived sphere is an attractive alternative to identify CSCs. In this study, we test the effectiveness of microdevices for analysis of heterogeneity within CSC populations and its interaction with different components of the extracellular matrix. CSC could be identify using specific markers related to its pluripotency and self-renewal characteristics such as the transcription factor Oct-4 or the surface protein CD44. The results confirm the usefulness of LOC as an effective method for quantification of CSC, through the formation of spheres under conditions of low adhesion or growing on components of the extracellular matrix. The device used is also a good alternative for evaluating the individual growth of each sphere and further identification of these CSC markers by immunofluorescence. In conclusion, LOC devices have not only the already known advantages, but they are also a promising tool since they use small amounts of reagents and are under specific culture parameters. LOC devices could be considered as a novel technology to be used as a complement or replacement of traditional studies on culture plates.
Collapse
Affiliation(s)
- Denise Belgorosky
- Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina.,Fellow at Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Tamara Fernández-Cabada
- Fellow at Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad Tecnológica Nacional (UTN), Facultad Regional de Haedo, Paris, Buenos Aires, Argentina
| | - Ana Belén Peñaherrera-Pazmiño
- Fellow at Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad Tecnológica Nacional (UTN), Facultad Regional de Haedo, Paris, Buenos Aires, Argentina
| | - Yanina Langle
- Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ross Booth
- Millipore Sigma Corporation, Hayward, California
| | - Shekhar Bhansali
- Bio-MEMS and Microsystem Lab, Department of Electrical Engineering, University of South Florida, Tampa, Florida
| | - Maximiliano S Pérez
- Universidad Tecnológica Nacional (UTN), Facultad Regional de Haedo, Paris, Buenos Aires, Argentina.,Instituto de Ingeniería Biomédica, Facultad de Ingeniería, Universidad de Buenos Aires, (UBA), Buenos Aires, Argentina.,Member at Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana María Eiján
- Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina.,Member at Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Betiana Lerner
- Universidad Tecnológica Nacional (UTN), Facultad Regional de Haedo, Paris, Buenos Aires, Argentina.,Instituto de Ingeniería Biomédica, Facultad de Ingeniería, Universidad de Buenos Aires, (UBA), Buenos Aires, Argentina.,Member at Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
40
|
Lim W, Hoang HH, You D, Han J, Lee JE, Kim S, Park S. Formation of size-controllable tumour spheroids using a microfluidic pillar array (μFPA) device. Analyst 2018; 143:5841-5848. [DOI: 10.1039/c8an01752b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We describe a method to generate several hundreds of spheroids using a microfluidic device with pillars.
Collapse
Affiliation(s)
- Wanyoung Lim
- Department of Biomedical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Hong-Hoa Hoang
- School of Mechanical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Daeun You
- Department of Health Sciences and Technology
- SAIHST
- Sungkyunkwan University
- Korea
| | - Jeonghun Han
- School of Mechanical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology
- SAIHST
- Sungkyunkwan University
- Korea
- Department of Breast Surgery
| | - Sangmin Kim
- Department of Breast Surgery
- Samsung Medical Center
- Seoul
- Korea
| | - Sungsu Park
- Department of Biomedical Engineering
- Sungkyunkwan University
- Suwon
- Korea
- School of Mechanical Engineering
| |
Collapse
|
41
|
Huang C, Chen Y, Liu H, Yang J, Song X, Zhao J, He N, Zhou CJ, Wang Y, Huang C, Dong Q. Celecoxib targets breast cancer stem cells by inhibiting the synthesis of prostaglandin E 2 and down-regulating the Wnt pathway activity. Oncotarget 2017; 8:115254-115269. [PMID: 29383157 PMCID: PMC5777769 DOI: 10.18632/oncotarget.23250] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/03/2017] [Indexed: 12/11/2022] Open
Abstract
Pharmacological targeting of breast cancer stem cells (CSCs) is highly promising for the treatment of breast cancer, as the small population of CSCs is responsible for tumor initiation, progression, recurrence and chemo-resistance. Celecoxib is one of the most commonly used non-steroidal anti-inflammatory drugs (NSAIDs), which have chemo-preventive activity against cancers, including breast cancer and colorectal cancer. However, the mechanisms by which NSAIDs exert its cancer prevention effects have yet been completely understood. In the present study, we investigated for the first time the effect of celecoxib on breast CSCs inhibition and its potential molecular mechanisms. Our results demonstrated that celecoxib suppresses CSC self-renewal, sensitizes chemo-resistance, inhibits epithelial to mesenchymal transition (EMT), and attenuates metastasis and tumorigenesis. Further exploring the underlying mechanism revealed that celecoxib targets breast CSCs by inhibiting the synthesis of prostaglandin E2 and down-regulating the Wnt pathway activity. Our findings suggest that celecoxib, by targeting CSCs, may be used as an adjuvant chemotherapy drug to improve breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Chaolin Huang
