1
|
Makanae Y, Ato S, Kouzaki K, Tamura Y, Nakazato K. Acute high-intensity muscle contraction moderates AChR gene expression independent of rapamycin-sensitive mTORC1 pathway in rat skeletal muscle. Exp Physiol 2025; 110:127-146. [PMID: 39501426 DOI: 10.1113/ep091006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/24/2024] [Indexed: 01/02/2025]
Abstract
The relationship between mechanistic target of rapamycin complex 1 (mTORC1) activation after resistance exercise and acetylcholine receptor (AChR) subunit gene expression remains largely unknown. Therefore, we aimed to investigate the effect of electrical stimulation-induced intense muscle contraction, which mimics acute resistance exercise, on the mRNA expression of AChR genes and the signalling pathways involved in neuromuscular junction (NMJ) maintenance, such as mTORC1 and muscle-specific kinase (MuSK). The gastrocnemius muscle of male adult Sprague-Dawley rats was isometrically exercised. Upon completion of muscle contraction, the rats were euthanized in the early (after 0, 1, 3, 6 or 24 h) and late (after 48 or 72 h) recovery phases and the gastrocnemius muscles were removed. Non-exercised control animals were euthanized in the basal state (control group). In the early recovery phase, Agrn gene expression increased whereas LRP4 decreased without any change in the protein and gene expression of AChR gene subunits. In the late recovery phase, Agrn, Musk, Chrnb1, Chrnd and Chrne gene expression were altered and agrin and MuSK protein expression increased. Moreover, mTORC1 and protein kinase B/Akt-histone deacetylase 4 (HDAC) were activated in the early phase but not in the late recovery phase. Furthermore, rapamycin, an inhibitor of mTORC1, did not disturb changes in AChR subunit gene expression after muscle contraction. However, rapamycin addition slightly increased AChR gene expression, while insulin did not impact it in rat L6 myotube. These results suggest that changes in the AChR subunits after muscle contraction are independent of the rapamycin-sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Yuhei Makanae
- Department of Physical Education, National Defence Academy, Yokosuka, Japan
| | - Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Healty Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Health and Sports Sciences, Toyo University, Tokyo, Japan
| | - Karina Kouzaki
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
2
|
Ato S, Oya C, Ogasawara R. Rapamycin administration causes a decrease in muscle contractile function and systemic glucose intolerance concomitant with reduced skeletal muscle Rictor, the mTORC2 component, expression independent of energy intake in young rats. PLoS One 2024; 19:e0312859. [PMID: 39637031 PMCID: PMC11620399 DOI: 10.1371/journal.pone.0312859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Emerging evidence suggests the potential of rapamycin, an antibiotic from Streptomyces hygroscopicus that functions as a mechanistic target of rapamycin (mTOR) inhibitor, as a mimetic of caloric restriction (CR) for maintaining skeletal muscle health. Several studies showed that rapamycin administration (RAP) reduced appetite and energy intake. However, the physiological and molecular differences between RAP and CR in skeletal muscle are not fully understood. Here we observed the effects of 4 weeks of RAP administration and CR corresponding to the reduction in energy intake produced by RAP administration (PF, paired feeding) on fast glycolytic and slow oxidative muscle in young adult rats. We found that 4 weeks of RAP demonstrated low fast-glycolytic muscle mass with smaller type I and IIb/x myofiber size independent of the energy intake. In addition, PF improved the contractile function of the plantar flexor muscle, whereas RAP did not improve its function. The suppressing response of mTORC1 signaling to RAP is greater in slow-oxidative muscles than in fast-glycolytic muscles. In addition, systemic glucose tolerance was exacerbated by RAP, with reduced expression of Rictor and hexokinase in skeletal muscle. These observations imply that RAP may have a slight but significant negative impact and it obviously different to CR in young adult skeletal muscle.
Collapse
Affiliation(s)
- Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Health and Sports Sciences, Toyo University, Tokyo, Japan
| | - Chieri Oya
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
3
|
Tanaka M, Kanazashi M, Tsumori T, Fujino H. Prazosin improves insulin-induced anabolic signaling by protecting capillary regression in the soleus muscle of hindlimb-unloaded rats. J Diabetes Metab Disord 2024; 23:1989-1999. [PMID: 39610479 PMCID: PMC11599836 DOI: 10.1007/s40200-024-01454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/14/2024] [Indexed: 11/30/2024]
Abstract
Purpose Reduced capillary number in skeletal muscle due to disuse can hinder the delivery of insulin and amino acid delivery to muscle cells, diminishing insulin activity and muscle protein synthesis, ultimately contributing to anabolic resistance. However, it remains unknown whether mitigating capillary regression during inactivity improves anabolic resistance. This study aimed to investigate the effect of increasing capillary number through the administration of prazosin, which can increase blood flow and prevent capillary regression, on anabolic resistance in skeletal muscle induced by disuse. Methods Male Sprague Dawley rats were divided into control and hindlimb unloading (HU) groups, with half of each group receiving prazosin (50 mg/L) in their drinking water for 2 weeks. Histological analysis of the soleus muscles was conducted to measure the capillary-to-fiber (C/F) ratio, while western blotting was performed to measure the activation of the Akt/mTORC1 muscle protein synthesis pathway before and after insulin stimulation. Results The C/F ratios were significantly lower in the HU and HU + Prz groups than in the control group but were significantly higher in the HU + Prz group than in the HU group. Following insulin stimulation, the phosphorylation levels of Akt, p70S6K, and S6RP increased in all groups, with a significantly greater increase observed in the HU + Prz group compared to the HU group, indicating improved molecular signaling related to muscle protein synthesis. Conclusion Administration of prazosin during hindlimb unloading mitigated capillary regression and enhanced insulin-stimulated muscle protein synthesis response. These findings suggest that enhancing capillary number may reduce the anabolic resistance caused by muscle disuse. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01454-y.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, 3-2-18 Daiku, Kita-ku, Okayama-shi, Okayama, 700-0913 Japan
| | - Miho Kanazashi
- Department of Health and Welfare, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima, 723-0053 Japan
| | - Toshiko Tsumori
- Department of Health and Welfare, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima, 723-0053 Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, 654-0142 Hyogo Japan
| |
Collapse
|
4
|
Kaspy MS, Hannaian SJ, Bell ZW, Churchward-Venne TA. The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: an update. Nutr Res Rev 2024; 37:273-286. [PMID: 37681443 DOI: 10.1017/s0954422423000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Branched-chain amino acids (BCAA: leucine, isoleucine and valine) are three of the nine indispensable amino acids, and are frequently consumed as a dietary supplement by athletes and recreationally active individuals alike. The popularity of BCAA supplements is largely predicated on the notion that they can stimulate rates of muscle protein synthesis (MPS) and suppress rates of muscle protein breakdown (MPB), the combination of which promotes a net anabolic response in skeletal muscle. To date, several studies have shown that BCAA (particularly leucine) increase the phosphorylation status of key proteins within the mechanistic target of rapamycin (mTOR) signalling pathway involved in the regulation of translation initiation in human muscle. Early research in humans demonstrated that BCAA provision reduced indices of whole-body protein breakdown and MPB; however, there was no stimulatory effect of BCAA on MPS. In contrast, recent work has demonstrated that BCAA intake can stimulate postprandial MPS rates at rest and can further increase MPS rates during recovery after a bout of resistance exercise. The purpose of this evidence-based narrative review is to critically appraise the available research pertaining to studies examining the effects of BCAA on MPS, MPB and associated molecular signalling responses in humans. Overall, BCAA can activate molecular pathways that regulate translation initiation, reduce indices of whole-body and MPB, and transiently stimulate MPS rates. However, the stimulatory effect of BCAA on MPS rates is less than the response observed following ingestion of a complete protein source providing the full complement of indispensable amino acids.
Collapse
Affiliation(s)
- Matthew S Kaspy
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
| | - Sarkis J Hannaian
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Glen Site, 1001 Boul. Décarie, H4A 3J1 Montreal, QC, Canada
| | - Zachary W Bell
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
- Division of Geriatric Medicine, McGill University, Montreal General Hospital, Room D6 237.F, 1650 Cedar Avenue, H3G 1A4, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Glen Site, 1001 Boul. Décarie, H4A 3J1 Montreal, QC, Canada
| |
Collapse
|
5
|
Tanaka M, Kanazashi M, Kondo H, Fujino H. Methylglyoxal reduces resistance exercise-induced protein synthesis and anabolic signaling in rat tibialis anterior muscle. J Muscle Res Cell Motil 2024; 45:263-273. [PMID: 39085712 DOI: 10.1007/s10974-024-09680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Resistance exercise provides significant benefits to skeletal muscle, including hypertrophy and metabolic enhancements, supporting overall health and disease management. However, skeletal muscle responsiveness to resistance exercise is significantly reduced in conditions such as aging and diabetes. Recent reports suggest that glycation stress contributes to muscle atrophy and impaired exercise-induced muscle adaptation; however, its role in the muscle response to resistance exercise remains unclear. Therefore, in this study, we investigated whether methylglyoxal (MGO), a key factor in glycation stress, affects the acute responsiveness of skeletal muscles to resistance exercise, focusing on protein synthesis and the key signaling molecules. This study included 12 8-week-old male Sprague-Dawley rats divided into two groups: one received 0.5% MGO-supplemented drinking water (MGO group) and the other received regular water (control group). After 10 weeks, the left tibialis anterior muscle of each rat was subjected to electrical stimulation (ES) to mimic resistance exercise, with the right muscle serving as a non-stimulated control. Muscle protein-synthesis rates were evaluated with SUnSET, and phosphorylation levels of key signaling molecules (p70S6K and S6rp) were quantified using western blotting. In the control group, stimulated muscles exhibited significantly increased muscle protein synthesis and phosphorylation levels of p70S6K and S6rp. In the MGO group, these increases were attenuated, indicating that MGO treatment suppresses the adaptive response to resistance exercise. MGO diminishes the skeletal muscle's adaptive response to ES-simulated resistance exercise, affecting both muscle protein synthesis and key signaling molecules. The potential influence of glycation stress on the effectiveness of resistance exercise or ES emphasizes the need for individualized interventions in conditions of elevated glycation stress, such as diabetes and aging.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, 3-2-18 Daiku, Kita-ku, Okayama-shi, Okayama, 700-0913, Japan
- Department of Physical Therapy, Faculty of Human Sciences, Osaka University of Human Sciences, 1-4-1 Shojaku, Settsu-shi, Osaka, 566-8501, Japan
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
| | - Miho Kanazashi
- Department of Health and Welfare, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen- cho, Mihara-shi, Hiroshima, 723-0053, Japan.
| | - Hiroyo Kondo
- Department of Nutrition, Faculty of Health and Nutrition, Shubun University, 6 Nikko-cho, Ichinomiya, Aichi, 491- 0938, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
| |
Collapse
|
6
|
Kusano T, Sotani Y, Takeda R, Hatano A, Kawata K, Kano R, Matsumoto M, Kano Y, Hoshino D. Time-series transcriptomics reveals distinctive mRNA expression dynamics associated with gene ontology specificity and protein expression in skeletal muscle after electrical stimulation-induced resistance exercise. FASEB J 2024; 38:e70153. [PMID: 39545720 PMCID: PMC11698011 DOI: 10.1096/fj.202401420rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Resistance exercise upregulates and downregulates the expression of a wide range of genes in skeletal muscle. However, detailed analysis of mRNA dynamics such as response rates and temporal patterns of the transcriptome after resistance exercise has not been performed. We aimed to clarify the dynamics of time-series transcriptomics after resistance exercise. We used electrical stimulation-induced muscle contraction as a resistance exercise model (5 sets × 10 times of 3 s of 100-Hz electrical stimulation) on the tibialis anterior muscle of rats and measured the transcriptome in the muscle before and at 0, 1, 3, 6, and 12 h after muscle contractions by RNA sequencing. We also examined the relationship between the parameters of mRNA dynamics and the increase in protein expression at 12 h after muscle contractions. We found that the function of the upregulated genes differed after muscle contractions depending on their response rate. Genes related to muscle differentiation and response to mechanical stimulus were enriched in the sustainedly upregulated genes. Furthermore, there was a positive correlation between the magnitude of upregulated mRNA expression and the corresponding protein expression level at 12 h after muscle contractions. Although it has been theoretically suggested, this study experimentally demonstrated that the magnitude of the mRNA response after electrical stimulation-induced resistance exercise contributes to skeletal muscle adaptation via increases in protein expression. These findings suggest that mRNA expression dynamics such as response rate, a sustained upregulated expression pattern, and the magnitude of the response contribute to mechanisms underlying adaptation to resistance exercise.
