1
|
Barrett JR, Pipini D, Wright ND, Cooper AJR, Gorini G, Quinkert D, Lias AM, Davies H, Rigby CA, Aleshnick M, Williams BG, Bradshaw WJ, Paterson NG, Martinson T, Kirtley P, Picard L, Wiggins CD, Donnellan FR, King LDW, Wang LT, Popplewell JF, Silk SE, de Ruiter Swain J, Skinner K, Kotraiah V, Noe AR, MacGill RS, King CR, Birkett AJ, Soisson LA, Minassian AM, Lauffenburger DA, Miura K, Long CA, Wilder BK, Koekemoer L, Tan J, Nielsen CM, McHugh K, Draper SJ. Analysis of the diverse antigenic landscape of the malaria protein RH5 identifies a potent vaccine-induced human public antibody clonotype. Cell 2024; 187:4964-4980.e21. [PMID: 39059380 PMCID: PMC11380582 DOI: 10.1016/j.cell.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/14/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024]
Abstract
The highly conserved and essential Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has emerged as the leading target for vaccines against the disease-causing blood stage of malaria. However, the features of the human vaccine-induced antibody response that confer highly potent inhibition of malaria parasite invasion into red blood cells are not well defined. Here, we characterize 236 human IgG monoclonal antibodies, derived from 15 donors, induced by the most advanced PfRH5 vaccine. We define the antigenic landscape of this molecule and establish that epitope specificity, antibody association rate, and intra-PfRH5 antibody interactions are key determinants of functional anti-parasitic potency. In addition, we identify a germline IgG gene combination that results in an exceptionally potent class of antibody and demonstrate its prophylactic potential to protect against P. falciparum parasite challenge in vivo. This comprehensive dataset provides a framework to guide rational design of next-generation vaccines and prophylactic antibodies to protect against blood-stage malaria.
Collapse
Affiliation(s)
- Jordan R Barrett
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Dimitra Pipini
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Nathan D Wright
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Andrew J R Cooper
- Antibody Biology Unit, Laboratory of Immunogenetics, NIAID/NIH, Rockville, MD 20852, USA
| | - Giacomo Gorini
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Hannah Davies
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Cassandra A Rigby
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Maya Aleshnick
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Barnabas G Williams
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - William J Bradshaw
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Neil G Paterson
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Thomas Martinson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Payton Kirtley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Luc Picard
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | | | - Francesca R Donnellan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Lawrence T Wang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; Antibody Biology Unit, Laboratory of Immunogenetics, NIAID/NIH, Rockville, MD 20852, USA
| | | | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Jed de Ruiter Swain
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Katherine Skinner
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Amy R Noe
- Leidos Life Sciences, Frederick, MD, USA
| | - Randall S MacGill
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - Ashley J Birkett
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | | | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Brandon K Wilder
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Lizbé Koekemoer
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, NIAID/NIH, Rockville, MD 20852, USA
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
2
|
King LDW, Pulido D, Barrett JR, Davies H, Quinkert D, Lias AM, Silk SE, Pattinson DJ, Diouf A, Williams BG, McHugh K, Rodrigues A, Rigby CA, Strazza V, Suurbaar J, Rees-Spear C, Dabbs RA, Ishizuka AS, Zhou Y, Gupta G, Jin J, Li Y, Carnrot C, Minassian AM, Campeotto I, Fleishman SJ, Noe AR, MacGill RS, King CR, Birkett AJ, Soisson LA, Long CA, Miura K, Ashfield R, Skinner K, Howarth MR, Biswas S, Draper SJ. Preclinical development of a stabilized RH5 virus-like particle vaccine that induces improved antimalarial antibodies. Cell Rep Med 2024; 5:101654. [PMID: 39019011 PMCID: PMC11293324 DOI: 10.1016/j.xcrm.2024.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage malaria vaccine antigen target, currently in a phase 2b clinical trial as a full-length soluble protein/adjuvant vaccine candidate called RH5.1/Matrix-M. We identify that disordered regions of the full-length RH5 molecule induce non-growth inhibitory antibodies in human vaccinees and that a re-engineered and stabilized immunogen (including just the alpha-helical core of RH5) induces a qualitatively superior growth inhibitory antibody response in rats vaccinated with this protein formulated in Matrix-M adjuvant. In parallel, bioconjugation of this immunogen, termed "RH5.2," to hepatitis B surface antigen virus-like particles (VLPs) using the "plug-and-display" SpyTag-SpyCatcher platform technology also enables superior quantitative antibody immunogenicity over soluble protein/adjuvant in vaccinated mice and rats. These studies identify a blood-stage malaria vaccine candidate that may improve upon the current leading soluble protein vaccine candidate RH5.1/Matrix-M. The RH5.2-VLP/Matrix-M vaccine candidate is now under evaluation in phase 1a/b clinical trials.
Collapse
Affiliation(s)
- Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Hannah Davies
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - David J Pattinson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Barnabas G Williams
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Ana Rodrigues
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK
| | - Cassandra A Rigby
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK
| | - Veronica Strazza
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK
| | - Jonathan Suurbaar
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra LG 54, Ghana
| | - Chloe Rees-Spear
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; London School of Hygiene and Tropical Medicine, WC1E 7HT London, UK
| | - Rebecca A Dabbs
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Andrew S Ishizuka
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Yu Zhou
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Gaurav Gupta
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Yuanyuan Li
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | | | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Ivan Campeotto
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Amy R Noe
- Leidos Life Sciences, Frederick, MD, USA
| | - Randall S MacGill
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - Ashley J Birkett
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | | | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Rebecca Ashfield
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Katherine Skinner
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Mark R Howarth
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
3
|
Williams BG, King LDW, Pulido D, Quinkert D, Lias AM, Silk SE, Ragotte RJ, Davies H, Barrett JR, McHugh K, Rigby CA, Alanine DGW, Barfod L, Shea MW, Cowley LA, Dabbs RA, Pattinson DJ, Douglas AD, Lyth OR, Illingworth JJ, Jin J, Carnrot C, Kotraiah V, Christen JM, Noe AR, MacGill RS, King CR, Birkett AJ, Soisson LA, Skinner K, Miura K, Long CA, Higgins MK, Draper SJ. Development of an improved blood-stage malaria vaccine targeting the essential RH5-CyRPA-RIPR invasion complex. Nat Commun 2024; 15:4857. [PMID: 38849365 PMCID: PMC11161584 DOI: 10.1038/s41467-024-48721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called "R78C", combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial.
Collapse
Affiliation(s)
- Barnabas G Williams
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Robert J Ragotte
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Hannah Davies
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Cassandra A Rigby
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
| | - Daniel G W Alanine
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Lea Barfod
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Michael W Shea
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Li An Cowley
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Rebecca A Dabbs
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - David J Pattinson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Alexander D Douglas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Oliver R Lyth
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Joseph J Illingworth
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | | | | | | | - Amy R Noe
- Leidos Life Sciences, Frederick, MD, USA
- Latham BioPharm Group, Elkridge, MD, USA
| | | | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC, USA
| | - Ashley J Birkett
- Center for Vaccine Innovation and Access, PATH, Washington, DC, USA
| | | | - Katherine Skinner
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, USA
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK.
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
4
|
Farrell B, Alam N, Hart MN, Jamwal A, Ragotte RJ, Walters-Morgan H, Draper SJ, Knuepfer E, Higgins MK. The PfRCR complex bridges malaria parasite and erythrocyte during invasion. Nature 2024; 625:578-584. [PMID: 38123677 PMCID: PMC10794152 DOI: 10.1038/s41586-023-06856-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
The symptoms of malaria occur during the blood stage of infection, when parasites invade and replicate within human erythrocytes. The PfPCRCR complex1, containing PfRH5 (refs. 2,3), PfCyRPA, PfRIPR, PfCSS and PfPTRAMP, is essential for erythrocyte invasion by the deadliest human malaria parasite, Plasmodium falciparum. Invasion can be prevented by antibodies3-6 or nanobodies1 against each of these conserved proteins, making them the leading blood-stage malaria vaccine candidates. However, little is known about how PfPCRCR functions during invasion. Here we present the structure of the PfRCR complex7,8, containing PfRH5, PfCyRPA and PfRIPR, determined by cryogenic-electron microscopy. We test the hypothesis that PfRH5 opens to insert into the membrane9, instead showing that a rigid, disulfide-locked PfRH5 can mediate efficient erythrocyte invasion. We show, through modelling and an erythrocyte-binding assay, that PfCyRPA-binding antibodies5 neutralize invasion through a steric mechanism. We determine the structure of PfRIPR, showing that it consists of an ordered, multidomain core flexibly linked to an elongated tail. We also show that the elongated tail of PfRIPR, which is the target of growth-neutralizing antibodies6, binds to the PfCSS-PfPTRAMP complex on the parasite membrane. A modular PfRIPR is therefore linked to the merozoite membrane through an elongated tail, and its structured core presents PfCyRPA and PfRH5 to interact with erythrocyte receptors. This provides fresh insight into the molecular mechanism of erythrocyte invasion and opens the way to new approaches in rational vaccine design.
Collapse
Affiliation(s)
- Brendan Farrell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Nawsad Alam
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | - Abhishek Jamwal
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Robert J Ragotte
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Hannah Walters-Morgan
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Lappöhn CA, Maerz L, Stei R, Weber LG, Wolff MW. Optimization and validation of analytical affinity chromatography for the in-process monitoring and quantification of peptides containing a C-tag. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123899. [PMID: 37783047 DOI: 10.1016/j.jchromb.2023.123899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Antimicrobial peptides and proteins (AMPs) are promising alternatives to conventional antibiotics for the treatment of infections caused by multidrug-resistant bacteria. The production of recombinant AMPs is facilitated by platform technologies such as the C-tag, a sequence of four C-terminal amino acids that allows immunoaffinity capture and purification. However, the detection and quantification of such products throughout the manufacturing process is a significant challenge. We therefore used a design of experiments approach to optimize a novel high-throughput analytical immunoaffinity chromatography method for the accurate quantification of AMPs containing a C-tag, resulting in minimal analyte carryover (98.8 ± 0.1 % product elution). We then validated the method in accordance with International Conference on Harmonisation guideline Q2(R2). Validation confirmed that the method achieves high specificity, linearity, accuracy, and precision. We implemented in-process control and quantification throughout the manufacturing process, from cell lysis to the final purified product. We found that the lysate and acidic samples (pH < 2) can lead to deviations. However, following sample pretreatment, C-tag quantification reduced the error to ≤ 4 %, which is potentially superior to current non-specific quantification methods such as UV absorbance and colorimetry. Implementing this method for in-process control and quantification throughout the manufacturing process achieves the reliable assessment of product quantity and quality. This method also offers improvements over the product-specific enzyme-linked immunosorbent assay currently used for C-tagged products because it has a higher precision, accuracy and throughput, with a measurement time of 2.5 min per sample. Our analytical affinity chromatography method is therefore a valuable tool for the quantification of AMPs as part of a novel platform technology approach for C-tagged products.
