1
|
Zhang K, Xu L, Guo J. Tarm1 may affect colitis by regulating macrophage M1 polarization in a mouse colitis model. Pediatr Res 2024:10.1038/s41390-024-03640-3. [PMID: 39487321 DOI: 10.1038/s41390-024-03640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND In this study, we aimed to explore the role of Tarm1 in juvenile mice with dextran sulfate sodium (DSS)-induced colitis and elucidate the mechanisms that affect intestinal barrier function. METHODS A DSS-induced pediatric inflammatory bowel disease mouse model was established using 4-week-old juvenile mice. Disease activity index and histopathological damage scores were determined using hematoxylin and eosin (H&E) staining. Tarm1, F4/80, CD68, and CD86 levels were detected using qPCR, western blotting, and immunofluorescence. Trans epithelial electric resistance (TEER) was detected using the transwell assay. RESULTS Results revealed that juvenile colitis mice fed 4% DSS drinking water had increased Tarm1 expression in the colon tissue, increased macrophage M1 polarization, higher expression of pro-inflammatory cytokines, and an impaired intestinal mucosal barrier, compared with the control group. Tarm1-knockdown RAW264.7 cells inhibited lipopolysaccharide (LPS)-induced M1 polarization and attenuated barrier damage in co-cultured intestinal epithelial cells. CONCLUSION Tarm1 expression was increased in colonic tissues of juvenile mice with colitis, and LPS-induced M1 polarization and intestinal barrier damage were attenuated in Tarm1-knockdown RAW264.7 cells. This suggests that attenuation of Tarm1 expression is a potential target for pediatric inflammatory bowel disease therapy.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lingfen Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jing Guo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
2
|
Mou X, Leeman SM, Roye Y, Miller C, Musah S. Fenestrated Endothelial Cells across Organs: Insights into Kidney Function and Disease. Int J Mol Sci 2024; 25:9107. [PMID: 39201792 PMCID: PMC11354928 DOI: 10.3390/ijms25169107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
In the human body, the vascular system plays an indispensable role in maintaining homeostasis by supplying oxygen and nutrients to cells and organs and facilitating the removal of metabolic waste and toxins. Blood vessels-the key constituents of the vascular system-are composed of a layer of endothelial cells on their luminal surface. In most organs, tightly packed endothelial cells serve as a barrier separating blood and lymph from surrounding tissues. Intriguingly, endothelial cells in some tissues and organs (e.g., choroid plexus, liver sinusoids, small intestines, and kidney glomerulus) form transcellular pores called fenestrations that facilitate molecular and ionic transport across the vasculature and mediate immune responses through leukocyte transmigration. However, the development and unique functions of endothelial cell fenestrations across organs are yet to be fully uncovered. This review article provides an overview of fenestrated endothelial cells in multiple organs. We describe their development and organ-specific roles, with expanded discussions on their contributions to glomerular health and disease. We extend these discussions to highlight the dynamic changes in endothelial cell fenestrations in diabetic nephropathy, focal segmental glomerulosclerosis, Alport syndrome, and preeclampsia, and how these unique cellular features could be targeted for therapeutic development. Finally, we discuss emerging technologies for in vitro modeling of biological systems, and their relevance for advancing the current understanding of endothelial cell fenestrations in health and disease.
Collapse
Affiliation(s)
- Xingrui Mou
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Sophia M. Leeman
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
- Department of Computer Science, Duke University, Durham, NC 27710, USA
| | - Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Carmen Miller
- Department of Biology, Duke University, Durham, NC 27710, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27710, USA
- Division of Nephrology, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
3
|
Yang H, Zhou C, Nie S, Xu S, Li M, Yu Q, Wei Y, Wang X. Anti-ulcerative colitis effect of rotating magnetic field on DSS-induced mice by modulating colonic inflammatory deterioration. Mol Immunol 2024; 172:23-37. [PMID: 38865801 DOI: 10.1016/j.molimm.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Ulcerative colitis (UC) is a prevalent inflammatory disorder that emerges in the colon and rectum, exhibiting a rising global prevalence and seriously impacting the physical and mental health of patients. Significant challenges remain in UC treatment, highlighting the need for safe and effective long-term therapeutic approaches. Heralded as a promising physical treatment, the rotating magnetic field (RMF) demonstrates safety, stability, manageability, and efficiency. This study delves into RMF's potential in mitigating DSS-induced UC in mice, assessing disease activity indices (DAI) and pathological alterations such as daily body weight, fecal occult blood, colon length, and morphological changes. Besides, several indexes have been detected, including serum concentrations of pro-inflammatory cytokines (IL6, IL-17A, TNF-α, IFN-γ) and anti-inflammatory cytokines (TGF-β, IL-4, IL-10), the ratio of splenic CD3+, CD4+, and CD8+ T cells, the rate of apoptotic colonic cells, the expression of colonic inflammatory and tight junction-associated proteins. The results showed that RMF had beneficial effects on the decrease of intestinal permeability, the restoration of tight junctions, and the mitigation of mitochondrial respiratory complexes (MRCs) by attenuating inflammatory dysfunction in colons of DSS-induced UC model of mice. In conclusion, this study demonstrates that RMF attenuates colonic inflammation, enhances colonic tight junction, and alleviates MRCs impairment by regulating the equilibrium of pro-inflammatory and anti-inflammatory cytokines in UC mice, suggesting the potential application of RMF in the clinical treatment of UC.
Collapse
Affiliation(s)
- Hua Yang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Cai Zhou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shenglan Nie
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shuling Xu
- School of Pharmacy, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Mengqing Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Qinyao Yu
- School of Pharmacy, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yunpeng Wei
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China; School of Pharmacy, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
4
|
Garcia AC, Six N, Ma L, Morel L. Intersection of the microbiome and immune metabolism in lupus. Immunol Rev 2024; 325:77-89. [PMID: 38873851 PMCID: PMC11338729 DOI: 10.1111/imr.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Systemic lupus erythematosus is a complex autoimmune disease resulting from a dysregulation of the immune system that involves gut dysbiosis and an altered host cellular metabolism. This review highlights novel insights and expands on the interactions between the gut microbiome and the host immune metabolism in lupus. Pathobionts, invasive pathogens, and even commensal microbes, when in dysbiosis, can all trigger and modulate immune responses through metabolic reprogramming. Changes in the microbiota's global composition or individual taxa may trigger a cascade of metabolic changes in immune cells that may, in turn, reprogram their functions. Factors contributing to dysbiosis include changes in intestinal hypoxia, competition for glucose, and limited availability of essential nutrients, such as tryptophan and metal ions, all of which can be driven by host metabolism changes. Conversely, the accumulation of some host metabolites, such as itaconate, succinate, and free fatty acids, could further influence the microbial composition and immune responses. Overall, mounting evidence supports a bidirectional relationship between host immunometabolism and the microbiota in lupus pathogenesis.
Collapse
Affiliation(s)
- Abigail Castellanos Garcia
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Natalie Six
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Longhuan Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Laurence Morel
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
5
|
Xiong M, Liu Z, Wang B, Sokolich T, Graham N, Chen M, Wang WL, Boldin MP. The epithelial C15ORF48/miR-147-NDUFA4 axis is an essential regulator of gut inflammation, energy metabolism, and the microbiome. Proc Natl Acad Sci U S A 2024; 121:e2315944121. [PMID: 38917002 PMCID: PMC11228508 DOI: 10.1073/pnas.2315944121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/13/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic inflammation is epidemiologically linked to the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC). However, our understanding of the molecular mechanisms controlling gut inflammation remains insufficient, hindering the development of targeted therapies for IBD and CRC. In this study, we uncovered C15ORF48/miR-147 as a negative regulator of gut inflammation, operating through the modulation of epithelial cell metabolism. C15ORF48/miR-147 encodes two molecular products, C15ORF48 protein and miR-147-3p microRNA, which are predominantly expressed in the intestinal epithelium. C15ORF48/miR-147 ablation leads to gut dysbiosis and exacerbates chemically induced colitis in mice. C15ORF48 and miR-147-3p work together to suppress colonocyte metabolism and inflammation by silencing NDUFA4, a subunit of mitochondrial complex IV (CIV). Interestingly, the C15ORF48 protein, a structural paralog of NDUFA4, contains a unique C-terminal α-helical domain crucial for displacing NDUFA4 from CIV and its subsequent degradation. NDUFA4 silencing hinders NF-κB signaling activation and consequently attenuates inflammatory responses. Collectively, our findings have established the C15ORF48/miR-147-NDUFA4 molecular axis as an indispensable regulator of gut homeostasis, bridging mitochondrial metabolism and inflammation.
Collapse
Affiliation(s)
- Min Xiong
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Bintao Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Thomas Sokolich
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Natalie Graham
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Meirong Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Wei-Le Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Mark P. Boldin
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| |
Collapse
|
6
|
Nie X, Li Q, Chen X, Onyango S, Xie J, Nie S. Bacterial extracellular vesicles: Vital contributors to physiology from bacteria to host. Microbiol Res 2024; 284:127733. [PMID: 38678680 DOI: 10.1016/j.micres.2024.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Bacterial extracellular vesicles (bEVs) represent spherical particles with diameters ranging from 20 to 400 nm filled with multiple parental bacteria-derived components, including proteins, nucleic acids, lipids, and other biomolecules. The production of bEVs facilitates bacteria interacting with their environment and exerting biological functions. It is increasingly evident that the bEVs play integral roles in both bacterial and host physiology, contributing to environmental adaptations to functioning as health promoters for their hosts. This review highlights the current state of knowledge on the composition, biogenesis, and diversity of bEVs and the mechanisms by which different bEVs elicit effects on bacterial physiology and host health. We posit that an in-depth exploration of the mechanistic aspects of bEVs activity is essential to elucidate their health-promoting effects on the host and may facilitate the translation of bEVs into applications as novel natural biological nanomaterials.
Collapse
Affiliation(s)
- Xinke Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | | | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
7
|
Liu W, Feng Y, Li T, Shi T, Hui W, Liu H, Gao F. The role of enhanced expression of Cx43 in patients with ulcerative colitis. Open Med (Wars) 2024; 19:20230885. [PMID: 38770177 PMCID: PMC11103162 DOI: 10.1515/med-2023-0885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 05/22/2024] Open
Abstract
The pathogenesis of ulcerative colitis (UC) involves chronic inflammation of the submucosal layer and disruption of epithelial barrier function within the gastrointestinal tract. Connexin 43 (Cx43) has been implicated in the pathogenesis of intestinal inflammation and its associated carcinogenic effects. However, a comprehensive analysis of Cx43's role in mucosal and peripheral immunity in patients with UC is lacking. In this study, the colon tissues of patients with UC exhibited severe damage to the intestinal mucosal barrier, resulting in a significant impairment of junctional communication as observed by transmission electron microscopy. The mRNA expression of Cx43 was found to be significantly elevated in the UC group compared to the control group, as determined using the Affymetrix expression profile chip and subsequently validated using qRT-PCR. The immunofluorescence analysis revealed a significantly higher mean fluorescence intensity of Cx43 in the UC group compared to the control group. Additionally, Cx43 was observed in both the cell membrane and nucleus, providing clear evidence of nuclear translocation. The proportion of Cx43 in the UC group for CD4+ and CD8+ T lymphocytes was increased in the control group, but only the proportion of Cx43 for CD8+ T lymphocytes showed significant difference by flow cytometry. The involvement of Cx43 in the pathogenesis of UC and its potential role in mucosal immunity warrants further investigation, as it holds promise as a prospective biomarker and therapeutic target for this condition. The proportion of Cx43 in the UC group for CD4+ and CD8+ T lymphocytes was increased in the control group, but only the proportion of Cx43 for CD8+ T lymphocytes showed a significant difference.
