1
|
Zhu M, Tang Y, Xie Y, He B, Ding G, Zhou X. Research progress on differentiation and regulation of plant chromoplasts. Mol Biol Rep 2024; 51:810. [PMID: 39001942 DOI: 10.1007/s11033-024-09753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Carotenoids, natural tetraterpenoids found abundantly in plants, contribute to the diverse colors of plant non-photosynthetic tissues and provide fragrance through their cleavage products, which also play crucial roles in plant growth and development. Understanding the synthesis, degradation, and storage pathways of carotenoids and identifying regulatory factors represents a significant strategy for enhancing plant quality. Chromoplasts serve as the primary plastids responsible for carotenoid accumulation, and their differentiation is linked to the levels of carotenoids, rendering them a subject of substantial research interest. The differentiation of chromoplasts involves alterations in plastid structure and protein import machinery. Additionally, this process is influenced by factors such as the ORANGE (OR) gene, Clp proteases, xanthophyll esterification, and environmental factors. This review shows the relationship between chromoplast and carotenoid accumulation by presenting recent advances in chromoplast structure, the differentiation process, and key regulatory factors, which can also provide a reference for rational exploitation of chromoplasts to enhance plant quality.
Collapse
Affiliation(s)
- Mengyao Zhu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunxia Tang
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiqing Xie
- Institute of Economic Forestry, Fujian Academy of Forestry, Fuzhou, 350012, China
| | - BingBing He
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guochang Ding
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xingwen Zhou
- College of Architecture and Planning, Fujian University of Technology, Fuzhou, 350118, China.
| |
Collapse
|
2
|
Rao S, Cao H, O'Hanna FJ, Zhou X, Lui A, Wrightstone E, Fish T, Yang Y, Thannhauser T, Cheng L, Dudareva N, Li L. Nudix hydrolase 23 post-translationally regulates carotenoid biosynthesis in plants. THE PLANT CELL 2024; 36:1868-1891. [PMID: 38299382 DOI: 10.1093/plcell/koae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Carotenoids are essential for photosynthesis and photoprotection. Plants must evolve multifaceted regulatory mechanisms to control carotenoid biosynthesis. However, the regulatory mechanisms and the regulators conserved among plant species remain elusive. Phytoene synthase (PSY) catalyzes the highly regulated step of carotenogenesis and geranylgeranyl diphosphate synthase (GGPPS) acts as a hub to interact with GGPP-utilizing enzymes for the synthesis of specific downstream isoprenoids. Here, we report a function of Nudix hydrolase 23 (NUDX23), a Nudix domain-containing protein, in post-translational regulation of PSY and GGPPS for carotenoid biosynthesis. NUDX23 expresses highly in Arabidopsis (Arabidopsis thaliana) leaves. Overexpression of NUDX23 significantly increases PSY and GGPPS protein levels and carotenoid production, whereas knockout of NUDX23 dramatically reduces their abundances and carotenoid accumulation in Arabidopsis. NUDX23 regulates carotenoid biosynthesis via direct interactions with PSY and GGPPS in chloroplasts, which enhances PSY and GGPPS protein stability in a large PSY-GGPPS enzyme complex. NUDX23 was found to co-migrate with PSY and GGPPS proteins and to be required for the enzyme complex assembly. Our findings uncover a regulatory mechanism underlying carotenoid biosynthesis in plants and offer promising genetic tools for developing carotenoid-enriched food crops.
Collapse
Affiliation(s)
- Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hongbo Cao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Franz Joseph O'Hanna
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andy Lui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Emalee Wrightstone
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-2063, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Rudenko NN, Vetoshkina DV, Marenkova TV, Borisova-Mubarakshina MM. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants (Basel) 2023; 12:2014. [PMID: 38001867 PMCID: PMC10669185 DOI: 10.3390/antiox12112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Daria V. Vetoshkina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Tatiana V. Marenkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Maria M. Borisova-Mubarakshina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| |
Collapse
|
4
|
Hitchcock A, Proctor MS, Sobotka R. Coordinating plant pigment production: A green role for ORANGE family proteins. MOLECULAR PLANT 2023; 16:1366-1369. [PMID: 37573474 DOI: 10.1016/j.molp.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Affiliation(s)
- Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Matthew S Proctor
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Třeboň 379 01, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| |
Collapse
|
5
|
Zhou X, Sun T, Owens L, Yang Y, Fish T, Wrightstone E, Lui A, Yuan H, Chayut N, Burger J, Tadmor Y, Thannhauser T, Guo W, Cheng L, Li L. Carotenoid sequestration protein FIBRILLIN participates in CmOR-regulated β-carotene accumulation in melon. PLANT PHYSIOLOGY 2023; 193:643-660. [PMID: 37233026 DOI: 10.1093/plphys/kiad312] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Chromoplasts are plant organelles with a unique ability to sequester and store massive carotenoids. Chromoplasts have been hypothesized to enable high levels of carotenoid accumulation due to enhanced sequestration ability or sequestration substructure formation. However, the regulators that control the substructure component accumulation and substructure formation in chromoplasts remain unknown. In melon (Cucumis melo) fruit, β-carotene accumulation in chromoplasts is governed by ORANGE (OR), a key regulator for carotenoid accumulation in chromoplasts. By using comparative proteomic analysis of a high β-carotene melon variety and its isogenic line low-β mutant that is defective in CmOr with impaired chromoplast formation, we identified carotenoid sequestration protein FIBRILLIN1 (CmFBN1) as differentially expressed. CmFBN1 expresses highly in melon fruit tissue. Overexpression of CmFBN1 in transgenic Arabidopsis (Arabidopsis thaliana) containing ORHis that genetically mimics CmOr significantly enhances carotenoid accumulation, demonstrating its involvement in CmOR-induced carotenoid accumulation. Both in vitro and in vivo evidence showed that CmOR physically interacts with CmFBN1. Such an interaction occurs in plastoglobules and results in promoting CmFBN1 accumulation. CmOR greatly stabilizes CmFBN1, which stimulates plastoglobule proliferation and subsequently carotenoid accumulation in chromoplasts. Our findings show that CmOR directly regulates CmFBN1 protein levels and suggest a fundamental role of CmFBN1 in facilitating plastoglobule proliferation for carotenoid sequestration. This study also reveals an important genetic tool to further enhance OR-induced carotenoid accumulation in chromoplasts in crops.
Collapse
Affiliation(s)
- Xuesong Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Lauren Owens
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Emalee Wrightstone
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andy Lui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Noam Chayut
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Joseph Burger
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Yaakov Tadmor
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Bhargava N, Ampomah-Dwamena C, Voogd C, Allan AC. Comparative transcriptomic and plastid development analysis sheds light on the differential carotenoid accumulation in kiwifruit flesh. FRONTIERS IN PLANT SCIENCE 2023; 14:1213086. [PMID: 37711308 PMCID: PMC10499360 DOI: 10.3389/fpls.2023.1213086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 09/16/2023]
Abstract
Carotenoids are colorful lipophilic isoprenoids synthesized in all photosynthetic organisms which play roles in plant growth and development and provide numerous health benefits in the human diet (precursor of Vitamin A). The commercially popular kiwifruits are golden yellow-fleshed (Actinidia chinensis) and green fleshed (A. deliciosa) cultivars which have a high carotenoid concentration. Understanding the molecular mechanisms controlling the synthesis and sequestration of carotenoids in Actinidia species is key to increasing nutritional value of this crop via breeding. In this study we analyzed fruit with varying flesh color from three Actinidia species; orange-fleshed A. valvata (OF), yellow-fleshed A. polygama (YF) and green-fleshed A. arguta (GF). Microscopic analysis revealed that carotenoids accumulated in a crystalline form in YF and OF chromoplasts, with the size of crystals being bigger in OF compared to YF, which also contained globular substructures in the chromoplast. Metabolic profiles were investigated using ultra-performance liquid chromatography (UPLC), which showed that β-carotene was the predominant carotenoid in the OF and YF species, while lutein was the dominant carotenoid in the GF species. Global changes in gene expression were studied between OF and GF (both tetraploid) species using RNA-sequencing which showed higher expression levels of upstream carotenoid biosynthesis-related genes such as DXS, PSY, GGPPS, PDS, ZISO, and ZDS in OF species compared to GF. However, low expression of downstream pathway genes was observed in both species. Pathway regulatory genes (OR and OR-L), plastid morphology related genes (FIBRILLIN), chlorophyll degradation genes (SGR, SGR-L, RCCR, and NYC1) were upregulated in OF species compared to GF. This suggests chlorophyll degradation (primarily in the initial ripening stages) is accompanied by increased carotenoid production and localization in orange flesh tissue, a contrast from green flesh tissue. These results suggest a coordinated change in the carotenoid pathway, as well as changes in plastid type, are responsible for an orange phenotype in certain kiwifruit species.
Collapse
Affiliation(s)
- Nitisha Bhargava
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
| | - Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Liang MH, Xie SR, Dai JL, Chen HH, Jiang JG. Roles of Two Phytoene Synthases and Orange Protein in Carotenoid Metabolism of the β-Carotene-Accumulating Dunaliella salina. Microbiol Spectr 2023; 11:e0006923. [PMID: 37022233 PMCID: PMC10269666 DOI: 10.1128/spectrum.00069-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Phytoene synthase (PSY) is a key enzyme in carotenoid metabolism and often regulated by orange protein. However, few studies have focused on the functional differentiation of the two PSYs and their regulation by protein interaction in the β-carotene-accumulating Dunaliella salina CCAP 19/18. In this study, we confirmed that DsPSY1 from D. salina possessed high PSY catalytic activity, whereas DsPSY2 almost had no activity. Two amino acid residues at positions 144 and 285 responsible for substrate binding were associated with the functional variance between DsPSY1 and DsPSY2. Moreover, orange protein from D. salina (DsOR) could interact with DsPSY1/2. DbPSY from Dunaliella sp. FACHB-847 also had high PSY activity, but DbOR could not interact with DbPSY, which might be one reason why it could not highly accumulate β-carotene. Overexpression of DsOR, especially the mutant DsORHis, could significantly improve the single-cell carotenoid content and change cell morphology (with larger cell size, bigger plastoglobuli, and fragmented starch granules) of D. salina. Overall, DsPSY1 played a dominant role in carotenoid biosynthesis in D. salina, and DsOR promoted carotenoid accumulation, especially β-carotene via interacting with DsPSY1/2 and regulating the plastid development. Our study provides a new clue for the regulatory mechanism of carotenoid metabolism in Dunaliella. IMPORTANCE Phytoene synthase (PSY) as the key rate-limiting enzyme in carotenoid metabolism can be regulated by various regulators and factors. We found that DsPSY1 played a dominant role in carotenogenesis in the β-carotene-accumulating Dunaliella salina, and two amino acid residues critical in the substrate binding were associated with the functional variance between DsPSY1 and DsPSY2. Orange protein from D. salina (DsOR) can promote carotenoid accumulation via interacting with DsPSY1/2 and regulating the plastid development, which provides new insights into the molecular mechanism of massive accumulation of β-carotene in D. salina.