Collapse
Affiliation(s)
- Carolin A Lappöhn
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Lea Maerz
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Robin Stei
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Linus G Weber
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
6
|
Waweru H, Kanoi BN, Kuja JO, Maranga M, Kongere J, Maina M, Kinyua J, Gitaka J. Limited genetic variations of the Rh5-CyRPA-Ripr invasion complex in Plasmodium falciparum parasite population in selected malaria-endemic regions, Kenya. FRONTIERS IN TROPICAL DISEASES 2023; 4:1102265. [PMID: 38406638 PMCID: PMC7615667 DOI: 10.3389/fitd.2023.1102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
The invasion of human erythrocytes by Plasmodium falciparum merozoites requires interaction between parasite ligands and host receptors. Interaction of PfRh5-CyRPA-Ripr protein complex with basigin, an erythrocyte surface receptor, via PfRh5 is essential for erythrocyte invasion. Antibodies raised against each antigen component of the complex have demonstrated erythrocyte invasion inhibition, making these proteins potential blood-stage vaccine candidates. Genetic polymorphisms present a significant challenge in developing efficacious vaccines, leading to variant-specific immune responses. This study investigated the genetic variations of the PfRh5 complex proteins in P. falciparum isolates from Lake Victoria islands, Western Kenya. Here, twenty-nine microscopically confirmed P. falciparum field samples collected from islands in Lake Victoria between July 2014 and July 2016 were genotyped by whole genome sequencing, and results compared to sequences mined from the GenBank database, from a study conducted in Kilifi, as well as other sequences from the MalariaGEN repository. We analyzed the frequency of polymorphisms in the PfRh5 protein complex proteins, PfRh5, PfCyRPA, PfRipr, and PfP113, and their location mapped on the 3D protein complex structure. We identified a total of 58 variants in the PfRh5 protein complex. PfRh5 protein was the most polymorphic with 30 SNPs, while PfCyRPA was relatively conserved with 3 SNPs. The minor allele frequency of the SNPs ranged between 1.9% and 21.2%. Ten high-frequency alleles (>5%) were observed in PfRh5 at codons 147, 148, 277, 410, and 429 and in PfRipr at codons 190, 255, 259, and 1003. A SNP was located in protein-protein interaction region C203Y and F292V of PfRh5 and PfCyRPA, respectively. Put together, this study revealed low polymorphisms in the PfRh5 invasion complex in the Lake Victoria parasite population. However, the two mutations identified on the protein interaction regions prompts for investigation on their impacts on parasite invasion process to support the consideration of PfRh5 components as potential malaria vaccine candidates.
Collapse
Affiliation(s)
- Harrison Waweru
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Bernard N. Kanoi
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Centre for Research in Tropical Medicine and Community Development, Nairobi, Kenya
| | - Josiah O. Kuja
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mary Maranga
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - James Kongere
- Centre for Research in Tropical Medicine and Community Development, Nairobi, Kenya
| | - Michael Maina
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Johnson Kinyua
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Jesse Gitaka
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Centre for Research in Tropical Medicine and Community Development, Nairobi, Kenya
| |
Collapse
|
7
|
Lacasta A, Kim HC, Kepl E, Gachogo R, Chege N, Ojuok R, Muriuki C, Mwalimu S, Touboul G, Stiber A, Poole EJ, Ndiwa N, Fiala B, King NP, Nene V. Design and immunological evaluation of two-component protein nanoparticle vaccines for East Coast fever. Front Immunol 2023; 13:1015840. [PMID: 36713406 PMCID: PMC9880323 DOI: 10.3389/fimmu.2022.1015840] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Nanoparticle vaccines usually prime stronger immune responses than soluble antigens. Within this class of subunit vaccines, the recent development of computationally designed self-assembling two-component protein nanoparticle scaffolds provides a powerful and versatile platform for displaying multiple copies of one or more antigens. Here we report the generation of three different nanoparticle immunogens displaying 60 copies of p67C, an 80 amino acid polypeptide from a candidate vaccine antigen of Theileria parva, and their immunogenicity in cattle. p67C is a truncation of p67, the major surface protein of the sporozoite stage of T. parva, an apicomplexan parasite that causes an often-fatal bovine disease called East Coast fever (ECF) in sub-Saharan Africa. Compared to I32-19 and I32-28, we found that I53-50 nanoparticle scaffolds displaying p67C had the best biophysical characteristics. p67C-I53-50 also outperformed the other two nanoparticles in stimulating p67C-specific IgG1 and IgG2 antibodies and CD4+ T-cell responses, as well as sporozoite neutralizing capacity. In experimental cattle vaccine trials, p67C-I53-50 induced significant immunity to ECF, suggesting that the I53-50 scaffold is a promising candidate for developing novel nanoparticle vaccines. To our knowledge this is the first application of computationally designed nanoparticles to the development of livestock vaccines.
Collapse
Affiliation(s)
- Anna Lacasta
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya,*Correspondence: Anna Lacasta, ; Neil P. King,
| | - Hyung Chan Kim
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Rachael Gachogo
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Naomi Chege
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Rose Ojuok
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Charity Muriuki
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Stephen Mwalimu
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Gilad Touboul
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Ariel Stiber
- Summer Undergraduate Research Fellowship Program, Caltech, Pasadena, CA, United States
| | - Elizabeth Jane Poole
- Research Methods Group, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Nicholas Ndiwa
- Research Methods Group, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States,*Correspondence: Anna Lacasta, ; Neil P. King,
| | - Vishvanath Nene
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| |
Collapse
|
8
|
Healer J, Thompson JK, Mackwell KL, Browne CD, Seager BA, Ngo A, Lowes KN, Silk SE, Pulido D, King LDW, Christen JM, Noe AR, Kotraiah V, Masendycz PJ, Rajagopalan R, Lucas L, Stanford MM, Soisson L, Diggs C, Miller R, Youll S, Wycherley K, Draper SJ, Cowman AF. RH5.1-CyRPA-Ripr antigen combination vaccine shows little improvement over RH5.1 in a preclinical setting. Front Cell Infect Microbiol 2022; 12:1049065. [PMID: 36605129 PMCID: PMC9807911 DOI: 10.3389/fcimb.2022.1049065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background RH5 is the leading vaccine candidate for the Plasmodium falciparum blood stage and has shown impact on parasite growth in the blood in a human clinical trial. RH5 binds to Ripr and CyRPA at the apical end of the invasive merozoite form, and this complex, designated RCR, is essential for entry into human erythrocytes. RH5 has advanced to human clinical trials, and the impact on parasite growth in the blood was encouraging but modest. This study assessed the potential of a protein-in-adjuvant blood stage malaria vaccine based on a combination of RH5, Ripr and CyRPA to provide improved neutralizing activity against P. falciparum in vitro. Methods Mice were immunized with the individual RCR antigens to down select the best performing adjuvant formulation and rats were immunized with the individual RCR antigens to select the correct antigen dose. A second cohort of rats were immunized with single, double and triple antigen combinations to assess immunogenicity and parasite neutralizing activity in growth inhibition assays. Results The DPX® platform was identified as the best performing formulation in potentiating P. falciparum inhibitory antibody responses to these antigens. The three antigens derived from RH5, Ripr and CyRPA proteins formulated with DPX induced highly inhibitory parasite neutralising antibodies. Notably, RH5 either as a single antigen or in combination with Ripr and/or CyRPA, induced inhibitory antibodies that outperformed CyRPA, Ripr. Conclusion An RCR combination vaccine may not induce substantially improved protective immunity as compared with RH5 as a single immunogen in a clinical setting and leaves the development pathway open for other antigens to be combined with RH5 as a next generation malaria vaccine.
Collapse
Affiliation(s)
- Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer K. Thompson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Karen L. Mackwell
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Benjamin A. Seager
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,University of Melbourne, Melbourne, VIC, Australia
| | - Anna Ngo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Kym N. Lowes
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,University of Melbourne, Melbourne, VIC, Australia
| | - Sarah E. Silk
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David Pulido
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Lloyd D. W. King
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Amy R. Noe
- Leidos Life Sciences, Frederick, MD, United States
| | | | - Paul J. Masendycz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | | | | | - Lorraine Soisson
- Malaria Vaccine Development Program, United States Agency for International Development (USAID), Washington, DC, United States
| | - Carter Diggs
- Malaria Vaccine Development Program, United States Agency for International Development (USAID), Washington, DC, United States
| | - Robin Miller
- Malaria Vaccine Development Program, United States Agency for International Development (USAID), Washington, DC, United States
| | - Susan Youll
- Malaria Vaccine Development Program, United States Agency for International Development (USAID), Washington, DC, United States
| | - Kaye Wycherley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Alan F. Cowman,
| |
Collapse
|
9
|
Somanathan A, Mian SY, Chaddha K, Uchoi S, Bharti PK, Tandon R, Gaur D, Chauhan VS. Process development and preclinical evaluation of a major Plasmodium falciparum blood stage vaccine candidate, Cysteine-Rich Protective Antigen (CyRPA). Front Immunol 2022; 13:1005332. [PMID: 36211427 PMCID: PMC9535676 DOI: 10.3389/fimmu.2022.1005332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum Cysteine-Rich Protective Antigen (CyRPA) is an essential, highly conserved merozoite antigen that forms an important multi-protein complex (RH5/Ripr/CyRPA) necessary for erythrocyte invasion. CyRPA is a promising blood-stage vaccine target that has been shown to elicit potent strain-transcending parasite neutralizing antibodies. Recently, we demonstrated that naturally acquired immune anti-CyRPA antibodies are invasion-inhibitory and therefore a correlate of protection against malaria. Here, we describe a process for the large-scale production of tag-free CyRPA vaccine in E. coli and demonstrate its parasite neutralizing efficacy with commonly used adjuvants. CyRPA was purified from inclusion bodies using a one-step purification method with high purity (>90%). Biochemical and biophysical characterization showed that the purified tag-free CyRPA interacted with RH5, readily detected by a conformation-specific CyRPA monoclonal antibody and recognized by sera from malaria infected individuals thus indicating that the recombinant antigen was correctly folded and retained its native conformation. Tag-free CyRPA formulated with Freund’s adjuvant elicited highly potent parasite neutralizing antibodies achieving inhibition of >90% across diverse parasite strains. Importantly, we identified tag-free CyRPA/Alhydrogel formulation as most effective in inducing a highly immunogenic antibody response that exhibited efficacious, cross-strain in vitro parasite neutralization achieving ~80% at 10 mg/ml. Further, CyRPA/Alhydrogel vaccine induced anti-parasite cytokine response in mice. In summary, our study provides a simple, scalable, cost-effective process for the production of tag-free CyRPA that in combination with human-compatible adjuvant induces efficacious humoral and cell-mediated immune response.