Collapse
Affiliation(s)
- Weidong Liu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, 830000, China
| | - Yan Feng
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, 830000, China
| | - Ting Li
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, 830000, China
| | - Tian Shi
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, 830000, China
| | - Wenjia Hui
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, 830000, China
| | - Huan Liu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, 830000, China
| | - Feng Gao
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, 830000, China
| |
Collapse
|
8
|
Sittipo P, Anggradita LD, Kim H, Lee C, Hwang NS, Lee YK, Hwang Y. Cell Surface Modification-Mediated Primary Intestinal Epithelial Cell Culture Platforms for Assessing Host-Microbiota Interactions. Biomater Res 2024; 28:0004. [PMID: 38327615 PMCID: PMC10845607 DOI: 10.34133/bmr.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024] Open
Abstract
Background: Intestinal epithelial cells (IECs) play a crucial role in regulating the symbiotic relationship between the host and the gut microbiota, thereby allowing them to modulate barrier function, mucus production, and aberrant inflammation. Despite their importance, establishing an effective ex vivo culture method for supporting the prolonged survival and function of primary IECs remains challenging. Here, we aim to develop a novel strategy to support the long-term survival and function of primary IECs in response to gut microbiota by employing mild reduction of disulfides on the IEC surface proteins with tris(2-carboxyethyl)phosphine. Methods: Recognizing the crucial role of fibroblast-IEC crosstalk, we employed a cell surface modification strategy, establishing layer-to-layer contacts between fibroblasts and IECs. This involved combining negatively charged chondroitin sulfate on cell surfaces with a positively charged chitosan thin film between cells, enabling direct intercellular transfer. Validation included assessments of cell viability, efficiency of dye transfer, and IEC function upon lipopolysaccharide (LPS) treatment. Results: Our findings revealed that the layer-by-layer co-culture platform effectively facilitates the transfer of small molecules through gap junctions, providing vital support for the viability and function of primary IECs from both the small intestine and colon for up to 5 days, as evident by the expression of E-cadherin and Villin. Upon LPS treatment, these IECs exhibited a down-regulation of Villin and tight junction genes, such as E-cadherin and Zonula Occludens-1, when compared to their nontreated counterparts. Furthermore, the transcription level of Lysozyme exhibited an increase, while Mucin 2 showed a decrease in response to LPS, indicating responsiveness to bacterial molecules. Conclusions: Our study provides a layer-by-layer-based co-culture platform to support the prolonged survival of primary IECs and their features, which is important for understanding IEC function in response to the gut microbiota.
Collapse
Affiliation(s)
- Panida Sittipo
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151, Republic of Korea
| | - Laurensia Danis Anggradita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151, Republic of Korea
- Department of Integrated Biomedical Science,
Soonchunhyang University, Asan-si, Chungnam-do 31538, Republic of Korea
| | - Hyunbum Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes,
Seoul National University, Seoul 08826, Republic of Korea
| | - Chanyoung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151, Republic of Korea
- Department of Integrated Biomedical Science,
Soonchunhyang University, Asan-si, Chungnam-do 31538, Republic of Korea
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes,
Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering,
Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research,
Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151, Republic of Korea
- Department of Integrated Biomedical Science,
Soonchunhyang University, Asan-si, Chungnam-do 31538, Republic of Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151, Republic of Korea
- Department of Integrated Biomedical Science,
Soonchunhyang University, Asan-si, Chungnam-do 31538, Republic of Korea
| |
Collapse
|
9
|
Abstract
The remarkable diversity of lymphocytes, essential components of the immune system, serves as an ingenious mechanism for maximizing the efficient utilization of limited host defense resources. While cell adhesion molecules, notably in gut-tropic T cells, play a central role in this mechanism, the counterbalancing molecular details have remained elusive. Conversely, we've uncovered the molecular pathways enabling extracellular vesicles secreted by lymphocytes to reach the gut's mucosal tissues, facilitating immunological regulation. This discovery sheds light on immune fine-tuning, offering insights into immune regulation mechanisms.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| |
Collapse
|
10
|
Yan Q, Feng Z, Jiang B, Yao J. Biological functions of connexins in the development of inflammatory bowel disease. Scand J Gastroenterol 2024; 59:142-149. [PMID: 37837320 DOI: 10.1080/00365521.2023.2267713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic intestinal inflammatory diseases with unknown etiology. Gap junctions composed of connexins (Cxs) have been recently validated as an important factor in the development of IBD. Under IBD-induced inflammatory response in the gut, gap junctions connect multiple signaling pathways involved in the interaction between inflammatory cells with other intestinal cells, which altogether mediate the development of IBD. This paper is a narrative review aiming to comprehensively elucidate the biological function of connexins, especially the ubiquitously and predominantly expressed Cx43, in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Qiaojing Yan
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Traditional Chinese Medicine Innovation Center for Anorectal Disease, Nanjing, China
| | - Zhiling Feng
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Bin Jiang
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Traditional Chinese Medicine Innovation Center for Anorectal Disease, Nanjing, China
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
11
|
Wang J, Xu C, Xu H, Wang R, Su T, Zhao S. Single-Cell RNA Sequencing Reveals Roles of Fibroblasts During Intestinal Injury and Repair in Rats with Severe Acute Pancreatitis. J Inflamm Res 2023; 16:6073-6086. [PMID: 38107381 PMCID: PMC10725699 DOI: 10.2147/jir.s436511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose To explore the molecular mechanisms of intestinal injury and treatment by analyzing changes in cellular heterogeneity and composition in rat ileal tissue during injury and treatment processes. Methods We constructed a rat model of SAP and evaluated treatment with an injected of monoacylglycerol lipase (MAGL) inhibitor (JZL184) solution using three experimental groups: healthy male Sprague-Dawley (SD) rats injected with vehicle (CON), male SD SAP model rats injected with vehicle (SAP), and male SAP rats injected with JZL184. We obtained and prepared a single-cell suspension of ileal tissue of each rat for single-cell transcriptome sequencing. Results This project classified changes in cellular heterogeneity and composition in rat ileal tissue during SAP-induced intestinal injury and MAGL treatment. We found that the number of fibroblast clusters was decreased in the SAP group relative to the CON group, and increased after JZL184 treatment. Further analysis of differences in gene expression between cell clusters in each group reveals that fibroblasts had the greatest number of differentially expressed genes. Most notably, expression of genes involved in communication between cells was found to vary during SAP-induced intestinal injury and JZL184 treatment. Among these changes, the degree of difference in expression of genes involved in communication between fibroblasts and other cells was the highest, indicating that fibroblasts in rat ileal tissue affect intestinal injury and repair through cell-to-cell communication. In addition, our results reveal that differentially expressed RNA-binding proteins in fibroblasts may affect their functions in intestinal injury and treatment by affecting the expression of genes regulating communication between cells. Conclusion These findings emphasize the importance of understanding the interactions between fibroblasts and other cells in the context of intestinal injury, providing valuable insights for further exploring molecular mechanisms and insight for discovering new treatment targets and strategies.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Changqin Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Ruixia Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Tong Su
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Shulei Zhao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| |
Collapse
|
12
|
Wang SR, Mallard CG, Cairns CA, Chung HK, Yoo D, Jaladanki SK, Xiao L, Wang JY. Stabilization of Cx43 mRNA via RNA-binding protein HuR regulated by polyamines enhances intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 2023; 325:G518-G527. [PMID: 37788332 PMCID: PMC10894663 DOI: 10.1152/ajpgi.00143.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Gut barrier dysfunction occurs commonly in patients with critical disorders, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Connexin 43 (Cx43) acts as a gap junction protein and is crucial for intercellular communication and the diffusion of nutrients. The levels of cellular Cx43 are tightly regulated by multiple factors, including polyamines, but the exact mechanism underlying the control of Cx43 expression remains largely unknown. The RNA-binding protein HuR regulates the stability and translation of target mRNAs and is involved in many aspects of intestinal epithelial pathobiology. Here we show that HuR directly bound to Cx43 mRNA via its 3'-untranslated region in intestinal epithelial cells (IECs) and this interaction enhanced Cx43 expression by stabilizing Cx43 mRNA. Depletion of cellular polyamines inhibited the [HuR/Cx43 mRNA] complex and decreased the level of Cx43 protein by destabilizing its mRNA, but these changes were prevented by ectopic overexpression of HuR. Polyamine depletion caused intestinal epithelial barrier dysfunction, which was reversed by ectopic Cx43 overexpression. Moreover, overexpression of checkpoint kinase 2 in polyamine-deficient cells increased the [HuR/Cx43 mRNA] complex, elevated Cx43 levels, and promoted barrier function. These findings indicate that Cx43 mRNA is a novel target of HuR in IECs and that polyamines regulate Cx43 mRNA stability via HuR, thus playing a critical role in the maintenance of intestinal epithelial barrier function.NEW & NOTEWORTHY The current study shows that polyamines stabilize the Cx43 mRNA via HuR, thus enhancing the function of the Cx43-mediated gap junction. These findings suggest that induced Cx43 by HuR plays a critical role in the process by which polyamines regulate intestinal epithelial barrier.
Collapse
Affiliation(s)
- Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Caroline G Mallard
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Cassandra A Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Dongyoon Yoo
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Suraj K Jaladanki
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| |
Collapse
|
13
|
Wang J, Bakker W, de Haan L, Bouwmeester H. Deoxynivalenol increases pro-inflammatory cytokine secretion and reduces primary bile acid transport in an inflamed intestinal in vitro co-culture model. Food Res Int 2023; 173:113323. [PMID: 37803634 DOI: 10.1016/j.foodres.2023.113323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 10/08/2023]
Abstract
The fungal secondary metabolite deoxynivalenol (DON) that can contaminate cereal-based food products not only induces inflammation but also reduces bile acid absorption by a healthy human intestine. Bile acid malabsorption is commonly observed in individuals with an inflamed intestine. Here we studied the effects of DON on inflammation and primary bile acid transport using an in vitro model for an inflamed intestine. An inflamed intestinal in vitro model was established by co-culturing a Caco-2 cell-layer and LPS-pre-stimulated THP-1 macrophages in Transwells. We observed a decreased transport of 5 primary bile acids across inflamed co-cultures compared to healthy co-cultures but not of chenodeoxycholic acid. DON exposure further reduced the transport of the affected primary bile acids across the inflamed co-cultures. DON exposure also enhanced the secretion of pro-inflammatory cytokines in the inflamed co-cultures, while it did not increase the pro-inflammatory cytokines secretion from LPS-pre-stimulated THP-1 monocultures. Exposure of Caco-2 cell-layers to pro-inflammatory cytokines or THP-1 conditioned media partly mimicked the DON-induced effects of the co-culture model. Local activation of intestinal immune cells reinforces the direct pro-inflammatory effects of DON on intestinal epithelial cells. This affects the bile acid intestinal kinetics in an inflamed intestine.
Collapse
Affiliation(s)
- Jingxuan Wang
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
14
|
Kapoor S, Padwad YS. Phloretin suppresses intestinal inflammation and maintained epithelial tight junction integrity by modulating cytokines secretion in in vitro model of gut inflammation. Cell Immunol 2023; 391-392:104754. [PMID: 37506521 DOI: 10.1016/j.cellimm.2023.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Ulcerative colitis is a type of inflammatory bowel disease which in long run can lead to colorectal cancer (CRC). Chronic inflammation can be a key factor for the occurrence of CRC thus mitigating an inflammation can be a preventive strategy for the occurrence of CRC. In this study we have explored the anti-inflammatory potential of phloretin, in in vitro gut inflammation model, developed by co-culture of Caco2 (intestinal epithelial) cells and RAW264.7 macrophages (immune cells). Phloretin is a dihydrochalcone present in apple, pear and strawberries. An anti-inflammatory effect of phloretin in reducing LPS induced inflammation and maintenance of transepithelial electric resistance (TEER) in Caco2 cells was examined. Paracellular permeability assay was performed using Lucifer yellow dye to evaluate the effect of phloretin in inhibiting gut leakiness caused by inflammatory mediators secreted by activated macrophages. Phloretin attenuated LPS induced nitric oxide levels, oxidative stress, depolarization of mitochondrial membrane potential in Caco2 cells as evidenced by reduction in reactive oxygen species (ROS), and enhancement of MMP, and decrease in inflammatory cytokines IL8, TNFα, IL1β and IL6. It exhibited anti-inflammatory activity by inhibiting the expression of NFκB, iNOS and Cox2. Phloretin maintained the epithelial integrity by regulating the expression of tight junction proteins ZO1, occludin, Claudin1 and JAM. Phloretin reduced LPS induced levels of Cox2 along with the reduction in Src expression which further regulated an expression of tight junction protein occludin. Phloretin in combination to sodium pyruvate exhibited potential anti-inflammatory activity via targeting NFkB signaling. Our findings paved a way to position phloretin as nutraceutical in preventing the occurrence of colitis and culmination of disease into colitis associated colorectal cancer.
