1
|
Wu J, Tang J, Huang D, Wang Y, Zhou E, Ru Q, Xu G, Chen L, Wu Y. Study on the comorbid mechanisms of sarcopenia and late-life depression. Behav Brain Res 2025; 485:115538. [PMID: 40122287 DOI: 10.1016/j.bbr.2025.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The increasing global aging population has brought greater focus to age-related diseases, particularly muscle-brain comorbidities such as sarcopenia and late-life depression. Sarcopenia, defined by the gradual loss of muscle mass and function, is notably prevalent among older individuals, while late-life depression profoundly affects their mental health and overall well-being. Epidemiological evidence suggests a high co-occurrence of these two conditions, although the precise biological mechanisms linking them remain inadequately understood. This review synthesizes the existing body of literature on sarcopenia and late-life depression, examining their definitions, prevalence, clinical presentations, and available treatments. The goal is to clarify the potential connections between these comorbidities and offer a theoretical framework for the development of future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jiale Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Jun Tang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Di Huang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yu Wang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Enyuan Zhou
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
2
|
Mo X, Cheng R, Shen L, Sun Y, Wang P, Jiang G, Wen L, Li X, Peng X, Liao Y, He R, Yan H, Liu L. High-fat diet induces sarcopenic obesity in natural aging rats through the gut-trimethylamine N-oxide-muscle axis. J Adv Res 2025; 70:405-422. [PMID: 38744403 PMCID: PMC11976414 DOI: 10.1016/j.jare.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION The lack of suitable animal models for sarcopenic obesity (SO) limits in-depth research into the disease. Emerging studies have demonstrated that gut dysbiosis is involved in the development of SO. As the importance of microbial metabolites is starting to unveil, it is necessary to comprehend the specific metabolites associated with gut microbiota and SO. OBJECTIVES We aimed to investigate whether high-fat diet (HFD) causes SO in natural aging animal models and specific microbial metabolites that are involved in linking HFD and SO. METHODS Young rats received HFD or control diet for 80 weeks, and obesity-related metabolic disorders and sarcopenia were measured. 16S rRNA sequencing and non-targeted and targeted metabolomics methods were used to detect fecal gut microbiota and serum metabolites. Gut barrier function was evaluated by intestinal barrier integrity and intestinal permeability. Trimethylamine N-oxide (TMAO) treatment was further conducted for verification. RESULTS HFD resulted in body weight gain, dyslipidemia, impaired glucose tolerance, insulin resistance, and systemic inflammation in natural aging rats. HFD also caused decreases in muscle mass, strength, function, and fiber cross-sectional area and increase in muscle fatty infiltration in natural aging rats. 16S rRNA sequencing and nontargeted and targeted metabolomics analysis indicated that HFD contributed to gut dysbiosis, mainly characterized by increases in deleterious bacteria and TMAO. HFD destroyed intestinal barrier integrity and increased intestinal permeability, as evaluated by reducing levels of colonic mucin-2, tight junction proteins, goblet cells and elevating serum level of fluorescein isothiocyanate-dextran 4. Correlation analysis showed a positive association between TMAO and SO. In addition, TMAO treatment aggravated the development of SO in HFD-fed aged rats through regulating the ROS-AKT/mTOR signaling pathway. CONCLUSION HFD leads to SO in natural aging rats, partially through the gut-microbiota-TMAO-muscle axis.