Collapse
Affiliation(s)
- Tatsuya Kusano
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| | - Yuta Sotani
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| | - Reo Takeda
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaIbarakiJapan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataNiigataJapan
| | - Kentaro Kawata
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaIbarakiJapan
| | - Ryotaro Kano
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataNiigataJapan
| | - Yutaka Kano
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| | - Daisuke Hoshino
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| |
Collapse
|
7
|
Alonso-Puyo J, Izagirre-Fernandez O, Crende O, Seco-Calvo J, Fernandez-Atutxa A, Fernandez-Lazaro D, Garcia-Gallastegi P, Sanz B. The Non-Linear Profile of Aging: U-Shaped Expression of Myostatin, Follistatin and Intermediate Signals in a Longitudinal In Vitro Murine Cell Sarcopenia Model. Proteomes 2024; 12:34. [PMID: 39585121 PMCID: PMC11587466 DOI: 10.3390/proteomes12040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
Sarcopenia is linked to the decline in muscle mass, strength and function during aging. It affects the quality and life expectancy and can lead to dependence. The biological process underlying sarcopenia is unclear, but the proteins myostatin and follistatin are involved in the balance between muscle breakdown and synthesis. While myostatin promotes muscle breakdown, follistatin promotes muscle growth, but several works have shown an inconsistent association of these proteins with aging-related parameters in serum of older people. We aimed to know the evolution of these putative sarcopenia biomarkers along muscle aging in an in vitro model. We created and phenotyped a longitudinal murine model (C2C12 cells). Then, we analyzed the protein and genetic expression of myostatin and follistatin as well as the signaling pathway regulators mTOR and RPS6KB1. Myostatin and RPS6KB1 showed a similar tendency in both protein and genetic expression with aging (basal-up-down). Follistatin, on the other hand, shows the opposite tendency (basal-down-up). Regarding mTOR, the tendencies differ when analyzing proteins (basal-up-down) or genes (basal-down-down). Our work demonstrates a U-shape tendency for myostatin and follistatin and for the signaling pathway regulators. These results could be of the utmost importance when designing further research on seeking molecular biomarkers and/or targets for sarcopenia.
Collapse
Affiliation(s)
- Janire Alonso-Puyo
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain; (J.A.-P.); (J.S.-C.); (P.G.-G.)
| | - Oihane Izagirre-Fernandez
- Cell Biology and Histology Department, Basque Country University School of Medicine, Nursery University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain; (O.I.-F.); (O.C.)
| | - Olatz Crende
- Cell Biology and Histology Department, Basque Country University School of Medicine, Nursery University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain; (O.I.-F.); (O.C.)
| | - Jesús Seco-Calvo
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain; (J.A.-P.); (J.S.-C.); (P.G.-G.)
- Institute of Biomedicine (IBIOMED), Universidad de León, Vegazana Universitary Campus, 27071 León, Spain
| | - Ainhoa Fernandez-Atutxa
- Nursery I Department, Basque Country University School of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain;
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Diego Fernandez-Lazaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain;
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Patricia Garcia-Gallastegi
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain; (J.A.-P.); (J.S.-C.); (P.G.-G.)
| | - Begoña Sanz
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain; (J.A.-P.); (J.S.-C.); (P.G.-G.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
8
|
Furrer R, Handschin C. Molecular aspects of the exercise response and training adaptation in skeletal muscle. Free Radic Biol Med 2024; 223:53-68. [PMID: 39059515 DOI: 10.1016/j.freeradbiomed.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Skeletal muscle plasticity enables an enormous potential to adapt to various internal and external stimuli and perturbations. Most notably, changes in contractile activity evoke a massive remodeling of biochemical, metabolic and force-generating properties. In recent years, a large number of signals, sensors, regulators and effectors have been implicated in these adaptive processes. Nevertheless, our understanding of the molecular underpinnings of training adaptation remains rudimentary. Specifically, the mechanisms that underlie signal integration, output coordination, functional redundancy and other complex traits of muscle adaptation are unknown. In fact, it is even unclear how stimulus-dependent specification is brought about in endurance or resistance exercise. In this review, we will provide an overview on the events that describe the acute perturbations in single endurance and resistance exercise bouts. Furthermore, we will provide insights into the molecular principles of long-term training adaptation. Finally, current gaps in knowledge will be identified, and strategies for a multi-omic and -cellular analyses of the molecular mechanisms of skeletal muscle plasticity that are engaged in individual, acute exercise bouts and chronic training adaptation discussed.
Collapse
Affiliation(s)
- Regula Furrer
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| | - Christoph Handschin
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| |
Collapse
|
9
|
Bastianello G, Kidiyoor GR, Lowndes C, Li Q, Bonnal R, Godwin J, Iannelli F, Drufuca L, Bason R, Orsenigo F, Parazzoli D, Pavani M, Cancila V, Piccolo S, Scita G, Ciliberto A, Tripodo C, Pagani M, Foiani M. Mechanical stress during confined migration causes aberrant mitoses and c-MYC amplification. Proc Natl Acad Sci U S A 2024; 121:e2404551121. [PMID: 38990945 PMCID: PMC11260125 DOI: 10.1073/pnas.2404551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Confined cell migration hampers genome integrity and activates the ATR and ATM mechano-transduction pathways. We investigated whether the mechanical stress generated by metastatic interstitial migration contributes to the enhanced chromosomal instability observed in metastatic tumor cells. We employed live cell imaging, micro-fluidic approaches, and scRNA-seq to follow the fate of tumor cells experiencing confined migration. We found that, despite functional ATR, ATM, and spindle assembly checkpoint (SAC) pathways, tumor cells dividing across constriction frequently exhibited altered spindle pole organization, chromosome mis-segregations, micronuclei formation, chromosome fragility, high gene copy number variation, and transcriptional de-regulation and up-regulation of c-MYC oncogenic transcriptional signature via c-MYC locus amplifications. In vivo tumor settings showed that malignant cells populating metastatic foci or infiltrating the interstitial stroma gave rise to cells expressing high levels of c-MYC. Altogether, our data suggest that mechanical stress during metastatic migration contributes to override the checkpoint controls and boosts genotoxic and oncogenic events. Our findings may explain why cancer aneuploidy often does not correlate with mutations in SAC genes and why c-MYC amplification is strongly linked to metastatic tumors.
Collapse
Affiliation(s)
- Giulia Bastianello
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Gururaj Rao Kidiyoor
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Conor Lowndes
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Qingsen Li
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Raoul Bonnal
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Jeffrey Godwin
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Fabio Iannelli
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | | | - Ramona Bason
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Fabrizio Orsenigo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Dario Parazzoli
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Mattia Pavani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo90133, Italy
| | - Stefano Piccolo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Department of Molecular Medicine, University of Padua, Padua35123, Italy
| | - Giorgio Scita
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Andrea Ciliberto
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Claudio Tripodo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo90133, Italy
| | - Massimiliano Pagani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Marco Foiani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Istituto di Genetica Molecolare, Centro Nazionale Ricerca, Pavia27100, Italy
- Cancer Science Institute of Singapore, National University of Singapore, Singapore117599, Singapore
| |
Collapse
|
10
|
Zhao C, Gong Y, Zheng L, Zhao M. Untargeted metabolomic reveals the changes in muscle metabolites of mice during exercise recovery and the mechanisms of whey protein and whey protein hydrolysate in promoting muscle repair. Food Res Int 2024; 184:114261. [PMID: 38609238 DOI: 10.1016/j.foodres.2024.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Our previous study indicated that whey protein hydrolysate (WPH) showed effective anti-fatigue properties, but its regulatory mechanism on recovery from exercise in mice is unclear. In the present study, we divided the mice into control, WP, and WPH groups and allowed them to rest for 1 h and 24 h after exercise, respectively. The changes in muscle metabolites of mice in the recovery period were investigated using metabolomics techniques. The results showed that the WPH group significantly up-regulated 94 muscle metabolites within 1 h of rest, which was 1.96 and 2.61 times more than the control and WP groups, respectively. In detail, significant decreases in TCA cycle intermediates, lipid metabolites, and carbohydrate metabolites were observed in the control group during exercise recovery. In contrast, administration with WP and WPH enriched more amino acid metabolites within 1 h of rest, which might provide a more comprehensive metabolic environment for muscle repair. Moreover, the WPH group remarkably stimulated the enhancement of lipid, carbohydrate, and vitamin metabolites in the recovery period which might provide raw materials and energy for anabolic reactions. The result of the western blot further demonstrated that WPH could promote muscle repair via activating the Sestrin2/Akt/mTOR/S6K signaling pathway within 1 h of rest. These findings deepen our understanding of the regulatory mechanisms by WPH to promote muscle recovery and may serve as a reference for comprehensive assessments of protein supplements on exercise.
Collapse
Affiliation(s)
- Chaoya Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yurong Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Food Laboratory of Zhongyuan, Luohe 462300, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
11
|
Takegaki J, Sase K, Kono Y, Fujita T, Konishi S, Fujita S. Intramuscular injection of mesenchymal stem cells augments basal muscle protein synthesis after bouts of resistance exercise in male mice. Physiol Rep 2024; 12:e15991. [PMID: 38605421 PMCID: PMC11009371 DOI: 10.14814/phy2.15991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Skeletal muscle mass is critical for activities of daily living. Resistance training maintains or increases muscle mass, and various strategies maximize the training adaptation. Mesenchymal stem cells (MSCs) are multipotent cells with differential potency in skeletal muscle cells and the capacity to secrete growth factors. However, little is known regarding the effect of intramuscular injection of MSCs on basal muscle protein synthesis and catabolic systems after resistance training. Here, we measured changes in basal muscle protein synthesis, the ubiquitin-proteasome system, and autophagy-lysosome system-related factors after bouts of resistance exercise by intramuscular injection of MSCs. Mice performed three bouts of resistance exercise (each consisting of 50 maximal isometric contractions elicited by electrical stimulation) on the right gastrocnemius muscle every 48 h, and immediately after the first bout, mice were intramuscularly injected with either MSCs (2.0 × 106 cells) labeled with green fluorescence protein (GFP) or vehicle only placebo. Seventy-two hours after the third exercise bout, GFP was detected only in the muscle injected with MSCs with concomitant elevation of muscle protein synthesis. The injection of MSCs also increased protein ubiquitination. These results suggest that the intramuscular injection of MSCs augmented muscle protein turnover at the basal state after consecutive resistance exercise.
Collapse
Affiliation(s)
- Junya Takegaki
- Research Organization of Science and TechnologyRitsumeikan UniversityKusatsuShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityKusatsuShigaJapan
- Graduate School of Agricultural ScienceKobe UniversityKobeHyogoJapan
| | - Kohei Sase
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Yusuke Kono
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityKusatsuShigaJapan
- Faculty of Pharmaceutical SciencesKobe Pharmaceutical UniversityKobeHyogoJapan
| | - Takuya Fujita
- College of Pharmaceutical SciencesRitsumeikan UniversityKusatsuShigaJapan
| | - Satoshi Konishi
- Faculty of Science and EngineeringRitsumeikan UniversityKusatsuShigaJapan
| | - Satoshi Fujita
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| |
Collapse
|
12
|
Uno H, Kamiya S, Akimoto R, Hosoki K, Tadano S, Isemura M, Kouzaki K, Tamura Y, Kotani T, Nakazato K. Belt electrode tetanus muscle stimulation reduces denervation-induced atrophy of rat multiple skeletal muscle groups. Sci Rep 2024; 14:5848. [PMID: 38462654 PMCID: PMC10925608 DOI: 10.1038/s41598-024-56382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/05/2024] [Indexed: 03/12/2024] Open
Abstract
Belt electrode-skeletal muscle electrical stimulation (B-SES) involves the use of belt-shaped electrodes to contract multiple muscle groups simultaneously. Twitch contractions have been demonstrated to protect against denervation-induced muscle atrophy in rats, possibly through mitochondrial biosynthesis. This study examined whether inducing tetanus contractions with B-SES suppresses muscle atrophy and identified the underlying molecular mechanisms. We evaluated the effects of acute (60 Hz, 5 min) and chronic (60 Hz, 5 min, every alternate day for one week) B-SES on the tibialis anterior (TA) and gastrocnemius (GAS) muscles in Sprague-Dawley rats using belt electrodes attached to both ankle joints. After acute stimulation, a significant decrease in the glycogen content was observed in the left and right TA and GAS, suggesting that B-SES causes simultaneous contractions in multiple muscle groups. B-SES enhanced p70S6K phosphorylation, an indicator of the mechanistic target of rapamycin complex 1 activity. During chronic stimulations, rats were divided into control (CONT), denervation-induced atrophy (DEN), and DEN + electrically stimulated with B-SES (DEN + ES) groups. After seven days of treatment, the wet weight (n = 8-11 for each group) and muscle fiber cross-sectional area (CSA, n = 6 for each group) of the TA and GAS muscles were reduced in the DEN and DEN + ES groups compared with that in the CON group. The DEN + ES group showed significantly higher muscle weight and CSA than those in the DEN group. Although RNA-seq and pathway analysis suggested that mitochondrial biogenesis is a critical event in this phenomenon, mitochondrial content showed no difference. In contrast, ribosomal RNA 28S and 18S (n = 6) levels in the DEN + ES group were higher than those in the DEN group, even though RNA-seq showed that the ribosome biogenesis pathway was reduced by electrical stimulation. The mRNA levels of the muscle proteolytic molecules atrogin-1 and MuRF1 were significantly higher in DEN than those in CONT. However, they were more suppressed in DEN + ES than those in DEN. In conclusion, tetanic electrical stimulation of both ankles using belt electrodes effectively reduced denervation-induced atrophy in multiple muscle groups. Furthermore, ribosomal biosynthesis plays a vital role in this phenomenon.