Collapse
Affiliation(s)
- Smita Kapoor
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogendra S Padwad
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
15
|
Phuangbubpha P, Thara S, Sriboonaied P, Saetan P, Tumnoi W, Charoenpanich A. Optimizing THP-1 Macrophage Culture for an Immune-Responsive Human Intestinal Model. Cells 2023; 12:1427. [PMID: 37408263 DOI: 10.3390/cells12101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Previously established immune-responsive co-culture models with macrophages have limitations due to the dedifferentiation of macrophages in long-term cultures. This study is the first report of a long-term (21-day) triple co-culture of THP-1 macrophages (THP-1m) with Caco-2 intestinal epithelial cells and HT-29-methotrexate (MTX) goblet cells. We demonstrated that high-density seeded THP-1 cells treated with 100 ng/mL phorbol 12-myristate 13-acetate for 48 h differentiated stably and could be cultured for up to 21 days. THP-1m were identified by their adherent morphology and lysosome expansion. In the triple co-culture immune-responsive model, cytokine secretions during lipopolysaccharide-induced inflammation were confirmed. Tumor necrosis factor-alpha and interleukin 6 levels were elevated in the inflamed state, reaching 824.7 ± 130.0 pg/mL and 609.7 ± 139.5 pg/mL, respectively. Intestinal membrane integrity was maintained with a transepithelial electrical resistance value of 336.4 ± 18.0 Ω·cm2. Overall, our findings suggest that THP-1m can be effectively employed in models of long-term immune responses in both normal and chronic inflammatory states of the intestinal epithelium, making them a valuable tool for future research on the association between the immune system and gut health.
Collapse
Affiliation(s)
- Pornwipa Phuangbubpha
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sanya Thara
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Patsawee Sriboonaied
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Puretat Saetan
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wanwiwa Tumnoi
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Adisri Charoenpanich
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
16
|
Schimpel C, Passegger C, Egger S, Tam-Amersdorfer C, Strobl H. A novel 3D cell culture model to study the human small intestinal immune landscape. Eur J Immunol 2023; 53:e2250131. [PMID: 36527196 DOI: 10.1002/eji.202250131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Several subsets of mononuclear phagocytes and DCs (MDC) populate the small intestine (SI), and these cells reportedly exert specialized functions in anti-microbial immunity and tolerance. Given the specialized phenotype of these cells, differing from other MDC family members, including their putative circulating blood precursors, local intestinal factors play key instructive roles in their differentiation. We designed an SI cell culture model composed of three intestinal epithelial cell (IEC) types, including absorptive enterocytes (E cells), antigen delivering microfold (M) cells, and mucus-producing goblet (G) cells plus T lymphocytes and soluble B cell-derived factors. This model was used to study the differentiation fate of CD34+ hematopoietic progenitor cell-derived monocyte/DC precursors. Progeny cells can be analyzed after a 3-week co-culture period, mimicking the physiologic turn-over time of intestinal MDC. A dominant monocyte differentiation pathway was suppressed, in favor of partial differentiation along DC and macrophage pathways, with low percentages of cells acquired DC or macrophage markers. Moreover, E and G cells play opposing roles in CX3CR1+ vs CD103dim cell differentiation, indicating that both together might counter-balance M/DC differentiation. Thus, SI epithelial cells suppress M/DC differentiation, supporting a key role for exogenous factors in M/DC differentiation.
Collapse
Affiliation(s)
- Christa Schimpel
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| | - Christina Passegger
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| | - Simone Egger
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| | - Carmen Tam-Amersdorfer
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| | - Herbert Strobl
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| |
Collapse
|
17
|
El-Hajjar L, Saliba J, Karam M, Shaito A, El Hajj H, El-Sabban M. Ubiquitin-Related Modifier 1 (URM-1) Modulates Cx43 in Breast Cancer Cell Lines. Int J Mol Sci 2023; 24:ijms24032958. [PMID: 36769280 PMCID: PMC9917400 DOI: 10.3390/ijms24032958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Gap-junction-forming connexins are exquisitely regulated by post-translational modifications (PTMs). In particular, the PTM of connexin 43 (Cx43), a tumor suppressor protein, regulates its turnover and activity. Here, we investigated the interaction of Cx43 with the ubiquitin-related modifier 1 (URM-1) protein and its impact on tumor progression in two breast cancer cell lines, highly metastatic triple-negative MDA-MB-231 and luminal breast cancer MCF-7 cell lines. To evaluate the subsequent modulation of Cx43 levels, URM-1 was downregulated in these cells. The transcriptional levels of epithelial-to-mesenchymal transition (EMT) markers and the metastatic phenotype were assessed. We demonstrated that Cx43 co-localizes and interacts with URM-1, and URMylated Cx43 was accentuated upon cellular stress. The significant upregulation of small ubiquitin-like modifier-1 (SUMO-1) was also observed. In cells with downregulated URM-1, Cx43 expression significantly decreased, and SUMOylation by SUMO-1 was affected. The concomitant expression of EMT markers increased, leading to increased proliferation, migration, and invasion potential. Inversely, the upregulation of URM-1 increased Cx43 expression and reversed EMT-induced processes, underpinning a role for this PTM in the observed phenotypes. This study proposes that the URMylation of Cx43 in breast cancer cells regulates its tumor suppression properties and contributes to breast cancer cell malignancy.
Collapse
Affiliation(s)
- Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Jessica Saliba
- Department of Biology, Faculty of Sciences, Lebanese University, Beirut P.O. Box 90656, Lebanon
- Department of Public Health, Faculty of Health Sciences, University of Balamand, Beirut P.O. Box 100, Lebanon
| | - Mario Karam
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University Doha, Doha P.O. Box 2713, Qatar
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Correspondence: ; Tel.: +961-(1)-350000 (ext. 4765)
| |
Collapse
|
18
|
Saadh MJ, Mikhailova MV, Rasoolzadegan S, Falaki M, Akhavanfar R, Gonzáles JLA, Rigi A, Kiasari BA. Therapeutic potential of mesenchymal stem/stromal cells (MSCs)-based cell therapy for inflammatory bowel diseases (IBD) therapy. Eur J Med Res 2023; 28:47. [PMID: 36707899 PMCID: PMC9881387 DOI: 10.1186/s40001-023-01008-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of inflammatory bowel disease (IBD), given their immunoregulatory and pro-survival attributes. MSCs alleviate dysregulated inflammatory responses through the secretion of a myriad of anti-inflammatory mediators, such as interleukin 10 (IL-10), transforming growth factor-β (TGFβ), prostaglandin E2 (PGE2), tumor necrosis factor-stimulated gene-6 (TSG-6), etc. Indeed, MSC treatment of IBD is largely carried out through local microcirculation construction, colonization and repair, and immunomodulation, thus alleviating diseases severity. The clinical therapeutic efficacy relies on to the marked secretion of various secretory molecules from viable MSCs via paracrine mechanisms that are required for gut immuno-microbiota regulation and the proliferation and differentiation of surrounding cells like intestinal epithelial cells (IECs) and intestinal stem cells (ISCs). For example, MSCs can induce IECs proliferation and upregulate the expression of tight junction (TJs)-associated protein, ensuring intestinal barrier integrity. Concerning the encouraging results derived from animal studies, various clinical trials are conducted or ongoing to address the safety and efficacy of MSCs administration in IBD patients. Although the safety and short-term efficacy of MSCs administration have been evinced, the long-term efficacy of MSCs transplantation has not yet been verified. Herein, we have emphasized the illumination of the therapeutic capacity of MSCs therapy, including naïve MSCs, preconditioned MSCs, and also MSCs-derived exosomes, to alleviate IBD severity in experimental models. Also, a brief overview of published clinical trials in IBD patients has been delivered.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Maria V Mikhailova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Soheil Rasoolzadegan
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Falaki
- Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Rigi
- Department of Nursing, Young Researchers and Elite Club, Zahedan Branch, Azad University, Zahedan, Iran.
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran.
| |
Collapse
|
19
|
Liu Y, Cao M, Yan X, Cai X, Li Y, Li C, Xue T. Genome-wide identification of gap junction (connexins and pannexins) genes in black rockfish (Sebastes schlegelii): Evolution and immune response mechanism following challenge. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108492. [PMID: 36529400 DOI: 10.1016/j.fsi.2022.108492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Cell-to-cell communication through gap junction channels is very important to coordinate the functions of cells in all multicellular biological tissues. It allows the direct exchange of ions and small molecules (including second messengers, such as Ca2+, IP3, cyclic nucleotides, and oligonucleotides). In this study, a total of 48 members of the gap junction (GJ) protein family were identified from Sebastes schlegelii. In S. schlegelii, GJ proteins were classified into two types, connexin, and pannexin, and then connexins were divided into five subfamilies. The naming of 48 genes was verified through phylogenetic analysis and syntenic analysis. The connexin proteins contained four transmembrane fragments and two extracellular loops, the lengths of the intracellular loop and C-terminal was quite different, and the C-terminal region was highly variable after post-translational modification. PPI analysis showed that GJs interacted with tight junctions, adhesive junctions, and cell adhesions to form a complex network and participated in cell-cell junction organization, ATP binding, ion channel, voltage-gated conduction, wnt signaling pathway, Fc-γ receptor signaling pathway, and DNA replication. In addition, the S. schlegelii GJ protein was highly expressed in intestinal tissues and remarkably regulated after Edwardsiella tarda and Streptococcus iniae infection. The expression of GJs in intestinal cells of S. schlegelii was significantly regulated by LPS and poly (I:C), which was consistent with the results of intestinal tissue stimulation by pathogens. In conclusion, this study can provide valuable information for further research on the function of S. schlegelii GJ proteins.
Collapse
Affiliation(s)
- Yiping Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xu Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
20
|
Jayawardena D, Priyamvada S, Kageyama T, White Z, Kumar A, Griggs TF, Majumder A, Akram R, Anbazhagan AN, Sano T, Dudeja PK. Loss of SLC26A3 Results in Colonic Mucosal Immune Dysregulation via Epithelial-Immune Cell Crosstalk. Cell Mol Gastroenterol Hepatol 2022; 15:903-919. [PMID: 36535508 PMCID: PMC9971172 DOI: 10.1016/j.jcmgh.2022.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Down-regulation of chloride transporter SLC26A3 or down-regulated in adenoma (DRA) in colonocytes has recently been linked to the pathogenesis of ulcerative colitis (UC). Because exaggerated immune responses are one of the hallmarks of UC, these current studies were undertaken to define the mechanisms by which loss of DRA relays signals to immune cells to increase susceptibility to inflammation. METHODS NanoString Immunology Panel, fluorescence assisted cell sorting, immunoblotting, immunofluorescence, and quantitative real-time polymerase chain reaction assays were used in wild-type and DRA knockout (KO) mice. Interleukin (IL)-33 blocking was used to determine specific changes in immune cells and co-housing/broad spectrum antibiotics administration, and ex vivo studies in colonoids were conducted to rule out the involvement of microbiota. Colonoid-derived monolayers from healthy and UC patient biopsies were analyzed for translatability. RESULTS There was a marked induction of Th2 (>2-fold), CD4+ Th2 cells (∼8-fold), RORγt+ Th17, and FOXP3+ regulatory T cells (Tregs). DRA KO colons also exhibited a robust induction of IL-33 (>8-fold). In vivo studies using blocking of IL-33 established that T2 immune dysregulation (alterations in ILC2, Th2, and GATA3+ iTregs) in response to loss of DRA was due to altered epithelial-immune cell crosstalk via IL-33. CONCLUSIONS Loss of DRA in colonocytes triggers the release of IL-33 to drive a type 2 immune response. These observations emphasize the critical importance of DRA in mucosal immune homeostasis and its implications in the pathogenesis of UC.