Collapse
Affiliation(s)
- Ming-Hua Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shan-Rong Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jv-Liang Dai
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hao-Hong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Liang MH, Xie SR, Chen HH, Jiang JG. DbMADS regulates carotenoid metabolism by repressing two carotenogenic genes in the green alga Dunaliella sp. FACHB-847. J Cell Physiol 2023; 238:1324-1335. [PMID: 37087727 DOI: 10.1002/jcp.31017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 04/24/2023]
Abstract
MADS transcription factors are involved in the regulation of fruit development and carotenoid metabolism in plants. However, whether and how carotenoid accumulation is regulated by algal MADS are largely unknown. In this study, we first used functional complementation to confirm the functional activity of phytoene synthase from the lutein-rich Dunaliella sp. FACHB-847 (DbPSY), the key rate-limiting enzyme in the carotenoid biosynthesis. Promoters of DbPSY and DbLcyB (lycopene β-cyclase) possessed multiple cis-acting elements such as light-, UV-B-, dehydration-, anaerobic-, and salt-responsive elements, W-box, and C-A-rich-G-box (MADS-box). Meanwhile, we isolated one nucleus-localized MADS transcription factor (DbMADS), belonging to type I MADS gene. Three carotenogenic genes, DbPSY, DbLcyB, and DbBCH (β-carotene hydroxylase) genes were upregulated at later stages, which was well correlated with the carotenoid accumulation. In contrast, DbMADS gene was highly expressed at lag phase with low carotenoid accumulation. Yeast one-hybrid assay and dual-luciferase reporter assay demonstrated that DbMADS could directly bind to the promoters of two carotenogenic genes, DbPSY and DbLcyB, and repress their transcriptions. This study suggested that DbMADS may act as a negative regulator of carotenoid biosynthesis by repressing DbPSY and DbLcyB at the lag phase, which provide new insights into the regulatory mechanisms of carotenoid metabolism in Dunaliella.
Collapse
Affiliation(s)
- Ming-Hua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shan-Rong Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hao-Hong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
9
|
Oogo Y, Takemura M, Sakamoto A, Misawa N, Shimada H. Orange protein, phytoene synthase regulator, has protein disulfide reductase activity. PLANT SIGNALING & BEHAVIOR 2022; 17:2072094. [PMID: 35699140 PMCID: PMC9225386 DOI: 10.1080/15592324.2022.2072094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Orange protein (OR) is known to interact with phytoene synthase (PSY) that commits the first step in carotenoid biosynthesis, and functions as a major post-transcriptional regulator on PSY. We here tried to reveal enzymatic characteristics of OR, that is, protein disulfide reductase (PDR) activity of the Arabidopsis thaliana OR protein (AtOR) was analyzed using dieosin glutathione disulfide (Di-E-GSSG) as a substrate. The AtOR part containing only the zinc (Zn)-finger motif was found to show PDR activity, with an apparent Km of 12,632 nM, Kcat of 11.85 min-1, and KcatKm-1 of 15.6 × 103 M-1sec-1. To evaluate the significance of the N-terminal region of AtOR, we examined the kinetic parameters of a fusion protein composed of the N-terminal region and the Zn-finger motif from AtOR. Consequently, the fusion protein had lower values for Km (2,074 nM) and Kcat (3.18 min-1) and higher catalytic efficiency (25.9 × 103 M-1sec-1) than that of only the Zn-finger motif part, suggesting that the N-terminal region of AtOR should be important for substrate affinity and catalytic efficiency of PDR activity. Complementation experiments with E. coli further demonstrated that AtOR containing the N-terminal region and the Zn-finger motif increases phytoene synthase activity of AtPSY especially under reduced circumstances retaining a NADPH- and H+-regeneration system.
Collapse
Affiliation(s)
- Yuto Oogo
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi-shi, Japan
| | - Atsushi Sakamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi-shi, Japan
| | - Hiroshi Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
10
|
Kim HK, Kim JY, Kim JH, Go JY, Jung YS, Lee HJ, Ahn MJ, Yu J, Bae S, Kim HS, Kwak SS, Kim MS, Cho YG, Jung YJ, Kang KK. Biochemical Characterization of Orange-Colored Rice Calli Induced by Target Mutagenesis of OsOr Gene. PLANTS (BASEL, SWITZERLAND) 2022; 12:56. [PMID: 36616184 PMCID: PMC9823629 DOI: 10.3390/plants12010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
We generated an orange-colored (OC) rice callus line by targeted mutagenesis of the orange gene (OsOr) using the CRISPR-Cas9 system. The OC line accumulated more lutein, β-carotene, and two β-carotene isomers compared to the WT callus line. We also analyzed the expression levels of carotenoid biosynthesis genes by qRT-PCR. Among the genes encoding carotenoid metabolic pathway enzymes, the number of transcripts of the PSY2, PSY3, PDS, ZDS and β-LCY genes were higher in the OC line than in the WT line. In contrast, transcription of the ε-LCY gene was downregulated in the OC line compared to the WT line. In addition, we detected increases in the transcript levels of two genes involved in carotenoid oxidation in the OC lines. The developed OC lines also showed increased tolerance to salt stress. Collectively, these findings indicate that targeted mutagenesis of the OsOr gene via CRISPR/Cas9-mediated genome editing results in β-carotene accumulation in rice calli. Accordingly, we believe that this type of genome-editing technology could represent an effective alternative approach for enhancing the β-carotene content of plants.
Collapse
Affiliation(s)
- Hee Kyoung Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jin Young Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jong Hee Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Ji Yun Go
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Yoo-Seob Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Hyo Ju Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jihyeon Yu
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sangsu Bae
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Me-Sun Kim
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
11
|
Ampomah-Dwamena C, Tomes S, Thrimawithana AH, Elborough C, Bhargava N, Rebstock R, Sutherland P, Ireland H, Allan AC, Espley RV. Overexpression of PSY1 increases fruit skin and flesh carotenoid content and reveals associated transcription factors in apple ( Malus × domestica). FRONTIERS IN PLANT SCIENCE 2022; 13:967143. [PMID: 36186009 PMCID: PMC9520574 DOI: 10.3389/fpls.2022.967143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
Knowledge of the transcriptional regulation of the carotenoid metabolic pathway is still emerging and here, we have misexpressed a key biosynthetic gene in apple to highlight potential transcriptional regulators of this pathway. We overexpressed phytoene synthase (PSY1), which controls the key rate-limiting biosynthetic step, in apple and analyzed its effects in transgenic fruit skin and flesh using two approaches. Firstly, the effects of PSY overexpression on carotenoid accumulation and gene expression was assessed in fruit at different development stages. Secondly, the effect of light exclusion on PSY1-induced fruit carotenoid accumulation was examined. PSY1 overexpression increased carotenoid content in transgenic fruit skin and flesh, with beta-carotene being the most prevalent carotenoid compound. Light exclusion by fruit bagging reduced carotenoid content overall, but carotenoid content was still higher in bagged PSY fruit than in bagged controls. In tissues overexpressing PSY1, plastids showed accelerated chloroplast to chromoplast transition as well as high fluorescence intensity, consistent with increased number of chromoplasts and carotenoid accumulation. Surprisingly, the expression of other carotenoid pathway genes was elevated in PSY fruit, suggesting a feed-forward regulation of carotenogenesis when this enzyme step is mis-expressed. Transcriptome profiling of fruit flesh identified differentially expressed transcription factors (TFs) that also were co-expressed with carotenoid pathway genes. A comparison of differentially expressed genes from both the developmental series and light exclusion treatment revealed six candidate TFs exhibiting strong correlation with carotenoid accumulation. This combination of physiological, transcriptomic and metabolite data sheds new light on plant carotenogenesis and TFs that may play a role in regulating apple carotenoid biosynthesis.
Collapse
Affiliation(s)
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | | | - Caitlin Elborough
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
- BioLumic Limited, Palmerston North, New Zealand
| | - Nitisha Bhargava
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Paul Sutherland
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Hilary Ireland
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| |
Collapse
|
12
|
Identification and Characterization Roles of Phytoene Synthase (PSY) Genes in Watermelon Development. Genes (Basel) 2022; 13:genes13071189. [PMID: 35885972 PMCID: PMC9324402 DOI: 10.3390/genes13071189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Phytoene synthase (PSY) plays an essential role in carotenoid biosynthesis. In this study, three ClPSY genes were identified through the watermelon genome, and their full-length cDNA sequences were cloned. The deduced proteins of the three ClPSY genes were ranged from 355 to 421 amino acid residues. Phylogenetic analysis suggested that the ClPSYs are highly conserved with bottle gourd compared to other cucurbit crops PSY proteins. Variation in ClPSY1 expression in watermelon with different flesh colors was observed; ClPSY1 was most highly expressed in fruit flesh and associated with the flesh color formation. ClPSY1 expression was much lower in the white-fleshed variety than the colored fruits. Gene expression analysis of ClPSY genes in root, stem, leaf, flower, ovary and flesh of watermelon plants showed that the levels of ClPSY2 transcripts found in leaves was higher than other tissues; ClPSY3 was dominantly expressed in roots. Functional complementation assays of the three ClPSY genes suggested that all of them could encode functional enzymes to synthesize the phytoene from Geranylgeranyl Pyrophosphate (GGPP). Some of the homologous genes clustered together in the phylogenetic tree and located in the synteny chromosome region seemed to have similar expression profiles among different cucurbit crops. The findings provide a foundation for watermelon flesh color breeding with regard to carotenoid synthesis and also provide an insight for the further research of watermelon flesh color formation.
Collapse
|
13
|
Light Induces Carotenoid Biosynthesis-Related Gene Expression, Accumulation of Pigment Content, and Expression of the Small Heat Shock Protein in Apple Fruit. Int J Mol Sci 2022; 23:ijms23116153. [PMID: 35682835 PMCID: PMC9181450 DOI: 10.3390/ijms23116153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023] Open
Abstract
The coloration of the apple fruit (Malus × domestica Borkh.) depends on pigment content. Light stimulus activates a broad range of photosynthesis-related genes, including carotenoids. The effect of light on two red commercial apple cultivars, ‘Summer Prince’ and ‘Arisoo’ at the juvenile stage were examined. Apple fruits were either bagged to reduce light irradiation or were exposed to direct, enhanced sunlight (reflected). The pigment content and the expression of carotenoid metabolism genes in the peel and flesh of apple fruits were significantly different between the shaded and the reflected parts. These parameters were also different in the two cultivars, highlighting the contribution of the genetic background. Further, a combination of light and transient overexpression of carotenogenic genes increased fruit coloration and pigment content in the variety ‘RubyS’. Western blot analysis showed the expression of small heat shock proteins (smHSP) in lysates extracted from the reflected part of the fruits but not in the bagged fruits, indicating the activation of smHSP in response to heat generated by the reflected light. Therefore, the synergy between the genes and the environment dictates the color of apple fruits.