Collapse
Affiliation(s)
- Hiroyuki Uno
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan.
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan.
| | - Shohei Kamiya
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Ryuji Akimoto
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Katsu Hosoki
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Shunta Tadano
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Mako Isemura
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Karina Kouzaki
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| | - Yuki Tamura
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| | - Takaya Kotani
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| | - Koichi Nakazato
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| |
Collapse
|
13
|
Elliehausen CJ, Anderson RM, Diffee GM, Rhoads TW, Lamming DW, Hornberger TA, Konopka AR. Geroprotector drugs and exercise: friends or foes on healthy longevity? BMC Biol 2023; 21:287. [PMID: 38066609 PMCID: PMC10709984 DOI: 10.1186/s12915-023-01779-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Physical activity and several pharmacological approaches individually combat age-associated conditions and extend healthy longevity in model systems. It is tantalizing to extrapolate that combining geroprotector drugs with exercise could extend healthy longevity beyond any individual treatment. However, the current dogma suggests that taking leading geroprotector drugs on the same day as exercise may limit several health benefits. Here, we review leading candidate geroprotector drugs and their interactions with exercise and highlight salient gaps in knowledge that need to be addressed to identify if geroprotector drugs can have a harmonious relationship with exercise.
Collapse
Affiliation(s)
- Christian J Elliehausen
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rozalyn M Anderson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy W Rhoads
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam R Konopka
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
14
|
Viggars MR, Sutherland H, Cardozo CP, Jarvis JC. Conserved and species-specific transcriptional responses to daily programmed resistance exercise in rat and mouse. FASEB J 2023; 37:e23299. [PMID: 37994729 DOI: 10.1096/fj.202301611r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Mice are often used in gain or loss of function studies to understand how genes regulate metabolism and adaptation to exercise in skeletal muscle. Once-daily resistance training with electrical nerve stimulation produces hypertrophy of the dorsiflexors in rat, but not in mouse. Using implantable pulse generators, we assessed the acute transcriptional response (1-h post-exercise) after 2, 10, and 20 days of training in free-living mice and rats using identical nerve stimulation paradigms. RNA sequencing revealed strong concordance in the timecourse of many transcriptional responses in the tibialis anterior muscles of both species including responses related to "stress responses/immediate-early genes, and "collagen homeostasis," "ribosomal subunits," "autophagy," and "focal adhesion." However, pathways associated with energy metabolism including "carbon metabolism," "oxidative phosphorylation," "mitochondrial translation," "propanoate metabolism," and "valine, leucine, and isoleucine degradation" were oppositely regulated between species. These pathways were suppressed in the rat but upregulated in the mouse. Our transcriptional analysis suggests that although many pathways associated with growth show remarkable similarities between species, the absence of an actual growth response in the mouse may be because the mouse prioritizes energy metabolism, specifically the replenishment of fuel stores and intermediate metabolites.
Collapse
Affiliation(s)
- Mark R Viggars
- Research Institute for Sport & Exercise Science, Liverpool John Moores University, Liverpool, UK
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| | - Hazel Sutherland
- Research Institute for Sport & Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, New York, USA
- Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Jonathan C Jarvis
- Research Institute for Sport & Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
15
|
Trautman ME, Braucher LN, Elliehausen C, Zhu WG, Zelenovskiy E, Green M, Sonsalla MM, Yeh CY, Hornberger TA, Konopka AR, Lamming DW. Resistance exercise protects mice from protein-induced fat accretion. eLife 2023; 12:RP91007. [PMID: 38019262 PMCID: PMC10686620 DOI: 10.7554/elife.91007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Low-protein (LP) diets extend the lifespan of diverse species and are associated with improved metabolic health in both rodents and humans. Paradoxically, many athletes and bodybuilders consume high-protein (HP) diets and protein supplements, yet are both fit and metabolically healthy. Here, we examine this paradox using weight pulling, a validated progressive resistance exercise training regimen, in mice fed either an LP diet or an isocaloric HP diet. We find that despite having lower food consumption than the LP group, HP-fed mice gain significantly more fat mass than LP-fed mice when not exercising, while weight pulling protected HP-fed mice from this excess fat accretion. The HP diet augmented exercise-induced hypertrophy of the forearm flexor complex, and weight pulling ability increased more rapidly in the exercised HP-fed mice. Surprisingly, exercise did not protect from HP-induced changes in glycemic control. Our results confirm that HP diets can augment muscle hypertrophy and accelerate strength gain induced by resistance exercise without negative effects on fat mass, and also demonstrate that LP diets may be advantageous in the sedentary. Our results highlight the need to consider both dietary composition and activity, not simply calories, when taking a precision nutrition approach to health.
Collapse
Affiliation(s)
- Michaela E Trautman
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
- Nutrition and Metabolism Graduate Program, University of Wisconsin- MadisonMadisonUnited States
| | - Leah N Braucher
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
| | - Christian Elliehausen
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
| | - Wenyuan G Zhu
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-MadisonMadisonUnited States
| | - Esther Zelenovskiy
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
| | - Madelyn Green
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-MadisonMadisonUnited States
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
| | - Troy A Hornberger
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-MadisonMadisonUnited States
- School of Veterinary Medicine, University of Wisconsin-MadisonMadisonUnited States
| | - Adam R Konopka
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-MadisonMadisonUnited States
- William S. Middleton Memorial Veterans HospitalMadisonUnited States
- Nutrition and Metabolism Graduate Program, University of Wisconsin- MadisonMadisonUnited States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-MadisonMadisonUnited States
- University of Wisconsin Carbone Cancer CenterMadisonUnited States
| |
Collapse
|
16
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
17
|
Kanzaki K, Wada M. Effects of Leucine Ingestion and Contraction on the Sestrin/GATOR2 Pathway and mTORC1 Activation in Rat Fast-Twitch muscle. J Nutr 2023; 153:2228-2236. [PMID: 37328110 DOI: 10.1016/j.tjnut.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Leucine activates the mechanistic/mammalian target of rapamycin complex 1 (mTORC1) in mammalian skeletal muscle. Recent studies have shown that Sestrin, a leucine sensor, might play a role in this process. However, it remains unknown whether Sestrin dissociates from GATOR2 in a dose- and time-dependent manner and whether an acute bout of muscle contraction augments this dissociation. OBJECTIVE This study aimed to examine the effects of leucine ingestion and muscle contraction on the interaction between Sestrin1/2 and GATOR2 and on mTORC1 activation. METHODS Male Wistar rats were randomly assigned to control (C), leucine 3 (L3), or leucine 10 (L10) groups. Intact gastrocnemius muscles were subjected to 30 repetitive unilateral contractions. The L3 and L10 groups were then orally administered 3 and 10 mmol/kg body weight of L-leucine 2 h after the end of the contractions, respectively. Blood and muscle samples were collected 30, 60, or 120 min after the administration. RESULTS The blood and muscle leucine concentrations increased in a dose-dependent manner. The ratio of phosphorylated ribosomal protein S6 kinase (S6K) to total S6K (which indicates mTORC1 signaling activation) was markedly increased by muscle contraction and increased in a dose-dependent manner only in rested muscle. Leucine ingestion but not muscle contraction increased Sestrin1 dissociation from GATOR2 and Sestrin2 association with GATOR2. A negative relationship was observed between the blood and muscle leucine concentrations and the Sestrin1 association with GATOR2. CONCLUSIONS The results suggest that Sestrin1, but not Sestrin2, regulates leucine-related mTORC1 activation via its dissociation from GATOR2 and that acute exercise-induced mTORC1 activation involves pathways other than the leucine-related Sestrin1/GATOR2 pathway.
Collapse
Affiliation(s)
- Keita Kanzaki
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan.
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Dunlap KR, Steiner JL, Hickner RC, Chase PB, Gordon BS. The duration of glucocorticoid treatment alters the anabolic response to high-force muscle contractions. J Appl Physiol (1985) 2023; 135:183-195. [PMID: 37289956 PMCID: PMC10312323 DOI: 10.1152/japplphysiol.00113.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Glucocorticoids induce a myopathy that includes loss of muscle mass and strength. Resistance exercise may reverse the muscle loss because it induces an anabolic response characterized by increases in muscle protein synthesis and potentially suppressing protein breakdown. Whether resistance exercise induces an anabolic response in glucocorticoid myopathic muscle is unknown, which is a problem because long-term glucocorticoid exposure alters the expression of genes that may prevent an anabolic response by limiting activation of pathways such as the mechanistic target of rapamycin in complex 1 (mTORC1). The purpose of this study was to assess whether high-force contractions initiate an anabolic response in glucocorticoid myopathic muscle. The anabolic response was analyzed by treating female mice with dexamethasone (DEX) for 7 days or 15 days. After treatment, the left tibialis anterior muscle of all mice was contracted via electrical stimulation of the sciatic nerve. Muscles were harvested 4 h after contractions. Rates of muscle protein synthesis were estimated using the SUnSET method. After 7 days of treatment, high-force contractions increased protein synthesis and mTORC1 signaling in both groups. After 15 days of treatment, high-force contractions activated mTORC1 signaling equally in both groups, but protein synthesis was only increased in control mice. The failure to increase protein synthesis may be because baseline synthetic rates were elevated in DEX-treated mice. The LC3 II/I ratio marker of autophagy was decreased by contractions regardless of treatment duration. These data show duration of glucocorticoid treatment alters the anabolic response to high-force contractions.NEW & NOTEWORTHY Glucocorticoid myopathy is the most common, toxic, noninflammatory myopathy. Our work shows that high-force contractions increase protein synthesis in skeletal muscle following short-term glucocorticoid treatment. However, longer duration glucocorticoid treatment results in anabolic resistance to high-force contractions despite activation of the mechanistic target of rapamycin in complex 1 (mTORC1) signaling pathway. This work defines potential limits for high-force contractions to activate the processes that would restore lost muscle mass in glucocorticoid myopathic patients.
Collapse
Affiliation(s)
- Kirsten R Dunlap
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - Robert C Hickner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
19
|
Bersiner K, Park SY, Schaaf K, Yang WH, Theis C, Jacko D, Gehlert S. Resistance exercise: a mighty tool that adapts, destroys, rebuilds and modulates the molecular and structural environment of skeletal muscle. Phys Act Nutr 2023; 27:78-95. [PMID: 37583075 PMCID: PMC10440184 DOI: 10.20463/pan.2023.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Skeletal muscle regulates health and performance by maintaining or increasing strength and muscle mass. Although the molecular mechanisms in response to resistance exercise (RE) significantly target the activation of protein synthesis, a plethora of other mechanisms and structures must be involved in orchestrating the communication, repair, and restoration of homeostasis after RE stimulation. In practice, RE can be modulated by variations in intensity, continuity and volume, which affect molecular responses and skeletal muscle adaptation. Knowledge of these aspects is important with respect to planning of training programs and assessing the impact of RE training on skeletal muscle. METHODS In this narrative review, we introduce general aspects of skeletal muscle substructures that adapt in response to RE. We further highlighted the molecular mechanisms that control human skeletal muscle anabolism, degradation, repair and memory in response to acute and repeated RE and linked these aspects to major training variables. RESULTS Although RE is a key stimulus for the activation of skeletal muscle anabolism, it also induces myofibrillar damage. Nevertheless, to increase muscle mass accompanied by a corresponding adaptation of the essential substructures of the sarcomeric environment, RE must be continuously repeated. This requires the permanent engagement of molecular mechanisms that re-establish skeletal muscle integrity after each RE-induced muscle damage. CONCLUSION Various molecular regulators coordinately control the adaptation of skeletal muscle after acute and repeated RE and expand their actions far beyond muscle growth. Variations of key resistance training variables likely affect these mechanisms without affecting muscle growth.