Collapse
Affiliation(s)
- Anjali Somanathan
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Syed Yusuf Mian
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Kritika Chaddha
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Seemalata Uchoi
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Praveen K. Bharti
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Virander Singh Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- *Correspondence: Virander Singh Chauhan,
| |
Collapse
|
10
|
de Jong RM, Alkema M, Oulton T, Dumont E, Teelen K, Nakajima R, de Assis RR, Press KWD, Ngotho P, Tetteh KK, Felgner P, Marti M, Collins KA, Drakeley C, Bousema T, Stone WJ. The acquisition of humoral immune responses targeting Plasmodium falciparum sexual stages in controlled human malaria infections. Front Immunol 2022; 13:930956. [PMID: 35924245 PMCID: PMC9339717 DOI: 10.3389/fimmu.2022.930956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals infected with P. falciparum develop antibody responses to intra-erythrocytic gametocyte proteins and exported gametocyte proteins present on the surface of infected erythrocytes. However, there is currently limited knowledge on the immunogenicity of gametocyte antigens and the specificity of gametocyte-induced antibody responses. In this study, we assessed antibody responses in participants of two controlled human malaria infection (CHMI) studies by ELISA, multiplexed bead-based antibody assays and protein microarray. By comparing antibody responses in participants with and without gametocyte exposure, we aimed to disentangle the antibody response induced by asexual and sexual stage parasites. We showed that after a single malaria infection, a significant anti-sexual stage humoral response is induced in malaria-naïve individuals, even after exposure to relatively low gametocyte densities (up to ~1,600 gametocytes/mL). In contrast to antibody responses to well-characterised asexual blood stage antigens that were detectable by day 21 after infection, responses to sexual stage antigens (including transmission blocking vaccine candidates Pfs48/45 and Pfs230) were only apparent at 51 days after infection. We found antigens previously associated with early gametocyte or anti-gamete immunity were highly represented among responses linked with gametocyte exposure. Our data provide detailed insights on the induction and kinetics of antibody responses to gametocytes and identify novel antigens that elicit antibody responses exclusively in individuals with gametocyte exposure. Our findings provide target identification for serological assays for surveillance of the malaria infectious reservoir, and support vaccine development by describing the antibody response to leading vaccine antigens after primary infection.
Collapse
Affiliation(s)
- Roos M. de Jong
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Manon Alkema
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Tate Oulton
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elin Dumont
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Karina Teelen
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Rie Nakajima
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | - Rafael Ramiro de Assis
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | | | - Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Kevin K.A. Tetteh
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Phil Felgner
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Katharine A. Collins
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Will J.R. Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom,*Correspondence: Will J.R. Stone,
| |
Collapse
|
11
|
Correia R, Fernandes B, Castro R, Nagaoka H, Takashima E, Tsuboi T, Fukushima A, Viebig NK, Depraetere H, Alves PM, Roldão A. Asexual Blood-Stage Malaria Vaccine Candidate PfRipr5: Enhanced Production in Insect Cells. Front Bioeng Biotechnol 2022; 10:908509. [PMID: 35845392 PMCID: PMC9280424 DOI: 10.3389/fbioe.2022.908509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
The malaria asexual blood-stage antigen PfRipr and its most immunogenic fragment PfRipr5 have recently risen as promising vaccine candidates against this infectious disease. Continued development of high-yielding, scalable production platforms is essential to advance the malaria vaccine research. Insect cells have supplied the production of numerous vaccine antigens in a fast and cost-effective manner; improving this platform further could prove key to its wider use. In this study, insect (Sf9 and High Five) and human (HEK293) cell hosts as well as process-optimizing strategies (new baculovirus construct designs and a culture temperature shift to hypothermic conditions) were employed to improve the production of the malaria asexual blood-stage vaccine candidate PfRipr5. Protein expression was maximized using High Five cells at CCI of 2 × 106 cell/mL and MOI of 0.1 pfu/cell (production yield = 0.49 mg/ml), with high-purity PfRipr5 binding to a conformational anti-PfRipr monoclonal antibody known to hold GIA activity and parasite PfRipr staining capacity. Further improvements in the PfRipr5 expression were achieved by designing novel expression vector sequences and performing a culture temperature shift to hypothermic culture conditions. Addition of one alanine (A) amino acid residue adjacent to the signal peptide cleavage site and a glycine-serine linker (GGSGG) between the PfRipr5 sequence and the purification tag (His6) induced a 2.2-fold increase in the expression of secreted PfRipr5 over using the expression vector with none of these additions. Performing a culture temperature shift from the standard 27–22°C at the time of infection improved the PfRipr5 expression by up to 1.7 fold. Notably, a synergistic effect was attained when combining both strategies, enabling to increase production yield post-purification by 5.2 fold, with similar protein quality (i.e., purity and binding to anti-PfRipr monoclonal antibody). This work highlights the potential of insect cells to produce the PfRipr5 malaria vaccine candidate and the importance of optimizing the expression vector and culture conditions to boost the expression of secreted proteins.
Collapse
Affiliation(s)
- Ricardo Correia
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bárbara Fernandes
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rute Castro
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | | | - Nicola K. Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Hilde Depraetere
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Paula M. Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: António Roldão,
| |
Collapse
|
12
|
Nainu F, Salim E, Emran TB, Sharma R. Drosophila melanogaster as a Versatile Model for Studying Medically Important Insect Vector-Borne Parasites. Front Cell Infect Microbiol 2022; 12:939813. [PMID: 35719344 PMCID: PMC9201246 DOI: 10.3389/fcimb.2022.939813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
- *Correspondence: Firzan Nainu, ; orcid.org/0000-0003-0989-4023
| | - Emil Salim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
13
|
Fernandes B, Sousa M, Castro R, Schäfer A, Hauser J, Schulze K, Amacker M, Tamborrini M, Pluschke G, Alves PM, Fleury S, Roldão A. Scalable Process for High-Yield Production of PfCyRPA Using Insect Cells for Inclusion in a Malaria Virosome-Based Vaccine Candidate. Front Bioeng Biotechnol 2022; 10:879078. [PMID: 35669054 PMCID: PMC9163744 DOI: 10.3389/fbioe.2022.879078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum cysteine-rich protective antigen (PfCyRPA) has been identified as a promising blood-stage candidate antigen to include in a broadly cross-reactive malaria vaccine. In the last couple of decades, substantial effort has been committed to the development of scalable cost-effective, robust, and high-yield PfCyRPA production processes. Despite insect cells being a suitable expression system due to their track record for protein production (including vaccine antigens), these are yet to be explored to produce this antigen. In this study, different insect cell lines, culture conditions (baculovirus infection strategy, supplementation schemes, culture temperature modulation), and purification strategies (affinity tags) were explored aiming to develop a scalable, high-yield, and high-quality PfCyRPA for inclusion in a virosome-based malaria vaccine candidate. Supplements with antioxidants improved PfCyRPA volumetric titers by 50% when added at the time of infection. In addition, from three different affinity tags (6x-His, 4x-His, and C-tag) evaluated, the 4x-His affinity tag was the one leading to the highest PfCyRPA purification recovery yields (61%) and production yield (26 mg/L vs. 21 mg/L and 13 mg/L for 6x-His and C-tag, respectively). Noteworthy, PfCyRPA expressed using High Five cells did not show differences in protein quality or stability when compared to its human HEK293 cell counterpart. When formulated in a lipid-based virosome nanoparticle, immunized rabbits developed functional anti-PfCyRPA antibodies that impeded the multiplication of P. falciparum in vitro. This work demonstrates the potential of using IC-BEVS as a qualified platform to produce functional recombinant PfCyRPA protein with the added benefit of being a non-human expression system with short bioprocessing times and high expression levels.
Collapse
Affiliation(s)
- Bárbara Fernandes
- iBET-Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos Sousa
- iBET-Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rute Castro
- iBET-Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Anja Schäfer
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Julia Hauser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Kai Schulze
- Helmhotz Center for Infecion Research, Braunschweig, Germany
| | - Mario Amacker
- Mymetics SA, Épalinges, Switzerland
- Department of Pulmonary Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marco Tamborrini
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Paula M Alves
- iBET-Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - António Roldão
- iBET-Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: António Roldão,
| |
Collapse
|
14
|
Coker JA, Katis VL, Fairhead M, Schwenzer A, Clemmensen SB, Frandsen BU, de Jongh WA, Gileadi O, Burgess-Brown NA, Marsden BD, Midwood KS, Yue WW. FAS2FURIOUS: Moderate-Throughput Secreted Expression of Difficult Recombinant Proteins in Drosophila S2 Cells. Front Bioeng Biotechnol 2022; 10:871933. [PMID: 35600892 PMCID: PMC9117644 DOI: 10.3389/fbioe.2022.871933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Recombinant protein expression in eukaryotic insect cells is a powerful approach for producing challenging targets. However, due to incompatibility with standard baculoviral platforms and existing low-throughput methodology, the use of the Drosophila melanogaster “S2” cell line lags behind more common insect cell lines such as Sf9 or High-Five™. Due to the advantages of S2 cells, particularly for secreted and secretable proteins, the lack of a simple and parallelizable S2-based platform represents a bottleneck, particularly for biochemical and biophysical laboratories. Therefore, we developed FAS2FURIOUS, a simple and rapid S2 expression pipeline built upon an existing low-throughput commercial platform. FAS2FURIOUS is comparable in effort to simple E. coli systems and allows users to clone and test up to 46 constructs in just 2 weeks. Given the ability of S2 cells to express challenging targets, including receptor ectodomains, secreted glycoproteins, and viral antigens, FAS2FURIOUS represents an attractive orthogonal approach for protein expression in eukaryotic cells.
Collapse
Affiliation(s)
- Jesse A. Coker
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Vittorio L. Katis
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael Fairhead
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anja Schwenzer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | | - Bent U. Frandsen
- ExpreSion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | | | - Opher Gileadi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola A. Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Brian D. Marsden
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Wyatt W. Yue
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Wyatt W. Yue,
| |
Collapse
|
15
|
Cui X, Snapper CM. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front Immunol 2021; 12:734471. [PMID: 34691042 PMCID: PMC8532523 DOI: 10.3389/fimmu.2021.734471] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is the first human tumor virus discovered and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. Each year EBV associated cancers account for over 200,000 new cases of cancer and cause 150,000 deaths world-wide. EBV is also the primary cause of infectious mononucleosis, and up to 70% of adolescents and young adults in developed countries suffer from infectious mononucleosis. In addition, EBV has been shown to play a critical role in the pathogenesis of multiple sclerosis. An EBV prophylactic vaccine that induces neutralizing antibodies holds great promise for prevention of EBV associated diseases. EBV envelope proteins including gH/gL, gB and gp350 play key roles in EBV entry and infection of target cells, and neutralizing antibodies elicited by each of these proteins have shown to prevent EBV infection of target cells and markedly decrease EBV titers in the peripheral blood of humanized mice challenged with lethal dose EBV. Recent studies demonstrated that immunization with the combination of gH/gL, gB and/or gp350 induced markedly increased synergistic EBV neutralizing activity compared to immunization with individual proteins. As previous clinical trials focused on gp350 alone were partially successful, the inclusion of gH/gL and gB in a vaccine formulation with gp350 represents a promising approach of EBV prophylactic vaccine development. Therapeutic EBV vaccines have also been tested clinically with encouraging results. Immunization with various vaccine platforms expressing the EBV latent proteins EBNA1, LMP1, and/or LMP2 promoted specific CD4+ and CD8+ cytotoxic responses with anti-tumor activity. The addition of EBV envelope proteins gH/gL, gB and gp350 has the potential to increase the efficacy of a therapeutic EBV vaccine. The immune system plays a critical role in the control of tumors, and immune cell therapy has emerged as a promising treatment of cancers. Adoptive T-cell therapy has been successfully used in the prevention and treatment of post-transplant lymphoproliferative disorder. Chimeric antigen receptor T cell therapy and T cell receptor engineered T cell therapy targeting EBV latent proteins LMP1, LMP2 and/or EBNA1 have been in development, with the goal to increase the specificity and efficacy of treatment of EBV associated cancers.