Collapse
Affiliation(s)
- Xiaoxing Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Ruijie Cheng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Lihui Shen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yunhong Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Guanhua Jiang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Lin Wen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Ruikun He
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
3
|
Zhu J, Peng F, Yang H, Luo J, Zhang L, Chen X, Liao H, Lei H, Liu S, Yang T, Luo G, Chen G, Zhao H. Probiotics and muscle health: the impact of Lactobacillus on sarcopenia through the gut-muscle axis. Front Microbiol 2025; 16:1559119. [PMID: 40160272 PMCID: PMC11952772 DOI: 10.3389/fmicb.2025.1559119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Sarcopenia refers to the decline in skeletal muscle mass and function. Due to its increased mortality rate and severe disability, the clinical importance of sarcopenia is becoming increasingly prominent. Although the exact cause of sarcopenia is not fully understood, the gut microbiota (GM) plays a crucial role in the pathogenesis of sarcopenia, and increasing evidence suggests that gut dysbiosis may be associated with disease development. In the past few decades, the use of probiotics has surged, few studies have explored their impact on sarcopenia prevention and treatment. Lactobacillus probiotics are commonly used for gut health and immune support, but their mechanism in sarcopenia via the gut-muscle axis remains uncertain. This review highlights the treatment challenges, GM's role in sarcopenia, and the potential of Lactobacillus as an adjunct therapy. In addition, we also discuss the possible mechanisms by which Lactobacillus affect muscle function, such as alleviating inflammatory states, clearing excessive reactive oxygen species (ROS), improving skeletal muscle metabolism, enhancing intestinal barrier function and modulating the gut microbiota and its metabolites. These mechanisms may collectively contribute to the preservation of muscle mass and function, offering a promising avenue for advancing microbial therapies for sarcopenia.
Collapse
Affiliation(s)
- Jingjun Zhu
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fei Peng
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Huixin Yang
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| | - Jing Luo
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Zhang
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaolong Chen
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Huazhi Liao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hao Lei
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuai Liu
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Tingqian Yang
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guanghua Luo
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guodong Chen
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Smith HE, Abughazaleh N, Seerattan RA, Syed F, Young D, Dufour A, Hart DA, Reimer RA, Herzog W. Sex-specific response of intramuscular fat to diet-induced obesity in rats. Sci Rep 2025; 15:2147. [PMID: 39820480 PMCID: PMC11739556 DOI: 10.1038/s41598-024-85084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025] Open
Abstract
Metabolic abnormalities associated with excess adiposity in obesity contribute to many noncommunicable diseases, including sarcopenic obesity. Sarcopenic obesity is the loss of muscle mass coupled with excess fat mass and fatty infiltrations in muscle tissue called myosteatosis. A diet-induced obesity model was developed to study fat infiltration in muscle tissue. Only male rats have been considered in these investigations neglecting that female rats might respond differently. The objective of this study was to determine if the response to diet-induced obesity can be generalized to both sexes, or whether sex affects the response to the HFS diet, as indicated by markers of metabolic syndrome and changed in muscle integrity. Using a combination of histological staining techniques, quantitative proteomics, and measures of metabolic syndrome and inflammation, it was determined that the diet-induced obesity model in female Sprague-Dawley rats is a viable model with pronounced effects on the musculoskeletal system. We found sex-dependent and muscle-specific differences in intramuscular fat infiltration between male and female rats receiving the obesogenic diet. Including females in research may allow for identifying distinct causes of the mechanistic relationship between diet, obesity, metabolic syndrome, and the sex-dependent differential effects of these factors on adaptation and degeneration of musculoskeletal tissues.
Collapse
Affiliation(s)
- Hannah E Smith
- Human Performance Lab, University of Calgary, Calgary, AB, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| | - Nada Abughazaleh
- Human Performance Lab, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Ruth A Seerattan
- Human Performance Lab, University of Calgary, Calgary, AB, Canada
| | - Faizan Syed
- Human Performance Lab, University of Calgary, Calgary, AB, Canada
| | - Daniel Young
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Raylene A Reimer
- Human Performance Lab, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Lab, University of Calgary, Calgary, AB, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Illesca PG, Ferreira MDR, Benmelej A, D'Alessandro ME. Salvia hispanica L. (chia) seed improves redox state and reverts extracellular matrix collagen deposition in skeletal muscle of sucrose-rich diet-fed rats. Biofactors 2025; 51:e2087. [PMID: 38804965 DOI: 10.1002/biof.2087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Skeletal muscle (SkM) is a plastic and dynamic tissue, essential in energy metabolism. Growing evidence suggests a close relationship between intramuscular fat accumulation, oxidative stress (OS), extracellular matrix (ECM) remodeling, and metabolic deregulation in SkM. Nowadays natural products emerge as promising alternatives for the treatment of metabolic disorders. We have previously shown that chia seed administration reverts SkM lipotoxicity and whole-body insulin resistant (IR) in sucrose-rich diet (SRD) fed rats. The purpose of the present study was to assess the involvement of OS and fibrosis in SkM metabolic impairment of insulin-resistant rats fed a long-term SRD and the effects of chia seed upon these mechanisms as therapeutic strategy. Results showed that insulin-resistant SRD-fed rats exhibited sarcopenia, increase in lipid peroxidation, altered redox state, and ECM remodeling-increased collagen deposition and lower activity of the metalloproteinase 2 (MMP-2) in SkM. Chia seed increased ferric ion reducing antioxidant power and glutathione reduced form levels, and the activities of glutathione peroxidase and glutathione reductase enzymes. Moreover, chia seed reversed fibrosis and restored the MMP-2 activity. This work reveals a participation of the OS and ECM remodeling in the metabolic alterations of SkM in our experimental model. Moreover, current data show novel properties of chia seed with the potential to attenuate SkM OS and fibrosis, hallmark of insulin-resistant muscle.