Collapse
Affiliation(s)
- Käthe Bersiner
- Department for Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| | - So-Young Park
- Graduate School of Sports Medicine, CHA University, Pocheon, Republic of Korea
| | - Kirill Schaaf
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Woo-Hwi Yang
- Graduate School of Sports Medicine, CHA University, Pocheon, Republic of Korea
- Department of Medicine, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Christian Theis
- Center for Anaesthesiology, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Daniel Jacko
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sebastian Gehlert
- Department for Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
20
|
Roy A, Narkar VA, Kumar A. Emerging role of TAK1 in the regulation of skeletal muscle mass. Bioessays 2023; 45:e2300003. [PMID: 36789559 PMCID: PMC10023406 DOI: 10.1002/bies.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/02/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Maintenance of skeletal muscle mass and strength throughout life is crucial for heathy living and longevity. Several signaling pathways have been implicated in the regulation of skeletal muscle mass in adults. TGF-β-activated kinase 1 (TAK1) is a key protein, which coordinates the activation of multiple signaling pathways. Recently, it was discovered that TAK1 is essential for the maintenance of skeletal muscle mass and myofiber hypertrophy following mechanical overload. Forced activation of TAK1 in skeletal muscle causes hypertrophy and attenuates denervation-induced muscle atrophy. TAK1-mediated signaling in skeletal muscle promotes protein synthesis, redox homeostasis, mitochondrial health, and integrity of neuromuscular junctions. In this article, we have reviewed the role and potential mechanisms through which TAK1 regulates skeletal muscle mass and growth. We have also proposed future areas of research that could be instrumental in exploring TAK1 as therapeutic target for improving muscle mass in various catabolic conditions and diseases.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| |
Collapse
|
21
|
Vilchinskaya N, Lim WF, Belova S, Roberts TC, Wood MJA, Lomonosova Y. Investigating Eukaryotic Elongation Factor 2 Kinase/Eukaryotic Translation Elongation Factor 2 Pathway Regulation and Its Role in Protein Synthesis Impairment during Disuse-Induced Skeletal Muscle Atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00060-3. [PMID: 36871751 DOI: 10.1016/j.ajpath.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023]
Abstract
The principal mechanism underlying the reduced rate of protein synthesis in atrophied skeletal muscle is largely unknown. Eukaryotic elongation factor 2 kinase (eEF2k) impairs the ability of eukaryotic translation elongation factor 2 (eEF2) to bind to the ribosome via T56 phosphorylation. Perturbations in the eEF2k/eEF2 pathway during various stages of disuse muscle atrophy have been investigated utilizing a rat hind limb suspension (HS) model. Two distinct components of eEF2k/eEF2 pathway misregulation were demonstrated, observing a significant (P < 0.01) increase in eEF2k mRNA expression as early as 1-day HS and in eEF2k protein level after 3-day HS. We set out to determine whether eEF2k activation is a Ca2+-dependent process with involvement of Cav1.1. The ratio of T56-phosphorylated/total eEF2 was robustly elevated after 3-day HS, which was completely reversed by BAPTA-AM and decreased by 1.7-fold (P < 0.05) by nifedipine. Transfection of C2C12 with pCMV-eEF2k and administration with small molecules were used to modulate eEF2k and eEF2 activity. More important, pharmacologic enhancement of eEF2 phosphorylation induced phosphorylated ribosomal protein S6 kinase (T389) up-regulation and restoration of global protein synthesis in the HS rats. Taken together, the eEF2k/eEF2 pathway is up-regulated during disuse muscle atrophy involving calcium-dependent activation of eEF2k partly via Cav1.1. The study provides evidence, in vitro and in vivo, of the eEF2k/eEF2 pathway impact on ribosomal protein S6 kinase activity as well as protein expression of key atrophy biomarkers, muscle atrophy F-box/atrogin-1 and muscle RING finger-1.
Collapse
Affiliation(s)
| | - Wooi Fang Lim
- Department of Paediatrics, University of Oxford Children's Hospital, John Radcliffe Hospital, Oxford, United Kingdom; Institute of Developmental and Regenerative Medicine, Oxford, United Kingdom; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | | | - Thomas C Roberts
- Department of Paediatrics, University of Oxford Children's Hospital, John Radcliffe Hospital, Oxford, United Kingdom; Institute of Developmental and Regenerative Medicine, Oxford, United Kingdom; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford Children's Hospital, John Radcliffe Hospital, Oxford, United Kingdom; Institute of Developmental and Regenerative Medicine, Oxford, United Kingdom; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Yulia Lomonosova
- Department of Paediatrics, University of Oxford Children's Hospital, John Radcliffe Hospital, Oxford, United Kingdom; Institute of Developmental and Regenerative Medicine, Oxford, United Kingdom; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
22
|
Kanazashi M, Tanaka M. Acute effect of electrical stimulation on muscle protein synthesis and break-down in the soleus muscle of hindlimb unloaded rats. Biomed Res 2023; 44:209-218. [PMID: 37779033 DOI: 10.2220/biomedres.44.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Electrical stimulation (ES) is effective for disuse-induced muscle atrophy. However, the acute effect of ES on muscle protein synthesis (MPS) and muscle protein breakdown (MPB) remains unclear. We investigated the effect of a single-session ES treatment on mTORC1 signaling, MPS, and MPB in the soleus muscle of 2-week hindlimb unloaded rats. Sprague Dawley rats (n = 12 male) were randomly divided into control (CON) and hindlimb unloaded (HU) groups. After 2 weeks, the right soleus muscle was percutaneously stimulated and underwent supramaximal isometric contractions. The left soleus muscle served as an internal control. We collected soleus muscle samples 6 h after ES. Two weeks of HU decreased p70S6K and S6rp activation, downstream factors for mTORC1 signaling, and SUnSET method-assessed MPS, but increased the LC3-II/I ratio, an indicator of autophagy. ES on disused muscle successfully activated mTORC1 signaling but did not affect MPS. Contrary, ES decreased ubiquitinated proteins expression and LC3B-II/I ratio. HU might affect mTORC1 activation and MPS differently in response to acute ES possibly due to excessive ROS production caused by ES. Our findings suggest that ES applied to disused skeletal muscles may suppress MPB, but its effect on MPS appears to be attenuated.
Collapse
Affiliation(s)
- Miho Kanazashi
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima 723-0053, Japan
| | - Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional Uni- versity, 3-2-18 Daiku, Kita-ku, Okayama-shi, Okayama 700-0913, Japan
| |
Collapse
|
23
|
Viggars MR, Sutherland H, Lanmüller H, Schmoll M, Bijak M, Jarvis JC. Adaptation of the transcriptional response to resistance exercise over 4 weeks of daily training. FASEB J 2023; 37:e22686. [PMID: 36468768 DOI: 10.1096/fj.202201418r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
We present the time course of change in the muscle transcriptome 1 h after the last exercise bout of a daily resistance training program lasting 2, 10, 20, or 30 days. Daily exercise in rat tibialis anterior muscles (5 sets of 10 repetitions over 20 min) induced progressive muscle growth that approached a new stable state after 30 days. The acute transcriptional response changed along with progressive adaptation of the muscle phenotype. For example, expression of type 2B myosin was silenced. Time courses recently synthesized from human exercise studies do not demonstrate so clearly the interplay between the acute exercise response and the longer-term consequences of repeated exercise. We highlight classes of transcripts and transcription factors whose expression increases during the growth phase and declines again as the muscle adapts to a new daily pattern of activity and reduces its rate of growth. Myc appears to play a central role.
Collapse
Affiliation(s)
- Mark R Viggars
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA.,Myology Institute, University of Florida, Gainesville, Florida, USA
| | - Hazel Sutherland
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Hermann Lanmüller
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Martin Schmoll
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Manfred Bijak
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Jonathan C Jarvis
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
24
|
Whey protein hydrolysate enhances exercise endurance, regulates energy metabolism, and attenuates muscle damage in exercise mice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Uno H, Kamiya S, Akimoto R, Hosoki K, Tadano S, Kouzaki K, Tamura Y, Kotani T, Isemura M, Nakazato K. Low-frequency electrical stimulation of bilateral hind legs by belt electrodes is effective for preventing denervation-induced atrophies in multiple skeletal muscle groups in rats. Sci Rep 2022; 12:21275. [PMID: 36481829 PMCID: PMC9732041 DOI: 10.1038/s41598-022-25359-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Belt electrode skeletal muscle electrical stimulation (B-SES) can simultaneously contract multiple muscle groups. Although the beneficial effects of B-SES in clinical situations have been elucidated, its molecular mechanism remains unknown. In this study, we developed a novel rodent B-SES ankle stimulation system to test whether low-frequency stimulation prevents denervation-induced muscle atrophy. Electrical stimulations (7‒8 Hz, 30 min) with ankle belt electrodes were applied to Sprague-Dawley rats daily for one week. All animals were assigned to the control (CONT), denervation-induced atrophy (DEN), and DEN + electrical stimulation (ES) groups. The tibialis anterior (TA) and gastrocnemius (GAS) muscles were used to examine the effect of ES treatment. After seven daily sessions of continuous stimulation, muscle wet weight (n = 8-11), and muscle fiber cross-sectional area (CSA, n = 4-6) of TA and GAS muscles were lower in DEN and DEN + ES than in CON. However, it was significantly higher in DEN than DEN + ES, showing that ES partially prevented muscle atrophy. PGC-1α, COX-IV, and citrate synthase activities (n = 6) were significantly higher in DEN + ES than in DEN. The mRNA levels of muscle proteolytic molecules, Atrogin-1 and Murf1, were significantly higher in DEN than in CONT, while B-SES significantly suppressed their expression (p < 0.05). In conclusion, low-frequency electrical stimulation of the bilateral ankles using belt electrodes (but not the pad electrodes) is effective in preventing denervation-induced atrophy in multiple muscles, which has not been observed with pad electrodes. Maintaining the mitochondrial quantity and enzyme activity by low-frequency electrical stimulation is key to suppressing muscle protein degradation.
Collapse
Affiliation(s)
- Hiroyuki Uno
- HOMER ION Co., Ltd., Shinsen 17-2, Shibuya-ku, Tokyo, 150-0045 Japan ,grid.412200.50000 0001 2228 003XSchool of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-ku, Tokyo, 158-8508 Japan
| | - Shohei Kamiya
- HOMER ION Co., Ltd., Shinsen 17-2, Shibuya-ku, Tokyo, 150-0045 Japan
| | - Ryuji Akimoto
- HOMER ION Co., Ltd., Shinsen 17-2, Shibuya-ku, Tokyo, 150-0045 Japan
| | - Katsu Hosoki
- HOMER ION Co., Ltd., Shinsen 17-2, Shibuya-ku, Tokyo, 150-0045 Japan
| | - Shunta Tadano
- HOMER ION Co., Ltd., Shinsen 17-2, Shibuya-ku, Tokyo, 150-0045 Japan
| | - Karina Kouzaki
- grid.412200.50000 0001 2228 003XSchool of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-ku, Tokyo, 158-8508 Japan
| | - Yuki Tamura
- grid.412200.50000 0001 2228 003XSchool of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-ku, Tokyo, 158-8508 Japan
| | - Takaya Kotani
- grid.412200.50000 0001 2228 003XSchool of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-ku, Tokyo, 158-8508 Japan
| | - Mako Isemura
- HOMER ION Co., Ltd., Shinsen 17-2, Shibuya-ku, Tokyo, 150-0045 Japan ,grid.412200.50000 0001 2228 003XSchool of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-ku, Tokyo, 158-8508 Japan
| | - Koichi Nakazato
- grid.412200.50000 0001 2228 003XSchool of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-ku, Tokyo, 158-8508 Japan
| |
Collapse
|
26
|
Tinline-Goodfellow CT, Lees MJ, Hodson N. The skeletal muscle fiber periphery: A nexus of mTOR-related anabolism. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 5:10-19. [PMID: 36994172 PMCID: PMC10040390 DOI: 10.1016/j.smhs.2022.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscle anabolism is driven by numerous stimuli such as growth factors, nutrients (i.e., amino acids, glucose), and mechanical stress. These stimuli are integrated by the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signal transduction cascade. In recent years, work from our laboratory and elsewhere has sought to unravel the molecular mechanisms underpinning the mTOR-related activation of muscle protein synthesis (MPS), as well as the spatial regulation of these mechanisms within the skeletal muscle cell. These studies have suggested that the skeletal muscle fiber periphery is a region of central importance in anabolism (i.e., growth/MPS). Indeed, the fiber periphery is replete with the substrates, molecular machinery, and translational apparatus necessary to facilitate MPS. This review provides a summary of the mechanisms underpinning the mTOR-associated activation of MPS from cell, rodent, and human studies. It also presents an overview of the spatial regulation of mTORC1 in response to anabolic stimuli and outlines the factors that distinguish the periphery of the cell as a highly notable region of skeletal muscle for the induction of MPS. Future research should seek to further explore the nutrient-induced activation of mTORC1 at the periphery of skeletal muscle fibers.