Collapse
Affiliation(s)
- Xinle Cui
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifford M Snapper
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Citranvi Biosciences LLC, Chapel Hill, NC, United States
| |
Collapse
|
16
|
Zaric M, Marini A, Nielsen CM, Gupta G, Mekhaiel D, Pham TP, Elias SC, Taylor IJ, de Graaf H, Payne RO, Li Y, Silk SE, Williams C, Hill AVS, Long CA, Miura K, Biswas S. Poor CD4 + T Cell Immunogenicity Limits Humoral Immunity to P. falciparum Transmission-Blocking Candidate Pfs25 in Humans. Front Immunol 2021; 12:732667. [PMID: 34659219 PMCID: PMC8515144 DOI: 10.3389/fimmu.2021.732667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum transmission-blocking vaccines (TBVs) targeting the Pfs25 antigen have shown promise in mice but the same efficacy has never been achieved in humans. We have previously published pre-clinical data related to a TBV candidate Pfs25-IMX313 encoded in viral vectors which was very promising and hence progressed to human clinical trials. The results from the clinical trial of this vaccine were very modest. Here we unravel why, contrary to mice, this vaccine has failed to induce robust antibody (Ab) titres in humans to elicit transmission-blocking activity. We examined Pfs25-specific B cell and T follicular helper (Tfh) cell responses in mice and humans after vaccination with Pfs25-IMX313 encoded by replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA) delivered in the heterologous prime-boost regimen via intramuscular route. We found that after vaccination, the Pfs25-IMX313 was immunologically suboptimal in humans compared to mice in terms of serum Ab production and antigen-specific B, CD4+ and Tfh cell responses. We identified that the key determinant for the poor anti-Pfs25 Ab formation in humans was the lack of CD4+ T cell recognition of Pfs25-IMX313 derived peptide epitopes. This is supported by correlations established between the ratio of proliferated antigen-specific CD4+/Tfh-like T cells, CXCL13 sera levels, and the corresponding numbers of circulating Pfs25-specific memory B cells, that consequently reflected on antigen-specific IgG sera levels. These correlations can inform the design of next-generation Pfs25-based vaccines for robust and durable blocking of malaria transmission.
Collapse
Affiliation(s)
- Marija Zaric
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Arianna Marini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carolyn M Nielsen
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Gaurav Gupta
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Mekhaiel
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Thao P Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sean C Elias
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona J Taylor
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Hans de Graaf
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth O Payne
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Yuanyuan Li
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah E Silk
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris Williams
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Adrian V S Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sumi Biswas
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Abstract
Basigin, or CD147, has been reported as a coreceptor used by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to invade host cells. Basigin also has a well-established role in Plasmodium falciparum malaria infection of human erythrocytes, where it is bound by one of the parasite's invasion ligands, reticulocyte binding protein homolog 5 (RH5). Here, we sought to validate the claim that the receptor binding domain (RBD) of SARS-CoV-2 spike glycoprotein can form a complex with basigin, using RH5-basigin as a positive control. Using recombinantly expressed proteins, size exclusion chromatography and surface plasmon resonance, we show that neither RBD nor full-length spike glycoprotein bind to recombinant human basigin (expressed in either Escherichia coli or mammalian cells). Further, polyclonal anti-basigin IgG did not block SARS-CoV-2 infection of Vero E6 cells. Given the immense interest in SARS-CoV-2 therapeutic targets to improve treatment options for those who become seriously ill with coronavirus disease 2019 (COVID-19), we would caution the inclusion of basigin in this list on the basis of its reported direct interaction with SARS-CoV-2 spike glycoprotein. IMPORTANCE Reducing the mortality and morbidity associated with COVID-19 remains a global health priority. Vaccines have proven highly effective at preventing infection and hospitalization, but efforts must continue to improve treatment options for those who still become seriously ill. Critical to these efforts is the identification of host factors that are essential to viral entry and replication. Basigin, or CD147, was previously identified as a possible therapeutic target based on the observation that it may act as a coreceptor for SARS-CoV-2, binding to the receptor binding domain of the spike protein. Here, we show that there is no direct interaction between the RBD and basigin, casting doubt on its role as a coreceptor and plausibility as a therapeutic target.
Collapse
|
18
|
Raghuwanshi AS, Kumar A, Raghuwanshi N, Singh SK, Singh AK, Tripathi U, Kaviraj S, Singh S. Development of a process for large scale production of PfRH5 in E. coli expression system. Int J Biol Macromol 2021; 188:169-179. [PMID: 34364940 DOI: 10.1016/j.ijbiomac.2021.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The Plasmodium falciparum reticulocyte binding protein homologue 5 (PfRH5) has recently shown great promise to be developed as a vaccine candidate to prevent blood-stage malaria. However, because of its molecular complexity, most previous efforts were focused on expressing PfRH5 in its native and soluble form. Here, we describe the E. coli expression of full-length PfRH5 as inclusion bodies (IBs), followed by its high cell density fermentation at 1, 5 and 30 L scale. Denatured full-length PfRH5 was purified using a two-step chromatography process before being refolded using design of experiments (DoE). Refolded PfRH5 was further purified using size exclusion chromatography (SEC), recovering high purity antigen with an overall yield of 102 mg/L from fermentation cell harvest. Purified PfRH5 was further characterized using orthogonal analytical methods, and a short-term stability study revealed -80 °C as an optimum storage temperature. Moreover, refolded, and purified PfRH5, when formulated with adjuvant Glucopyranosyl A lipid stable emulsion (GLA-SE), elicited high antibody titers in BALB/c mice, proving its potential to neutralize the blood-stage malarial parasite. Here, we establish an E. coli-based process platform for the large-scale cGMP production of full-length PfRH5, enabling global malaria vaccine development efforts.
Collapse
Affiliation(s)
- Arjun Singh Raghuwanshi
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India
| | - Ankit Kumar
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India
| | - Navdeep Raghuwanshi
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India
| | - Shravan Kumar Singh
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India
| | - Avinash Kumar Singh
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India
| | - Umanath Tripathi
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India
| | - Swarnendu Kaviraj
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India
| | - Sanjay Singh
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India.
| |
Collapse
|
19
|
Ndwiga L, Osoti V, Ochwedo KO, Wamae K, Bejon P, Rayner JC, Githinji G, Ochola-Oyier LI. The Plasmodium falciparum Rh5 invasion protein complex reveals an excess of rare variant mutations. Malar J 2021; 20:278. [PMID: 34162366 PMCID: PMC8220363 DOI: 10.1186/s12936-021-03815-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The invasion of the red blood cells by Plasmodium falciparum merozoites involves the interplay of several proteins that are also targets for vaccine development. The proteins PfRh5-PfRipr-PfCyRPA-Pfp113 assemble into a complex at the apical end of the merozoite and are together essential for erythrocyte invasion. They have also been shown to induce neutralizing antibodies and appear to be less polymorphic than other invasion-associated proteins, making them high priority blood-stage vaccine candidates. Using available whole genome sequencing data (WGS) and new capillary sequencing data (CS), this study describes the genetic polymorphism in the Rh5 complex in P. falciparum isolates obtained from Kilifi, Kenya. METHODS 162 samples collected in 2013 and 2014 were genotyped by capillary sequencing (CS) and re-analysed WGS from 68 culture-adapted P. falciparum samples obtained from a drug trial conducted from 2005 to 2007. The frequency of polymorphisms in the merozoite invasion proteins, PfRh5, PfRipr, PfCyRPA and PfP113 were examined and where possible polymorphisms co-occurring in the same isolates. RESULTS From a total 70 variants, including 2 indels, 19 SNPs [27.1%] were identified by both CS and WGS, while an additional 15 [21.4%] and 36 [51.4%] SNPs were identified only by either CS or WGS, respectively. All the SNPs identified by CS were non-synonymous, whereas WGS identified 8 synonymous and 47 non-synonymous SNPs. CS identified indels in repeat regions in the p113 gene in codons 275 and 859 that were not identified in the WGS data. The minor allele frequencies of the SNPs ranged between 0.7 and 34.9% for WGS and 1.1-29.6% for CS. Collectively, 12 high frequency SNPs (> 5%) were identified: four in Rh5 codon 147, 148, 203 and 429, two in p113 at codons 7 and 267 and six in Ripr codons 190, 259, 524, 985, 1003 and 1039. CONCLUSION This study reveals that the majority of the polymorphisms are rare variants and confirms a low level of genetic polymorphisms in all proteins within the Rh5 complex.
Collapse
Affiliation(s)
- Leonard Ndwiga
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Victor Osoti
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Kevin Omondi Ochwedo
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Kevin Wamae
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, UK
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - George Githinji
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | | |
Collapse
|
20
|
Minassian AM, Silk SE, Barrett JR, Nielsen CM, Miura K, Diouf A, Loos C, Fallon JK, Michell AR, White MT, Edwards NJ, Poulton ID, Mitton CH, Payne RO, Marks M, Maxwell-Scott H, Querol-Rubiera A, Bisnauthsing K, Batra R, Ogrina T, Brendish NJ, Themistocleous Y, Rawlinson TA, Ellis KJ, Quinkert D, Baker M, Lopez Ramon R, Ramos Lopez F, Barfod L, Folegatti PM, Silman D, Datoo M, Taylor IJ, Jin J, Pulido D, Douglas AD, de Jongh WA, Smith R, Berrie E, Noe AR, Diggs CL, Soisson LA, Ashfield R, Faust SN, Goodman AL, Lawrie AM, Nugent FL, Alter G, Long CA, Draper SJ. Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. MED 2021; 2:701-719.e19. [PMID: 34223402 PMCID: PMC8240500 DOI: 10.1016/j.medj.2021.03.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/19/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Development of an effective vaccine against the pathogenic blood-stage infection of human malaria has proved challenging, and no candidate vaccine has affected blood-stage parasitemia following controlled human malaria infection (CHMI) with blood-stage Plasmodium falciparum. METHODS We undertook a phase I/IIa clinical trial in healthy adults in the United Kingdom of the RH5.1 recombinant protein vaccine, targeting the P. falciparum reticulocyte-binding protein homolog 5 (RH5), formulated in AS01B adjuvant. We assessed safety, immunogenicity, and efficacy against blood-stage CHMI. Trial registered at ClinicalTrials.gov, NCT02927145. FINDINGS The RH5.1/AS01B formulation was administered using a range of RH5.1 protein vaccine doses (2, 10, and 50 μg) and was found to be safe and well tolerated. A regimen using a delayed and fractional third dose, in contrast to three doses given at monthly intervals, led to significantly improved antibody response longevity over ∼2 years of follow-up. Following primary and secondary CHMI of vaccinees with blood-stage P. falciparum, a significant reduction in parasite growth rate was observed, defining a milestone for the blood-stage malaria vaccine field. We show that growth inhibition activity measured in vitro using purified immunoglobulin G (IgG) antibody strongly correlates with in vivo reduction of the parasite growth rate and also identify other antibody feature sets by systems serology, including the plasma anti-RH5 IgA1 response, that are associated with challenge outcome. CONCLUSIONS Our data provide a new framework to guide rational design and delivery of next-generation vaccines to protect against malaria disease. FUNDING This study was supported by USAID, UK MRC, Wellcome Trust, NIAID, and the NIHR Oxford-BRC.