- Institute of Environmental Safety and Human Health, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Yuanhong Chen
- Institute of Environmental Safety and Human Health, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Hang Liu
- Institute of Environmental Safety and Human Health, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Jing Yang
- Institute of Environmental Safety and Human Health, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Xuejing Song
- Institute of Environmental Safety and Human Health, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Junping Zhao
- Institute of Environmental Safety and Human Health, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Na He
- Institute of Environmental Safety and Human Health, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Yongping Wang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Changjiang Huang
- Institute of Environmental Safety and Human Health, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Qiaoxiang Dong
- Institute of Environmental Safety and Human Health, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, P.R. China
| |
Collapse
|
42
|
He J, Xiong L, Li Q, Lin L, Miao X, Yan S, Hong Z, Yang L, Wen Y, Deng X. 3D modeling of cancer stem cell niche. Oncotarget 2017; 9:1326-1345. [PMID: 29416698 PMCID: PMC5787442 DOI: 10.18632/oncotarget.19847] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells reside in a distinct microenvironment called niche. The reciprocal interactions between cancer stem cells and niche contribute to the maintenance and enrichment of cancer stem cells. In order to simulate the interactions between cancer stem cells and niche, three-dimensional models have been developed. These in vitro culture systems recapitulate the spatial dimension, cellular heterogeneity, and the molecular networks of the tumor microenvironment and show great promise in elucidating the pathophysiology of cancer stem cells and designing more clinically relavant treatment modalites.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinglong Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liangwu Lin
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, China
| | - Xiongying Miao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shichao Yan
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Leping Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiyun Deng
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| |
Collapse
|
43
|
Chen YC, Won Baac H, Lee KT, Fouladdel S, Teichert K, Ok JG, Cheng YH, Ingram PN, Hart AJ, Azizi E, Guo LJ, Wicha MS, Yoon E. Selective Photomechanical Detachment and Retrieval of Divided Sister Cells from Enclosed Microfluidics for Downstream Analyses. ACS NANO 2017; 11:4660-4668. [PMID: 28480715 PMCID: PMC9558424 DOI: 10.1021/acsnano.7b00413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Considerable evidence suggests that self-renewal and differentiation of cancer stem-like cells, a key cell population in tumorgenesis, can determine the outcome of disease. Though the development of microfluidics has enhanced the study of cellular lineage, it remains challenging to retrieve sister cells separately inside enclosed microfluidics for further analyses. In this work, we developed a photomechanical method to selectively detach and reliably retrieve target cells from enclosed microfluidic chambers. Cells cultured on carbon nanotube-polydimethylsiloxane composite surfaces can be detached using shear force induced through irradiation of a nanosecond-pulsed laser. This retrieval process has been verified to preserve cell viability, membrane proteins, and mRNA expression levels. Using the presented method, we have successfully performed 96-plex single-cell transcriptome analysis on sister cells in order to identify the genes altered during self-renewal and differentiation, demonstrating phenomenal resolution in the study of cellular lineage.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Hyoung Won Baac
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kyu-Tae Lee
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
| | - Shamileh Fouladdel
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Kendall Teichert
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward, Ann Arbor, MI, USA
| | - Jong G. Ok
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Yu-Heng Cheng
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
| | - Patrick N. Ingram
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd. Ann Arbor, MI 48109-2099, USA
| | - A. John Hart
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward, Ann Arbor, MI, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA, 02139, USA
| | - Ebrahim Azizi
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - L. Jay Guo