Collapse
Affiliation(s)
- Dulari Jayawardena
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Shubha Priyamvada
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Takahiro Kageyama
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| | - Zachary White
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| | - Anoop Kumar
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | - Theodor F Griggs
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Apurba Majumder
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ramsha Akram
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | - Teruyuki Sano
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| | - Pradeep K Dudeja
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois.
| |
Collapse
|
21
|
Chua JW, Thangaveloo M, Lim DXE, Madden LE, Phillips ARJ, Becker DL. Connexin43 in Post-Surgical Peritoneal Adhesion Formation. Life (Basel) 2022; 12:1734. [PMID: 36362888 PMCID: PMC9697983 DOI: 10.3390/life12111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024] Open
Abstract
OBJECTIVE Post-surgical peritoneal adhesions are a serious problem for the quality of life and fertility. Yet there are no effective ways of preventing their occurrence. The gap junction protein Cx43 is known to be involved in fibrosis in several different organs and disease conditions often associated with inflammation. Here we examined the Cx43 dynamic expression in an ischemic button model of surgical adhesions. METHODS Using the mouse ischemic button model, Cx43 antisense was delivered in Pluronic gel to attenuate Cx43 expression. The severity of button formation and immunofluorescence analysis of Cx43 and TGF-β1 were performed. The concentration of tissue plasminogen activator via ELISA was also performed. RESULTS As early as 6 h after button formation, the Cx43 levels were elevated in and around the button and some weak adhesions were formed. By 24 h Cx43 levels had increased further and adhesions were more defined. At 7 days the adhesions were much more robust, opaque, and vascularized, requiring blunt or sharp dissection to break them. Cx43 antisense attenuated its upregulation and, reduced the number and severity of adhesions that formed. CONCLUSION Targeting Cx43 after surgical procedures may be a potential therapeutic strategy for preventing adhesion formation or at least reducing their severity.
Collapse
Affiliation(s)
- Jia Wang Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| | - Moogaambikai Thangaveloo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| | - Debbie Xiu En Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| | - Leigh E. Madden
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| | | | - David L. Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| |
Collapse
|
22
|
El-Harakeh M, Saliba J, Sharaf Aldeen K, Haidar M, El Hajjar L, Awad MK, Hashash JG, Shirinian M, El-Sabban M. Expression of the methylcytosine dioxygenase ten-eleven translocation-2 and connexin 43 in inflammatory bowel disease and colorectal cancer. World J Gastroenterol 2022; 28:5845-5864. [PMID: 36353202 PMCID: PMC9639657 DOI: 10.3748/wjg.v28.i40.5845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) constitutes a substantial risk factor for colorectal cancer. Connexin 43 (Cx43) is a protein that forms gap junction (GJ) complexes involved in intercellular communication, and its expression is altered under pathological conditions, such as IBD and cancer. Recent studies have implicated epigenetic processes modulating DNA methylation in the pathogenesis of diverse inflammatory and malignant diseases. The ten-eleven translocation-2 (TET-2) enzyme catalyzes the demethylation, hence, regulating the activity of various cancer-promoting and tumor-suppressor genes.
AIM To investigate Cx43 and TET-2 expression levels and presence of 5-hydroxymethylcytosine (5-hmC) marks under inflammatory conditions both in vitro and in vivo.
METHODS TET-2 expression was evaluated in parental HT-29 cells and in HT-29 cells expressing low or high levels of Cx43, a putative tumor-suppressor gene whose expression varies in IBD and colorectal cancer, and which has been implicated in the inflammatory process and in tumor onset. The dextran sulfate sodium-induced colitis model was reproduced in BALB/c mice to evaluate the expression of TET-2 and Cx43 under inflammatory conditions in vivo. In addition, archived colon tissue sections from normal, IBD (ulcerative colitis), and sporadic colon adenocarcinoma patients were obtained and evaluated for the expression of TET-2 and Cx43. Expression levels were reported at the transcriptional level by quantitative real-time polymerase chain reaction, and at the translational level by Western blotting and immunofluorescence.
RESULTS Under inflammatory conditions, Cx43 and TET-2 expression levels increased compared to non-inflammatory conditions. TET-2 upregulation was more pronounced in Cx43-deficient cells. Moreover, colon tissue sections from normal, ulcerative colitis, and sporadic colon adenocarcinoma patients corroborated that Cx43 expression increased in IBD and decreased in adenocarcinoma, compared to tissues from non-IBD subjects. However, TET-2 expression and 5-hmC mark levels decreased in samples from patients with ulcerative colitis or cancer. Cx43 and TET-2 expression levels were also investigated in an experimental colitis mouse model. Interestingly, mice exposed to carbenoxolone (CBX), a GJ inhibitor, had upregulated TET-2 levels. Collectively, these results show that TET-2 levels and activity increased under inflammatory conditions, in cells downregulating gap junctional protein Cx43, and in colon tissues from mice exposed to CBX.
CONCLUSION These results suggest that TET-2 expression levels, as well as Cx43 expression levels, are modulated in models of intestinal inflammation. We hypothesize that TET-2 may demethylate genes involved in inflammation and tumorigenesis, such as Cx43, potentially contributing to intestinal inflammation and associated carcinogenesis.
Collapse
Affiliation(s)
- Mohammad El-Harakeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
- UR GPF Laboratory of Biodiversity and Functional Genomics, Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut 1107, Lebanon
| | - Jessica Saliba
- Department of Biology, Faculty of Sciences, Lebanese University, Beirut 1533, Lebanon
- Department of Public Health, Faculty of Health Sciences, University of Balamand, Dekwaneh, Sin el Fil 1552, Lebanon
| | - Kawthar Sharaf Aldeen
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - May Haidar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Layal El Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Mireille Kallassy Awad
- UR GPF Laboratory of Biodiversity and Functional Genomics, Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut 1107, Lebanon
| | - Jana G Hashash
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| |
Collapse
|
23
|
Selezneva A, Gibb AJ, Willis D. The contribution of ion channels to shaping macrophage behaviour. Front Pharmacol 2022; 13:970234. [PMID: 36160429 PMCID: PMC9490177 DOI: 10.3389/fphar.2022.970234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The expanding roles of macrophages in physiological and pathophysiological mechanisms now include normal tissue homeostasis, tissue repair and regeneration, including neuronal tissue; initiation, progression, and resolution of the inflammatory response and a diverse array of anti-microbial activities. Two hallmarks of macrophage activity which appear to be fundamental to their diverse cellular functionalities are cellular plasticity and phenotypic heterogeneity. Macrophage plasticity allows these cells to take on a broad spectrum of differing cellular phenotypes in response to local and possibly previous encountered environmental signals. Cellular plasticity also contributes to tissue- and stimulus-dependent macrophage heterogeneity, which manifests itself as different macrophage phenotypes being found at different tissue locations and/or after different cell stimuli. Together, plasticity and heterogeneity align macrophage phenotypes to their required local cellular functions and prevent inappropriate activation of the cell, which could lead to pathology. To execute the appropriate function, which must be regulated at the qualitative, quantitative, spatial and temporal levels, macrophages constantly monitor intracellular and extracellular parameters to initiate and control the appropriate cell signaling cascades. The sensors and signaling mechanisms which control macrophages are the focus of a considerable amount of research. Ion channels regulate the flow of ions between cellular membranes and are critical to cell signaling mechanisms in a variety of cellular functions. It is therefore surprising that the role of ion channels in the macrophage biology has been relatively overlooked. In this review we provide a summary of ion channel research in macrophages. We begin by giving a narrative-based explanation of the membrane potential and its importance in cell biology. We then report on research implicating different ion channel families in macrophage functions. Finally, we highlight some areas of ion channel research in macrophages which need to be addressed, future possible developments in this field and therapeutic potential.
Collapse
|
24
|
Moysidou CM, Withers AM, Nisbet AJ, Price DRG, Bryant CE, Cantacessi C, Owens RM. Investigation of Host-Microbe-Parasite Interactions in an In Vitro 3D Model of the Vertebrate Gut. Adv Biol (Weinh) 2022; 6:e2200015. [PMID: 35652159 DOI: 10.1002/adbi.202200015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/23/2022] [Indexed: 01/28/2023]
Abstract
In vitro models of the gut-microbiome axis are in high demand. Conventionally, intestinal monolayers grown on Transwell setups are used to test the effects of commensals/pathogens on the barrier integrity, both under homeostatic and pathophysiological conditions. While such models remain valuable for deepening the understanding of host-microbe interactions, often, they lack key biological components that mediate this intricate crosstalk. Here, a 3D in vitro model of the vertebrate intestinal epithelium, interfaced with immune cells surviving in culture for over 3 weeks, is developed and applied to proof-of-concept studies of host-microbe interactions. More specifically, the establishment of stable host-microbe cocultures is described and functional and morphological changes in the intestinal barrier induced by the presence of commensal bacteria are shown. Finally, evidence is provided that the 3D vertebrate gut models can be used as platforms to test host-microbe-parasite interactions. Exposure of gut-immune-bacteria cocultures to helminth "excretory/secretory products" induces in vivo-like up-/down-regulation of certain cytokines. These findings support the robustness of the modular in vitro cell systems for investigating the dynamics of host-microbe crosstalk and pave the way toward new approaches for systems biology studies of pathogens that cannot be maintained in vitro, including parasitic helminths.
Collapse
Affiliation(s)
- Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, West Cambridge Site, CB3 0AS, UK
| | - Aimee M Withers
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, West Cambridge Site, CB3 0AS, UK
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, West Cambridge Site, CB3 0AS, UK
| |
Collapse
|
25
|
Rosas-García J, Ramón-Luing LA, Bobadilla K, Meraz-Ríos MA, Sevilla-Reyes EE, Santos-Mendoza T. Distinct Transcriptional Profile of PDZ Genes after Activation of Human Macrophages and Dendritic Cells. Int J Mol Sci 2022; 23:ijms23137010. [PMID: 35806015 PMCID: PMC9266728 DOI: 10.3390/ijms23137010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
The PDZ (PSD95, Dlg and ZO-1) genes encode proteins that primarily function as scaffolds of diverse signaling pathways. To date, 153 PDZ genes have been identified in the human genome, most of which have multiple protein isoforms widely studied in epithelial and neural cells. However, their expression and function in immune cells have been poorly studied. Herein, we aimed to assess the transcriptional profiles of 83 PDZ genes in human macrophages (Mɸ) and dendritic cells (DCs) and changes in their relative expression during cell PRR stimulation. Significantly distinct PDZ gene transcriptional profiles were identified under different stimulation conditions. Furthermore, a distinct PDZ gene transcriptional signature was found in Mɸ and DCs under the same phagocytic stimuli. Notably, more than 40 PDZ genes had significant changes in expression, with potentially relevant functions in antigen-presenting cells (APCs). Given that several PDZ proteins are targeted by viral products, our results support that many of these proteins might be viral targets in APCs as part of evasion mechanisms. Our results suggest a distinct requirement for PDZ scaffolds in Mɸ and DCs signaling pathways activation. More assessments on the functions of PDZ proteins in APCs and their role in immune evasion mechanisms are needed.
Collapse
Affiliation(s)
- Jorge Rosas-García
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (K.B.)
- Department of Molecular Biomedicine, CINVESTAV, Mexico City 07360, Mexico;
| | - Lucero A. Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Karen Bobadilla
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (K.B.)
| | | | - Edgar E. Sevilla-Reyes
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (E.E.S.-R.); (T.S.-M.)
| | - Teresa Santos-Mendoza
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (K.B.)