Collapse
Affiliation(s)
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Carolin Loos
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Ashlin R. Michell
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael T. White
- Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Ian D. Poulton
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Celia H. Mitton
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Ruth O. Payne
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Michael Marks
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Hector Maxwell-Scott
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Antonio Querol-Rubiera
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Karen Bisnauthsing
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Tatiana Ogrina
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Nathan J. Brendish
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | | | | | | | - Doris Quinkert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Megan Baker
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Lea Barfod
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Daniel Silman
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Mehreen Datoo
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Iona J. Taylor
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Willem A. de Jongh
- ExpreSion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, Hørsholm 2970, Denmark
| | - Robert Smith
- Clinical BioManufacturing Facility, University of Oxford, Oxford OX3 7JT, UK
| | - Eleanor Berrie
- Clinical BioManufacturing Facility, University of Oxford, Oxford OX3 7JT, UK
| | | | | | | | | | - Saul N. Faust
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anna L. Goodman
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | | | - Fay L. Nugent
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
21
|
Barry A, Bradley J, Stone W, Guelbeogo MW, Lanke K, Ouedraogo A, Soulama I, Nébié I, Serme SS, Grignard L, Patterson C, Wu L, Briggs JJ, Janson O, Awandu SS, Ouedraogo M, Tarama CW, Kargougou D, Zongo S, Sirima SB, Marti M, Drakeley C, Tiono AB, Bousema T. Higher gametocyte production and mosquito infectivity in chronic compared to incident Plasmodium falciparum infections. Nat Commun 2021; 12:2443. [PMID: 33903595 PMCID: PMC8076179 DOI: 10.1038/s41467-021-22573-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
Plasmodium falciparum gametocyte kinetics and infectivity may differ between chronic and incident infections. In the current study, we assess parasite kinetics and infectivity to mosquitoes among children (aged 5-10 years) from Burkina Faso with (a) incident infections following parasite clearance (n = 48) and (b) chronic asymptomatic infections (n = 60). In the incident infection cohort, 92% (44/48) of children develop symptoms within 35 days, compared to 23% (14/60) in the chronic cohort. All individuals with chronic infection carried gametocytes or developed them during follow-up, whereas only 35% (17/48) in the incident cohort produce gametocytes before becoming symptomatic and receiving treatment. Parasite multiplication rate (PMR) and the relative abundance of ap2-g and gexp-5 transcripts are positively associated with gametocyte production. Antibody responses are higher and PMR lower in chronic infections. The presence of symptoms and sexual stage immune responses are associated with reductions in gametocyte infectivity to mosquitoes. We observe that most incident infections require treatment before the density of mature gametocytes is sufficient to infect mosquitoes. In contrast, chronic, asymptomatic infections represent a significant source of mosquito infections. Our observations support the notion that malaria transmission reduction may be expedited by enhanced case management, involving both symptom-screening and infection detection.
Collapse
Affiliation(s)
- Aissata Barry
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Will Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Moussa W Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Kjerstin Lanke
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Alphonse Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Issa Nébié
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Samuel S Serme
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Lynn Grignard
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Catriona Patterson
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Lindsey Wu
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Jessica J Briggs
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Owen Janson
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Shehu S Awandu
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mireille Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Casimire W Tarama
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Désiré Kargougou
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Soumanaba Zongo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Chris Drakeley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Teun Bousema
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Immunization with Epstein-Barr Virus Core Fusion Machinery Envelope Proteins Elicit High Titers of Neutralizing Activities and Protect Humanized Mice from Lethal Dose EBV Challenge. Vaccines (Basel) 2021; 9:vaccines9030285. [PMID: 33808755 PMCID: PMC8003492 DOI: 10.3390/vaccines9030285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Epstein–Barr virus (EBV) is the primary cause of infectious mononucleosis and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. EBV core fusion machinery envelope proteins gH/gL and gB coordinately mediate EBV fusion and entry into its target cells, B lymphocytes and epithelial cells, suggesting these proteins could induce antibodies that prevent EBV infection. We previously reported that the immunization of rabbits with recombinant EBV gH/gL or trimeric gB each induced markedly higher serum EBV-neutralizing titers for B lymphocytes than that of the leading EBV vaccine candidate gp350. In this study, we demonstrated that immunization of rabbits with EBV core fusion machinery proteins induced high titer EBV neutralizing antibodies for both B lymphocytes and epithelial cells, and EBV gH/gL in combination with EBV trimeric gB elicited strong synergistic EBV neutralizing activities. Furthermore, the immune sera from rabbits immunized with EBV gH/gL or trimeric gB demonstrated strong passive immune protection of humanized mice from lethal dose EBV challenge, partially or completely prevented death respectively, and markedly decreased the EBV load in peripheral blood of humanized mice. These data strongly suggest the combination of EBV core fusion machinery envelope proteins gH/gL and trimeric gB is a promising EBV prophylactic vaccine.
Collapse
|
23
|
Doritchamou JYA, Suurbaar J, Tuikue Ndam N. Progress and new horizons toward a VAR2CSA-based placental malaria vaccine. Expert Rev Vaccines 2021; 20:215-226. [PMID: 33472449 DOI: 10.1080/14760584.2021.1878029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Several malaria vaccines are under various phases of development with some promising results. In placental malaria (PM) a deliberately anti-disease approach is considered as many studies have underlined the key role of VAR2CSA protein, which therefore represents the leading vaccine candidate. However, evidence indicates that VAR2CSA antigenic polymorphism remains an obstacle to overcome.Areas covered: This review analyzes the progress made thus far in developing a VAR2CSA-based vaccine, and addresses the current issues and challenges that must be overcome to develop an effective PM vaccine.Expert opinion: Phase I trials of PAMVAC and PRIMVAC VAR2CSA vaccines have shown more or less satisfactory results with regards to safety and immunogenicity. The second generation of VAR2CSA-based vaccines could benefit from optimization approaches to broaden the activity spectrum against various placenta-binding isolates through continued advances in the structural understanding of the interaction with CSA.
Collapse
Affiliation(s)
- Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Suurbaar
- Université de Paris, MERIT, IRD, F-75006 Paris, France.,Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| | - Nicaise Tuikue Ndam
- Université de Paris, MERIT, IRD, F-75006 Paris, France.,Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| |
Collapse
|
24
|
Acquisition and decay of IgM and IgG responses to merozoite antigens after Plasmodium falciparum malaria in Ghanaian children. PLoS One 2020; 15:e0243943. [PMID: 33332459 PMCID: PMC7746192 DOI: 10.1371/journal.pone.0243943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Developing a vaccine against Plasmodium falciparum malaria has been challenging, primarily due to high levels of antigen polymorphism and a complex parasite lifecycle. Immunization with the P. falciparum merozoite antigens PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5 has been shown to give rise to growth inhibitory and synergistic antisera. Therefore, these five merozoite proteins are considered to be promising candidates for a second-generation multivalent malaria vaccine. Nevertheless, little is known about IgG and IgM responses to these antigens in populations that are naturally exposed to P. falciparum. In this study, serum samples from clinically immune adults and malaria exposed children from Ghana were studied to compare levels of IgG and IgM specific for PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5. All five antigens were found to be specifically recognized by both IgM and IgG in serum from clinically immune adults and from children with malaria. Longitudinal analysis of the latter group showed an early, transient IgM response that was followed by IgG, which peaked 14 days after the initial diagnosis. IgG levels and parasitemia did not correlate, whereas parasitemia was weakly positively correlated with IgM levels. These findings show that IgG and IgM specific for merozoite antigens PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5 are high in children during P. falciparum malaria, but that the IgM induction and decline occurs earlier in infection than that of IgG.
Collapse
|
25
|
Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry. Biotechnol Adv 2020; 45:107653. [PMID: 33157154 DOI: 10.1016/j.biotechadv.2020.107653] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023]
Abstract
Tag-assisted protein purification is a method of choice for both academic researches and large-scale industrial demands. Application of the purification tags in the protein production process can help to save time and cost, but the design and application of tagged fusion proteins are challenging. An appropriate tagging strategy must provide sufficient expression yield and high purity for the final protein products while preserving their native structure and function. Thanks to the recent advances in the bioinformatics and emergence of high-throughput techniques (e.g. SEREX), many new tags are introduced to the market. A variety of interfering and non-interfering tags have currently broadened their application scope beyond the traditional use as a simple purification tool. They can take part in many biochemical and analytical features and act as solubility and protein expression enhancers, probe tracker for online visualization, detectors of post-translational modifications, and carrier-driven tags. Given the variability and growing number of the purification tags, here we reviewed the protein- and peptide-structured purification tags used in the affinity, ion-exchange, reverse phase, and immobilized metal ion affinity chromatographies. We highlighted the demand for purification tags in the pharmaceutical industry and discussed the impact of self-cleavable tags, aggregating tags, and nanotechnology on both the column-based and column-free purification techniques.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Frederiksen LSF, Zhang Y, Foged C, Thakur A. The Long Road Toward COVID-19 Herd Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. Front Immunol 2020; 11:1817. [PMID: 32793245 PMCID: PMC7385234 DOI: 10.3389/fimmu.2020.01817] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need for effective countermeasures against the current emergence and accelerating expansion of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Induction of herd immunity by mass vaccination has been a very successful strategy for preventing the spread of many infectious diseases, hence protecting the most vulnerable population groups unable to develop immunity, for example individuals with immunodeficiencies or a weakened immune system due to underlying medical or debilitating conditions. Therefore, vaccination represents one of the most promising counter-pandemic measures to COVID-19. However, to date, no licensed vaccine exists, neither for SARS-CoV-2 nor for the closely related SARS-CoV or Middle East respiratory syndrome-CoV. In addition, a few vaccine candidates have only recently entered human clinical trials, which hampers the progress in tackling COVID-19 infection. Here, we discuss potential prophylactic interventions for SARS-CoV-2 with a focus on the challenges existing for vaccine development, and we review pre-clinical progress and ongoing human clinical trials of COVID-19 vaccine candidates. Although COVID-19 vaccine development is currently accelerated via so-called fast-track programs, vaccines may not be timely available to have an impact on the first wave of the ongoing COVID-19 pandemic. Nevertheless, COVID-19 vaccines will be essential in the future for reducing morbidity and mortality and inducing herd immunity, if SARS-CoV-2 becomes established in the population like for example influenza virus.