Collapse
Affiliation(s)
- Paola G Illesca
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Del R Ferreira
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Adriana Benmelej
- Cátedra de Morfología Normal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - María Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
6
|
Li Y, Guo W, Li H, Wang Y, Liu X, Kong W. The Change of Skeletal Muscle Caused by Inflammation in Obesity as the Key Path to Fibrosis: Thoughts on Mechanisms and Intervention Strategies. Biomolecules 2024; 15:20. [PMID: 39858415 PMCID: PMC11764331 DOI: 10.3390/biom15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/27/2025] Open
Abstract
Obesity leads to a chronic inflammatory state throughout the body, with increased infiltration of immune cells and inflammatory factors in skeletal muscle tissue, and, at the same time, the level of intracellular mitochondrial oxidative stress rises. Meanwhile, obesity is closely related to the development of skeletal muscle fibrosis and can affect the metabolic function of skeletal muscle, triggering metabolic disorders such as insulin resistance (IR) and type 2 diabetes (T2D). However, whether there is a mutual regulatory effect between the two pathological states of inflammation and fibrosis in obese skeletal muscle and the specific molecular mechanisms have not been fully clarified. This review focuses on the pathological changes of skeletal muscle inflammation and fibrosis induced by obesity, covering the metabolic changes it causes, such as lipid deposition, mitochondrial dysfunction, and dysregulation of inflammatory factors, aiming to reveal the intricate connections between the two. In terms of intervention strategies, aerobic exercise, dietary modification, and pharmacotherapy can improve skeletal muscle inflammation and fibrosis. This article provides insight into the important roles of inflammation and fibrosis in the treatment of obesity and the management of skeletal muscle diseases, aiming to provide new ideas for the diagnosis and treatment of metabolic diseases such as obesity and IR.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Wenwen Guo
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Han Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Yuhao Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Xinwei Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| |
Collapse
|
7
|
Keles U, Kalem-Yapar NE, Hultén H, Zhao LN, Kaldis P. Impact of Short-Term Lipid Overload on Whole-Body Physiology. Mol Cell Biol 2024; 45:47-58. [PMID: 39726368 DOI: 10.1080/10985549.2024.2438814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Complex metabolic diseases due to overnutrition such as obesity, type 2 diabetes, and fatty liver disease are a major burden on the healthcare system worldwide. Current research primarily focuses on disease endpoints and trying to understand underlying mechanisms at relatively late stages of the diseases, when irreversible damage is already done. However, complex interactions between physiological systems during disease development create a problem regarding how to build cause-and-effect relationships. Therefore, it is essential to understand the early pathophysiological effects of overnutrition, which can help us understand the origin of the disease and to design better treatment strategies. Here, we focus on early metabolic events in response to high-fat diets (HFD) in rodents. Interestingly, insulin resistance, fatty liver, and obesity-promoting systemic inflammatory responses are evident within a week when mice are given consecutive HFD meals. However, as shown in human studies, these effects are usually not visible after a single meal. Overall, these results suggest that sustained HFD-intake within days can create a hyperlipidemic environment, globally remodeling metabolism in all affected organs and resembling some of the important disease features.