Collapse
|
14
|
Zhou X, Rao S, Wrightstone E, Sun T, Lui ACW, Welsch R, Li L. Phytoene Synthase: The Key Rate-Limiting Enzyme of Carotenoid Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:884720. [PMID: 35498681 PMCID: PMC9039723 DOI: 10.3389/fpls.2022.884720] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 05/27/2023]
Abstract
Phytoene synthase (PSY) catalyzes the first committed step in the carotenoid biosynthesis pathway and is a major rate-limiting enzyme of carotenogenesis. PSY is highly regulated by various regulators and factors to modulate carotenoid biosynthesis in response to diverse developmental and environmental cues. Because of its critical role in controlling the total amount of synthesized carotenoids, PSY has been extensively investigated and engineered in plant species. However, much remains to be learned on its multifaceted regulatory control and its catalytic efficiency for carotenoid enrichment in crops. Here, we present current knowledge on the basic biology, the functional evolution, the dynamic regulation, and the metabolic engineering of PSY. We also discuss the open questions and gaps to stimulate additional research on this most studied gene/enzyme in the carotenogenic pathway.
Collapse
Affiliation(s)
- Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Emalee Wrightstone
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Andy Cheuk Woon Lui
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | | | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
15
|
Hlahla JM, Mafa MS, van der Merwe R, Alexander O, Duvenhage MM, Kemp G, Moloi MJ. The Photosynthetic Efficiency and Carbohydrates Responses of Six Edamame ( Glycine max. L. Merrill) Cultivars under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030394. [PMID: 35161375 PMCID: PMC8840725 DOI: 10.3390/plants11030394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 05/06/2023]
Abstract
Vegetable-type soybean, also known as edamame, was recently introduced to South Africa. However, there is lack of information on its responses to drought. The aim of this study was to investigate the photosynthetic efficiency and carbohydrates responses of six edamame cultivars under drought stress. Photosynthetic efficiency parameters, including chlorophyll fluorescence and stomatal conductance, were determined using non-invasive methods, while pigments were quantified spectrophotometrically. Non-structural carbohydrates were quantified using Megazyme kits. Structural carbohydrates were determined using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Drought stress significantly increased the Fv/Fm and PIabs of AGS429 and UVE17 at pod filling stage. Chlorophyll-a, which was most sensitive to drought, was significantly reduced in AGS429 and UVE17, but chlorophyll-b was relatively stable in all cultivars, except UVE17, which showed a significant decline at flowering stage. AGS354 and AGS429 also showed reduced chlorophyll-b at pod filling. UVE17 showed a significant reduction in carotenoid content and a substantial reduction in stomatal conductance during pod filling. Drought stress during pod filling resulted in a significant increase in the contents of trehalose, sucrose and starch, but glucose was decreased. Chlorophyll-a positively correlated with starch. The FTIR and XRD results suggest that the cell wall of UVE14, followed by UVE8 and AGS429, was the most intact during drought stress. It was concluded that carotenoids, stomatal conductance, starch and hemicellulose could be used as physiological/biochemical indicators of drought tolerance in edamame. This information expands our knowledge of the drought defense responses in edamame, and it is essential for the physiological and biochemical screening of drought tolerance.
Collapse
Affiliation(s)
- Jeremiah M. Hlahla
- Department of Plant Sciences-Botany Division, Faculty of Natural and Agricultural Sciences, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa; (J.M.H.); (R.v.d.M.)
| | - Mpho S. Mafa
- Carbohydrates and Enzymology Laboratory (CHEM-LAB), Department of Plant Sciences-Botany Division, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa;
| | - Rouxléne van der Merwe
- Department of Plant Sciences-Botany Division, Faculty of Natural and Agricultural Sciences, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa; (J.M.H.); (R.v.d.M.)
| | - Orbett Alexander
- Department of Chemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa;
| | - Mart-Mari Duvenhage
- Department of Physics, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa;
| | - Gabre Kemp
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa;
| | - Makoena J. Moloi
- Department of Plant Sciences-Botany Division, Faculty of Natural and Agricultural Sciences, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa; (J.M.H.); (R.v.d.M.)
- Correspondence: ; Tel.: +27-51-4019483
| |
Collapse
|
16
|
Dong D, Zhao Y, Teng K, Tan P, Liu Z, Yang Z, Han L, Chao Y. Expression of ZjPSY, a Phytoene Synthase Gene from Zoysia japonica Affects Plant Height and Photosynthetic Pigment Contents. PLANTS (BASEL, SWITZERLAND) 2022; 11:395. [PMID: 35161377 PMCID: PMC8840084 DOI: 10.3390/plants11030395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Phytoene synthase (PSY) is a key limiting enzyme in the carotenoid biosynthesis pathway for regulating phytoene synthesis. In this study, ZjPSY was isolated and identified from Zoysia japonica, an important lawn grass species. ZjPSY cDNA was 1230 bp in length, corresponding to 409 amino acids. ZjPSY showed higher expression in young leaves and was downregulated after GA3, ABA, SA, and MeJA treatments, exhibiting a sensitivity to plant hormones. Regulatory elements of light and plant hormone were found in the upstream of ZjPSY CDS. Expression of ZjPSY in Arabidopsis thaliana protein led to carotenoid accumulation and altered expression of genes involved in the carotenoid pathway. Under no-treatment condition, salt treatment, and drought treatment, transgenic plants exhibited yellowing, dwarfing phenotypes. The carotenoid content of transgenic plants was significantly higher than that of wild-type under salt stress and no-treatment condition. Yeast two-hybrid screening identified a novel interacting partner ZjJ2 (DNAJ homologue 2), which encodes heat-shock protein 40 (HSP40). Taken together, this study suggested that ZjPSY may affect plant height and play an important role in carotenoid synthesis. These results broadened the understanding of carotenoid synthesis pathways and laid a foundation for the exploration and utilization of the PSY gene.
Collapse
Affiliation(s)
- Di Dong
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (D.D.); (K.T.); (Z.L.); (Z.Y.)
| | - Yuhong Zhao
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China;
| | - Ke Teng
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (D.D.); (K.T.); (Z.L.); (Z.Y.)
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100083, China
| | - Penghui Tan
- Beijing Chaoyang Foreign Language School, Beijing 100101, China;
| | - Zhuocheng Liu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (D.D.); (K.T.); (Z.L.); (Z.Y.)
| | - Zhuoxiong Yang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (D.D.); (K.T.); (Z.L.); (Z.Y.)
| | - Liebao Han
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (D.D.); (K.T.); (Z.L.); (Z.Y.)
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (D.D.); (K.T.); (Z.L.); (Z.Y.)
| |
Collapse
|
17
|
Sun T, Rao S, Zhou X, Li L. Plant carotenoids: recent advances and future perspectives. MOLECULAR HORTICULTURE 2022; 2:3. [PMID: 37789426 PMCID: PMC10515021 DOI: 10.1186/s43897-022-00023-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/03/2022] [Indexed: 10/05/2023]
Abstract
Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
18
|
Welsch R, Li L. Golden Rice—Lessons learned for inspiring future metabolic engineering strategies and synthetic biology solutions. Methods Enzymol 2022; 671:1-29. [DOI: 10.1016/bs.mie.2022.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Liu S, Gao Z, Wang X, Luan F, Dai Z, Yang Z, Zhang Q. Nucleotide variation in the phytoene synthase (ClPsy1) gene contributes to golden flesh in watermelon (Citrullus lanatus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:185-200. [PMID: 34633472 DOI: 10.1007/s00122-021-03958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/25/2021] [Indexed: 05/15/2023]
Abstract
A gene controlling golden flesh trait in watermelon was discovered and fine mapped to a 39.08 Kb region on chromosome 1 through a forward genetic strategy, and Cla97C01G008760 (annotated as phytoene synthase protein, ClPsy1 ) was recognized as the most likely candidate gene. Vitamin A deficiency is a worldwide public nutrition problem, and β-carotene is the precursor for vitamin A synthesis. Watermelon with golden flesh (gf, which occurs due to an accumulated abundance of β-carotene) is an important germplasm resource. In this study, a genetic analysis of segregated gf gene populations indicated that gf was controlled by a single recessive gene. BSA-seq (Bulked segregation analysis) and an initial linkage analysis placed the gf locus in a 290-Kb region on watermelon chromosome 1. Further fine mapping in a large population including over 1000 F2 plants narrowed this region to 39.08 Kb harboring two genes, Cla97C01G008760 and Cla97C01G008770, which encode phytoene synthase (ClPsy1) and GATA zinc finger domain-containing protein, respectively. Gene sequence alignment and expression analysis between parental lines revealed Cla97C01G008760 as the best possible candidate gene for the gf trait. Nonsynonymous SNP mutations in the first exon of ClPsy1 between parental lines co-segregated with the gf trait only among individuals in the genetic population and were not related to flesh color in natural watermelon panels. Promoter sequence analysis of 26 watermelon accessions revealed two SNPs in the cis-acting element sequences corresponding to MYB and MYC2 transcription factors. RNA-seq data and qRT-PCR verification showed that two MYBs exhibited expression trends similar to that of ClPsy1 in the parental lines and may regulate the ClPsy1 expression. Further research findings indicate that the gf trait is determined not only by ClPsy1 but also by ClLCYB, ClCRTISO and ClNCED7, which play important roles in watermelon β-carotene accumulation.
Collapse
Affiliation(s)
- Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.
- Horticulture and Landscape Architecture College, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhongqi Gao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- Horticulture and Landscape Architecture College, Northeast Agricultural University, Harbin, 150030, China
| | - Xuezheng Wang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.
- Horticulture and Landscape Architecture College, Northeast Agricultural University, Harbin, 150030, China.
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- Horticulture and Landscape Architecture College, Northeast Agricultural University, Harbin, 150030, China
| | - Zuyun Dai
- Anhui Jianghuai Horticulture Technology Co., Ltd., Hefei, 230031, China
| | - Zhongzhou Yang
- Anhui Jianghuai Horticulture Technology Co., Ltd., Hefei, 230031, China
| | - Qian Zhang
- Horticulture Institute, Anhui Academy of Agricultural Science, Hefei, 230031, China
| |
Collapse
|
20
|
Sun T, Zhou X, Rao S, Liu J, Li L. Protein–protein interaction techniques to investigate post-translational regulation of carotenogenesis. Methods Enzymol 2022; 671:301-325. [DOI: 10.1016/bs.mie.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Elevating fruit carotenoid content in apple (Malus x domestica Borkh). Methods Enzymol 2022; 671:63-98. [DOI: 10.1016/bs.mie.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Zheng X, Yang Y, Al-Babili S. Exploring the Diversity and Regulation of Apocarotenoid Metabolic Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:787049. [PMID: 34956282 PMCID: PMC8702529 DOI: 10.3389/fpls.2021.787049] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 05/31/2023]
Abstract
In plants, carotenoids are subjected to enzyme-catalyzed oxidative cleavage reactions as well as to non-enzymatic degradation processes, which produce various carbonyl products called apocarotenoids. These conversions control carotenoid content in different tissues and give rise to apocarotenoid hormones and signaling molecules, which play important roles in plant growth and development, response to environmental stimuli, and in interactions with surrounding organisms. In addition, carotenoid cleavage gives rise to apocarotenoid pigments and volatiles that contribute to the color and flavor of many flowers and several fruits. Some apocarotenoid pigments, such as crocins and bixin, are widely utilized as colorants and additives in food and cosmetic industry and also have health-promoting properties. Considering the importance of this class of metabolites, investigation of apocarotenoid diversity and regulation has increasingly attracted the attention of plant biologists. Here, we provide an update on the plant apocarotenoid biosynthetic pathway, especially highlighting the diversity of the enzyme carotenoid cleavage dioxygenase 4 (CCD4) from different plant species with respect to substrate specificity and regioselectivity, which contribute to the formation of diverse apocarotenoid volatiles and pigments. In addition, we summarize the regulation of apocarotenoid metabolic pathway at transcriptional, post-translational, and epigenetic levels. Finally, we describe inter- and intraspecies variation in apocarotenoid production observed in many important horticulture crops and depict recent progress in elucidating the genetic basis of the natural variation in the composition and amount of apocarotenoids. We propose that the illustration of biochemical, genetic, and evolutionary background of apocarotenoid diversity would not only accelerate the discovery of unknown biosynthetic and regulatory genes of bioactive apocarotenoids but also enable the identification of genetic variation of causal genes for marker-assisted improvement of aroma and color of fruits and vegetables and CRISPR-based next-generation metabolic engineering of high-value apocarotenoids.