Collapse
Affiliation(s)
| | - Yibang Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Duffy PE, Patrick Gorres J. Malaria vaccines since 2000: progress, priorities, products. NPJ Vaccines 2020; 5:48. [PMID: 32566259 PMCID: PMC7283239 DOI: 10.1038/s41541-020-0196-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Malaria vaccine development entered a new era in 2015 when the pre-erythrocytic Plasmodium falciparum candidate RTS,S was favorably reviewed by the European Medicines Agency and subsequently introduced into national pilot implementation programs, marking the first human anti-parasite vaccine to pass regulatory scrutiny. Since the first trials published in 1997, RTS,S has been evaluated in a series of clinical trials culminating in Phase 3 testing, while testing of other pre-erythrocytic candidates (that target sporozoite- or liver-stage parasites), particularly whole sporozoite vaccines, has also increased. Interest in blood-stage candidates (that limit blood-stage parasite growth) subsided after disappointing human efficacy results, although new blood-stage targets and concepts may revive activity in this area. Over the past decade, testing of transmission-blocking vaccines (that kill mosquito/sexual-stage parasites) advanced to field trials and the first generation of placental malaria vaccines (that clear placenta-sequestering parasites) entered the clinic. Novel antigen discovery, human monoclonal antibodies, structural vaccinology, and improved platforms promise to expand on RTS,S and improve existing vaccine candidates.
Collapse
Affiliation(s)
- Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - J. Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
28
|
Ragotte RJ, Higgins MK, Draper SJ. The RH5-CyRPA-Ripr Complex as a Malaria Vaccine Target. Trends Parasitol 2020; 36:545-559. [PMID: 32359873 PMCID: PMC7246332 DOI: 10.1016/j.pt.2020.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 11/04/2022]
Abstract
Despite ongoing efforts, a highly effective vaccine against Plasmodium falciparum remains elusive. Vaccines targeting the pre-erythrocytic stages of the P. falciparum life cycle are the most advanced to date, affording moderate levels of efficacy in field trials. However, the discovery that the members of the merozoite PfRH5-PfCyRPA-PfRipr (RCR) complex are capable of inducing strain-transcendent neutralizing antibodies has renewed enthusiasm for the possibility of preventing disease by targeting the parasite during the blood stage of infection. With Phase I/II clinical trials now underway using first-generation vaccines against PfRH5, and more on the horizon for PfCyRPA and PfRipr, this review explores the rationale and future potential of the RCR complex as a P. falciparum vaccine target.
Collapse
Affiliation(s)
- Robert J Ragotte
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
29
|
Samadder S. Drosophila melanogaster: A Robust Tool to Study Candidate Drug against Epidemic and Pandemic Diseases. ANIMAL MODELS IN MEDICINE AND BIOLOGY 2020. [DOI: 10.5772/intechopen.90073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Healer J, Wong W, Thompson JK, He W, Birkinshaw RW, Miura K, Long CA, Soroka V, Søgaard TMM, Jørgensen T, de Jongh WA, Weir C, Svahn E, Czabotar PE, Tham W, Mueller I, Barlow PN, Cowman AF. Neutralising antibodies block the function of Rh5/Ripr/CyRPA complex during invasion of Plasmodium falciparum into human erythrocytes. Cell Microbiol 2019; 21:e13030. [PMID: 30965383 PMCID: PMC6594224 DOI: 10.1111/cmi.13030] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 01/19/2023]
Abstract
An effective vaccine is a priority for malaria control and elimination. The leading candidate in the Plasmodium falciparum blood stage is PfRh5. PfRh5 assembles into trimeric complex with PfRipr and PfCyRPA in the parasite, and this complex is essential for erythrocyte invasion. In this study, we show that antibodies specific for PfRh5 and PfCyRPA prevent trimeric complex formation. We identify the EGF-7 domain on PfRipr as a neutralising epitope and demonstrate that antibodies against this region act downstream of complex formation to prevent merozoite invasion. Antibodies against the C-terminal region of PfRipr were more inhibitory than those against either PfRh5 or PfCyRPA alone, and a combination of antibodies against PfCyRPA and PfRipr acted synergistically to reduce invasion. This study supports prioritisation of PfRipr for development as part of a next-generation antimalarial vaccine.
Collapse
Affiliation(s)
- Julie Healer
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Wilson Wong
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jennifer K. Thompson
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Wengqiang He
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Richard W. Birkinshaw
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Carol A. Long
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaMarylandUSA
| | | | | | | | | | - Christopher Weir
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
- Schools of Chemistry and Biological SciencesUniversity of EdinburghEdinburghScotland, UK
| | - Ella Svahn
- Schools of Chemistry and Biological SciencesUniversity of EdinburghEdinburghScotland, UK
| | - Peter E. Czabotar
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Wai‐Hong Tham
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Ivo Mueller
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Paul N. Barlow
- Schools of Chemistry and Biological SciencesUniversity of EdinburghEdinburghScotland, UK
| | - Alan F. Cowman
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
31
|
Alanine DGW, Quinkert D, Kumarasingha R, Mehmood S, Donnellan FR, Minkah NK, Dadonaite B, Diouf A, Galaway F, Silk SE, Jamwal A, Marshall JM, Miura K, Foquet L, Elias SC, Labbé GM, Douglas AD, Jin J, Payne RO, Illingworth JJ, Pattinson DJ, Pulido D, Williams BG, de Jongh WA, Wright GJ, Kappe SHI, Robinson CV, Long CA, Crabb BS, Gilson PR, Higgins MK, Draper SJ. Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-Neutralizing Antibodies. Cell 2019; 178:216-228.e21. [PMID: 31204103 PMCID: PMC6602525 DOI: 10.1016/j.cell.2019.05.025] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 03/05/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022]
Abstract
The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.
Collapse
Affiliation(s)
- Daniel G W Alanine
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Doris Quinkert
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | | | - Shahid Mehmood
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Francesca R Donnellan
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Nana K Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Ave. N., #500, Seattle, WA 98109, USA
| | - Bernadeta Dadonaite
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Francis Galaway
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Sarah E Silk
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Abhishek Jamwal
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jennifer M Marshall
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Lander Foquet
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Ave. N., #500, Seattle, WA 98109, USA
| | - Sean C Elias
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Geneviève M Labbé
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Alexander D Douglas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Ruth O Payne
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Joseph J Illingworth
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - David J Pattinson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Barnabas G Williams
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Willem A de Jongh
- ExpreS(2)ion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, Hørsholm 2970, Denmark
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Ave. N., #500, Seattle, WA 98109, USA
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Brendan S Crabb
- Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Paul R Gilson
- Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
32
|
Illingworth JJ, Alanine DG, Brown R, Marshall JM, Bartlett HE, Silk SE, Labbé GM, Quinkert D, Cho JS, Wendler JP, Pattinson DJ, Barfod L, Douglas AD, Shea MW, Wright KE, de Cassan SC, Higgins MK, Draper SJ. Functional Comparison of Blood-Stage Plasmodium falciparum Malaria Vaccine Candidate Antigens. Front Immunol 2019; 10:1254. [PMID: 31214195 PMCID: PMC6558156 DOI: 10.3389/fimmu.2019.01254] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
The malaria genome encodes over 5,000 proteins and many of these have also been proposed to be potential vaccine candidates, although few of these have been tested clinically. RH5 is one of the leading blood-stage Plasmodium falciparum malaria vaccine antigens and Phase I/II clinical trials of vaccines containing this antigen are currently underway. Its likely mechanism of action is to elicit antibodies that can neutralize merozoites by blocking their invasion of red blood cells (RBC). However, many other antigens could also elicit neutralizing antibodies against the merozoite, and most of these have never been compared directly to RH5. The objective of this study was to compare a range of blood-stage antigens to RH5, to identify any antigens that outperform or synergize with anti-RH5 antibodies. We selected 55 gene products, covering 15 candidate antigens that have been described in the literature and 40 genes selected on the basis of bioinformatics functional prediction. We were able to make 20 protein-in-adjuvant vaccines from the original selection. Of these, S-antigen and CyRPA robustly elicited antibodies with neutralizing properties. Anti-CyRPA IgG generally showed additive GIA with anti-RH5 IgG, although high levels of anti-CyRPA-specific rabbit polyclonal IgG were required to achieve 50% GIA. Our data suggest that further vaccine antigen screening efforts are required to identify a second merozoite target with similar antibody-susceptibility to RH5.
Collapse
Affiliation(s)
| | | | - Rebecca Brown
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Sarah E Silk
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Doris Quinkert
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jee Sun Cho
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jason P Wendler
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Lea Barfod
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Michael W Shea
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Katherine E Wright
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Salinas ND, Tang WK, Tolia NH. Blood-Stage Malaria Parasite Antigens: Structure, Function, and Vaccine Potential. J Mol Biol 2019; 431:4259-4280. [PMID: 31103771 DOI: 10.1016/j.jmb.2019.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Plasmodium parasites are the causative agent of malaria, a disease that kills approximately 450,000 individuals annually, with the majority of deaths occurring in children under the age of 5 years and the development of a malaria vaccine is a global health priority. Plasmodium parasites undergo a complex life cycle requiring numerous diverse protein families. The blood stage of parasite development results in the clinical manifestation of disease. A vaccine that disrupts the blood stage is highly desired and will aid in the control of malaria. The blood stage comprises multiple steps: invasion of, asexual growth within, and egress from red blood cells. This review focuses on blood-stage antigens with emphasis on antigen structure, antigen function, neutralizing antibodies, and vaccine potential.
Collapse
Affiliation(s)
- Nichole D Salinas
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA
| | - Wai Kwan Tang
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA.
| |
Collapse
|
34
|
Yman V, White MT, Asghar M, Sundling C, Sondén K, Draper SJ, Osier FHA, Färnert A. Antibody responses to merozoite antigens after natural Plasmodium falciparum infection: kinetics and longevity in absence of re-exposure. BMC Med 2019; 17:22. [PMID: 30696449 PMCID: PMC6352425 DOI: 10.1186/s12916-019-1255-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antibodies against merozoite antigens are key components of malaria immunity. The naturally acquired antibody response to these antigens is generally considered short-lived; however, the underlying mechanisms remain unclear. Prospective studies of travellers with different levels of prior exposure, returning to malaria-free countries with Plasmodium infection, offer a unique opportunity to investigate the kinetics and composition of the antibody response after natural infection. METHODS Adults diagnosed with P. falciparum malaria in Stockholm, Sweden (20 likely malaria naïve and 41 with repeated previous exposure during residency in sub-Saharan Africa) were sampled at diagnosis and 10 days and 1, 3, 6, and 12 months after treatment. Total and subclass-specific IgG responses to P. falciparum merozoite antigens (AMA-1, MSP-119, MSP-2, MSP-3, and RH5) and tetanus toxoid were measured by multiplex bead-based immunoassays and ELISA. Mathematical modelling was used to estimate the exposure-dependent longevity of antibodies and antibody-secreting cells (ASCs). RESULTS A majority of individuals mounted detectable antibody responses towards P. falciparum merozoite antigens at diagnosis; however, the magnitude and breadth were greater in individuals with prior exposure. In both exposure groups, antibody levels increased rapidly for 2 weeks and decayed thereafter. Previously exposed individuals maintained two- to ninefold greater antibody levels throughout the 1-year follow-up. The half-lives of malaria-specific long-lived ASCs, responsible for maintaining circulating antibodies, ranged from 1.8 to 3.7 years for merozoite antigens and were considerably short compared to tetanus-specific ASCs. Primary infected individuals did acquire a long-lived component of the antibody response; however, the total proportion of long-lived ASCs generated in response to infection was estimated not to exceed 10%. In contrast, previously exposed individuals maintained substantially larger numbers of long-lived ASCs (10-56% of total ASCs). CONCLUSION The short-lived nature of the naturally acquired antibody response, to all tested merozoite antigens, following primary malaria infection can be attributed to a combination of a poor acquisition and short half-life of long-lived ASCs. Greater longevity is acquired with repeated infections and can be explained by the maintenance of larger numbers of long-lived ASCs. These insights advance our understanding of naturally acquired malaria immunity and will guide strategies for further development of both vaccines and serological tools to monitor exposure.