- Correspondence: (E.E.S.-R.); (T.S.-M.)
| |
Collapse
|
26
|
Miri ST, Sotoodehnejadnematalahi F, Amiri MM, Pourshafie MR, Rohani M. The impact of Lactobacillus and Bifidobacterium probiotic cocktail on modulation of gene expression of gap junctions dysregulated by intestinal pathogens. Arch Microbiol 2022; 204:417. [PMID: 35737111 DOI: 10.1007/s00203-022-03026-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
Probiotics are special bacterial strains with strain specific impacts. They can affect health condition in intestine by producing organic acid, competing with pathogens and maintaining cells homeostasis. Regarding to importance of cell junctions in cells transportation and the influence of pathogens in their functions which lead to inflammation, the impact of probiotic strains comprised of Lactobacillus and Bifidobacterium strains on two important members of gap junctions (Cx26 and Cx43) were assayed. The expressions of cell junction genes in contact with probiotic cocktail along with pathogenic components of enterotoxigenic Escherichia coli and Salmonella typhimurium on HT-29 cell line in different treatment orders were evaluated. Results analysis demonstrated downregulation of cx26 and cx43 along with pathogenic components while, probiotic cocktail could modulate their expression by upregulation. We concluded that Lactobacillus and Bifidobacterium strains were efficient probiotics, when they were used as one cocktail, impacted grater amount on the expression of cell junctions and this might lead to modulate homeostasis and reveal inflammation symptoms in intestine.
Collapse
Affiliation(s)
- Seyedeh Tina Miri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Reza Pourshafie
- Department of Bacteriology, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhhoori St, Tehran, Iran.
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhhoori St, Tehran, Iran.
| |
Collapse
|
27
|
Chen B, Gong S, Li M, Liu Y, Nie J, Zheng J, Zheng X, Li J, Gan Y, Su Z, Chen J, Li Y, Xie Q, Yan F. Protective effect of oxyberberine against acute lung injury in mice via inhibiting RhoA/ROCK signaling pathway. Biomed Pharmacother 2022; 153:113307. [PMID: 35753262 DOI: 10.1016/j.biopha.2022.113307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Acute lung injury (ALI), hallmarked with alveolar epithelial barrier impairment and pulmonary edema induced by acute inflammation, presents a severe health burden to the public, due to the limited available interventions. Oxyberberine (OBB), having improved anti-inflammatory activity and safety, is a representative component with various activities derived from berberine, whereas its role against ALI with alveolar epithelial barrier injury remains uncertain. To investigate the influence and underlying mechanisms of OBB on ALI, we induced acute inflammation in mice and A549 cells by using lipopolysaccharide (LPS). Changes in alveolar permeability were assessed by analyzing lung histopathology, measuring the dry/wet weight ratio of the lungs, and altering proinflammatory cytokines and neutrophils levels in the bronchoalveolar lavage fluid (BALF). Parameters of pulmonary permeability were assessed through ELISA, western blotting, quantitative real-time PCR, and immunofluorescence analysis. U46619, the agonist of RhoA/ROCK, was employed to further investigate the mechanism of OBB on ALI. Unexpectedly, we found OBB mitigated lung impairment, pulmonary edema, inflammatory reactions in BALF and lung tissue, reduction in ZO-1, and addition of connexin-43. Besides, OBB markedly reduced the expression of RhoA in association with its downstream factors, which are linked to the intercellular junctions and permeability both in vivo and in vitro. Nevertheless, U46619 abolished the benefits obtained from OBB in A549 cells. In conclusion, these outcomes indicated that OBB exerted RhoA/ROCK inhibitor-like effect to moderate alveolar epithelial barrier impairment and permeability, ultimately preventing ALI progression.
Collapse
Affiliation(s)
- Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shiting Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Minhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yanlu Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Juan Nie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Medical School, Hubei Minzu University, Hubei 445000, China
| | - Jingna Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaohong Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jincan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuxuan Gan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qingfeng Xie
- Li Ke and Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China; The Second Clinical College Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Fang Yan
- Li Ke and Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China; The Second Clinical College Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
28
|
Rodríguez-Viso P, Domene A, Vélez D, Devesa V, Monedero V, Zúñiga M. Mercury toxic effects on the intestinal mucosa assayed on a bicameral in vitro model: Possible role of inflammatory response and oxidative stress. Food Chem Toxicol 2022; 166:113224. [PMID: 35700822 DOI: 10.1016/j.fct.2022.113224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Exposure to mercury (Hg) mostly occurs through diet, where it is mainly found as inorganic Hg [Hg(II)] or methylmercury (MeHg). In vivo studies have linked its exposure with neurological and renal diseases, however, its toxic effects upon the gastrointestinal tract are largely unknown. In order to evaluate the effect of Hg on intestinal mucosa, a bicameral system was employed with co-cultures of Caco-2 and HT29-MTX intestinal epithelial cells and THP-1 macrophages. Cells were exposed to Hg(II) and MeHg (0.1, 0.5, 1 mg/L) during 11 days. The results evidenced a greater pro-inflammatory response in cells exposed to Hg with increments of IL-8 (15-126%) and IL-1β release (39-63%), mainly induced by macrophages which switched to a M1 phenotype. A pro-oxidant response was also observed in both cell types with an increase in ROS/RNS levels (44-140%) and stress proteins expression. Intestinal cells treated with Hg displayed structural abnormalities, hypersecretion of mucus and defective tight junctions. An increased paracellular permeability (123-170%) at the highest concentrations of Hg(II) and MeHg and decreased capacity to restore injuries in the cell monolayer were also observed. All these toxic effects were governed by various inflammatory signalling pathways (p38 MAPK, JNK and NF-κB).
Collapse
Affiliation(s)
- Pilar Rodríguez-Viso
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
29
|
Cao Q, Mertens RT, Sivanathan KN, Cai X, Xiao P. Macrophage orchestration of epithelial and stromal cell homeostasis in the intestine. J Leukoc Biol 2022; 112:313-331. [PMID: 35593111 PMCID: PMC9543232 DOI: 10.1002/jlb.3ru0322-176r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/06/2022] Open
Abstract
The intestinal tract is a complex ecosystem where numerous cell types of epithelial, immune, neuronal, and endothelial origin coexist in an intertwined, highly organized manner. The functional equilibrium of the intestine relies heavily on the proper crosstalk and cooperation among each cell population. Furthermore, macrophages are versatile, innate immune cells that participate widely in the modulation of inflammation and tissue remodeling. Emerging evidence suggest that macrophages are central in orchestrating tissue homeostasis. Herein, we describe how macrophages interact with epithelial cells, neurons, and other types of mesenchymal cells under the context of intestinal inflammation, followed by the therapeutic implications of cellular crosstalk pertaining to the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Randall Tyler Mertens
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kisha Nandini Sivanathan
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Xuechun Cai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Rzeszotek S, Trybek G, Tarnowski M, Serwin K, Jaroń A, Schneider G, Kolasa A, Wiszniewska B. Colostrum-Induced Temporary Changes in the Expression of Proteins Regulating the Epithelial Barrier Function in the Intestine. Foods 2022; 11:foods11050685. [PMID: 35267318 PMCID: PMC8909690 DOI: 10.3390/foods11050685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal wall and epithelial cells are interconnected by numerous intercellular junctions. Colostrum (Col), in its natural form, is a secretion of the mammary gland of mammals at the end of pregnancy and up to 72 h after birth. Recently, it has been used as a biologically active dietary supplement with a high content of lactoferrin (Lf). Lf, a glycoprotein with a broad spectrum of activity, is becoming more popular in health-promoting supplements. This study aims to investigate whether Col supplementation can affect small and large intestine morphology by modulating the expression of selected proteins involved in tissue integrity. We examined the thickness of the epithelium, and the length of the microvilli, and assessed the expression of CDH1, CDH2, CTNNB, CX43, VCL, OCLN, HP, MYH9, and ACTG2 gene levels using qRT-PCR and at the protein level using IHC. Additionally, to evaluate whether the effect of Col supplementation is temporary or persistent, we performed all analyses on tissues collected from animals receiving Col for 1, 3, or 6 months. We noticed a decrease in CDH1 and CDH2 expression, especially after 3 months of supplementation in the large intestine and in CTNNB in the small intestine as well as increased levels of CX43 and CTNNB1 in the small intestine. The present data indicate that Col can temporarily alter some components of the cell adhesion molecules involved in the formation of the cellular barrier.
Collapse
Affiliation(s)
- Sylwia Rzeszotek
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (A.K.); (B.W.)
- Correspondence: ; Tel.: +48-663-861-490
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (G.T.); (A.J.)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland;
| | - Karol Serwin
- Department of Infectious Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Arkońska 4, 71-455 Szczecin, Poland;
| | - Aleksandra Jaroń
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (G.T.); (A.J.)
| | - Gabriela Schneider
- UofL Health-Brown Cancer Center and Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (A.K.); (B.W.)
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (A.K.); (B.W.)
| |
Collapse
|
31
|
Yang L, Wu G, Wu Q, Peng L, Yuan L. METTL3 overexpression aggravates LPS-induced cellular inflammation in mouse intestinal epithelial cells and DSS-induced IBD in mice. Cell Death Dis 2022; 8:62. [PMID: 35165276 PMCID: PMC8844074 DOI: 10.1038/s41420-022-00849-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 11/09/2022]
Abstract
The inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic inflammatory disorders of the intestine. Dysregulated cytokine secretion and signal transduction mechanisms via intestinal epithelial cells are involved in IBD pathogenesis, in which the transcription factor NF-κB plays a critical role. In this study, METTL3, which plays a key role in inflammation regulation, has been recognized significantly up-regulated in IBD samples, DSS-induced IBD mice, and LPS-treated MODE-K cells. Within LPS-treated MODE-K cells, METTL3 knockdown promoted cell viability, inhibited cell apoptosis, decreased apoptotic caspase3/9 cleavage, and decreased the levels of proinflammatory cytokines (IL-1β, TNF-α, IL-6, and IL-18) and inflammatory enzymes (COX-2 and iNOS). Under the same conditions, METTL3 knockdown inhibited, whereas METTL3 overexpression promoted p65 phosphorylation in MODE-K cells; NF-κB inhibitor JSH-23 partially abolished the promotive effects of METTL3 overexpression upon p65 phosphorylation. Consistently, the effects of METTL3 overexpression upon LPS-stimulated MODE-K cells were partially abolished by JSH-23. Lastly, METTL3 knockdown in DSS-induced IBD mice significantly ameliorated DSS-induced IBD and inhibited DSS-induced p65 phosphorylation. In conclusion, METTL3 overexpression aggravates LPS-induced cellular inflammation in mouse intestinal epithelial cells and DSS-induced IBD in mice. The NF-κB signaling might be involved, and the regulatory mechanism remains to be investigated in our future study.