Collapse
|
23
|
Jung YJ, Go JY, Lee HJ, Park JS, Kim JY, Lee YJ, Ahn MJ, Kim MS, Cho YG, Kwak SS, Kim HS, Kang KK. Overexpression of Orange Gene ( OsOr-R115H) Enhances Heat Tolerance and Defense-Related Gene Expression in Rice ( Oryza sativa L.). Genes (Basel) 2021; 12:1891. [PMID: 34946840 PMCID: PMC8701904 DOI: 10.3390/genes12121891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
In plants, the orange (Or) gene plays roles in regulating carotenoid biosynthesis and responses to environmental stress. The present study investigated whether the expression of rice Or (OsOr) gene could enhance rice tolerance to heat stress conditions. The OsOr gene was cloned and constructed with OsOr or OsOr-R115H (leading to Arg to His substitution at position 115 on the OsOr protein), and transformed into rice plants. The chlorophyll contents and proline contents of transgenic lines were significantly higher than those of non-transgenic (NT) plants under heat stress conditions. However, we found that the levels of electrolyte leakage and malondialdehyde in transgenic lines were significantly reduced compared to NT plants under heat stress conditions. In addition, the levels of expression of four genes related to reactive oxygen species (ROS) scavenging enzymes (OsAPX2, OsCATA, OsCATB, OsSOD-Cu/Zn) and five genes (OsLEA3, OsDREB2A, OsDREB1A, OsP5CS, SNAC1) responded to abiotic stress was showed significantly higher in the transgenic lines than NT plants under heat stress conditions. Therefore, OsOr-R115H could be exploited as a promising strategy for developing new rice cultivars with improved heat stress tolerance.
Collapse
Affiliation(s)
- Yu Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.Y.G.); (H.J.L.); (J.S.P.); (J.Y.K.); (Y.J.L.)
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| | - Ji Yun Go
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.Y.G.); (H.J.L.); (J.S.P.); (J.Y.K.); (Y.J.L.)
| | - Hyo Ju Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.Y.G.); (H.J.L.); (J.S.P.); (J.Y.K.); (Y.J.L.)
| | - Jung Soon Park
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.Y.G.); (H.J.L.); (J.S.P.); (J.Y.K.); (Y.J.L.)
| | - Jin Young Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.Y.G.); (H.J.L.); (J.S.P.); (J.Y.K.); (Y.J.L.)
| | - Ye Ji Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.Y.G.); (H.J.L.); (J.S.P.); (J.Y.K.); (Y.J.L.)
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Me-Sun Kim
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Korea; (M.-S.K.); (Y.-G.C.)
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Korea; (M.-S.K.); (Y.-G.C.)
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.-S.K.); (H.S.K.)
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.-S.K.); (H.S.K.)
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.Y.G.); (H.J.L.); (J.S.P.); (J.Y.K.); (Y.J.L.)
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| |
Collapse
|
24
|
Simkin AJ. Carotenoids and Apocarotenoids in Planta: Their Role in Plant Development, Contribution to the Flavour and Aroma of Fruits and Flowers, and Their Nutraceutical Benefits. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112321. [PMID: 34834683 PMCID: PMC8624010 DOI: 10.3390/plants10112321] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
Carotenoids and apocarotenoids are diverse classes of compounds found in nature and are important natural pigments, nutraceuticals and flavour/aroma molecules. Improving the quality of crops is important for providing micronutrients to remote communities where dietary variation is often limited. Carotenoids have also been shown to have a significant impact on a number of human diseases, improving the survival rates of some cancers and slowing the progression of neurological illnesses. Furthermore, carotenoid-derived compounds can impact the flavour and aroma of crops and vegetables and are the origin of important developmental, as well as plant resistance compounds required for defence. In this review, we discuss the current research being undertaken to increase carotenoid content in plants and research the benefits to human health and the role of carotenoid derived volatiles on flavour and aroma of fruits and vegetables.
Collapse
Affiliation(s)
- Andrew J. Simkin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; or
- Crop Science and Production Systems, NIAB-EMR, New Road, East Malling, Kent ME19 6BJ, UK
| |
Collapse
|
25
|
Dang Q, Sha H, Nie J, Wang Y, Yuan Y, Jia D. An apple (Malus domestica) AP2/ERF transcription factor modulates carotenoid accumulation. HORTICULTURE RESEARCH 2021; 8:223. [PMID: 34611138 PMCID: PMC8492665 DOI: 10.1038/s41438-021-00694-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/15/2021] [Accepted: 08/25/2021] [Indexed: 05/13/2023]
Abstract
Color is an important trait for horticultural crops. Carotenoids are one of the main pigments for coloration and have important implications for photosynthesis in plants and benefits for human health. Here, we identified an APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor named MdAP2-34 in apple (Malus domestica Borkh.). MdAP2-34 expression exhibited a close correlation with carotenoid content in 'Benin Shogun' and 'Yanfu 3' fruit flesh. MdAP2-34 promotes carotenoid accumulation in MdAP2-34-OVX transgenic apple calli and fruits by participating in the carotenoid biosynthesis pathway. The major carotenoid contents of phytoene and β-carotene were much higher in overexpressing MdAP2-34 transgenic calli and fruit skin, yet the predominant compound of lutein showed no obvious difference, indicating that MdAP2-34 regulates phytoene and β-carotene accumulation but not lutein. MdPSY2-1 (phytoene synthase 2) is a major gene in the carotenoid biosynthesis pathway in apple fruit, and the MdPSY2-1 gene is directly bound and transcriptionally activated by MdAP2-34. In addition, overexpressing MdPSY2-1 in apple calli mainly increases phytoene and total carotenoid contents. Our findings will advance and extend our understanding of the complex molecular mechanisms of carotenoid biosynthesis in apple, and this research is valuable for accelerating the apple breeding process.
Collapse
Affiliation(s)
- Qingyuan Dang
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haiyun Sha
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiyun Nie
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongzhang Wang
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongbing Yuan
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Dongjie Jia
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
26
|
Coe KM, Ellison S, Senalik D, Dawson J, Simon P. The influence of the Or and Carotene Hydroxylase genes on carotenoid accumulation in orange carrots [Daucus carota (L.)]. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3351-3362. [PMID: 34282485 DOI: 10.1007/s00122-021-03901-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The Or and CH genes are necessary for the accumulation of high amounts of β-carotene and other carotenoid pigments in carrot roots, in addition to the Y and Y2 genes. Carrot taproot color results from the accumulation of various carotenoid and anthocyanin pigments. Recently, the Or gene was identified as a candidate gene associated with the accumulation of β-carotene and other provitamin A carotenoids in roots. The specific molecular mechanisms involved with this process, as well as the interactions between Or and the other genes involved in this process are not well understood. In order to better characterize the effect that Or alleles have on conditioning the accumulation of carotenoids in roots, we analyzed an F3 family fixed homozygous recessive for y and y2, derived from a cross between an orange carrot and a white wild carrot, segregating for the two known Or alleles, which we name Orc and Orw. QTL mapping across three different environments revealed that the accumulation of several carotenoids was associated with the Orc allele, with consistent patterns across environments. A second QTL on chromosome 7, harboring a carotene hydroxylase gene homologous to Lut5 in Arabidopsis, was also associated with the accumulation of several carotenoids. Two alleles for this gene, which we name CHc and CHw, were discovered to be segregating in this population. Our study provides further evidence that Or and CH are likely involved with controlling the accumulation of β-carotene and may be involved with modulating carotenoid flux in carrot, demonstrating that both were important domestication genes in carrot.
Collapse
Affiliation(s)
- Kevin M Coe
- Department of Horticulture, University of WI - Madison, 1575 Linden Dr., Madison, WI, 53706, United States of America
| | - Shelby Ellison
- Department of Horticulture, University of WI - Madison, 1575 Linden Dr., Madison, WI, 53706, United States of America
| | - Douglas Senalik
- Department of Horticulture, University of WI - Madison, 1575 Linden Dr., Madison, WI, 53706, United States of America
- Vegetable Crop Unit, U.S. Department of Agriculture - ARS, Dept. of Horticulture, University of WI - Madison, 1575 Linden Dr., Madison, WI, 53706, United States of America
| | - Julie Dawson
- Department of Horticulture, University of WI - Madison, 1575 Linden Dr., Madison, WI, 53706, United States of America
| | - Philipp Simon
- Department of Horticulture, University of WI - Madison, 1575 Linden Dr., Madison, WI, 53706, United States of America.
- Vegetable Crop Unit, U.S. Department of Agriculture - ARS, Dept. of Horticulture, University of WI - Madison, 1575 Linden Dr., Madison, WI, 53706, United States of America.
| |
Collapse
|
27
|
Yazdani M, Croen MG, Fish TL, Thannhauser TW, Ahner BA. Overexpression of native ORANGE (OR) and OR mutant protein in Chlamydomonas reinhardtii enhances carotenoid and ABA accumulation and increases resistance to abiotic stress. Metab Eng 2021; 68:94-105. [PMID: 34571147 DOI: 10.1016/j.ymben.2021.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 09/01/2021] [Accepted: 09/18/2021] [Indexed: 01/13/2023]
Abstract
The carotenoid content of plants can be increased by overexpression of the regulatory protein ORANGE (OR) or a mutant variant known as the 'golden SNP'. In the present study, a strong light-inducible promoter was used to overexpress either wild type CrOR (CrORWT) or a mutated CrOR (CrORHis) containing a single histidine substitution for a conserved arginine in the microalgae Chlamydomonas reinhardtii. Overexpression of CrORWT and CrORHis roughly doubled and tripled, respectively, the accumulation of several different carotenoids, including β-carotene, α-carotene, lutein and violaxanthin in C. reinhardtii and upregulated the transcript abundance of nearly all relevant carotenoid biosynthetic genes. In addition, microscopic analysis revealed that the OR transgenic cells were larger than control cells and exhibited larger chloroplasts with a disrupted morphology. Moreover, both CrORWT and CrORHis cell lines showed increased tolerance to salt and paraquat stress. The levels of endogenous phytohormone abscisic acid (ABA) were also increased in CrORWT and CrORHis lines, not only in normal growth conditions but also in growth medium supplemented with salt and paraquat. Together these results offer new insights regarding the role of the native OR protein in regulating carotenoid biosynthesis and the accumulation of several carotenoids in microalgae, and establish a new functional role for OR to modulate oxidative stress tolerance potentially mediated by ABA.