Collapse
Affiliation(s)
- Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Michael T White
- Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Faith H A Osier
- Kenya Medical Research Institute - Wellcome Trust Research Program, Centre for Geographic Medicine Research-Coast, PO Box 230-80108, Kilifi, Kenya
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| |
Collapse
|
35
|
Production, quality control, stability, and potency of cGMP-produced Plasmodium falciparum RH5.1 protein vaccine expressed in Drosophila S2 cells. NPJ Vaccines 2018; 3:32. [PMID: 30131879 PMCID: PMC6098134 DOI: 10.1038/s41541-018-0071-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 11/08/2022] Open
Abstract
Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is a leading asexual blood-stage vaccine candidate for malaria. In preparation for clinical trials, a full-length PfRH5 protein vaccine called “RH5.1” was produced as a soluble product under cGMP using the ExpreS2 platform (based on a Drosophila melanogaster S2 stable cell line system). Following development of a high-producing monoclonal S2 cell line, a master cell bank was produced prior to the cGMP campaign. Culture supernatants were processed using C-tag affinity chromatography followed by size exclusion chromatography and virus-reduction filtration. The overall process yielded >400 mg highly pure RH5.1 protein. QC testing showed the MCB and the RH5.1 product met all specified acceptance criteria including those for sterility, purity, and identity. The RH5.1 vaccine product was stored at −80 °C and is stable for over 18 months. Characterization of the protein following formulation in the adjuvant system AS01B showed that RH5.1 is stable in the timeframe needed for clinical vaccine administration, and that there was no discernible impact on the liposomal formulation of AS01B following addition of RH5.1. Subsequent immunization of mice confirmed the RH5.1/AS01B vaccine was immunogenic and could induce functional growth inhibitory antibodies against blood-stage P. falciparum in vitro. The RH5.1/AS01B was judged suitable for use in humans and has since progressed to phase I/IIa clinical trial. Our data support the future use of the Drosophila S2 cell and C-tag platform technologies to enable cGMP-compliant biomanufacture of other novel and “difficult-to-express” recombinant protein-based vaccines. A vaccine candidate for blood-stage malaria has overcome previous hurdles to enter clinical trials. The protein PfRH5 is an essential blood-stage infection facilitator of malarial parasite Plasmodium falciparum, and a promising target for vaccine strategies. Unfortunately, efforts to produce the protein in an immunogenic, clinically-viable way have been met with difficulty. Here, researchers led by Simon Draper, from the UK’s Jenner Institute, used a fruit fly expression system to produce over 400 mg of high-purity protein. Formulated with an immunity-boosting adjuvant, the vaccine elicited antibodies in mice that proved inhibitory to blood-stage P. falciparum during in vitro assays. The PfRH5 vaccine candidate and its adjuvant have been approved for a clinical trial in the UK, and the authors hope that the expression system used may be beneficial in the expression of other ‘difficult’ proteins.
Collapse
|
36
|
Kinetics of antibody responses to PfRH5-complex antigens in Ghanaian children with Plasmodium falciparum malaria. PLoS One 2018; 13:e0198371. [PMID: 29883485 PMCID: PMC5993283 DOI: 10.1371/journal.pone.0198371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/17/2018] [Indexed: 11/21/2022] Open
Abstract
Plasmodium falciparum PfRH5 protein binds Ripr, CyRPA and Pf113 to form a complex that is essential for merozoite invasion of erythrocytes. The inter-genomic conservation of the PfRH5 complex proteins makes them attractive blood stage vaccine candidates. However, little is known about how antibodies to PfRH5, CyRPA and Pf113 are acquired and maintained in naturally exposed populations, and the role of PfRH5 complex proteins in naturally acquired immunity. To provide such data, we studied 206 Ghanaian children between the ages of 1–12 years, who were symptomatic, asymptomatic or aparasitemic and healthy. Plasma levels of antigen-specific IgG and IgG subclasses were measured by ELISA at several time points during acute disease and convalescence. On the day of admission with acute P. falciparum malaria, the prevalence of antibodies to PfRH5-complex proteins was low compared to other merozoite antigens (EBA175, GLURP-R0 and GLURP-R2). At convalescence, the levels of RH5-complex-specific IgG were reduced, with the decay of PfRH5-specific IgG being slower than the decay of IgG specific for CyRPA and Pf113. No correlation between IgG levels and protection against P. falciparum malaria was observed for any of the PfRH5 complex proteins. From this we conclude that specific IgG was induced against proteins from the PfRH5-complex during acute P. falciparum malaria, but the prevalence was low and the IgG levels decayed rapidly after treatment. These data indicate that the levels of IgG specific for PfRH5-complex proteins in natural infections in Ghanaian children were markers of recent exposure only.
Collapse
|
37
|
Coelho CH, Doritchamou JYA, Zaidi I, Duffy PE. Advances in malaria vaccine development: report from the 2017 malaria vaccine symposium. NPJ Vaccines 2017. [PMID: 29522056 PMCID: PMC5709382 DOI: 10.1038/s41541-017-0035-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Malaria Vaccine Symposium occurred at Johns Hopkins University in Baltimore, MD, USA on April 25th, 2017, coinciding with World Malaria Day and the WHO announcement that the RTS,S malaria vaccine would begin pilot implementation programs in Ghana, Kenya, and Malawi in 2018. Scientists from several disciplines reported progress on an array of malaria vaccine concepts and product candidates, including pre-erythrocytic vaccines that prevent infection, blood-stage vaccines that limit infection and disease, and transmission-blocking vaccines that interrupt the spread of infection. Other speakers highlighted the immunological and genetic considerations that must be addressed by vaccinologists to yield the most efficacious vaccines. Here, we highlight the advances in malaria vaccinology that were reported at the symposium.
Collapse
Affiliation(s)
- Camila Henriques Coelho
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
38
|
Payne RO, Silk SE, Elias SC, Miura K, Diouf A, Galaway F, de Graaf H, Brendish NJ, Poulton ID, Griffiths OJ, Edwards NJ, Jin J, Labbé GM, Alanine DG, Siani L, Di Marco S, Roberts R, Green N, Berrie E, Ishizuka AS, Nielsen CM, Bardelli M, Partey FD, Ofori MF, Barfod L, Wambua J, Murungi LM, Osier FH, Biswas S, McCarthy JS, Minassian AM, Ashfield R, Viebig NK, Nugent FL, Douglas AD, Vekemans J, Wright GJ, Faust SN, Hill AV, Long CA, Lawrie AM, Draper SJ. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions. JCI Insight 2017; 2:96381. [PMID: 29093263 PMCID: PMC5752323 DOI: 10.1172/jci.insight.96381] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/05/2017] [Indexed: 11/17/2022] Open
Abstract
The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen - a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing.
Collapse
Affiliation(s)
- Ruth O. Payne
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sean C. Elias
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Francis Galaway
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Hans de Graaf
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nathan J. Brendish
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ian D. Poulton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Loredana Siani
- ReiThera SRL (formerly Okairos SRL), Viale Città d’Europa, Rome, Italy
| | - Stefania Di Marco
- ReiThera SRL (formerly Okairos SRL), Viale Città d’Europa, Rome, Italy
| | - Rachel Roberts
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Nicky Green
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | - Eleanor Berrie
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | | | | | - Martino Bardelli
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Frederica D. Partey
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Michael F. Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lea Barfod
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Juliana Wambua
- KEMRI Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Linda M. Murungi
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- KEMRI Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Faith H. Osier
- KEMRI Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - James S. McCarthy
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Rebecca Ashfield
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Nicola K. Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Fay L. Nugent
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Saul N. Faust
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Adrian V.S. Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Alison M. Lawrie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Synergistic malaria vaccine combinations identified by systematic antigen screening. Proc Natl Acad Sci U S A 2017; 114:12045-12050. [PMID: 29078270 PMCID: PMC5692528 DOI: 10.1073/pnas.1702944114] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria still kills hundreds of thousands of children each year. Malaria vaccine development is complicated by high levels of parasite genetic diversity, which makes single target vaccines vulnerable to the development of variant-specific immunity. To overcome this hurdle, we systematically screened a panel of 29 blood-stage antigens from the most deadly human malaria parasite, Plasmodium falciparum. We identified several targets that were able to inhibit erythrocyte invasion in two genetically diverse strains. Testing these targets in combination identified several pairs that blocked invasion more effectively in combination than in isolation. Video microscopy and studies of natural immune responses to malaria in patients suggest that targeting multiple steps in invasion is more likely to produce a synergistic vaccine response. A highly effective vaccine would be a valuable weapon in the drive toward malaria elimination. No such vaccine currently exists, and only a handful of the hundreds of potential candidates in the parasite genome have been evaluated. In this study, we systematically evaluated 29 antigens likely to be involved in erythrocyte invasion, an essential developmental stage during which the malaria parasite is vulnerable to antibody-mediated inhibition. Testing antigens alone and in combination identified several strain-transcending targets that had synergistic combinatorial effects in vitro, while studies in an endemic population revealed that combinations of the same antigens were associated with protection from febrile malaria. Video microscopy established that the most effective combinations targeted multiple discrete stages of invasion, suggesting a mechanistic explanation for synergy. Overall, this study both identifies specific antigen combinations for high-priority clinical testing and establishes a generalizable approach that is more likely to produce effective vaccines.
Collapse
|
40
|
Fotoran WL, Santangelo R, de Miranda BNM, Irvine DJ, Wunderlich G. DNA-Loaded Cationic Liposomes Efficiently Function as a Vaccine against Malarial Proteins. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:1-10. [PMID: 28879213 PMCID: PMC5581859 DOI: 10.1016/j.omtm.2017.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022]
Abstract
The delivery of antigens as DNA vaccines is an efficient alternative to induce immune responses against antigens, which are difficult to produce in recombinant form. However, the delivery of naked DNA is ineffective or relies on sophisticated ballistic devices. Here, we show a combination of liposome application and naked DNA vaccine that successfully overcomes these problems. Upon entrapment of plasmids encoding different antigens in cationic particles, transfection efficiencies similar to commercial kits were achieved in in vitro cell cultures. The liposome-based approach provided strong humoral responses against three malarial antigens, namely the Circumsporozoite protein and the C terminus of merozoite surface protein 1 from Plasmodium vivax (titers 104 or 103–104, respectively) and P. falciparum Rhoptry antigen 5 from Plasmodium falciparum (titers 103–104). When employed in P. falciparum growth-inhibition assays, antibodies demonstrated consistent reinvasion-blocking activities that were dose dependent. Liposome-formulated DNA vaccines may prove useful when targets cannot be produced as recombinant proteins and when conformation-dependent and highly specific antibodies are mandatory.