Collapse
Affiliation(s)
- Lichao Yang
- Department of Geriatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guotao Wu
- Department of Geriatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiang Wu
- Department of Geriatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liangxin Peng
- Department of Geriatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianwen Yuan
- Department of Geriatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
32
|
Lee SY, Lee BH, Park JH, Park MS, Ji GE, Sung MK. Bifidobacterium bifidum BGN4 Paraprobiotic Supplementation Alleviates Experimental Colitis by Maintaining Gut Barrier and Suppressing Nuclear Factor Kappa B Activation Signaling Molecules. J Med Food 2022; 25:146-157. [PMID: 35148194 DOI: 10.1089/jmf.2021.k.0150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are characterized by chronic gastrointestinal inflammation with continuous relapse-remission cycles. This study aimed to evaluate the protective effect of Bifidobacterium bifidum BGN4 as a probiotic or paraprobiotic against dextran sulfate sodium (DSS)-induced colitis in mice. Ten-week-old female BALB/c mice were randomly divided into five groups. The control (CON) and DSS groups received oral gavage of PBS, whereas the live B. bifidum (LIVE), heat-killed B. bifidum BGN4 (HEAT), and lysozyme-treated B. bifidum BGN4 (LYSOZYME) groups received live B. bifidum BGN4, heat-killed B. bifidum BGN4, and lysozyme-treated B. bifidum BGN4, respectively, for 10 days, followed by DSS supply to induce colitis. The paraprobiotic (HEAT and LYSOZYME) groups had less body weight loss and colon length shortening than the DSS or LIVE groups. The LYSOZYME group exhibited better preserved intestinal barrier integrity than the LIVE group by upregulating gap junction protein expression possibly through activating NOD-like receptor family pyrin domain containing 6/caspase-1/interleukin (IL)-18 signaling. The LYSOZYME group showed downregulated proinflammatory molecules, including p-inhibitor of kappa B proteins alpha (IκBα), cycloxygenase 2 (COX2), IL-1β, and T-bet, whereas the expression of the regulatory T cell transcription factor, forkhead box P3 expression, was increased. The paraprobiotic groups showed distinct separation of microbiota distribution and improved inflammation-associated dysbiosis. These results suggest that B. bifidum BGN4 paraprobiotics, especially lysozyme-treated BGN4, have a preventive effect against DSS-induced colitis, impacting intestinal barrier integrity, inflammation, and dysbiosis.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Seoul, Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Korea
| | | | - Geun-Eog Ji
- Research Center, BIFIDO Co., Ltd., Hongcheon, Korea
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
33
|
The Impact of MicroRNAs during Inflammatory Bowel Disease: Effects on the Mucus Layer and Intercellular Junctions for Gut Permeability. Cells 2021; 10:cells10123358. [PMID: 34943865 PMCID: PMC8699384 DOI: 10.3390/cells10123358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Research on inflammatory bowel disease (IBD) has produced mounting evidence for the modulation of microRNAs (miRNAs) during pathogenesis. MiRNAs are small, non-coding RNAs that interfere with the translation of mRNAs. Their high stability in free circulation at various regions of the body allows researchers to utilise miRNAs as biomarkers and as a focus for potential treatments of IBD. Yet, their distinct regulatory roles at the gut epithelial barrier remain elusive due to the fact that there are several external and cellular factors contributing to gut permeability. This review focuses on how miRNAs may compromise two components of the gut epithelium that together form the initial physical barrier: the mucus layer and the intercellular epithelial junctions. Here, we summarise the impact of miRNAs on goblet cell secretion and mucin structure, along with the proper function of various junctional proteins involved in paracellular transport, cell adhesion and communication. Knowledge of how this elaborate network of cells at the gut epithelial barrier becomes compromised as a result of dysregulated miRNA expression, thereby contributing to the development of IBD, will support the generation of miRNA-associated biomarker panels and therapeutic strategies that detect and ameliorate gut permeability.
Collapse
|
34
|
Kaur H, Erickson A, Moreau R. Divergent regulation of inflammatory cytokines by mTORC1 in THP-1-derived macrophages and intestinal epithelial Caco-2 cells. Life Sci 2021; 284:119920. [PMID: 34478760 DOI: 10.1016/j.lfs.2021.119920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022]
Abstract
AIMS The sustained activation of intestinal mechanistic target of rapamycin complex 1 (mTORC1) brought about by repeated mucosal insult or injury has been linked to escalation of gut inflammatory response, which may progress to damage the epithelium if not controlled. This study investigated the role of mTORC1 in the response of macrophage and enterocyte to inflammatory stimuli. MATERIALS AND METHODS We genetically manipulated human THP-1 monocytes and epithelial intestinal Caco-2 cells to generate stable cell lines with baseline, low or high mTORC1 kinase activity. The effects of THP-1 macrophage secretions onto Caco-2 cells were investigated by means of conditioned media transfer experiments. KEY FINDINGS The priming of mTORC1 for activation promoted lipopolysaccharide (LPS)-mediated THP-1 macrophage immune response as evidenced by the stimulation of inflammatory mediators (TNFα, IL-6, IL-8, IL-1β and IL-10). The treatment of THP-1 macrophages with LPS more than the manipulated level of mTORC1 activity of macrophages determined whether cytokine gene expression was induced in Caco-2 cells. LPS carry over was not responsible for the stimulation of Caco-2 cells' cytokine response. Knocking down Raptor in Caco-2 cells or treating Caco-2 cells with rapamycin enhanced Caco-2 TNFα gene expression revealing the anti-inflammatory role of a functional mTORC1 in intestinal epithelial cells exposed to macrophage-derived pro-inflammatory stimuli. SIGNIFICANCE Taken together, mTORC1 differentially impacts the immune responses of THP-1-derived macrophages and Caco-2 epithelial cells when placed in a pro-inflammatory microenvironment.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Anjeza Erickson
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
35
|
Curcumin Improves Epithelial Barrier Integrity of Caco-2 Monolayers by Inhibiting Endoplasmic Reticulum Stress and Subsequent Apoptosis. Gastroenterol Res Pract 2021; 2021:5570796. [PMID: 34659400 PMCID: PMC8514927 DOI: 10.1155/2021/5570796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Curcumin is a natural polyphenol and is supposed to possess antioxidant, anti-inflammatory, anticancer, and antiapoptotic properties. Although some studies have reported the therapeutic effects of curcumin on ulcerative colitis (UC), the specific mechanism remains unclear. An in vitro coculture model of Caco-2 and differentiated THP-1 cells was established. After administration of curcumin (10 μM), Western blot analysis was performed to evaluate the protein levels of tight junction (TJ) proteins zonula occludens- (ZO-) 1 and claudin-1. Annexin V-APC/7-AAD assays and flow cytometry were conducted to assess Caco-2 cell apoptosis. The expression levels of oxidative stress and endoplasmic reticulum stress- (ERS-) related molecules were determined by Western blot analysis. Curcumin administration significantly upregulated ZO-1 and claudin-1 protein levels and reduced Caco-2 cell apoptosis. The protein levels of oxidative stress markers inducible nitric oxide synthase (iNOS) and γH2AX and ERS-induced apoptosis-related molecules C/EBP homologous protein (CHOP) and cleaved caspase-12 were significantly downregulated upon curcumin treatment. Furthermore, curcumin administration greatly blocked the protein kinase-like endoplasmic reticulum kinase- (PERK-) eukaryotic translation initiation factor 2α- (eIF2α-) activating transcription factor 4- (ATF4-) CHOP signaling pathway. Curcumin enhanced intestinal epithelial barrier integrity in the in vitro coculture model by upregulating TJ protein expressions and reducing intestinal epithelial cell apoptosis. The potential mechanisms may be suppression of ERS and subsequent apoptosis.
Collapse
|
36
|
Hernandez-Garcia E, Chrysikou E, Kalea AZ. The Interplay between Housing Environmental Attributes and Design Exposures and Psychoneuroimmunology Profile-An Exploratory Review and Analysis Paper in the Cancer Survivors' Mental Health Morbidity Context. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10891. [PMID: 34682637 PMCID: PMC8536084 DOI: 10.3390/ijerph182010891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Adult cancer survivors have an increased prevalence of mental health comorbidities and other adverse late-effects interdependent with mental illness outcomes compared with the general population. Coronavirus Disease 2019 (COVID-19) heralds an era of renewed call for actions to identify sustainable modalities to facilitate the constructs of cancer survivorship care and health care delivery through physiological supportive domestic spaces. Building on the concept of therapeutic architecture, psychoneuroimmunology (PNI) indicators-with the central role in low-grade systemic inflammation-are associated with major psychiatric disorders and late effects of post-cancer treatment. Immune disturbances might mediate the effects of environmental determinants on behaviour and mental disorders. Whilst attention is paid to the non-objective measurements for examining the home environmental domains and mental health outcomes, little is gathered about the multidimensional effects on physiological responses. This exploratory review presents a first analysis of how addressing the PNI outcomes serves as a catalyst for therapeutic housing research. We argue the crucial component of housing in supporting the sustainable primary care and public health-based cancer survivorship care model, particularly in the psychopathology context. Ultimately, we illustrate a series of interventions aiming at how housing environmental attributes can trigger PNI profile changes and discuss the potential implications in the non-pharmacological treatment of cancer survivors and patients with mental morbidities.
Collapse
Affiliation(s)
- Eva Hernandez-Garcia
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
| | - Evangelia Chrysikou
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
- Clinic of Social and Family Medicine, Department of Social Medicine, University of Crete, 700 13 Heraklion, Greece
| | - Anastasia Z. Kalea
- Division of Medicine, University College London, London WC1E 6JF, UK;
- Institute of Cardiovascular Science, University College London, London WC1E 6HX, UK
| |
Collapse
|
37
|
Pang B, Jin H, Liao N, Li J, Jiang C, Shi J. Vitamin A supplementation ameliorates ulcerative colitis in gut microbiota-dependent manner. Food Res Int 2021; 148:110568. [PMID: 34507723 DOI: 10.1016/j.foodres.2021.110568] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/27/2022]
Abstract
Ulcerative colitis (UC), is a chronic relapsing inflammatory condition of the gastrointestinal track. The purpose of this study is to explore whether Vitamin A (VA) can treat UC and its mechanisms. A mouse model of UC was established using 3.0% (w/v) dextran sodium sulfate (DSS). VA was used to treat UC by intragastric administration of 5000 international unit (IU) retinyl acetate. Fecal microbiota transplantation (FMT) was also used to treat the UC model mice to verify the effect of influenced gut microbiota. The content of short-chain fatty acids (SCFAs) in cecal contents was quantitatively detected by gas chromatography and mass spectrometry. VA supplementation significantly ameliorated UC. 16S rRNA sequencing indicated that VA-treated mice exhibited much more abundant gut microbial diversity and flora composition. Targeted metabolomics analysis manifested the increased production of SCFAs in VA-treated mice. Gut microbiota depletion and FMT results confirmed the gut microbiota-dependent mechanism as that VA relieved UC via regulating gut microbiota: increase in SCFA-producing genera and decrease in UC-related genera. The restore of intestinal barrier and the inhibition of inflammation were also found to contribute to the amelioration of UC by VA. It was concluded that a VA supplement was enough to cause a significant change in gut microbiota and amelioration of UC.
Collapse
Affiliation(s)
- Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Han Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Junjun Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
38
|
Zhu CS, Wang W, Qiang X, Chen W, Lan X, Li J, Wang H. Endogenous Regulation and Pharmacological Modulation of Sepsis-Induced HMGB1 Release and Action: An Updated Review. Cells 2021; 10:2220. [PMID: 34571869 PMCID: PMC8469563 DOI: 10.3390/cells10092220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis remains a common cause of death in intensive care units, accounting for approximately 20% of total deaths worldwide. Its pathogenesis is partly attributable to dysregulated inflammatory responses to bacterial endotoxins (such as lipopolysaccharide, LPS), which stimulate innate immune cells to sequentially release early cytokines (such as tumor necrosis factor (TNF) and interferons (IFNs)) and late mediators (such as high-mobility group box 1, HMGB1). Despite difficulties in translating mechanistic insights into effective therapies, an improved understanding of the complex mechanisms underlying the pathogenesis of sepsis is still urgently needed. Here, we review recent progress in elucidating the intricate mechanisms underlying the regulation of HMGB1 release and action, and propose a few potential therapeutic candidates for future clinical investigations.