Collapse
Affiliation(s)
- Mohammad Yazdani
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Michelle G Croen
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Tara L Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Beth A Ahner
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
28
|
Sun T, Zhu Q, Wei Z, Owens LA, Fish T, Kim H, Thannhauser TW, Cahoon EB, Li L. Multi-strategy engineering greatly enhances provitamin A carotenoid accumulation and stability in Arabidopsis seeds. ABIOTECH 2021; 2:191-214. [PMID: 36303886 PMCID: PMC9590580 DOI: 10.1007/s42994-021-00046-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023]
Abstract
Staple grains with low levels of provitamin A carotenoids contribute to the global prevalence of vitamin A deficiency and therefore are the main targets for provitamin A biofortification. However, carotenoid stability during both seed maturation and postharvest storage is a serious concern for the full benefits of carotenoid biofortified grains. In this study, we utilized Arabidopsis as a model to establish carotenoid biofortification strategies in seeds. We discovered that manipulation of carotenoid biosynthetic activity by seed-specific expression of Phytoene synthase (PSY) increases both provitamin A and total carotenoid levels but the increased carotenoids are prone to degradation during seed maturation and storage, consistent with previous studies of provitamin A biofortified grains. In contrast, stacking with Orange (OR His ), a gene that initiates chromoplast biogenesis, dramatically enhances provitamin A and total carotenoid content and stability. Up to 65- and 10-fold increases of β-carotene and total carotenoids, respectively, with provitamin A carotenoids composing over 63% were observed in the seeds containing OR His and PSY. Co-expression of Homogentisate geranylgeranyl transferase (HGGT) with OR His and PSY further increases carotenoid accumulation and stability during seed maturation and storage. Moreover, knocking-out of β-carotene hydroxylase 2 (BCH2) by CRISPR/Cas9 not only potentially facilitates β-carotene accumulation but also minimizes the negative effect of carotenoid over production on seed germination. Our findings provide new insights into various processes on carotenoid accumulation and stability in seeds and establish a multiplexed strategy to simultaneously target carotenoid biosynthesis, turnover, and stable storage for carotenoid biofortification in crop seeds. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00046-1.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA.,Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Qinlong Zhu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Ziqing Wei
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Lauren A Owens
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Hyojin Kim
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA.,Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
29
|
Challenges and Potential in Increasing Lutein Content in Microalgae. Microorganisms 2021; 9:microorganisms9051068. [PMID: 34063406 PMCID: PMC8156089 DOI: 10.3390/microorganisms9051068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
Research on enhancing lutein content in microalgae has made significant progress in recent years. However, strategies are needed to address the possible limitations of microalgae as practical lutein producers. The capacity of lutein sequestration may determine the upper limit of cellular lutein content. The preliminary estimation presented in this work suggests that the lutein sequestration capacity of the light-harvesting complex (LHC) of microalgae is most likely below 2% on the basis of dry cell weight (DCW). Due to its nature as a structural pigment, higher lutein content might interfere with the LHC in fulfilling photosynthetic functions. Storing lutein in a lipophilic environment is a mechanism for achieving high lutein content but several critical barriers must be overcome such as lutein degradation and access to lipid droplet to be stored through esterification. Understanding the mechanisms underlying lipid droplet biogenesis in chloroplasts, as well as carotenoid trafficking through chloroplast membranes and carotenoid esterification, may provide insight for new approaches to achieve high lutein contents in algae. In the meantime, building the machinery for esterification and sequestration of lutein and other hydroxyl-carotenoids in model microorganisms, such as yeast, with synthetic biology technology provides a promising option.
Collapse
|
30
|
Chayut N, Yuan H, Saar Y, Zheng Y, Sun T, Zhou X, Hermanns A, Oren E, Faigenboim A, Hui M, Fei Z, Mazourek M, Burger J, Tadmor Y, Li L. Comparative transcriptome analyses shed light on carotenoid production and plastid development in melon fruit. HORTICULTURE RESEARCH 2021; 8:112. [PMID: 33931604 PMCID: PMC8087762 DOI: 10.1038/s41438-021-00547-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/24/2021] [Accepted: 03/26/2021] [Indexed: 05/03/2023]
Abstract
Carotenoids, such as β-carotene, accumulate in chromoplasts of various fleshy fruits, awarding them with colors, aromas, and nutrients. The Orange (CmOr) gene controls β-carotene accumulation in melon fruit by posttranslationally enhancing carotenogenesis and repressing β-carotene turnover in chromoplasts. Carotenoid isomerase (CRTISO) isomerizes yellow prolycopene into red lycopene, a prerequisite for further metabolism into β-carotene. We comparatively analyzed the developing fruit transcriptomes of orange-colored melon and its two isogenic EMS-induced mutants, low-β (Cmor) and yofi (Cmcrtiso). The Cmor mutation in low-β caused a major transcriptomic change in the mature fruit. In contrast, the Cmcrtiso mutation in yofi significantly changed the transcriptome only in early fruit developmental stages. These findings indicate that melon fruit transcriptome is primarily altered by changes in carotenoid metabolic flux and plastid conversion, but minimally by carotenoid composition in the ripe fruit. Clustering of the differentially expressed genes into functional groups revealed an association between fruit carotenoid metabolic flux with the maintenance of the photosynthetic apparatus in fruit chloroplasts. Moreover, large numbers of thylakoid localized photosynthetic genes were differentially expressed in low-β. CmOR family proteins were found to physically interact with light-harvesting chlorophyll a-b binding proteins, suggesting a new role of CmOR for chloroplast maintenance in melon fruit. This study brings more insights into the cellular and metabolic processes associated with fruit carotenoid accumulation in melon fruit and reveals a new maintenance mechanism of the photosynthetic apparatus for plastid development.
Collapse
Affiliation(s)
- Noam Chayut
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Yuval Saar
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Yi Zheng
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Anna Hermanns
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Elad Oren
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Adi Faigenboim
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Maixia Hui
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Joseph Burger
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Yaakov Tadmor
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
31
|
Yuan H, Pawlowski EG, Yang Y, Sun T, Thannhauser TW, Mazourek M, Schnell D, Li L. Arabidopsis ORANGE protein regulates plastid pre-protein import through interacting with Tic proteins. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1059-1072. [PMID: 33165598 DOI: 10.1093/jxb/eraa528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/30/2020] [Indexed: 05/19/2023]
Abstract
Chloroplast-targeted proteins are actively imported into chloroplasts via the machinery spanning the double-layered membranes of chloroplasts. While the key translocons at the outer (TOC) and inner (TIC) membranes of chloroplasts are defined, proteins that interact with the core components to facilitate pre-protein import are continuously being discovered. A DnaJ-like chaperone ORANGE (OR) protein is known to regulate carotenoid biosynthesis as well as plastid biogenesis and development. In this study, we found that OR physically interacts with several Tic proteins including Tic20, Tic40, and Tic110 in the classic TIC core complex of the chloroplast import machinery. Knocking out or and its homolog or-like greatly affects the import efficiency of some photosynthetic and non-photosynthetic pre-proteins. Consistent with the direct interactions of OR with Tic proteins, the binding efficiency assay revealed that the effect of OR occurs at translocation at the inner envelope membrane (i.e. at the TIC complex). OR is able to reduce the Tic40 protein turnover rate through its chaperone activity. Moreover, OR was found to interfere with the interaction between Tic40 and Tic110, and reduces the binding of pre-proteins to Tic110 in aiding their release for translocation and processing. Our findings suggest that OR plays a new and regulatory role in stabilizing key translocons and in facilitating the late stage of plastid pre-protein translocation to regulate plastid pre-protein import.
Collapse
Affiliation(s)
- Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Emily G Pawlowski
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Danny Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
32
|
Kim SE, Lee CJ, Park SU, Lim YH, Park WS, Kim HJ, Ahn MJ, Kwak SS, Kim HS. Overexpression of the Golden SNP-Carrying Orange Gene Enhances Carotenoid Accumulation and Heat Stress Tolerance in Sweetpotato Plants. Antioxidants (Basel) 2021; 10:antiox10010051. [PMID: 33406723 PMCID: PMC7823567 DOI: 10.3390/antiox10010051] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
Carotenoids function as photosynthetic accessory pigments, antioxidants, and vitamin A precursors. We recently showed that transgenic sweetpotato calli overexpressing the mutant sweetpotato (Ipomoea batatas [L.] Lam) Orange gene (IbOr-R96H), which carries a single nucleotide polymorphism responsible for Arg to His substitution at amino acid position 96, exhibited dramatically higher carotenoid content and abiotic stress tolerance than calli overexpressing the wild-type IbOr gene (IbOr-WT). In this study, we generated transgenic sweetpotato plants overexpressing IbOr-R96H under the control of the cauliflower mosaic virus (CaMV) 35S promoter via Agrobacterium-mediated transformation. The total carotenoid contents of IbOr-R96H storage roots (light-orange flesh) and IbOr-WT storage roots (light-yellow flesh) were 5.4-19.6 and 3.2-fold higher, respectively, than those of non-transgenic (NT) storage roots (white flesh). The β-carotene content of IbOr-R96H storage roots was up to 186.2-fold higher than that of NT storage roots. In addition, IbOr-R96H plants showed greater tolerance to heat stress (47 °C) than NT and IbOr-WT plants, possibly because of higher DPPH radical scavenging activity and ABA contents. These results indicate that IbOr-R96H is a promising strategy for developing new sweetpotato cultivars with improved carotenoid contents and heat stress tolerance.
Collapse
Affiliation(s)
- So-Eun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea; (S.-E.K.); (C.-J.L.); (S.-U.P.); (Y.-H.L.)
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea
| | - Chan-Ju Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea; (S.-E.K.); (C.-J.L.); (S.-U.P.); (Y.-H.L.)
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea
| | - Sul-U Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea; (S.-E.K.); (C.-J.L.); (S.-U.P.); (Y.-H.L.)
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea
| | - Ye-Hoon Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea; (S.-E.K.); (C.-J.L.); (S.-U.P.); (Y.-H.L.)
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Korea; (W.S.P.); (H.-J.K.); (M.-J.A.)
| | - Hye-Jin Kim
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Korea; (W.S.P.); (H.-J.K.); (M.-J.A.)
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Korea; (W.S.P.); (H.-J.K.); (M.-J.A.)
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea; (S.-E.K.); (C.-J.L.); (S.-U.P.); (Y.-H.L.)
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea
- Correspondence: (S.-S.K.); (H.S.K.); Tel.: +82-42-860-4432 (S.-S.K.); +82-42-860-4464 (H.S.K.)
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea; (S.-E.K.); (C.-J.L.); (S.-U.P.); (Y.-H.L.)