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
| | - Max S. Wicha
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd. Ann Arbor, MI 48109-2099, USA
| |
Collapse
|
44
|
Affiliation(s)
- Lucas Armbrecht
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
45
|
Cheng YH, Chen YC, Brien R, Yoon E. Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip. LAB ON A CHIP 2016; 16:3708-17. [PMID: 27510097 PMCID: PMC6559352 DOI: 10.1039/c6lc00778c] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Recent research suggests that cancer stem-like cells (CSCs) are the key subpopulation for tumor relapse and metastasis. Due to cancer plasticity in surface antigen and enzymatic activity markers, functional tumorsphere assays are promising alternatives for CSC identification. To reliably quantify rare CSCs (1-5%), thousands of single-cell suspension cultures are required. While microfluidics is a powerful tool in handling single cells, previous works provide limited throughput and lack automatic data analysis capability required for high-throughput studies. In this study, we present the scaling and automation of high-throughput single-cell-derived tumor sphere assay chips, facilitating the tracking of up to ∼10 000 cells on a chip with ∼76.5% capture rate. The presented cell capture scheme guarantees sampling a representative population from the bulk cells. To analyze thousands of single-cells with a variety of fluorescent intensities, a highly adaptable analysis program was developed for cell/sphere counting and size measurement. Using a Pluronic® F108 (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) coating on polydimethylsiloxane (PDMS), a suspension culture environment was created to test a controversial hypothesis: whether larger or smaller cells are more stem-like defined by the capability to form single-cell-derived spheres. Different cell lines showed different correlations between sphere formation rate and initial cell size, suggesting heterogeneity in pathway regulation among breast cancer cell lines. More interestingly, by monitoring hundreds of spheres, we identified heterogeneity in sphere growth dynamics, indicating the cellular heterogeneity even within CSCs. These preliminary results highlight the power of unprecedented high-throughput and automation in CSC studies.
Collapse
Affiliation(s)
- Yu-Heng Cheng
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA.
| | | | | | | |
Collapse
|
46
|
Chen YC, Zhang Z, Fouladdel S, Deol Y, Ingram PN, McDermott SP, Azizi E, Wicha MS, Yoon E. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells. LAB ON A CHIP 2016; 16:2935-45. [PMID: 27381658 PMCID: PMC4977365 DOI: 10.1039/c6lc00062b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced by tumor-stromal interactions.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang Z, Chen YC, Cheng YH, Luan Y, Yoon E. Microfluidics 3D gel-island chip for single cell isolation and lineage-dependent drug responses study. LAB ON A CHIP 2016; 16:2504-2512. [PMID: 27270563 PMCID: PMC4978778 DOI: 10.1039/c6lc00081a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
3D cell culture in the extracellular matrix (ECM), which not only provides structural support to cellular constituents, but also initiates regulatory biochemical cues for a variety of important cell functions in tissue, has become more and more important in understanding cancer pathology and drug testing. Although the ECM-gel has been used in cell culture both in bulk and on-chip, previous studies focused on collective cell behavior rather than single-cell heterogeneity. To track the behavior of each individual cell, we have developed a gel-island chip, which can form thousands of islands containing single cells encapsulated by the desired ECM. Optimized by Poisson's distribution, the device can attain 34% single cell capture efficiency of the exact number of single cells per island. A good culture media exchange rate and high cell viability can be achieved in the gel-islands. The cells in the islands can be automatically counted for high-throughput analysis. As a proof of concept, we monitored the proliferation and differentiation of single Notch+ (stem-like) T47D breast cancer cells. The 3D collagen gel environment was found to be favorable for the stem-like phenotype through better self-renewal and de-differentiation (Notch- to Notch+ transition). More interestingly, we found that the Notch- de-differentiated cells were more resistant to doxorubicin and cisplatin than the Notch+ cells. Combining the 3D ECM culture and single cell resolution, the presented platform can automatically analyze the individual cell behaviors of hundreds of cells using a small amount of drug and reagents.
Collapse
Affiliation(s)
- Zhixiong Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Yu-Heng Cheng
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122
| | - Yi Luan
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd. Ann Arbor, MI 48109-2099, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd. Ann Arbor, MI 48109-2099, USA
| |
Collapse
|