Collapse
Affiliation(s)
- Cassie Shu Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Wei Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Xiqian Lan
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
| | - Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| |
Collapse
|
39
|
Kumar P, Kedaria D, Mahapatra C, Mohandas M, Chatterjee K. A designer cell culture insert with a nanofibrous membrane toward engineering an epithelial tissue model validated by cellular nanomechanics. NANOSCALE ADVANCES 2021; 3:4714-4725. [PMID: 36134314 PMCID: PMC9419865 DOI: 10.1039/d1na00280e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/04/2021] [Indexed: 05/13/2023]
Abstract
Engineered platforms for culturing cells of the skin and other epithelial tissues are useful for the regeneration and development of in vitro tissue models used in drug screening. Recapitulating the biomechanical behavior of the cells is one of the important hallmarks of successful tissue generation on these platforms. The biomechanical behavior of cells profoundly affects the physiological functions of the generated tissue. In this work, a designer nanofibrous cell culture insert (NCCI) device was developed, consisting of a free-hanging polymeric nanofibrous membrane. The free-hanging nanofibrous membrane has a well-tailored architecture, stiffness, and topography to better mimic the extracellular matrix of any soft tissue than conventional, flat tissue culture polystyrene (TCPS) surfaces. Human keratinocytes (HaCaT cells) cultured on the designer NCCIs exhibited a 3D tissue-like phenotype compared to the cells cultured on TCPS. Furthermore, the biomechanical characterization by bio-atomic force microscopy (Bio-AFM) revealed a markedly altered cellular morphology and stiffness of the cellular cytoplasm, nucleus, and cell-cell junctions. The nuclear and cytoplasmic moduli were reduced, while the stiffness of the cellular junctions was enhanced on the NCCI compared to cells on TCPS, which are indicative of the fluidic state and migratory phenotype on the NCCI. These observations were corroborated by immunostaining, which revealed enhanced cell-cell contact along with a higher expression of junction proteins and enhanced migration in a wound-healing assay. Taken together, these results underscore the role of the novel designer NCCI device as an in vitro platform for epithelial cells with several potential applications, including drug testing, disease modeling, and tissue regeneration.
Collapse
Affiliation(s)
- Prasoon Kumar
- Department of Materials Engineering, Indian Institute of Science C.V. Raman Avenue Bangalore 560012 India +91-80-22933408
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela 769008 India
| | - Dhaval Kedaria
- Department of Materials Engineering, Indian Institute of Science C.V. Raman Avenue Bangalore 560012 India +91-80-22933408
| | - Chinmaya Mahapatra
- Department of Materials Engineering, Indian Institute of Science C.V. Raman Avenue Bangalore 560012 India +91-80-22933408
- School of Chemical Engineering, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Monisha Mohandas
- Centre for BioSystems Science and Engineering, Indian Institute of Science C.V. Raman Avenue Bangalore 560012 India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science C.V. Raman Avenue Bangalore 560012 India +91-80-22933408
- Centre for BioSystems Science and Engineering, Indian Institute of Science C.V. Raman Avenue Bangalore 560012 India
| |
Collapse
|
40
|
Pang B, Jin H, Liao N, Li J, Jiang C, Shao D, Shi J. Lactobacillus rhamnosus from human breast milk ameliorates ulcerative colitis in mice via gut microbiota modulation. Food Funct 2021; 12:5171-5186. [PMID: 33977948 DOI: 10.1039/d0fo03479g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gut microbiota imbalance is one of the major causes of ulcerative colitis (UC). L. rhamnosus SHA113 (LRS), a strain isolated from healthy human milk, influences the regulation of gut flora. This study aims to determine whether this strain can ameliorate UC by modulating gut microbiota. Mouse models of UC were established using C57BL/6Cnc mice with intragastric administration of 3.0% (w/v) dextran sodium sulfate (DSS). LRS was used to treat the mouse models of UC with 109 cfu mL-1 cell suspension via intragastric administration. To verify the effect of gut microbiota on UC, fecal microbiota collected from the mice after the treatment with LRS were also used to treat the UC mouse models (FMT). The severity of UC was evaluated based on body weight, colon length, disease activity index (DAI), and hematoxylin-eosin staining. The microbial composition was analyzed by 16S rRNA sequencing. The mRNA expression levels of cytokines, mucins, tight junction proteins, and antimicrobial peptides in the gastrointestinal tract were detected by quantitative real-time polymerase chain reaction. The short-chain fatty acid (SCFAs) in the cecal contents of all mice were quantitatively detected by gas chromatography and mass spectrometry. Both LRS and FMT exerted excellent therapeutic effects on UC, as evidenced by the reduction in body weight loss, colon length, and colon structural integrity, as well as the increase in the DAI (disease activity index). LRS and FMT treatments showed similar effects: (1) an increase of total SCFA production in the cecal contents and the abundance of gut microbial diversity and flora composition; (2) decreases in two genera (Parabacteroides and Escherichia/Shigella) related to the DAI and the enhancement of SCFAs and IL-10 positively related genera in the gut microbiota (Bilophila, Roseburia, Akkermansia, and Bifidobacterium); (3) downregulation of the expression of tumor necrosis factor-α, interleukin IL-6, and IL-1β, and upregulation of the expression of the anti-inflammatory cytokine IL-10; and (4) upregulation of the expression of mucins (Muc1-4) and tight junction protein ZO-1. Overall, L. rhamnosus SHA113 relieves UC via the regulation of gut microbiota: increases in SCFA-producing genera and decreases in UC-related genera. In addition, a single strain is sufficient to induce a significant change in the gut microbiota and exert therapeutic effects on UC.
Collapse
Affiliation(s)
- Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China. NingLiao
| | - Han Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China. NingLiao
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China. NingLiao
| | - Junjun Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China. NingLiao
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China. NingLiao
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China. NingLiao
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China. NingLiao
| |
Collapse
|
41
|
Sudhakar P, Verstockt B, Cremer J, Verstockt S, Sabino J, Ferrante M, Vermeire S. Understanding the Molecular Drivers of Disease Heterogeneity in Crohn's Disease Using Multi-omic Data Integration and Network Analysis. Inflamm Bowel Dis 2021; 27:870-886. [PMID: 33313682 PMCID: PMC8128416 DOI: 10.1093/ibd/izaa281] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/12/2022]
Abstract
Crohn's disease (CD), a form of inflammatory bowel disease (IBD), is characterized by heterogeneity along multiple clinical axes, which in turn impacts disease progression and treatment modalities. Using advanced data integration approaches and systems biology tools, we studied the contribution of CD susceptibility variants and gene expression in distinct peripheral immune cell subsets (CD14+ monocytes and CD4+ T cells) to relevant clinical traits. Our analyses revealed that most clinical traits capturing CD heterogeneity could be associated with CD14+ and CD4+ gene expression rather than disease susceptibility variants. By disentangling the sources of variation, we identified molecular features that could potentially be driving the heterogeneity of various clinical traits of CD patients. Further downstream analyses identified contextual hub proteins such as genes encoding barrier functions, antimicrobial peptides, chemokines, and their receptors, which are either targeted by drugs used in CD or other inflammatory diseases or are relevant to the biological functions implicated in disease pathology. These hubs could be used as cell type-specific targets to treat specific subtypes of CD patients in a more individualized approach based on the underlying biology driving their disease subtypes. Our study highlights the importance of data integration and systems approaches to investigate complex and heterogeneous diseases such as IBD.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
| | - Bram Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Jonathan Cremer
- Department of Microbiology and Immunology, Laboratory of Clinical Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sare Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
| | - João Sabino
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| |
Collapse
|
42
|
Sommer K, Wiendl M, Müller TM, Heidbreder K, Voskens C, Neurath MF, Zundler S. Intestinal Mucosal Wound Healing and Barrier Integrity in IBD-Crosstalk and Trafficking of Cellular Players. Front Med (Lausanne) 2021; 8:643973. [PMID: 33834033 PMCID: PMC8021701 DOI: 10.3389/fmed.2021.643973] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelial barrier is carrying out two major functions: restricting the entry of potentially harmful substances while on the other hand allowing the selective passage of nutrients. Thus, an intact epithelial barrier is vital to preserve the integrity of the host and to prevent development of disease. Vice versa, an impaired intestinal epithelial barrier function is a hallmark in the development and perpetuation of inflammatory bowel disease (IBD). Besides a multitude of genetic, molecular and cellular alterations predisposing for or driving barrier dysintegrity in IBD, the appearance of intestinal mucosal wounds is a characteristic event of intestinal inflammation apparently inducing breakdown of the intestinal epithelial barrier. Upon injury, the intestinal mucosa undergoes a wound healing process counteracting this breakdown, which is controlled by complex mechanisms such as epithelial restitution, proliferation and differentiation, but also immune cells like macrophages, granulocytes and lymphocytes. Consequently, the repair of mucosal wounds is dependent on a series of events including coordinated trafficking of immune cells to dedicated sites and complex interactions among the cellular players and other mediators involved. Therefore, a better understanding of the crosstalk between epithelial and immune cells as well as cell trafficking during intestinal wound repair is necessary for the development of improved future therapies. In this review, we summarize current concepts on intestinal mucosal wound healing introducing the main cellular mediators and their interplay as well as their trafficking characteristics, before finally discussing the clinical relevance and translational approaches to therapeutically target this process in a clinical setting.
Collapse
Affiliation(s)
- Katrin Sommer
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Wiendl
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tanja M Müller
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Karin Heidbreder
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Caroline Voskens
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
43
|
Eissa N, Elgazzar O, Hussein H, Hendy GN, Bernstein CN, Ghia JE. Pancreastatin Reduces Alternatively Activated Macrophages, Disrupts the Epithelial Homeostasis and Aggravates Colonic Inflammation. A Descriptive Analysis. Biomedicines 2021; 9:biomedicines9020134. [PMID: 33535452 PMCID: PMC7912769 DOI: 10.3390/biomedicines9020134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) is characterized by modifying alternatively activated macrophages (AAM) and epithelial homeostasis. Chromogranin-A (CHGA), released by enterochromaffin cells, is elevated in UC and is implicated in inflammation progression. CHGA can be cleaved into several derived peptides, including pancreastatin (PST), which is involved in proinflammatory mechanisms. Previously, we showed that the deletion of Chga decreased the onset and severity of colitis correlated with an increase in AAM and epithelial cells’ functions. Here, we investigated PST activity in colonic biopsies of participants with active UC and investigated PST treatment in dextran sulfate sodium (DSS)-induced colitis using Chga−/− mice, macrophages, and a human colonic epithelial cells line. We found that the colonic protein expression of PST correlated negatively with mRNA expression of AAM markers and tight junction (TJ) proteins and positively with mRNA expression of interleukin (IL)-8, IL18, and collagen in human. In a preclinical setting, intra-rectal administration of PST aggravated DSS-induced colitis by decreasing AAM’s functions, enhancing colonic collagen deposition and disrupting epithelial homeostasis in Chga+/+ and Chga−/− mice. This effect was associated with a significant reduction in AAM markers, increased colonic IL-18 release, and decreased TJ proteins’ gene expression. In vitro, PST reduced Chga+/+ and Chga−/− AAM polarization and decreased anti-inflammatory mediators’ production. Conditioned medium harvested from PST-treated Chga+/+ and Chga−/− AAM reduced Caco-2 cell migration, viability, proliferation, and mRNA levels of TJ proteins and increased oxidative stress-induced apoptosis and proinflammatory cytokines release. In conclusion, PST is a CHGA proinflammatory peptide that enhances the severity of colitis and the inflammatory process via decreasing AAM functions and disrupting epithelial homeostasis.
Collapse
Affiliation(s)
- Nour Eissa
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada or (N.E.); (O.E.)
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- The IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Omar Elgazzar
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada or (N.E.); (O.E.)
| | - Hayam Hussein
- National Research Centre, Department of Parasitology and Animal Diseases, Veterinary Research Division, Giza 12622, Egypt;
| | - Geoffrey N. Hendy
- Metabolic Disorders and Complications, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Charles N. Bernstein
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- The IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Jean-Eric Ghia
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada or (N.E.); (O.E.)