Collapse
Affiliation(s)
| | - Matthew J. Lees
- Faculty of Kinesiology and Physical Education, University of Toronto, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Canada
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Corresponding author. Faculty of Kinesiology and Physical Education, University of Toronto, Canada.
| |
Collapse
|
27
|
Abstract
Skeletal muscle mass is a very plastic characteristic of skeletal muscle and is regulated by signaling pathways that control the balance between anabolic and catabolic processes. The serine/threonine kinase mechanistic/mammalian target of rapamycin (mTOR) has been shown to be critically important in the regulation of skeletal muscle mass through its regulation of protein synthesis and degradation pathways. In this commentary, recent advances in the understanding of the role of mTORC1 in the regulation of muscle mass under conditions that induce hypertrophy and atrophy will be highlighted.
Collapse
Affiliation(s)
- Sue C Bodine
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
28
|
Blazev R, Carl CS, Ng YK, Molendijk J, Voldstedlund CT, Zhao Y, Xiao D, Kueh AJ, Miotto PM, Haynes VR, Hardee JP, Chung JD, McNamara JW, Qian H, Gregorevic P, Oakhill JS, Herold MJ, Jensen TE, Lisowski L, Lynch GS, Dodd GT, Watt MJ, Yang P, Kiens B, Richter EA, Parker BL. Phosphoproteomics of three exercise modalities identifies canonical signaling and C18ORF25 as an AMPK substrate regulating skeletal muscle function. Cell Metab 2022; 34:1561-1577.e9. [PMID: 35882232 DOI: 10.1016/j.cmet.2022.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 11/03/2022]
Abstract
Exercise induces signaling networks to improve muscle function and confer health benefits. To identify divergent and common signaling networks during and after different exercise modalities, we performed a phosphoproteomic analysis of human skeletal muscle from a cross-over intervention of endurance, sprint, and resistance exercise. This identified 5,486 phosphosites regulated during or after at least one type of exercise modality and only 420 core phosphosites common to all exercise. One of these core phosphosites was S67 on the uncharacterized protein C18ORF25, which we validated as an AMPK substrate. Mice lacking C18ORF25 have reduced skeletal muscle fiber size, exercise capacity, and muscle contractile function, and this was associated with reduced phosphorylation of contractile and Ca2+ handling proteins. Expression of C18ORF25 S66/67D phospho-mimetic reversed the decreased muscle force production. This work defines the divergent and canonical exercise phosphoproteome across different modalities and identifies C18ORF25 as a regulator of exercise signaling and muscle function.
Collapse
Affiliation(s)
- Ronnie Blazev
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Yaan-Kit Ng
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey Molendijk
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Yuanyuan Zhao
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Di Xiao
- Children's Medical Research Institute, The University of Sydney, Camperdown, NSW, Australia; School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Paula M Miotto
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Vanessa R Haynes
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Justin P Hardee
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Jin D Chung
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - James W McNamara
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Hongwei Qian
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Gregorevic
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | | | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Thomas E Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Leszek Lisowski
- Children's Medical Research Institute, The University of Sydney, Camperdown, NSW, Australia; Military Institute of Medicine, Warsaw, Poland
| | - Gordon S Lynch
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Garron T Dodd
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Matthew J Watt
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Pengyi Yang
- Children's Medical Research Institute, The University of Sydney, Camperdown, NSW, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Bente Kiens
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark.
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark.
| | - Benjamin L Parker
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
29
|
LIM CHANGHYUN, NUNES EVERSONA, CURRIER BRADS, MCLEOD JONATHANC, THOMAS AARONCQ, PHILLIPS STUARTM. An Evidence-Based Narrative Review of Mechanisms of Resistance Exercise-Induced Human Skeletal Muscle Hypertrophy. Med Sci Sports Exerc 2022; 54:1546-1559. [PMID: 35389932 PMCID: PMC9390238 DOI: 10.1249/mss.0000000000002929] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle plays a critical role in physical function and metabolic health. Muscle is a highly adaptable tissue that responds to resistance exercise (RE; loading) by hypertrophying, or during muscle disuse, RE mitigates muscle loss. Resistance exercise training (RET)-induced skeletal muscle hypertrophy is a product of external (e.g., RE programming, diet, some supplements) and internal variables (e.g., mechanotransduction, ribosomes, gene expression, satellite cells activity). RE is undeniably the most potent nonpharmacological external variable to stimulate the activation/suppression of internal variables linked to muscular hypertrophy or countering disuse-induced muscle loss. Here, we posit that despite considerable research on the impact of external variables on RET and hypertrophy, internal variables (i.e., inherent skeletal muscle biology) are dominant in regulating the extent of hypertrophy in response to external stimuli. Thus, identifying the key internal skeletal muscle-derived variables that mediate the translation of external RE variables will be pivotal to determining the most effective strategies for skeletal muscle hypertrophy in healthy persons. Such work will aid in enhancing function in clinical populations, slowing functional decline, and promoting physical mobility. We provide up-to-date, evidence-based perspectives of the mechanisms regulating RET-induced skeletal muscle hypertrophy.
Collapse
Affiliation(s)
- CHANGHYUN LIM
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - EVERSON A. NUNES
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
- Department of Physiological Science, Federal University of Santa Catarina, Florianópolis, Santa-Catarina, BRAZIL
| | - BRAD S. CURRIER
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - JONATHAN C. MCLEOD
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - AARON C. Q. THOMAS
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - STUART M. PHILLIPS
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| |
Collapse
|
30
|
Kotani T, Tamura Y, Kouzaki K, Kato H, Isemura M, Nakazato K. Percutaneous electrical stimulation-induced muscle contraction prevents the decrease in ribosome RNA and ribosome protein during pelvic hindlimb suspension. J Appl Physiol (1985) 2022; 133:822-833. [PMID: 36007895 DOI: 10.1152/japplphysiol.00204.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle unloading leads to muscle atrophy. Ribosome synthesis has been implicated as an important skeletal muscle mass regulator owing to its translational capacity. Muscle unloading induces a reduction in ribosome synthesis and content, with muscle atrophy. Percutaneous electrical muscle stimulation (pEMS)-induced muscle contraction is widely used in clinics to improve muscle mass. However, its efficacy in rescuing the reduction in ribosomal synthesis has not been addressed thus far. We examined the effects of daily pEMS treatment on ribosome synthesis and content during mouse hindlimb unloading. Male C57BL/6J mice were randomly assigned to sedentary (SED) and hindlimb unloading by pelvic suspension (HU) groups. Muscle contraction was triggered by pEMS treatment of the right gastrocnemius muscle of a subset of the HU group (HU+pEMS). Hindlimb unloading for 6 days significantly lowered 28S rRNA, rpL10, and rpS3 expression, which was rescued by daily pEMS treatment. The protein expression of phospho-p70S6K and UBF was significantly higher in the HU+pEMS than in the HU group. The mRNA expression of ribophagy receptor Nufip1 increased in both the HU and HU+pEMS groups. Protein light chain 3 (LC3)-II expression and the LC3-II/LC3-I ratio were increased by HU, but pEMS attenuated this increase. Our findings indicate that during HU, daily pEMS treatment prevents the reduction in the levels of some proteins associated with ribosome synthesis. Additionally, the HU-induced activation of ribosome degradation may be attenuated. These data provide insights into ribosome content regulation and the mechanism of attenuation of muscle atrophy by pEMS treatment during muscle disuse.
Collapse
Affiliation(s)
- Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Yuki Tamura
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
| | - Hikaru Kato
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Mako Isemura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
31
|
Shirai T, Kitaoka Y, Uemichi K, Tokinoya K, Takeda K, Takemasa T. Effects of lactate administration on hypertrophy and mTOR signaling activation in mouse skeletal muscle. Physiol Rep 2022; 10:e15436. [PMID: 35993446 PMCID: PMC9393907 DOI: 10.14814/phy2.15436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 04/12/2023] Open
Abstract
Lactate is a metabolic product of glycolysis and has recently been shown to act as a signaling molecule that induces adaptations in oxidative metabolism. In this study, we investigated whether lactate administration enhanced muscle hypertrophy and protein synthesis responses during resistance exercise in animal models. We used male ICR mice (7-8 weeks old) were used for chronic (mechanical overload induced by synergist ablation: [OL]) and acute (high-intensity muscle contraction by electrical stimulation: [ES]) resistance exercise models. The animals were intraperitoneally administrated a single dose of sodium lactate (1 g/kg of body weight) in the ES study, and once a day for 14 consecutive days in the OL study. Two weeks of mechanical overload increased plantaris muscle wet weight (main effect of OL: p < 0.05) and fiber cross-sectional area (main effect of OL: p < 0.05), but those were not affected by lactate administration. Following the acute resistance exercise by ES, protein synthesis and phosphorylation of p70 S6 kinase and ribosomal protein S6, which are downstream molecules in the anabolic signaling cascade, were increased (main effect of ES: p < 0.05), but lactate administration had no effect. This study demonstrated that exogenous lactate administration has little effect on the muscle hypertrophic response during resistance exercise using acute ES and chronic OL models. Our results do not support the hypothesis that elevated blood lactate concentration induces protein synthesis responses in skeletal muscle.
Collapse
Affiliation(s)
- Takanaga Shirai
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
- Research Fellow of Japan Society for Promotion ScienceChiyoda‐kuTokyoJapan
| | - Yu Kitaoka
- Department of Human SciencesKanagawa UniversityYokohama‐shiKanagawaJapan
| | - Kazuki Uemichi
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Katsuyuki Tokinoya
- Research Fellow of Japan Society for Promotion ScienceChiyoda‐kuTokyoJapan
- Division of Clinical Medicine, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
- Department of Health Promotion SciencesGraduate School of Human Health SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
| | - Kohei Takeda
- School of Political Science and EconomicsMeiji UniversitySuginami‐kuTokyoJapan
| | - Tohru Takemasa
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
| |
Collapse
|
32
|
Improved Electrical Stimulation-Based Exercise Model to Induce Mice Tibialis Anterior Muscle Hypertrophy and Function. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Efficient and suitable animal models directed to skeletal muscle hypertrophy are highly needed; nevertheless, the currently available models have limitations, such as restricted hypertrophy outcome and prolonged protocols; thus, additional research is required. In this study, we developed an improved muscle training protocol for mice by directly stimulating the tibialis anterior (TA) muscle motor point using electrical stimulation. C57BL/6 adult male mice were separated into four groups: CTR (control groups for one and two weeks), ES1 (electrical stimulation for one week), and ES2 (electrical stimulation for two weeks). Following muscle training, TA was taken for further examination. The results demonstrated a steady increase in the fiber cross-sectional area as a result of muscle training (ES1, 14.6% and ES2, 28.9%, p < 0.0001). Two weeks of muscle training enhanced muscle mass and maximal tetanic force by 18 (p = 0.0205) and 30%, respectively (p = 0.0260). To assess the tissue remodeling response in this model, we evaluated satellite cell activity and observed an increase in the number of Pax-7-positive nuclei after one and two weeks of muscle training (both >2-fold, p < 0.0001). In addition, we observed an increase in the number of positive nuclei for MyoD after two weeks (2.6-fold, p = 0.0057) without fiber damage. Accordingly, phosphorylation of mTOR and p70 increased following two weeks of muscle training (17%, p = 0.0215 and 66%, p = 0.0364, respectively). The results indicate that this muscle training strategy is appropriate for promoting quick and intense hypertrophy.