- Correspondence: (S.-S.K.); (H.S.K.); Tel.: +82-42-860-4432 (S.-S.K.); +82-42-860-4464 (H.S.K.)
| |
Collapse
|
33
|
Rosero A, Granda L, Berdugo-Cely JA, Šamajová O, Šamaj J, Cerkal R. A Dual Strategy of Breeding for Drought Tolerance and Introducing Drought-Tolerant, Underutilized Crops into Production Systems to Enhance Their Resilience to Water Deficiency. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1263. [PMID: 32987964 PMCID: PMC7600178 DOI: 10.3390/plants9101263] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Water scarcity is the primary constraint on crop productivity in arid and semiarid tropical areas suffering from climate alterations; in accordance, agricultural systems have to be optimized. Several concepts and strategies should be considered to improve crop yield and quality, particularly in vulnerable regions where such environmental changes cause a risk of food insecurity. In this work, we review two strategies aiming to increase drought stress tolerance: (i) the use of natural genes that have evolved over time and are preserved in crop wild relatives and landraces for drought tolerance breeding using conventional and molecular methods and (ii) exploiting the reservoir of neglected and underutilized species to identify those that are known to be more drought-tolerant than conventional staple crops while possessing other desired agronomic and nutritive characteristics, as well as introducing them into existing cropping systems to make them more resilient to water deficiency conditions. In the past, the existence of drought tolerance genes in crop wild relatives and landraces was either unknown or difficult to exploit using traditional breeding techniques to secure potential long-term solutions. Today, with the advances in genomics and phenomics, there are a number of new tools available that facilitate the discovery of drought resistance genes in crop wild relatives and landraces and their relatively easy transfer into advanced breeding lines, thus accelerating breeding progress and creating resilient varieties that can withstand prolonged drought periods. Among those tools are marker-assisted selection (MAS), genomic selection (GS), and targeted gene editing (clustered regularly interspaced short palindromic repeat (CRISPR) technology). The integration of these two major strategies, the advances in conventional and molecular breeding for the drought tolerance of conventional staple crops, and the introduction of drought-tolerant neglected and underutilized species into existing production systems has the potential to enhance the resilience of agricultural production under conditions of water scarcity.
Collapse
Affiliation(s)
- Amparo Rosero
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería, 250047 Cereté, Colombia;
| | - Leiter Granda
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.G.); (R.C.)
| | - Jhon A. Berdugo-Cely
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería, 250047 Cereté, Colombia;
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (O.Š.); (J.Š.)
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (O.Š.); (J.Š.)
| | - Radim Cerkal
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.G.); (R.C.)
| |
Collapse
|
34
|
Chettry U, Chrungoo NK. A multifocal approach towards understanding the complexities of carotenoid biosynthesis and accumulation in rice grains. Brief Funct Genomics 2020; 19:324-335. [PMID: 32240289 DOI: 10.1093/bfgp/elaa007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are mostly C40 terpenoids that participate in several important functions in plants including photosynthesis, responses to various forms of stress, signal transduction and photoprotection. While the antioxidant potential of carotenoids is of particular importance for human health, equally important is the role of β-carotene as the precursor for vitamin A in the human diet. Rice, which contributes upto 40% of dietary energy for mankind, contains very low level of β-carotene, thereby making it an important crop for enhancing β-carotene accumulation in its grains and consequently targeting vitamin A deficiency. Biosynthesis of carotenoids in the endosperm of white rice is blocked at the first enzymatic step wherein geranylgeranyl diphosphate is converted to phytoene by the action of phytoene synthase (PSY). Strategies aimed at enhancing β-carotene levels in the endosperm of white rice identified Narcissus pseudonarcissus (npPSY) and bacterial CRT1 as the regulators of the carotenoid biosynthetic pathway in rice. Besides transcriptional regulation of PSY, posttranscriptional regulation of PSY expression by OR gene, molecular synergism between ε-LCY and β-LCY and epigenetic control of CRITSO through SET DOMAIN containing protein appear to be the other regulatory nodes which regulate carotenoid biosynthesis and accumulation in rice grains. In this review, we elucidate a comprehensive and deeper understanding of the regulatory mechanisms of carotenoid metabolism in crops that will enable us to identify an effective tool to alleviate carotenoid content in rice grains.
Collapse
Affiliation(s)
- Upasna Chettry
- Department of Botany, North-Eastern Hill University, Shillong 793022, India
| | - Nikhil K Chrungoo
- Department of Botany, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
35
|
Arias D, Maldonado J, Silva H, Stange C. A de novo transcriptome analysis revealed that photomorphogenic genes are required for carotenoid synthesis in the dark-grown carrot taproot. Mol Genet Genomics 2020; 295:1379-1392. [PMID: 32656704 DOI: 10.1007/s00438-020-01707-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
Carotenoids are terpenoid pigments synthesized by all photosynthetic and some non-photosynthetic organisms. In plants, these lipophilic compounds are involved in photosynthesis, photoprotection, and phytohormone synthesis. In plants, carotenoid biosynthesis is induced by several environmental factors such as light including photoreceptors, such as phytochromes (PHYs) and negatively regulated by phytochrome interacting factors (PIFs). Daucus carota (carrot) is one of the few plant species that synthesize and accumulate carotenoids in the storage root that grows in darkness. Contrary to other plants, light inhibits secondary root growth and carotenoid accumulation suggesting the existence of new mechanisms repressed by light that regulate both processes. To identify genes induced by dark and repressed by light that regulate carotenoid synthesis and carrot root development, in this work an RNA-Seq analysis was performed from dark- and light-grown carrot roots. Using this high-throughput sequencing methodology, a de novo transcriptome model with 63,164 contigs was obtained, from which 18,488 were differentially expressed (DEG) between the two experimental conditions. Interestingly, light-regulated genes are preferably expressed in dark-grown roots. Enrichment analysis of GO terms with DEGs genes, validation of the transcriptome model and DEG analysis through qPCR allow us to hypothesize that genes involved in photomorphogenesis and light perception such as PHYA, PHYB, PIF3, PAR1, CRY2, FYH3, FAR1 and COP1 participate in the synthesis of carotenoids and carrot storage root development.
Collapse
Affiliation(s)
- Daniela Arias
- Facultad de Ciencias, Centro de Biología Molecular Vegetal, Universidad de Chile, Las Palmeras, 3425, Ñuñoa, Santiago, Chile
| | - Jonathan Maldonado
- Laboratorio de Genómica Funcional & Bioinformática, Facultad de Ciencias Agronómicas, Universidad de Chile, Av. Santa Rosa 11315, 8820808, La Pintana, Santiago, Chile
| | - Herman Silva
- Laboratorio de Genómica Funcional & Bioinformática, Facultad de Ciencias Agronómicas, Universidad de Chile, Av. Santa Rosa 11315, 8820808, La Pintana, Santiago, Chile
| | - Claudia Stange
- Facultad de Ciencias, Centro de Biología Molecular Vegetal, Universidad de Chile, Las Palmeras, 3425, Ñuñoa, Santiago, Chile.
| |
Collapse
|
36
|
Tang Y, Gao CC, Gao Y, Yang Y, Shi B, Yu JL, Lyu C, Sun BF, Wang HL, Xu Y, Yang YG, Chong K. OsNSUN2-Mediated 5-Methylcytosine mRNA Modification Enhances Rice Adaptation to High Temperature. Dev Cell 2020; 53:272-286.e7. [DOI: 10.1016/j.devcel.2020.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/20/2020] [Accepted: 03/11/2020] [Indexed: 01/08/2023]
|
37
|
Hu S, Ding Y, Zhu C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:375. [PMID: 32300353 PMCID: PMC7142257 DOI: 10.3389/fpls.2020.00375] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Increased temperatures caused by global warming threaten agricultural production, as warmer conditions can inhibit plant growth and development or even destroy crops in extreme circumstances. Extensive research over the past several decades has revealed that chloroplasts, the photosynthetic organelles of plants, are highly sensitive to heat stress, which affects a variety of photosynthetic processes including chlorophyll biosynthesis, photochemical reactions, electron transport, and CO2 assimilation. Important mechanisms by which plant cells respond to heat stress to protect these photosynthetic organelles have been identified and analyzed. More recent studies have made it clear that chloroplasts play an important role in inducing the expression of nuclear heat-response genes during the heat stress response. In this review, we summarize these important advances in plant-based research and discuss how the sensitivity, responses, and signaling roles of chloroplasts contribute to plant heat sensitivity and tolerance.
Collapse
Affiliation(s)
| | | | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
38
|
Differential interaction of Or proteins with the PSY enzymes in saffron. Sci Rep 2020; 10:552. [PMID: 31953512 PMCID: PMC6969158 DOI: 10.1038/s41598-020-57480-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/18/2019] [Indexed: 01/11/2023] Open
Abstract
Colored apocarotenoids accumulate at high concentrations in few plant species, where display a role in attraction of pollinators and seed dispersers. Among these apocarotenoids, crocins accumulate at high concentrations in the stigma of saffron and are responsible for the organoleptic and medicinal properties of this spice. Phytoene synthase and Orange protein are key for carotenoid biosynthesis and accumulation. We previously isolated four phytoene synthase genes from saffron with differential roles in carotenoid and apocarotenoid biosynthesis. However, the implications of Orange genes in the regulation of apocarotenoid accumulation are unknown. Here, we have identified two Orange genes from saffron, with different expression patterns. CsOr-a was mainly expressed in vegetative tissues and was induced by light and repressed by heat stress. Both CsOr-a and CsOr-b were expressed in stigmas but showed a different profile during the development of this tissue. The interactions of CsOr-a and CsOr-b were tested with all the four phytoene synthase proteins from saffron and with CsCCD2. None interactions were detected with CCD2 neither with the phytoene synthase 2, involved in apocarotenoid biosynthesis in saffron. The obtained results provide evidence of different mechanisms regulating the phytoene synthase enzymes in saffron by Orange for carotenoid and apocarotenoid accumulation in saffron.
Collapse
|
39
|
Tan H, Wang X, Fei Z, Li H, Tadmor Y, Mazourek M, Li L. Genetic mapping of green curd gene Gr in cauliflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:353-364. [PMID: 31676958 DOI: 10.1007/s00122-019-03466-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Gr5.1 is the major locus for cauliflower green curd color and mapped to an interval of 236 Kbp with four most likely candidate genes. Cauliflower with colored curd enhances not only the visual appeal but also the nutritional value of the crop. Green cauliflower results from ectopic development of chloroplasts in the normal white curd. However, the underlying genetic basis is unknown. In this study, we employed QTL-seq analysis to identify the loci that were associated with green curd phenotype in cauliflower. A F2 population was generated following a cross between a white curd (Stovepipe) and a green curd (ACX800) cauliflower plants. By whole-genome resequencing and SNP analysis of green and white F2 bulks, two QTLs were detected on chromosomes 5 (Gr5.1) and 7 (Gr7.1). Validation by traditional genetic mapping with CAPS markers suggested that Gr5.1 represented a major QTL, whereas Gr7.1 had a minor effect. Subsequent high-resolution mapping of Gr5.1 in the second large F2 population with additional CAPS markers narrowed down the target region to a genetic and physical distance of 0.3 cM and 236 Kbp, respectively. This region contained 35 genes with four of them representing the best candidates for the green curd phenotype in cauliflower. They are LOC106295953, LOC106343833, LOC106345143, and LOC106295954, which encode UMP kinase, DEAD-box RNA helicase 51-like, glutathione S-transferase T3-like, and protein MKS1, respectively. These findings lay a solid foundation for the isolation of the Gr gene and provide a potential for marker-assisted selection of the green curd trait in cauliflower breeding. The eventual isolation of Gr will also facilitate better understanding of chloroplast biogenesis and development in plants.