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- The IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
- Correspondence: or
| |
Collapse
|
44
|
Rodjakovic D, Salm L, Beldi G. Function of Connexin-43 in Macrophages. Int J Mol Sci 2021; 22:1412. [PMID: 33573367 PMCID: PMC7866802 DOI: 10.3390/ijms22031412] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Recent studies have helped to increase the understanding of the function of Connexin-43 (Cx43) in macrophages (Mφ). The various roles of Cx43 in Mφs range from migration, antigen-presentation and some forms of intercellular communication to more delicate processes, such as electrochemical support in the propagation of the heartbeat, immunomodulatory regulation in the lungs and in macrophage-differentiation. Its relevance in pathophysiology becomes evident in inflammatory bowel disease (IBD), tumours and HIV, in which aberrant functioning of Cx43 has been described. However, the involvement of Cx43 in other Mφ functions, such as phagocytosis and polarisation, and its involvement in other types of local and systemic inflammation, are still unclear and need further research.
Collapse
Affiliation(s)
- Daniel Rodjakovic
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (D.R.); (L.S.)
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland
| | - Lilian Salm
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (D.R.); (L.S.)
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland
| | - Guido Beldi
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (D.R.); (L.S.)
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland
| |
Collapse
|
45
|
Sarvestani SK, Signs S, Hu B, Yeu Y, Feng H, Ni Y, Hill DR, Fisher RC, Ferrandon S, DeHaan RK, Stiene J, Cruise M, Hwang TH, Shen X, Spence JR, Huang EH. Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nat Commun 2021; 12:262. [PMID: 33431859 PMCID: PMC7801686 DOI: 10.1038/s41467-020-20351-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of ulcerative colitis (UC), a major type of inflammatory bowel disease, remains unknown. No model exists that adequately recapitulates the complexity of clinical UC. Here, we take advantage of induced pluripotent stem cells (iPSCs) to develop an induced human UC-derived organoid (iHUCO) model and compared it with the induced human normal organoid model (iHNO). Notably, iHUCOs recapitulated histological and functional features of primary colitic tissues, including the absence of acidic mucus secretion and aberrant adherens junctions in the epithelial barrier both in vitro and in vivo. We demonstrate that the CXCL8/CXCR1 axis was overexpressed in iHUCO but not in iHNO. As proof-of-principle, we show that inhibition of CXCL8 receptor by the small-molecule non-competitive inhibitor repertaxin attenuated the progression of UC phenotypes in vitro and in vivo. This patient-derived organoid model, containing both epithelial and stromal compartments, will generate new insights into the underlying pathogenesis of UC while offering opportunities to tailor interventions to the individual patient.
Collapse
Affiliation(s)
- Samaneh K Sarvestani
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Steven Signs
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Yunku Yeu
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ying Ni
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - David R Hill
- Department of Internal Medicine, Gastroenterology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert C Fisher
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Sylvain Ferrandon
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Reece K DeHaan
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jennifer Stiene
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Michael Cruise
- Department of Pathology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Tae Hyun Hwang
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emina H Huang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
46
|
Kaur H, Moreau R. Curcumin steers THP-1 cells under LPS and mTORC1 challenges toward phenotypically resting, low cytokine-producing macrophages. J Nutr Biochem 2020; 88:108553. [PMID: 33220404 DOI: 10.1016/j.jnutbio.2020.108553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The persistent activation of intestinal mechanistic target of rapamycin complex 1 (mTORC1) triggered by mucosal stress has been linked to deregulation of the gut immune response resulting in intestinal inflammation and cell death. The present study investigated the regulatory properties of food-derived mTORC1 modulators, curcumin, and piperine, toward the polarization of stimulated macrophages and the differentiation of monocytes at two mTORC1 activity levels (baseline and elevated). To that end, we created stable human THP-1 monocytes exhibiting normal or constitutively active mTORC1. Curcumin or its combination with piperine, but not piperine alone, suppressed mTORC1 kinase activity, curtailed lipopolysaccharide-mediated inflammatory response of THP-1 macrophages, and repressed macrophage activation by inhibiting signaling pathways involved in M1 (mTORC1) and M2 (mTORC2 and cAMP response element binding protein) polarization. The effects of piperine in the curcumin/piperine combination were modest overall, indicating it was curcumin that modulated differentiating monocytes into acquiring a M0 macrophage phenotype characterized by low inflammatory cytokine output.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
47
|
Bissonnette EY, Lauzon-Joset JF, Debley JS, Ziegler SF. Cross-Talk Between Alveolar Macrophages and Lung Epithelial Cells is Essential to Maintain Lung Homeostasis. Front Immunol 2020; 11:583042. [PMID: 33178214 PMCID: PMC7593577 DOI: 10.3389/fimmu.2020.583042] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
The main function of the lung is to perform gas exchange while maintaining lung homeostasis despite environmental pathogenic and non-pathogenic elements contained in inhaled air. Resident cells must keep lung homeostasis and eliminate pathogens by inducing protective immune response and silently remove innocuous particles. Which lung cell type is crucial for this function is still subject to debate, with reports favoring either alveolar macrophages (AMs) or lung epithelial cells (ECs) including airway and alveolar ECs. AMs are the main immune cells in the lung in steady-state and their function is mainly to dampen inflammatory responses. In addition, they phagocytose inhaled particles and apoptotic cells and can initiate and resolve inflammatory responses to pathogens. Although AMs release a plethora of mediators that modulate immune responses, ECs also play an essential role as they are more than just a physical barrier. They produce anti-microbial peptides and can secrete a variety of mediators that can modulate immune responses and AM functions. Furthermore, ECs can maintain AMs in a quiescent state by expressing anti-inflammatory membrane proteins such as CD200. Thus, AMs and ECs are both very important to maintain lung homeostasis and have to coordinate their action to protect the organism against infection. Thus, AMs and lung ECs communicate with each other using different mechanisms including mediators, membrane glycoproteins and their receptors, gap junction channels, and extracellular vesicles. This review will revisit characteristics and functions of AMs and lung ECs as well as different communication mechanisms these cells utilize to maintain lung immune balance and response to pathogens. A better understanding of the cross-talk between AMs and lung ECs may help develop new therapeutic strategies for lung pathogenesis.
Collapse
Affiliation(s)
- Elyse Y Bissonnette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Jean-François Lauzon-Joset
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Steven F Ziegler
- Department of Immunology, Benaroya Research Institute, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
48
|
Hases L, Archer A, Indukuri R, Birgersson M, Savva C, Korach-André M, Williams C. High-fat diet and estrogen impacts the colon and its transcriptome in a sex-dependent manner. Sci Rep 2020; 10:16160. [PMID: 32999402 PMCID: PMC7527340 DOI: 10.1038/s41598-020-73166-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
There is a strong association between obesity and colorectal cancer (CRC), especially in men, whereas estrogen protects against both the metabolic syndrome and CRC. Colon is the first organ to respond to high-fat diet (HFD), and estrogen receptor beta (ERβ) can attenuate CRC development. How estrogen impacts the colon under HFD and related sex differences has, however, not been investigated. To dissect this, mice were fed control diet or HFD for 13 weeks and administered receptor-selective estrogenic ligands for the last three weeks. We recorded impact on metabolism, colon crypt proliferation, macrophage infiltration, and the colon transcriptome. We found clear sex differences in the colon transcriptome and in the impact by HFD and estrogens, including on clock genes. ERα-selective activation reduced body weight and generated systemic effects, whereas ERβ-selective activation had local effects in the colon, attenuating HFD-induced macrophage infiltration and epithelial cell proliferation. We here demonstrate how HFD and estrogens modulate the colon microenvironment in a sex- and ER-specific manner.
Collapse
Affiliation(s)
- L Hases
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - A Archer
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - R Indukuri
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - M Birgersson
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - C Savva
- Department of Medicine, Metabolism Unit and Integrated CardioMetabolic Center (ICMC), Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - M Korach-André
- Department of Medicine, Metabolism Unit and Integrated CardioMetabolic Center (ICMC), Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - C Williams
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden. .,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
49
|
Yin Y, Shelke GV, Lässer C, Brismar H, Lötvall J. Extracellular vesicles from mast cells induce mesenchymal transition in airway epithelial cells. Respir Res 2020; 21:101. [PMID: 32357878 PMCID: PMC7193353 DOI: 10.1186/s12931-020-01346-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background In the airways, mast cells are present in close vicinity to epithelial cells, and they can interact with each other via multiple factors, including extracellular vesicles (EVs). Mast cell-derived EVs have a large repertoire of cargos, including proteins and RNA, as well as surface DNA. In this study, we hypothesized that these EVs can induce epithelial to mesenchymal transition (EMT) in airway epithelial cells. Methods In this in-vitro study we systematically determined the effects of mast cell-derived EVs on epithelial A549 cells. We determined the changes that are induced by EVs on A549 cells at both the RNA and protein levels. Moreover, we also analyzed the rapid changes in phosphorylation events in EV-recipient A549 cells using a phosphorylated protein microarray. Some of the phosphorylation-associated events associated with EMT were validated using immunoblotting. Results Morphological and transcript analysis of epithelial A549 cells indicated that an EMT-like phenotype was induced by the EVs. Transcript analysis indicated the upregulation of genes involved in EMT, including TWIST1, MMP9, TGFB1, and BMP-7. This was accompanied by downregulation of proteins such as E-cadherin and upregulation of Slug-Snail and matrix metalloproteinases. Additionally, our phosphorylated-protein microarray analysis revealed proteins associated with the EMT cascade that were upregulated after EV treatment. We also found that transforming growth factor beta-1, a well-known EMT inducer, is associated with EVs and mediates the EMT cascade induced in the A549 cells. Conclusion Mast cell-derived EVs mediate the induction of EMT in epithelial cells, and our evidence suggests that this is triggered through the induction of protein phosphorylation cascades.
Collapse
Affiliation(s)
- Yanan Yin
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University, School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Ganesh Vilas Shelke
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,The Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden. .,Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Dept. of Applied Physics, Royal Institute of Technology, PO Box 1031, 17121, Solna, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
50
|
Higa LH, Schilrreff P, Briski AM, Jerez HE, de Farias MA, Villares Portugal R, Romero EL, Morilla MJ. Bacterioruberin from Haloarchaea plus dexamethasone in ultra-small macrophage-targeted nanoparticles as potential intestinal repairing agent. Colloids Surf B Biointerfaces 2020; 191:110961. [PMID: 32208325 DOI: 10.1016/j.colsurfb.2020.110961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
Abstract
Oral administration of antioxidant and anti-inflammatory drugs have the potential to improve the current therapy of inflammatory bowel disease. Success of oral treatments, however, depends on the capacity of drugs to remain structurally stable along the gastrointestinal tract, and on the feasibility of accessing the target cells. Delivering anti-inflammatory and antioxidant drugs to macrophages using targeted nanoparticles, could make treatments more efficient. In this work structural features and in vitro activity of macrophage-targeted nanostructured archaeolipid carriers (NAC) containing the high antioxidant dipolar C50 carotenoid bacterioruberin (BR) plus dexamethasone (Dex): NAC-Dex, are described. Ultra-small (66 nm), -32 mV ζ potential, 1200 μg Dex /ml NAC-Dex, consisted of a compritol and BR core, covered by a shell of sn 2,3 ether linked archaeolipids and Tween 80 (2: 2: 1.2: 3 % w/w) were obtained. NAC-Dex were extensively captured by macrophages and Caco-2 cells and displayed high anti-inflammatory and antioxidant activities on a gut inflammation model made of Caco-2 cells and lipopolysaccharide stimulated THP-1 derived macrophages reducing 65 % and 55 % TNF-α and IL-8 release, respectively and 60 % reactive oxygen species production. NAC-Dex also reversed the morphological changes induced by inflammation and increased the transepithelial electrical resistance, partly reconstituting the barrier function. Activity of BR and Dex in NAC-Dex was partially protected after simulated gastrointestinal digestion, improving the chances of BR-Dex joint activity. Results suggest that oral NAC-Dex deserve further exploration as intestinal barrier repairing agent.
Collapse
Affiliation(s)
- Leticia Herminia Higa
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Priscila Schilrreff
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Andrés Martín Briski
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Horacio Emanuel Jerez
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Marcelo Alexandre de Farias
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Rodrigo Villares Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Maria Jose Morilla
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina.
| |
Collapse
|