Collapse
|
33
|
Mann G, Riddell MC, Adegoke OAJ. Effects of Acute Muscle Contraction on the Key Molecules in Insulin and Akt Signaling in Skeletal Muscle in Health and in Insulin Resistant States. DIABETOLOGY 2022; 3:423-446. [DOI: 10.3390/diabetology3030032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Insulin signaling plays a key role in glucose uptake, glycogen synthesis, and protein and lipid synthesis. In insulin-resistant states like obesity and type 2 diabetes mellitus, these processes are dysregulated. Regular physical exercise is a potential therapeutic strategy against insulin resistance, as an acute bout of exercise increases glucose disposal during the activity and for hours into recovery. Chronic exercise increases the activation of proteins involved in insulin signaling and increases glucose transport, even in insulin resistant states. Here, we will focus on the effect of acute exercise on insulin signaling and protein kinase B (Akt) pathways. Activation of proximal proteins involved in insulin signaling (insulin receptor, insulin receptor substrate-1 (IRS-1), phosphoinoside-3 kinase (PI3K)) are unchanged in response to acute exercise/contraction, while activation of Akt and of its substrates, TBC1 domain family 1 (TBC1D1), and TBC domain family 4 (TBC1D4) increases in response to such exercise/contraction. A wide array of Akt substrates is also regulated by exercise. Additionally, AMP-activated protein kinase (AMPK) seems to be a main mediator of the benefits of exercise on skeletal muscle. Questions persist on how mTORC1 and AMPK, two opposing regulators, are both upregulated after an acute bout of exercise.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - Michael C. Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | | |
Collapse
|
34
|
Rindom E, Ahrenfeldt M, Damgaard J, Overgaard K, Wang T. Short communication: Leucine, but not muscle contractions, stimulates protein synthesis in isolated EDL muscles from golden geckos. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111206. [PMID: 35351650 DOI: 10.1016/j.cbpa.2022.111206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
Resistance exercise and protein ingestion stimulate muscle protein synthesis in mammals and the combination of both stimuli exert an additive effect. However, mechanisms regulating muscle mass may be different in ectothermic vertebrates because these animals are adapted to low energy consumption, short bouts of physical activity, and prolonged periods of inactivity. Here, we investigated the effects of administration of leucine and simulated resistance exercise induced by electrical stimulation (ES) on protein synthesis rate in isolated extensor digitorum longus muscle from golden geckos (Gekko badenii). Muscles were placed in Krebs-Ringer buffer equilibrated with O2 (97%) and CO2 (3%) at 30 °C. One muscle from each animal was subjected to one of three interventions: 1) administration of leucine (0.5 mM) at rest, 2) isometric contractions evoked by ES, or 3) a combination of contractions and leucine, while the contralateral muscle served as untreated control. The rate of protein synthesis was measured through pyromycin-labeling. Administration of leucine led to a 2.75 (±1.88)-fold rise in protein synthesis rate in inactive muscles, whereas isometric contractions had no effect (0.67 ± 0.37-fold). The combination of isometric contractions and leucine did not affect protein synthesis rate (1.02 ± 0.34-fold), suggesting that muscle contractions attenuated the positive influence of leucine. Our study identifies leucine as a potent positive regulator of muscle protein synthesis in golden geckos, but also demonstrates that muscle contraction is not. More studies should be conducted in other taxonomic groups of ectothermic vertebrates to identify whether this is a general pattern.
Collapse
Affiliation(s)
- Emil Rindom
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - Mikkel Ahrenfeldt
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jeppe Damgaard
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Kristian Overgaard
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
35
|
Selected Methods of Resistance Training for Prevention and Treatment of Sarcopenia. Cells 2022; 11:cells11091389. [PMID: 35563694 PMCID: PMC9102413 DOI: 10.3390/cells11091389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Resistance training is an extremely beneficial intervention to prevent and treat sarcopenia. In general, traditional high-load resistance training improves skeletal muscle morphology and strength, but this method is impractical and may even reduce arterial compliance by about 20% in aged adults. Thus, the progression of resistance training methods for improving the strength and morphology of muscles without applying a high load is essential. Over the past two decades, various resistance training methods that can improve skeletal muscle mass and muscle function without using high loads have attracted attention, and their training effects, molecular mechanisms, and safety have been reported. The present study focuses on the relationship between exercise load/intensity, training effects, and physiological mechanisms as well as the safety of various types of resistance training that have attracted attention as a measure against sarcopenia. At present, there is much research evidence that blood-flow-restricted low-load resistance training (20–30% of one repetition maximum (1RM)) has been reported as a sarcopenia countermeasure in older adults. Therefore, this training method may be particularly effective in preventing sarcopenia.
Collapse
|
36
|
Guan Y, Yan Z. Molecular Mechanisms of Exercise and Healthspan. Cells 2022; 11:872. [PMID: 35269492 PMCID: PMC8909156 DOI: 10.3390/cells11050872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Healthspan is the period of our life without major debilitating diseases. In the modern world where unhealthy lifestyle choices and chronic diseases taper the healthspan, which lead to an enormous economic burden, finding ways to promote healthspan becomes a pressing goal of the scientific community. Exercise, one of humanity's most ancient and effective lifestyle interventions, appears to be at the center of the solution since it can both treat and prevent the occurrence of many chronic diseases. Here, we will review the current evidence and opinions about regular exercise promoting healthspan through enhancing the functionality of our organ systems and preventing diseases.
Collapse
Affiliation(s)
- Yuntian Guan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Zhen Yan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Molecular Physiology and Biological Biophysics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
37
|
Attwaters M, Hughes SM. Cellular and molecular pathways controlling muscle size in response to exercise. FEBS J 2022; 289:1428-1456. [PMID: 33755332 DOI: 10.1111/febs.15820] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption and physical force. Here, we summarise the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high-force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
Collapse
Affiliation(s)
- Michael Attwaters
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| |
Collapse
|
38
|
Ato S, Fukada SI, Kokubo H, Ogasawara R. Implication of satellite cell behaviors in capillary growth via VEGF expression-independent mechanism in response to mechanical loading in HeyL-null mice. Am J Physiol Cell Physiol 2022; 322:C275-C282. [PMID: 35020502 DOI: 10.1152/ajpcell.00343.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
Angiogenesis and muscle satellite cell (SC)-mediated myonuclear accretion are considered essential for the robust response of contraction-induced muscle hypertrophy. Moreover, both myonucleus and SCs are physically adjacent to capillaries and are the major sites for the expression of proangiogenic factors, such as VEGF, in the skeletal muscle. Thus, events involving the addition of new myonuclei via activation of SCs may play an important role in angiogenesis during muscle hypertrophy. However, the relevance among myonuclei number, capillary supply, and angiogenesis factor is not demonstrated. The Notch effector HeyL is specifically expressed in SCs in the skeletal muscle and is crucial for SC proliferation by inhibiting MyoD in overload-induced muscle hypertrophy. Here, we tested whether the addition of new myonuclei by SC in overloaded muscle is associated with angiogenic adaptation by reanalyzing skeletal muscle from HeyL-knockout (KO) mice, which show blunted responses of SC proliferation, myonucleus addition, and overload-induced muscle hypertrophy. Reanalysis confirmed blunted SC proliferation and myonuclear accretion in the plantaris muscle of HeyL-KO mice 9 wk after synergist ablation. Interestingly, the increase in capillary-to-fiber ratio observed in wild-type (WT) mice was impaired in HeyL-KO mice. In both WT and HeyL-KO mice, the expression of VEGFA and VEGFB was similarly increased in response to overload. In addition, the expression pattern of TSP-1, a negative regulator of angiogenesis, was also not changed between WT and HeyL-KO mice. Collectively, these results suggest that SCs activation-myonuclear accretion plays a crucial role in angiogenesis during overload-induced muscle hypertrophy via independent of angiogenesis regulators.
Collapse
Affiliation(s)
- Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Hiroki Kokubo
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
39
|
Chaves AB, Miranda ER, Mey JT, Blackburn BK, Fuller KNZ, Stearns B, Ludlow A, Williamson DL, Houmard JA, Haus JM. Exercise reduces the protein abundance of TXNIP and its interacting partner REDD1 in skeletal muscle: potential role for a PKA-mediated mechanism. J Appl Physiol (1985) 2022; 132:357-366. [PMID: 34941434 PMCID: PMC8791844 DOI: 10.1152/japplphysiol.00229.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Thioredoxin-interacting protein (TXNIP) negatively effects the redox state and growth signaling via its interactions with thioredoxin (TRX) and regulated in development and DNA damage response 1 (REDD1), respectively. TXNIP expression is downregulated by pathways activated during aerobic exercise (AE), via posttranslational modifications (PTMs; serine phosphorylation and ubiquitination). The purpose of this investigation was to determine the effects of acute AE on TXNIP expression, posttranslational modifications, and its interacting partners, REDD1 and TRX. Fifteen healthy adults performed 30 min of aerobic exercise (80% V̇o2max) with muscle biopsies taken before, immediately following, and 3 h following the exercise bout. To explore potential mechanisms underlying our in vivo findings, primary human myotubes were exposed to two models of exercise, electrical pulse stimulation (EPS) and palmitate-forskolin-ionomycin (PFI). Immediately following exercise, TXNIP protein decreased, but returned to preexercise levels 3 h after exercise. These results were replicated in our PFI exercise model only. Although not statistically significant, there was a trending main effect in serine-phosphorylation status of TXNIP (P = 0.07) immediately following exercise. REDD1 protein decreased 3 h after exercise. AE had no effect on TRX protein expression, gene expression, or the activity of its reducing enzyme, thioredoxin reductase. Consequently, AE had no effect on the TRX: TXNIP interaction. Our results indicate that AE leads to acute reductions in TXNIP and REDD1 protein expression. However, these changes did not result in alterations in the TRX: TXNIP interaction and could not be entirely explained by alterations in TXNIP PTMs or changes in TRX expression or activity.NEW & NOTEWORTHY Aerobic exercise is an effective tool in the prevention and treatment of several chronic metabolic diseases. However, the mechanisms through which these benefits are conferred have yet to be fully elucidated. Our data reveal a novel effect of aerobic exercise on reducing the protein expression of molecular targets that negatively impact redox and insulin/growth signaling in skeletal muscle. These findings contribute to the expanding repository of molecular signatures provoked by aerobic exercise.
Collapse
Affiliation(s)
- Alec B. Chaves
- 1Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, North Carolina
| | - Edwin R. Miranda
- 2School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Jacob T. Mey
- 3Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Brian K. Blackburn
- 4Applied Health Sciences and Kinesiology, Humboldt State University, Arcata, California
| | - Kelly N. Z. Fuller
- 5Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Blaise Stearns
- 2School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Andrew Ludlow
- 2School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - David L. Williamson
- 6School of Behavioral Sciences and Education, Penn State University Harrisburg, Middletown, Pennsylvania
| | - Joseph A. Houmard
- 1Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, North Carolina
| | - Jacob M. Haus
- 2School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
40
|
Brenmoehl J, Walz C, Caffier C, Brosig E, Walz M, Ohde D, Trakooljul N, Langhammer M, Ponsuksili S, Wimmers K, Zettl UK, Hoeflich A. Central Suppression of the GH/IGF Axis and Abrogation of Exercise-Related mTORC1/2 Activation in the Muscle of Phenotype-Selected Male Marathon Mice (DUhTP). Cells 2021; 10:3418. [PMID: 34943926 PMCID: PMC8699648 DOI: 10.3390/cells10123418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
The somatotropic axis is required for a number of biological processes, including growth, metabolism, and aging. Due to its central effects on growth and metabolism and with respect to its positive effects on muscle mass, regulation of the GH/IGF-system during endurance exercise is of particular interest. In order to study the control of gene expression and adaptation related to physical performance, we used a non-inbred mouse model, phenotype-selected for high running performance (DUhTP). Gene expression of the GH/IGF-system and related signaling cascades were studied in the pituitary gland and muscle of sedentary males of marathon and unselected control mice. In addition, the effects of three weeks of endurance exercise were assessed in both genetic groups. In pituitary glands from DUhTP mice, reduced expression of Pou1f1 (p = 0.002) was accompanied by non-significant reductions of Gh mRNA (p = 0.066). In addition, mRNA expression of Ghsr and Sstr2 were significantly reduced in the pituitary glands from DUhTP mice (p ≤ 0.05). Central downregulation of Pou1f1 expression was accompanied by reduced serum concentrations of IGF1 and coordinated downregulation of multiple GH/IGF-signaling compounds in muscle (e.g., Ghr, Igf1, Igf1r, Igf2r, Irs1, Irs2, Akt3, Gskb, Pik3ca/b/a2, Pten, Rictor, Rptor, Tsc1, Mtor; p ≤ 0.05). In response to exercise, the expression of Igfbp3, Igfbp 4, and Igfbp 6 and Stc2 mRNA was increased in the muscle of DUhTP mice (p ≤ 0.05). Training-induced specific activation of AKT, S6K, and p38 MAPK was found in muscles from control mice but not in DUhTP mice (p ≤ 0.05), indicating a lack of mTORC1 and mTORC2 activation in marathon mice in response to physical exercise. While hormone-dependent mTORC1 and mTORC2 pathways in marathon mice were repressed, robust increases of Ragulator complex compounds (p ≤ 0.001) and elevated sirtuin 2 to 6 mRNA expression were observed in the DUhTP marathon mouse model (p ≤ 0.05). Activation of AMPK was not observed under the experimental conditions of the present study. Our results describe coordinated downregulation of the somatotropic pathway in long-term selected marathon mice (DUhTP), possibly via the pituitary gland and muscle interaction. Our results, for the first time, demonstrate that GH/IGF effects are repressed in a context of superior running performance in mice.