Collapse
Affiliation(s)
- Huaqiang Tan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- College of Horticulture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xin Wang
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yaakov Tadmor
- Plant Science Institute, Israeli Agricultural Research Organization, Newe Yaar Research Center, P.O. Box 1021, 30095, Ramat Yishay, Israel
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
40
|
Abstract
Carotenoids are isoprenoid compounds synthesized de novo in all photosynthetic organisms as well as in some nonphotosynthetic bacteria and fungi. In plants, carotenoids are essential for light harvesting and photoprotection. They contribute to the vivid color found in many plant organs. The cleavage of carotenoids produces small molecules (apocarotenoids) that serve as aroma compounds, as well as phytohormones and signals to affect plant growth and development. Since carotenoids provide valuable nutrition and health benefits for humans, understanding of carotenoid biosynthesis, catabolism and storage is important for biofortification of crops with improved nutritional quality. This chapter primarily introduces our current knowledge about carotenoid biosynthesis and degradation pathways as well as carotenoid storage in plants.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Yaakov Tadmor
- Plant Science Institute, Israeli Agricultural Research Organization, Newe Yaar Research Center, Ramat Yishai, Israel
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
41
|
Sun T, Li L. Toward the 'golden' era: The status in uncovering the regulatory control of carotenoid accumulation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110331. [PMID: 31779888 DOI: 10.1016/j.plantsci.2019.110331] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 05/17/2023]
Abstract
Carotenoids are essential pigments to plants and important natural products to humans. Carotenoids as both primary and specialized metabolites fulfill multifaceted functions in plants. As such, carotenoid accumulation (a net process of biosynthesis, degradation and sequestration) is subjected to complicated regulation throughout plant life cycle in response to developmental and environmental signals. Investigation of transcriptional regulation of carotenoid metabolic genes remains the focus in understanding the regulatory control of carotenoid accumulation. While discovery of bona fide carotenoid metabolic regulators is still challenging, the recent progress of identification of various transcription factors and regulators helps us to construct hierarchical regulatory network of carotenoid accumulation. The elucidation of carotenoid regulatory mechanisms at protein level and in chromoplast provides some insights into post-translational regulation of carotenogenic enzymes and carotenoid sequestration in plastid sink. This review briefly describes the pathways and main flux-controlling steps for carotenoid accumulation in plants. It highlights our recent understanding of the regulatory mechanisms underlying carotenoid accumulation at both transcriptional and post-translational levels. It also discusses the opportunities to expand toolbox for further shedding light upon the intrinsic regulation of carotenoid accumulation in plants.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Li Li
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
42
|
Endo A, Saika H, Takemura M, Misawa N, Toki S. A novel approach to carotenoid accumulation in rice callus by mimicking the cauliflower Orange mutation via genome editing. RICE (NEW YORK, N.Y.) 2019; 12:81. [PMID: 31713832 PMCID: PMC6851270 DOI: 10.1186/s12284-019-0345-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/29/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND β-carotene (provitamin A) is an important target for biofortification of crops as a potential solution to the problem of vitamin A deficiency that is prevalent in developing countries. A previous report showed that dominant expression of splicing variants in the Orange (Or) gene causes β-carotene accumulation in cauliflower curd. In this study, we focused on a putative orthologue of the cauliflower or gene in rice, Osor, and attempt to accumulate β-carotene in rice callus by modification of the Osor gene via genome editing using CRISPR/Cas9. FINDINGS CRISPR/Cas9 vectors for the Osor gene were constructed and transformed into rice calli. Some transformed calli showed orange color due to β-carotene hyper-accumulation. Molecular analyses suggest that orange-colored calli are due to an abundance of in-frame aberrant Osor transcripts, whereas out-of-frame mutations were not associated with orange color. CONCLUSIONS We demonstrate that directed gene modification of the Osor gene via CRISPR/Cas9-mediated genome editing results in β-carotene fortification in rice calli. To date, golden rice, which accumulates β-carotene in rice endosperm, has been developed by conventional transgenic approaches. Our results suggest an alternative approach to enhancing β-carotene accumulation in crops.
Collapse
Affiliation(s)
- Akira Endo
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 Japan
- Present Address of AE: Biotechnology Research Laboratories, KANEKA CORPORATION, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688 Japan
| | - Hiroaki Saika
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 Japan
| | - Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836 Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836 Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Yokohama, 244-0813 Japan
| |
Collapse
|
43
|
Kim SE, Kim HS, Wang Z, Ke Q, Lee CJ, Park SU, Lim YH, Park WS, Ahn MJ, Kwak SS. A single amino acid change at position 96 (Arg to His) of the sweetpotato Orange protein leads to carotenoid overaccumulation. PLANT CELL REPORTS 2019; 38:1393-1402. [PMID: 31346717 DOI: 10.1007/s00299-019-02448-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
IbOr-R96H resulted in carotenoid overaccumulation and enhanced abiotic stress tolerance in transgenic sweetpotato calli. The Orange (Or) protein is involved in the regulation of carotenoid accumulation and tolerance to various environmental stresses. Sweetpotato IbOr, with strong holdase chaperone activity, protects a key enzyme, phytoene synthase (PSY), in the carotenoid biosynthetic pathway and stabilizes a photosynthetic component, oxygen-evolving enhancer protein 2-1 (PsbP), under heat and oxidative stresses in plants. Previous studies of various plant species demonstrated that a single-nucleotide polymorphism (SNP) from Arg to His in Or protein promote a high level of carotenoid accumulation. Here, we showed that the substitution of a single amino acid at position 96 (Arg to His) of wild-type IbOr (referred to as IbOr-R96H) dramatically increases carotenoid accumulation. Sweetpotato calli overexpressing IbOr-WT or IbOr-Ins exhibited 1.8- or 4.3-fold higher carotenoid contents than those of the white-fleshed sweetpotato Yulmi (Ym) calli, and IbOr-R96H overexpression substantially increased carotenoid accumulation by up to 23-fold in sweetpotato calli. In particular, IbOr-R96H transgenic calli contained 88.4-fold higher levels of β-carotene than those in Ym calli. Expression levels of carotenogenesis-related genes were significantly increased in IbOr-R96H transgenic calli. Interestingly, transgenic calli overexpressing IbOr-R96H showed increased tolerance to salt and heat stresses, with similar levels of malondialdehyde to those in calli expressing IbOr-WT or IbOr-Ins. These results suggested that IbOr-R96H is a useful target for the generation of efficient industrial plants, including sweetpotato, to cope with growing food demand and climate change by enabling sustainable agriculture on marginal lands.
Collapse
Affiliation(s)
- So-Eun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Korea
| | - Zhi Wang
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qingbo Ke
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Chan-Ju Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Korea
| | - Sul-U Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Korea
| | - Ye-Hoon Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju, 52828, Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju, 52828, Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Korea.
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Korea.
| |
Collapse
|
44
|
Rodriguez-Concepcion M, D'Andrea L, Pulido P. Control of plastidial metabolism by the Clp protease complex. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2049-2058. [PMID: 30576524 DOI: 10.1093/jxb/ery441] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/29/2018] [Indexed: 05/23/2023]
Abstract
Plant metabolism is strongly dependent on plastids. Besides hosting the photosynthetic machinery, these endosymbiotic organelles synthesize starch, fatty acids, amino acids, nucleotides, tetrapyrroles, and isoprenoids. Virtually all enzymes involved in plastid-localized metabolic pathways are encoded by the nuclear genome and imported into plastids. Once there, protein quality control systems ensure proper folding of the mature forms and remove irreversibly damaged proteins. The Clp protease is the main machinery for protein degradation in the plastid stroma. Recent work has unveiled an increasing number of client proteins of this proteolytic complex in plants. Notably, a substantial proportion of these substrates are required for normal chloroplast metabolism, including enzymes involved in the production of essential tetrapyrroles and isoprenoids such as chlorophylls and carotenoids. The Clp protease complex acts in coordination with nuclear-encoded plastidial chaperones for the control of both enzyme levels and proper folding (i.e. activity). This communication involves a retrograde signaling pathway, similarly to the unfolded protein response previously characterized in mitochondria and endoplasmic reticulum. Coordinated Clp protease and chaperone activities appear to further influence other plastid processes, such as the differentiation of chloroplasts into carotenoid-accumulating chromoplasts during fruit ripening.
Collapse
Affiliation(s)
| | - Lucio D'Andrea
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Pablo Pulido
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
45
|
Yazdani M, Sun Z, Yuan H, Zeng S, Thannhauser TW, Vrebalov J, Ma Q, Xu Y, Fei Z, Van Eck J, Tian S, Tadmor Y, Giovannoni JJ, Li L. Ectopic expression of ORANGE promotes carotenoid accumulation and fruit development in tomato. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:33-49. [PMID: 29729208 PMCID: PMC6330546 DOI: 10.1111/pbi.12945] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/04/2018] [Accepted: 04/28/2018] [Indexed: 05/10/2023]
Abstract
Carotenoids are critically important to plants and humans. The ORANGE (OR) gene is a key regulator for carotenoid accumulation, but its physiological roles in crops remain elusive. In this study, we generated transgenic tomato ectopically overexpressing the Arabidopsis wild-type OR (AtORWT ) and a 'golden SNP'-containing OR (AtORHis ). We found that AtORHis initiated chromoplast formation in very young fruit and stimulated carotenoid accumulation at all fruit developmental stages, uncoupled from other ripening activities. The elevated levels of carotenoids in the AtOR lines were distributed in the same subplastidial fractions as in wild-type tomato, indicating an adaptive response of plastids to sequester the increased carotenoids. Microscopic analysis revealed that the plastid sizes were increased in both AtORWT and AtORHis lines at early fruit developmental stages. Moreover, AtOR overexpression promoted early flowering, fruit set and seed production. Ethylene production and the expression of ripening-associated genes were also significantly increased in the AtOR transgenic fruit at ripening stages. RNA-Seq transcriptomic profiling highlighted the primary effects of OR overexpression on the genes in the processes related to RNA, protein and signalling in tomato fruit. Taken together, these results expand our understanding of OR in mediating carotenoid accumulation in plants and suggest additional roles of OR in affecting plastid size as well as flower and fruit development, thus making OR a target gene not only for nutritional biofortification of agricultural products but also for alteration of horticultural traits.