Collapse
Affiliation(s)
- Wesley L Fotoran
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508000, Brazil
| | - Rachele Santangelo
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508000, Brazil
| | - Beatriz N M de Miranda
- Institute of Chemistry of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos, 13566-590, Brazil
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research and Department of Biomedical Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Ragon Institute of MGH, MIT and Harvard University, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Gerhard Wunderlich
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508000, Brazil
| |
Collapse
|
41
|
Payne RO, Silk SE, Elias SC, Milne KH, Rawlinson TA, Llewellyn D, Shakri AR, Jin J, Labbé GM, Edwards NJ, Poulton ID, Roberts R, Farid R, Jørgensen T, Alanine DG, de Cassan SC, Higgins MK, Otto TD, McCarthy JS, de Jongh WA, Nicosia A, Moyle S, Hill AV, Berrie E, Chitnis CE, Lawrie AM, Draper SJ. Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies. JCI Insight 2017; 2:93683. [PMID: 28614791 PMCID: PMC5470884 DOI: 10.1172/jci.insight.93683] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/16/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND. Plasmodium vivax is the most widespread human malaria geographically; however, no effective vaccine exists. Red blood cell invasion by the P. vivax merozoite depends on an interaction between the Duffy antigen receptor for chemokines (DARC) and region II of the parasite’s Duffy-binding protein (PvDBP_RII). Naturally acquired binding-inhibitory antibodies against this interaction associate with clinical immunity, but it is unknown whether these responses can be induced by human vaccination. METHODS. Safety and immunogenicity of replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and modified vaccinia virus Ankara (MVA) viral vectored vaccines targeting PvDBP_RII (Salvador I strain) were assessed in an open-label dose-escalation phase Ia study in 24 healthy UK adults. Vaccines were delivered by the intramuscular route in a ChAd63-MVA heterologous prime-boost regimen using an 8-week interval. RESULTS. Both vaccines were well tolerated and demonstrated a favorable safety profile in malaria-naive adults. PvDBP_RII–specific ex-vivo IFN-γ T cell, antibody-secreting cell, memory B cell, and serum IgG responses were observed after the MVA boost immunization. Vaccine-induced antibodies inhibited the binding of vaccine homologous and heterologous variants of recombinant PvDBP_RII to the DARC receptor, with median 50% binding-inhibition titers greater than 1:100. CONCLUSION. We have demonstrated for the first time to our knowledge that strain-transcending antibodies can be induced against the PvDBP_RII antigen by vaccination in humans. These vaccine candidates warrant further clinical evaluation of efficacy against the blood-stage P. vivax parasite. TRIAL REGISTRATION. Clinicaltrials.gov NCT01816113. FUNDING. Support was provided by the UK Medical Research Council, UK National Institute of Health Research Oxford Biomedical Research Centre, and the Wellcome Trust. A clinical trial of a candidate blood-stage Plasmodium vivax vaccine targeting the Duffy-binding protein demonstrates safety and immunogenicity in healthy adults and induces strain-transcending antibodies.
Collapse
Affiliation(s)
- Ruth O Payne
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah E Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sean C Elias
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Kathryn H Milne
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - David Llewellyn
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - A Rushdi Shakri
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Nick J Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Ian D Poulton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Roberts
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Ryan Farid
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Thomas Jørgensen
- ExpreS2, ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | | | | | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Thomas D Otto
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Willem A de Jongh
- ExpreS2, ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | - Alfredo Nicosia
- ReiThera SRL (formerly Okairòs SRL), Viale Città d'Europa, Rome, Italy.,CEINGE, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Sarah Moyle
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | - Adrian Vs Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Eleanor Berrie
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | - Chetan E Chitnis
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.,Institut Pasteur, Department of Parasites and Insect Vectors, Paris, France
| | - Alison M Lawrie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Brune KD, Buldun CM, Li Y, Taylor IJ, Brod F, Biswas S, Howarth M. Dual Plug-and-Display Synthetic Assembly Using Orthogonal Reactive Proteins for Twin Antigen Immunization. Bioconjug Chem 2017; 28:1544-1551. [PMID: 28437083 DOI: 10.1021/acs.bioconjchem.7b00174] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Engineering modular platforms to control biomolecular architecture can advance both the understanding and the manipulation of biological systems. Icosahedral particles uniformly displaying single antigens stimulate potent immune activation and have been successful in various licensed vaccines. However, it remains challenging to display multiple antigens on a single particle and to induce broader immunity protective across strains or even against distinct diseases. Here, we design a dually addressable synthetic nanoparticle by engineering the multimerizing coiled-coil IMX313 and two orthogonally reactive split proteins. SpyCatcher protein forms an isopeptide bond with SpyTag peptide through spontaneous amidation. SnoopCatcher forms an isopeptide bond with SnoopTag peptide through transamidation. SpyCatcher-IMX-SnoopCatcher provides a modular platform, whereby SpyTag-antigen and SnoopTag-antigen can be multimerized on opposite faces of the particle simply upon mixing. We demonstrate efficient derivatization of the platform with model proteins and complex pathogen-derived antigens. SpyCatcher-IMX-SnoopCatcher was expressed in Escherichia coli and was resilient to lyophilization or extreme temperatures. For the next generation of malaria vaccines, blocking the transmission of the parasite from human to mosquito is an important goal. SpyCatcher-IMX-SnoopCatcher multimerization of the leading transmission-blocking antigens Pfs25 and Pfs28 greatly enhanced the antibody response to both antigens in comparison to the monomeric proteins. This dual plug-and-display architecture should help to accelerate vaccine development for malaria and other diseases.
Collapse
Affiliation(s)
- Karl D Brune
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Can M Buldun
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Yuanyuan Li
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Iona J Taylor
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Florian Brod
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Sumi Biswas
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Mark Howarth
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
43
|
Applying Unconventional Secretion in Ustilago maydis for the Export of Functional Nanobodies. Int J Mol Sci 2017; 18:ijms18050937. [PMID: 28468279 PMCID: PMC5454850 DOI: 10.3390/ijms18050937] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/25/2022] Open
Abstract
Exploiting secretory pathways for production of heterologous proteins is highly advantageous with respect to efficient downstream processing. In eukaryotic systems the vast majority of heterologous proteins for biotechnological application is exported via the canonical endoplasmic reticulum–Golgi pathway. In the endomembrane system target proteins are often glycosylated and may thus be modified with foreign glycan patterns. This can be destructive for their activity or cause immune reactions against therapeutic proteins. Hence, using unconventional secretion for protein expression is an attractive alternative. In the fungal model Ustilago maydis, chitinase Cts1 is secreted via an unconventional pathway connected to cell separation which can be used to co-export heterologous proteins. Here, we apply this mechanism for the production of nanobodies. First, we achieved expression and unconventional secretion of a functional nanobody directed against green fluorescent protein (Gfp). Second, we found that Cts1 binds to chitin and that this feature can be applied to generate a Gfp-trap. Thus, we demonstrated the dual use of Cts1 serving both as export vehicle and as purification tag. Finally, we established and optimized the production of a nanobody against botulinum toxin A and hence describe the first pharmaceutically relevant target exported by Cts1-mediated unconventional secretion.
Collapse
|
44
|
Accelerating the clinical development of protein-based vaccines for malaria by efficient purification using a four amino acid C-terminal 'C-tag'. Int J Parasitol 2017; 47:435-446. [PMID: 28153778 PMCID: PMC5482323 DOI: 10.1016/j.ijpara.2016.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 11/20/2022]
Abstract
Fusion of a four amino acid ‘C-tag’ allows purification of a PfRH5 malaria vaccine. Overall process yield of 40–45% and very high product purity (>99%) was achieved. His6-tagged and C-tagged PfRH5 are conformational and bind to basigin. C-tag will facilitate the clinical translation of difficult-to-produce antigens.
Development of bespoke biomanufacturing processes remains a critical bottleneck for translational studies, in particular when modest quantities of a novel product are required for proof-of-concept Phase I/II clinical trials. In these instances the ability to develop a biomanufacturing process quickly and relatively cheaply, without risk to product quality or safety, provides a great advantage by allowing new antigens or concepts in immunogen design to more rapidly enter human testing. These challenges with production and purification are particularly apparent when developing recombinant protein-based vaccines for difficult parasitic diseases, with Plasmodium falciparum malaria being a prime example. To that end, we have previously reported the expression of a novel protein vaccine for malaria using the ExpreS2Drosophila melanogaster Schneider 2 stable cell line system, however, a very low overall process yield (typically <5% recovery of hexa-histidine-tagged protein) meant the initial purification strategy was not suitable for scale-up and clinical biomanufacture of such a vaccine. Here we describe a newly available affinity purification method that was ideally suited to purification of the same protein which encodes the P. falciparum reticulocyte-binding protein homolog 5 – currently the leading antigen for assessment in next generation vaccines aiming to prevent red blood cell invasion by the blood-stage parasite. This purification system makes use of a C-terminal tag known as ‘C-tag’, composed of the four amino acids, glutamic acid – proline – glutamic acid – alanine (E-P-E-A), which is selectively purified on a CaptureSelect™ affinity resin coupled to a camelid single chain antibody, called NbSyn2. The C-terminal fusion of this short C-tag to P. falciparum reticulocyte-binding protein homolog 5 achieved >85% recovery and >70% purity in a single step purification directly from clarified, concentrated Schneider 2 cell supernatant under mild conditions. Biochemical and immunological analysis showed that the C-tagged and hexa-histidine-tagged P. falciparum reticulocyte-binding protein homolog 5 proteins are comparable. The C-tag technology has the potential to form the basis of a current good manufacturing practice-compliant platform, which could greatly improve the speed and ease with which novel protein-based products progress to clinical testing.
Collapse
|
45
|
One-step design of a stable variant of the malaria invasion protein RH5 for use as a vaccine immunogen. Proc Natl Acad Sci U S A 2017; 114:998-1002. [PMID: 28096331 DOI: 10.1073/pnas.1616903114] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many promising vaccine candidates from pathogenic viruses, bacteria, and parasites are unstable and cannot be produced cheaply for clinical use. For instance, Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is essential for erythrocyte invasion, is highly conserved among field isolates, and elicits antibodies that neutralize in vitro and protect in an animal model, making it a leading malaria vaccine candidate. However, functional RH5 is only expressible in eukaryotic systems and exhibits moderate temperature tolerance, limiting its usefulness in hot and low-income countries where malaria prevails. Current approaches to immunogen stabilization involve iterative application of rational or semirational design, random mutagenesis, and biochemical characterization. Typically, each round of optimization yields minor improvement in stability, and multiple rounds are required. In contrast, we developed a one-step design strategy using phylogenetic analysis and Rosetta atomistic calculations to design PfRH5 variants with improved packing and surface polarity. To demonstrate the robustness of this approach, we tested three PfRH5 designs, all of which showed improved stability relative to wild type. The best, bearing 18 mutations relative to PfRH5, expressed in a folded form in bacteria at >1 mg of protein per L of culture, and had 10-15 °C higher thermal tolerance than wild type, while also retaining ligand binding and immunogenic properties indistinguishable from wild type, proving its value as an immunogen for a future generation of vaccines against the malaria blood stage. We envision that this efficient computational stability design methodology will also be used to enhance the biophysical properties of other recalcitrant vaccine candidates from emerging pathogens.
Collapse
|