Collapse
Affiliation(s)
- Julia Brenmoehl
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Christina Walz
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Caroline Caffier
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany;
| | - Elli Brosig
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany;
| | - Michael Walz
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Daniela Ohde
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Nares Trakooljul
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Martina Langhammer
- Lab Animal Facility, Research Institute for Genetics and Biometry, Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Klaus Wimmers
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Uwe K. Zettl
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany;
| | - Andreas Hoeflich
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| |
Collapse
|
41
|
Hodson N, Mazzulla M, Holowaty MNH, Kumbhare D, Moore DR. RPS6 phosphorylation occurs to a greater extent in the periphery of human skeletal muscle fibers, near focal adhesions, after anabolic stimuli. Am J Physiol Cell Physiol 2021; 322:C94-C110. [PMID: 34852208 DOI: 10.1152/ajpcell.00357.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Following anabolic stimuli (mechanical loading and/or amino acid provision) the mechanistic target of rapamycin complex 1 (mTORC1), a master regulator of protein synthesis, translocates toward the cell periphery. However, it is unknown if mTORC1-mediated phosphorylation events occur in these peripheral regions or prior to translocation (i.e. in central regions). We therefore aimed to determine the cellular location of a mTORC1-mediated phosphorylation event, RPS6Ser240/244, in human skeletal muscle following anabolic stimuli. Fourteen young, healthy males either ingested a protein-carbohydrate beverage (0.25g/kg protein, 0.75g/kg carbohydrate) alone (n=7;23±5yrs;76.8±3.6kg;13.6±3.8%BF, FED) or following a whole-body resistance exercise bout (n=7;22±2yrs;78.1±3.6kg;12.2±4.9%BF, EXFED). Vastus lateralis muscle biopsies were obtained at rest (PRE) and 120 and 300min following anabolic stimuli. RPS6Ser240/244 phosphorylation measured by immunofluorescent staining or immunoblot was positively correlated (r=0.76, p<0.001). Peripheral staining intensity of p-RPS6Ser240/244 increased above PRE in both FED and EXFED at 120min (~54% and ~138% respectively, p<0.05) but was greater in EXFED at both post-stimuli time points (p<0.05). The peripheral-central ratio of p-RPS6240/244 staining displayed a similar pattern, even when corrected for total RPS6 distribution, suggesting RPS6 phosphorylation occurs to a greater extent in the periphery of fibers. Moreover, p-RPS6Ser240/244 intensity within paxillin-positive regions, a marker of focal adhesion complexes, was elevated at 120min irrespective of stimulus (p=0.006) before returning to PRE at 300min. These data confirm that RPS6Ser240/244 phosphorylation occurs in the region of human muscle fibers to which mTOR translocates following anabolic stimuli and identifies focal adhesion complexes as a potential site of mTORC1 regulation in vivo.
Collapse
Affiliation(s)
- Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Michael Mazzulla
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Maksym N H Holowaty
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Sahin E, Orhan C, Erten F, Er B, Acharya M, Morde AA, Padigaru M, Sahin K. Next-Generation Ultrasol Curcumin Boosts Muscle Endurance and Reduces Muscle Damage in Treadmill-Exhausted Rats. Antioxidants (Basel) 2021; 10:antiox10111692. [PMID: 34829562 PMCID: PMC8614663 DOI: 10.3390/antiox10111692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin positively affects performance during exercise and subsequent recovery. However, curcumin has limited bioavailability unless consumed in larger doses. In the current study, we examined the impact of a new formulation of curcumin, Next-Generation Ultrasol Curcumin (NGUC), which is relatively more bioavailable than natural curcumin on exhaustion time, grip strength, muscle damage parameters, and serum and muscle proteins. A total of 28 rats were randomly grouped as control (C, non-supplemented), exercise (E, non-supplemented), E+NGUC100 (supplemented with 100 mg/kg BW NGUC), and E+NGUC200 (supplemented with 200 mg/kg NGUC). Grip strength and exhaustion time were increased with NGUC supplementation (p < 0.0001). Creatine kinase (CK), lactate dehydrogenase (LDH), lactic acid (LA), myoglobin, malondialdehyde (MDA) concentrations were reduced in serum, and muscle tissue in NGUC supplemented groups (p < 0.05). In contrast, NGUC supplementation elevated the antioxidant enzyme levels compared to the non-supplemented exercise group (p < 0.01). Additionally, inflammatory cytokines were inhibited with NGUC administration (p < 0.05). NGUC decreased PGC-1α, p-4E-BP1, p-mTOR, MAFbx, and MuRF1 proteins in muscle tissue (p < 0.05). These results indicate that NGUC boosts exercise performance while reducing muscle damage by targeting antioxidant, anti-inflammatory, and muscle mass regulatory pathways.
Collapse
Affiliation(s)
- Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingol University, Bingol 12000, Turkey;
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey;
| | - Fusun Erten
- Department of Veterinary Science, Pertek Sakine Genc Vocational School, Munzur University, Tunceli 62500, Turkey;
| | - Besir Er
- Department of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey;
| | - Manutosh Acharya
- Research and Development, OmniActive Health Technologies, Mumbai 400001, India; (M.A.); (A.A.M.); (M.P.)
| | - Abhijeet A. Morde
- Research and Development, OmniActive Health Technologies, Mumbai 400001, India; (M.A.); (A.A.M.); (M.P.)
| | - Muralidhara Padigaru
- Research and Development, OmniActive Health Technologies, Mumbai 400001, India; (M.A.); (A.A.M.); (M.P.)
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey;
- Correspondence: ; Tel.: +90-532-747-3506 or +90-424-237-0000 (ext. 3938)
| |
Collapse
|
43
|
Mori T, Ato S, Knudsen JR, Henriquez-Olguin C, Li Z, Wakabayashi K, Suginohara T, Higashida K, Tamura Y, Nakazato K, Jensen TE, Ogasawara R. c-Myc overexpression increases ribosome biogenesis and protein synthesis independent of mTORC1 activation in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2021; 321:E551-E559. [PMID: 34423683 DOI: 10.1152/ajpendo.00164.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
High-intensity muscle contractions (HiMCs) are known to increase c-Myc expression that is known to stimulate ribosome biogenesis and protein synthesis in most cells. However, although c-Myc mRNA transcription and c-Myc mRNA translation have been shown to be upregulated following resistance exercise concomitantly with increased ribosome biogenesis, this connection has not been tested directly. We investigated the effect of adeno-associated virus (AAV)-mediated c-Myc overexpression, with or without fasting or percutaneous electrical stimulation-induced HiMC, on ribosome biogenesis and protein synthesis in adult mouse skeletal muscles. AAV-mediated overexpression of c-Myc in mouse skeletal muscles for 2 wk increased the DNA polymerase subunit POL1 mRNA, 45S-pre-rRNA, total RNA, and muscle protein synthesis without altering mechanistic target of rapamycin complex 1 (mTORC1) signaling under both ad libitum and fasted conditions. RNA-sequencing (RNA-seq) analyses revealed that c-Myc overexpression mainly regulated ribosome biogenesis-related biological processes. The protein synthesis response to c-Myc overexpression mirrored the response with HiMC. No additional effect of combining c-Myc overexpression and HiMC was observed. Our results suggest that c-Myc overexpression is sufficient to stimulate skeletal muscle ribosome biogenesis and protein synthesis without activation of mTORC1. Therefore, the HiMC-induced increase in c-Myc may contribute to ribosome biogenesis and increased protein synthesis following HiMC.NEW & NOTEWORTHY Resistance exercise is known to increase c-Myc expression, which is known to stimulate ribosome biogenesis and protein synthesis in a variety of cells. However, whether the increase in c-Myc stimulates ribosome biogenesis and protein synthesis in skeletal muscles remains unknown. We found that c-Myc overexpression is sufficient to stimulate skeletal muscle ribosome biogenesis and protein synthesis without activation of mTORC1.
Collapse
Affiliation(s)
- Takahiro Mori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Jonas R Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Microsystems Laboratory 2, Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carlos Henriquez-Olguin
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Koki Wakabayashi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Takeshi Suginohara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | | | - Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Yoo A, Jang YJ, Ahn J, Jung CH, Ha TY. 2,6-Dimethoxy-1,4-benzoquinone increases skeletal muscle mass and performance by regulating AKT/mTOR signaling and mitochondrial function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153658. [PMID: 34332284 DOI: 10.1016/j.phymed.2021.153658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND 2,6-Dimethoxy-1,4-benzoquinone (DMBQ), a natural phytochemical present in fermented wheat germ, has been reported to exert anti-cancer, anti-inflammatory, and anti-adipogenic effects. However, the effect of DMBQ on muscle hypertrophy and myoblast differentiation has not been elucidated. PURPOSE We investigated the effect of DMBQ on skeletal muscle mass and muscle function and then determined the possible mechanism of DMBQ. METHODS To examine myogenic differentiation and hypertrophy, confluent C2C12 cells were incubated in differentiation medium with or without various concentrations of DMBQ for 4 days. In animal experiments, C57BL/6 mice were fed DMBQ-containing AIN-93 diet for 7 weeks. Grip strength, treadmill, microscopic evaluation of muscle tissue, western blotting, and quantitative real-time PCR were performed. RESULTS DMBQ significantly increased fusion index, myotube size, and the protein expression of myosin heavy chain (MHC). DMBQ increased the phosphorylation of protein kinase B (AKT) and p70 ribosomal protein S6 kinase (S6K), whereas the phosphorylation of these proteins was abolished by the phosphoinositide 3-kinase inhibitor LY294002 in C2C12 cells. In addition, DMBQ treatment increased peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), which programs mitochondrial biogenesis, protein levels compared with control C2C12 cells. DMBQ significantly increased maximal respiration and spare respiratory capacity in C2C12 cells. In animal experiments, DMBQ increased skeletal muscle weights and skeletal muscle fiber size compared with the control group values. In addition, the DMBQ group showed increased grip strength and running distance on an accelerating treadmill. The protein expression of total MHC, MHC1, MHC2A, and MHC2B in skeletal muscle was upregulated by DMBQ supplementation. We found that DMBQ increased the phosphorylation of AKT and mammalian target of rapamycin (mTOR), as well as downstream S6K and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) in skeletal muscle. DMBQ also stimulated mRNA expression of PGC1α, accompanied by an increase in mitochondrial DNA content, oxidative phosphorylation (OXPHOS) proteins, and oxidative enzyme activity. CONCLUSION Collectively, DMBQ was shown to increase skeletal muscle mass and performance by regulating the AKT/mTOR signaling pathway and enhancing mitochondrial function, which might be useful for the treatment and prevention of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Ahyoung Yoo
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, South Korea; Department of Food and Nutrition, Chungnam National University, Daejeon 34134, South Korea
| | - Young Jin Jang
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, South Korea
| | - Jiyun Ahn
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, South Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, South Korea
| | - Chang Hwa Jung
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, South Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, South Korea
| | - Tae Youl Ha
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, South Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
45
|
Ahn J, Kim MJ, Yoo A, Ahn J, Ha TY, Jung CH, Seo HD, Jang YJ. Identifying Codium fragile extract components and their effects on muscle weight and exercise endurance. Food Chem 2021; 353:129463. [PMID: 33743428 DOI: 10.1016/j.foodchem.2021.129463] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 01/29/2023]
Abstract
Codium fragile (CF) is a type of green algae consumed as kimchi in Asia. UPLC-QTOF-MS/MS analysis showed that CF contain lysophosphatidyl choline, canthaxanthin, retinoic acid, α-tocopherol, and unsaturated fatty acids, which reportedly improve skeletal muscle health. However, the effect of CF on skeletal muscle mass and function remains to be elucidated. In mice fed with CF extracts, exercise endurance and muscle weight increased. CF extracts enhanced protein synthesis and myogenic differentiation through the mTORC1 pathway. CF extracts also promoted oxidative muscle fiber formation and mitochondrial biogenesis through the PGC-1α-related signaling pathway. Upregulation of PGC-1α by CF extracts was abolished by EX527 SIRT1 inhibitor treatment. Changed signaling molecules in the CF extracts were partially regulated by canthaxanthin, a new compound in CF extracts, suggesting that canthaxanthin contribute synergistically to the effect of CF extracts. Therefore, CF is a potential food source for sport nutrition or prevention of sarcopenia.