Collapse
Affiliation(s)
- Mohammad Yazdani
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Zhaoxia Sun
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- College of AgricultureInstitute of Agricultural BioengineeringShanxi Agricultural UniversityTaiguShanxiChina
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Shaohua Zeng
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Guangdong Provincial Key Laboratory of Applied BotanySouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | | | | | - Qiyue Ma
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Yimin Xu
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Zhangjun Fei
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Joyce Van Eck
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Shiping Tian
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Yaakov Tadmor
- Plant Science InstituteIsraeli Agricultural Research OrganizationNewe Yaar Research CenterRamat YishaiIsrael
| | - James J. Giovannoni
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Li Li
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| |
Collapse
|
46
|
Ampomah‐Dwamena C, Thrimawithana AH, Dejnoprat S, Lewis D, Espley RV, Allan AC. A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. THE NEW PHYTOLOGIST 2019; 221:309-325. [PMID: 30067292 PMCID: PMC6585760 DOI: 10.1111/nph.15362] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/11/2018] [Indexed: 05/10/2023]
Abstract
MYB transcription factors (TFs) regulate diverse plant developmental processes and understanding their roles in controlling pigment accumulation in fruit is important for developing new cultivars. In this study, we characterised kiwifruit TFMYB7, which was found to activate the promoter of the kiwifruit lycopene beta-cyclase (AdLCY-β) gene that plays a key role in the carotenoid biosynthetic pathway. To determine the role of MYB7, we analysed gene expression and metabolite profiles in Actinidia fruit which show different pigment profiles. The impact of MYB7 on metabolic biosynthetic pathways was then evaluated by overexpression in Nicotiana benthamiana followed by metabolite and gene expression analysis of the transformants. MYB7 was expressed in fruit that accumulated carotenoid and Chl pigments with high transcript levels associated with both pigments. Constitutive over-expression of MYB7, through transient or stable transformation of N. benthamiana, altered Chl and carotenoid pigment levels. MYB7 overexpression was associated with transcriptional activation of certain key genes involved in carotenoid biosynthesis, Chl biosynthesis, and other processes such as chloroplast and thylakoid membrane organization. Our results suggest that MYB7 plays a role in modulating carotenoid and Chl pigment accumulation in tissues through transcriptional activation of metabolic pathway genes.
Collapse
Affiliation(s)
- Charles Ampomah‐Dwamena
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
| | - Amali H. Thrimawithana
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
| | - Supinya Dejnoprat
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
| | - David Lewis
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 11600Palmerston North4442New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019AucklandNew Zealand
| |
Collapse
|
47
|
D’Andrea L, Rodriguez-Concepcion M. Manipulation of Plastidial Protein Quality Control Components as a New Strategy to Improve Carotenoid Contents in Tomato Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1071. [PMID: 31543891 PMCID: PMC6739439 DOI: 10.3389/fpls.2019.01071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/07/2019] [Indexed: 05/19/2023]
Abstract
Carotenoids such as β-carotene (pro-vitamin A) and lycopene accumulate at high levels during tomato (Solanum lycopersicum L.) fruit ripening, contributing to the characteristic color and nutritional quality of ripe tomatoes. Besides their role as pigments in chromoplast-harboring tissues such as ripe fruits, carotenoids are important for photosynthesis and photoprotection in the chloroplasts of photosynthetic tissues. Interestingly, recent work in Arabidopsis thaliana (L.) Heynh. has unveiled a critical role of chloroplast protein quality control components in the regulation of carotenoid biosynthesis. The accumulation (i.e. degradation rate) and activity (i.e. folding status) of phytoene synthase (PSY) and other Arabidopsis biosynthetic enzymes is modulated by chaperones such as Orange (OR) and Hsp70 in coordination with the stromal Clp protease complex. OR and Clp protease were recently shown to also influence PSY stability and carotenoid accumulation in tomato. Here we show how manipulating the levels of plastid-localized Hsp70 in transgenic tomato plants can also impact the accumulation of carotenoids in ripe fruit. The resulting carotenoid profile and chromoplast ultrastructure, however, are different from those obtained in tomatoes from transgenic lines with increased OR activity. These results suggest that different chaperone families target different processes related to carotenoid metabolism and accumulation during tomato ripening. We further discuss other possible targets for future manipulation in tomato based on the knowledge acquired in Arabidopsis.
Collapse
Affiliation(s)
- Lucio D’Andrea
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- *Correspondence: Manuel Rodriguez-Concepcion,
| |
Collapse
|
48
|
Osorio CE. The Role of Orange Gene in Carotenoid Accumulation: Manipulating Chromoplasts Toward a Colored Future. FRONTIERS IN PLANT SCIENCE 2019; 10:1235. [PMID: 31636649 PMCID: PMC6788462 DOI: 10.3389/fpls.2019.01235] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/05/2019] [Indexed: 05/11/2023]
Abstract
Carotenoids are isoprenoid pigments synthesized in plants, algae, and photosynthetic bacteria and fungus. Their role is essential in light capture, photoprotection, pollinator attraction, and phytohormone production. Furthermore, they can regulate plant development when they are processed as small signaling molecules. Due to their importance for human health, as promoters of the immune system and antioxidant activity, carotenoids have been used in the pharmaceutical, food, and nutraceutical industries. Regulation of carotenoid synthesis and accumulation has been extensively studied. Excellent work has been done unraveling the mode of action of phytoene synthase (PSY), a rate-limiting enzyme of carotenoid biosynthesis pathway, in model species and staple crops. Lately, interest has been turned to Orange protein and its interaction with PSY during carotenoid biosynthesis. Discovered as a dominant mutation in Brassica oleracea, Orange protein regulates carotenoid accumulation by posttranscriptionally regulating PSY, promoting the formation of carotenoid-sequestering structures, and also preventing carotenoid degradation. Furthermore, Orange protein contributes to homeostasis regulation, improving plant tolerance to abiotic stress. In this mini review, the focus is made on recent evidence that elucidates Orange protein mode of action and expression in different plant species. Additionally, strategies are proposed to modify Orange gene by utilization of genome editing techniques. A better understanding of carotenoid biosynthesis and accumulation will lead to a positive impact on the development of healthy food for a growing population.
Collapse
|
49
|
Ahrazem O, Diretto G, Argandoña Picazo J, Fiore A, Rubio-Moraga Á, Rial C, Varela RM, Macías FA, Castillo R, Romano E, Gómez-Gómez L. The Specialized Roles in Carotenogenesis and Apocarotenogenesis of the Phytoene Synthase Gene Family in Saffron. FRONTIERS IN PLANT SCIENCE 2019; 10:249. [PMID: 30886624 PMCID: PMC6409354 DOI: 10.3389/fpls.2019.00249] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/14/2019] [Indexed: 05/11/2023]
Abstract
Crocus sativus stigmas are the main source of crocins, which are glucosylated apocarotenoids derived from zeaxanthin cleavage that give saffron its red color. Phytoene synthase (PSY) mediates the first committed step in carotenoid biosynthesis in plants. Four PSY genes encoding functional enzymes were isolated from saffron. All the proteins were localized in plastids, but the expression patterns of each gene, CsPSY1a, CsPSY1b, CsPSY2, and CsPSY3, in different saffron tissues and during the development of the stigma showed different tissue specialization. The CsPSY2 transcript was primarily detected in the stigmas where it activates and stimulates the accumulation of crocins, while its expression was very low in other tissues. In contrast, CsPSY1a and CsPSY1b were mainly expressed in the leaves, but only CsPSY1b showed stress-light regulation. Interestingly, CsPSY1b showed differential expression of two alternative splice variants, which differ in the intron retention at their 5' UTRs, resulting in a reduction in their expression levels. In addition, the CsPSY1a and CsPSY1b transcripts, together with the CsPSY3 transcript, were induced in roots under different stress conditions. The CsPSY3 expression was high in the root tip, and its expression was associated with mycorrhizal colonization and strigolactone production. CsPSY3 formed a separate branch to the stress-specific Poaceae homologs but was closely related to the dicot PSY3 enzymes.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, Italy
| | - Javier Argandoña Picazo
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Alessia Fiore
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, Italy
| | - Ángela Rubio-Moraga
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Carlos Rial
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cádiz, Cádiz, Spain
| | - Rosa M. Varela
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cádiz, Cádiz, Spain
| | - Francisco A. Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cádiz, Cádiz, Spain
| | | | - Elena Romano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Lourdes Gómez-Gómez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Albacete, Spain
- *Correspondence: Lourdes Gómez-Gómez,
| |
Collapse
|
50
|
Welsch R, Zhou X, Koschmieder J, Schlossarek T, Yuan H, Sun T, Li L. Characterization of Cauliflower OR Mutant Variants. FRONTIERS IN PLANT SCIENCE 2019; 10:1716. [PMID: 32038686 PMCID: PMC6985574 DOI: 10.3389/fpls.2019.01716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/05/2019] [Indexed: 05/19/2023]
Abstract
Cauliflower Orange (Or) mutant is characterized by high level of β-carotene in its curd. Or mutation affects the OR protein that was shown to be involved in the posttranslational control of phytoene synthase (PSY), a major rate-limiting enzyme of carotenoid biosynthesis, and in maintaining PSY proteostasis with the plastid Clp protease system. A transposon integration into the cauliflower wild-type Or gene (BoOR-wt) results in the formation of three differently spliced transcripts. One of them is characterized by insertion (BoOR-Ins), while the other two have exon-skipping deletions (BoOR-Del and BoOR-LD). We investigated the properties of individual BoOR variants and examined their effects on carotenoid accumulation. Using the yeast split-ubiquitin system, we showed that all variants were able to form OR dimers except BoOR-LD. The deletion in BoOR-LD eliminated the first of two adjacent transmembrane domains and was predicted to result in a misplacement of the C-terminal zinc finger domain to the opposite side of membrane, thus preventing OR dimerization. As interaction with PSY is mediated by the N-terminus of BoOR, which remains unaffected after splicing, all BoOR variants including BoOR-LD maintained interactions with PSY. Expression of individual BoOR mutant variants in Arabidopsis revealed that their protein stability varied greatly. While expression of BoOR-Del and BoOR-Ins resulted in increased BoOR protein levels as BoOR-wt, minimal amounts of BoOR-LD protein accumulated. Carotenoid accumulation showed correlated changes in calli of Arabidopsis expressing these variants. Furthermore, we found that OR also functions in E. coli to increase the proportion of native, enzymatically active PSY from plants upon co-expression, but not of bacterial phytoene synthase CrtB. Taken together, these results suggest that OR dimerization is required for OR stability in planta and that the simultaneous presence of PSY interaction-domains in both OR and PSY proteins is required for the holdase function of OR. The more pronounced effect of simultaneous expression of all BoOR variants in cauliflower Or mutant compared with individual overexpression on carotenoid accumulation suggests an enhanced activity with possible formation of various BoOR heterodimers.
Collapse
Affiliation(s)
- Ralf Welsch
- Faculty of Biology II, University of Freiburg, Freiburg, Germany
- *Correspondence: Ralf Welsch, ; Li Li,
| | - Xiangjun Zhou
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | | | - Tim Schlossarek
- Faculty of Biology II, University of Freiburg, Freiburg, Germany
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- *Correspondence: Ralf Welsch, ; Li Li,
| |
Collapse
|