Collapse
Affiliation(s)
- Jisong Ahn
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Department of Food Science and Technology, Chonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Min Jung Kim
- Healthcare Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Ahyoung Yoo
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiyun Ahn
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Tae Youl Ha
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chang Hwa Jung
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hyo Deok Seo
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Young Jin Jang
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Republic of Korea.
| |
Collapse
|
46
|
Padilha CS, Cella PS, Chimin P, Voltarelli FA, Marinello PC, Testa MTDEJ, Guirro PB, Duarte JAR, Cecchini R, Guarnier FA, Deminice R. Resistance Training's Ability to Prevent Cancer-induced Muscle Atrophy Extends Anabolic Stimulus. Med Sci Sports Exerc 2021; 53:1572-1582. [PMID: 33731662 DOI: 10.1249/mss.0000000000002624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE This study aimed to determine the role of mammalian target of rapamycin (mTORC1) activation and catabolic markers in resistance training's (RT) antiatrophy effect during cachexia-induced muscle loss. METHODS Myofiber atrophy was induced by injecting Walker 256 tumor cells into rats exposed or not exposed to the RT protocol of ladder climbing. The role of RT-induced anabolic stimulation was investigated in tumor-bearing rats with the mTORC1 inhibitor rapamycin, and cross-sectional areas of skeletal muscle were evaluated to identify atrophy or hypertrophy. Components of the mTORC1 and ubiquitin-proteasome pathways were assessed by real-time polymerase chain reaction or immunoblotting. RESULTS Although RT prevented myofiber atrophy and impaired the strength of tumor-bearing rats, in healthy rats, it promoted activated mTORC1, as demonstrated by p70S6K's increased phosphorylation and myofiber's enlarged cross-sectional area. However, RT promoted no changes in the ratio of p70S6K to phospho-p70S6K protein expression while prevented myofiber atrophy in tumor-bearing rats. Beyond that, treatment with rapamycin did not preclude RT's preventive effect on myofiber atrophy in tumor-bearing rats. Thus, RT's ability to prevent cancer-induced myofiber atrophy seems to be independent of mTORC1's and p70S6K's activation. Indeed, RT's preventive effect on cancer-induced myofiber atrophy was associated with its capacity to attenuate elevated tumor necrosis factor α and interleukin 6 as well as to prevent oxidative damage in muscles and an elevated abundance of atrogin-1. CONCLUSIONS By inducing attenuated myofiber atrophy independent of mTORC1's signaling activation, RT prevents muscle atrophy during cancer by reducing inflammation, oxidative damage, and atrogin-1 expression.
Collapse
Affiliation(s)
| | - Paola S Cella
- Department of Physical Education, State University of Londrina, Londrina, PR, BRAZIL
| | - Patrícia Chimin
- Department of Physical Education, State University of Londrina, Londrina, PR, BRAZIL
| | - Fabrício A Voltarelli
- Federal University of Mato Grosso, Graduate Program of Health Sciences, Faculty of Medicine, Cuiabá, BRAZIL
| | | | | | - Philippe B Guirro
- Department of Physical Education, State University of Londrina, Londrina, PR, BRAZIL
| | - José A R Duarte
- University of Porto, CIAFEL, Faculty of Sport, Porto, PORTUGAL
| | - Rubens Cecchini
- State University of Londrina, Department of General Pathology, Londrina, PR, BRAZIL
| | - Flávia A Guarnier
- State University of Londrina, Department of General Pathology, Londrina, PR, BRAZIL
| | - Rafael Deminice
- Department of Physical Education, State University of Londrina, Londrina, PR, BRAZIL
| |
Collapse
|
47
|
Kotani T, Takegaki J, Tamura Y, Kouzaki K, Nakazato K, Ishii N. Repeated bouts of resistance exercise in rats alter mechanistic target of rapamycin complex 1 activity and ribosomal capacity but not muscle protein synthesis. Exp Physiol 2021; 106:1950-1960. [PMID: 34197668 DOI: 10.1113/ep089699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/30/2021] [Indexed: 01/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is muscle protein synthesis (MPS) additionally activated following exercise when ribosomal capacity is increased after repeated bouts of resistance exercise (RE)? What is the main finding and its importance? Skeletal muscles with increased ribosome content through repeated RE bouts showed sufficient activation of MPS with lower mechanistic target of rapamycin complex 1 signalling. Thus, repeated bouts of RE possibly change the translational capacity and efficiency to optimize translation activation following RE. ABSTRACT Resistance exercise (RE) activates ribosome biogenesis and increases ribosome content in skeletal muscles. However, it is unclear whether the increase in ribosome content subsequently causes an increase in RE-induced activation of muscle protein synthesis (MPS). Thus, this study aimed to investigate the relationship between ribosome content and MPS after exercise using a rat RE model. Male Sprague-Dawley rats were categorized into three groups (n = 6 for each group): sedentary (SED) and RE trained with one bout (1B) or three bouts (3B). The RE stimulus was applied to the right gastrocnemius muscle by transcutaneous electrical stimulation under isoflurane anaesthesia. The 3B group underwent stimulation every other day. Our results revealed that 6 h after the last bout of RE, muscles in the 3B group showed an increase in total RNA and 18S+28S rRNA content per muscle weight compared with the SED and 1B groups. In both the 1B and 3B groups, MPS, estimated by puromycin incorporation in proteins, was higher than that in the SED group 6 h after exercise; however, no significant difference was observed between the 1B and 3B groups. In the 1B and 3B groups, phosphorylated p70S6K at Thr-389 increased, indicating mechanistic target of rapamycin complex 1 (mTORC1) activity. p70S6K phosphorylation level was lower in the 3B group than in the 1B group. Finally, protein synthesis per ribosome (indicator of translation efficiency) was lower in the 3B group than in the 1B group. Thus, three bouts of RE changed the ribosome content and mTORC1 activation, but not the degree of RE-induced global MPS activation.
Collapse
Affiliation(s)
- Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Junya Takegaki
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan
| | - Yuki Tamura
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
| | - Naokata Ishii
- Graduate School or Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
48
|
Ato S, Mori T, Fujita Y, Mishima T, Ogasawara R. Short-term high-fat diet induces muscle fiber type-selective anabolic resistance to resistance exercise. J Appl Physiol (1985) 2021; 131:442-453. [PMID: 34138646 DOI: 10.1152/japplphysiol.00889.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic obesity and insulin resistance are considered to inhibit contraction-induced muscle hypertrophy, through impairment of mammalian target of rapamycin complex 1 (mTORC1) and muscle protein synthesis (MPS). A high-fat diet is known to rapidly induce obesity and insulin resistance within a month. However, the influence of a short-term high-fat diet on the response of mTORC1 activation and MPS to acute resistance exercise (RE) is unclear. Thus the purpose of this study was to investigate the effect of a short-term high-fat diet on the response of mTORC1 activation and MPS to acute RE. Male Sprague-Dawley rats were randomly assigned to groups and fed a normal diet, high-fat diet, or pair feed for 4 wk. After dietary habituation, acute RE was performed on the gastrocnemius muscle via percutaneous electrical stimulation. The results showed that 4 wk of a high fat-diet induced intramuscular lipid accumulation and insulin resistance, without affecting basal mTORC1 activity or MPS. The response of RE-induced mTORC1 activation and MPS was not altered by a high-fat diet. On the other hand, analysis of each fiber type demonstrated that response of MPS to an acute RE was disappeared specifically in type I and IIa fiber. These results indicate that a short-term high-fat diet causes anabolic resistance to acute RE, depending on the fiber type.NEW & NOTEWORTHY A high-fat diet is known to rapidly induce obesity, insulin resistance, and anabolic resistance to nutrition within a month. However, the influence of a short-term high-fat diet on the response of muscle protein synthesis to acute resistance exercise is unclear. We observed that a short-term high-fat diet causes obesity, insulin resistance, intramuscular lipid droplet accumulation, and anabolic resistance to resistance exercise specifically in type I and IIa fibers.
Collapse
Affiliation(s)
- Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Takahiro Mori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Yuki Fujita
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Taiga Mishima
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
49
|
Higashida K, Inoue S, Takeuchi N, Ato S, Ogasawara R, Nakai N. Basal and resistance exercise-induced increase in protein synthesis is impaired in skeletal muscle of iron-deficient rats. Nutrition 2021; 91-92:111389. [PMID: 34303956 DOI: 10.1016/j.nut.2021.111389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/14/2021] [Accepted: 06/05/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES We aimed to investigate the effect of iron deficiency on basal- and contraction-induced increases in muscle protein synthesis. METHODS Four-wk-old male Sprague-Dawley rats were divided into three groups. The rats in two of the three groups had free access to a control diet (AD) or iron-deficient diet (ID) for 4 wk. The rats in the third group (CON) were pair-fed the control diet to the mean intake of the ID group. RESULTS In comparison with the CON group, the ID group showed significantly lower hematocrit and hemoglobin concentrations, iron-containing protein levels, and total iron content in skeletal muscle, but non-iron-containing protein levels did not show any differences between the groups. Protein synthesis, measured by puromycin-labeled peptides, was lower in the ID group compared with the CON group in both basal- and contraction-stimulated states. The ID diet impaired the activation levels of signaling pathways involved in protein synthesis, such as ribosomal protein S6 and eukaryotic translation initiation factor 4E-binding protein 1. Furthermore, dietary iron deficiency decreased autophagy capacity, but did not affect the ubiquitinated protein content. CONCLUSIONS These results suggest that severe iron deficiency decreases not only basal but also muscle contraction-induced increases in protein synthesis due to, at least in part, downregulation of the protein synthesis signaling pathway in the skeletal muscle.
Collapse
Affiliation(s)
- Kazuhiko Higashida
- Laboratory of Exercise Nutrition, Department of Nutrition, University of Shiga Prefecture, Japan.
| | - Sachika Inoue
- Laboratory of Exercise Nutrition, Department of Nutrition, University of Shiga Prefecture, Japan
| | - Nodoka Takeuchi
- Laboratory of Exercise Nutrition, Department of Nutrition, University of Shiga Prefecture, Japan
| | - Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Naoya Nakai
- Laboratory of Exercise Nutrition, Department of Nutrition, University of Shiga Prefecture, Japan
| |
Collapse
|
50
|
Figueiredo VC, Wen Y, Alkner B, Fernandez-Gonzalo R, Norrbom J, Vechetti IJ, Valentino T, Mobley CB, Zentner GE, Peterson CA, McCarthy JJ, Murach KA, von Walden F. Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise. J Physiol 2021; 599:3363-3384. [PMID: 33913170 DOI: 10.1113/jp281244] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Ribosome biogenesis and MYC transcription are associated with acute resistance exercise (RE) and are distinct from endurance exercise in human skeletal muscle throughout a 24 h time course of recovery. A PCR-based method for relative ribosomal DNA (rDNA) copy number estimation was validated by whole genome sequencing and revealed that rDNA dosage is positively correlated with ribosome biogenesis in response to RE. Acute RE modifies rDNA methylation patterns in enhancer, intergenic spacer and non-canonical MYC-associated regions, but not the promoter. Myonuclear-specific rDNA methylation patterns with acute mechanical overload in mice corroborate and expand on rDNA findings with RE in humans. A genetic predisposition for hypertrophic responsiveness may exist based on rDNA gene dosage. ABSTRACT Ribosomes are the macromolecular engines of protein synthesis. Skeletal muscle ribosome biogenesis is stimulated by exercise, although the contribution of ribosomal DNA (rDNA) copy number and methylation to exercise-induced rDNA transcription is unclear. To investigate the genetic and epigenetic regulation of ribosome biogenesis with exercise, a time course of skeletal muscle biopsies was obtained from 30 participants (18 men and 12 women; 31 ± 8 years, 25 ± 4 kg m-2 ) at rest and 30 min, 3 h, 8 h and 24 h after acute endurance (n = 10, 45 min cycling, 70% V ̇ O 2 max ) or resistance exercise (n = 10, 4 × 7 × 2 exercises); 10 control participants underwent biopsies without exercise. rDNA transcription and dosage were assessed using quantitative PCR and whole genome sequencing. rDNA promoter methylation was investigated using massARRAY EpiTYPER and global rDNA CpG methylation was assessed using reduced-representation bisulphite sequencing. Ribosome biogenesis and MYC transcription were associated primarily with resistance but not endurance exercise, indicating preferential up-regulation during hypertrophic processes. With resistance exercise, ribosome biogenesis was associated with rDNA gene dosage, as well as epigenetic changes in enhancer and non-canonical MYC-associated areas in rDNA, but not the promoter. A mouse model of in vivo metabolic RNA labelling and genetic myonuclear fluorescence labelling validated the effects of an acute hypertrophic stimulus on ribosome biogenesis and Myc transcription, and also corroborated rDNA enhancer and Myc-associated methylation alterations specifically in myonuclei. The present study provides the first information on skeletal muscle genetic and rDNA gene-wide epigenetic regulation of ribosome biogenesis in response to exercise, revealing novel roles for rDNA dosage and CpG methylation.
Collapse
Affiliation(s)
- Vandré C Figueiredo
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Björn Alkner
- Department of Orthopaedics, Eksjö, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Norrbom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ivan J Vechetti
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, USA
| | - Taylor Valentino
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - C Brooks Mobley
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | | | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Ferdinand von Walden
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA.,Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|