Collapse
Affiliation(s)
- Umur Keles
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Nisan Ece Kalem-Yapar
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Hanna Hultén
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| |
Collapse
|
8
|
Huang HB, Zhu YB, Yu DX. Sarcopenic obesity is significantly associated with poorer overall survival after liver transplantation: a systematic review and meta-analysis. Front Nutr 2024; 11:1387602. [PMID: 39737154 PMCID: PMC11684403 DOI: 10.3389/fnut.2024.1387602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Background Sarcopenia has been shown to worsen survival after liver transplantation. However, it remains unclear whether coexisting sarcopenia and obesity, so-called sarcopenic obesity (SO), may also synergistically increase their adverse effects. This meta-analysis aimed to evaluate whether pre-transplant SO independently predicts survival in this population. Methods We conducted this study according to the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines. The PubMed, Embase, Web of Science, Wanfang, CNKI, and Cochrane databases were searched up to 15 October 2023, for studies with any study design evaluating the relationship between SO and post-transplant survival in patients undergoing liver transplantation. We used ROBINS-E to assess the study quality. The primary outcome was all-cause mortality at any length of follow-up. We calculated pooled odds risks (ORs) or hazard risks (HRs) with 95% confidence intervals (CIs). Heterogeneity was quantified with I 2 statistics. Subgroup analyses and publication bias evaluations were also conducted. Results We included nine cohort studies with 2,416 patients. These studies were moderate to high quality. Pre-liver transplant patients commonly experience SO, with a mean prevalence as high as 34%. Overall, patients with SO exhibited a significantly higher overall mortality than patients without SO, as demonstrated by pooled studies using both univariate analysis [HR = 1.76, 95%C 1.33-2.33, p < 0.0001] and multivariate analysis (HR = 2.33, 95%CI 1.34-4.04, p = 0.003). Similar results were also found when comparing patients with or without SO at 1, 3, and 5 years of follow-up (OR = 1.86, 95%CI 1.22-2.83; OR = 1.83, 95%CI: 1.27-2.64; and OR = 1.54, 95% CI 1.02-2.34, respectively). In addition, subgroup analysis based on studies that reported HRs of both sarcopenia and SO indicated both had independent negative effects on post-transplant survival. Conclusion Our meta-analysis showed that SO occurs frequently in liver transplant patients. SO is associated with an increased risk of mortality in such patient populations. Systematic review registration https://doi.org/10.37766/inplasy2024.2.0069 [inplasy2024.2.0069].
Collapse
Affiliation(s)
- Hui-Bin Huang
- Department of Critical Care Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Da-Xing Yu
- Department of Critical Care Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Abughazaleh N, Seerattan RA, Hart DA, Reimer RA, Herzog W. A novel Osteoarthritis scoring system to separate typical OA joint degeneration from non-typical lesions in male Sprague Dawley rats. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100521. [PMID: 39346617 PMCID: PMC11437769 DOI: 10.1016/j.ocarto.2024.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Objective To develop a novel scoring system to characterize osteoarthritis-related degeneration distinct from spontaneous subchondral bone lesions observed in the tibia and femur of male Sprague Dawley rats. Method Knee joints from male rats following 12 weeks of a diet-induced obesity model of osteoarthritis (OA) were assessed. OA histopathological changes (OAHC) were assessed in the knee joints. All scores were evaluated using a modified Mankin score and a modified Osteoarthritis Research Society International histological score. OAHC were divided into 3 categories: (I) Typical OA score evaluating the changes in cartilage structure, cellularity, proteoglycan depletion, and tidemark integrity, (II) A novel Non-typical OA score evaluating cartilage integrity, and the size of local thickening, fragmentation and degeneration along the tidemark and the size and severity of the subchondral bone lesion, and (III) Total OA score comprised of both, the Typical and the Non-typical scores. Results Rats exposed to a high fat/high sucrose diet had higher Typical OA score compared to a control group (Chow). Non-typical and Total OA scores revealed no differences in the severity of the lesions between the HFS and the Chow group animals. All scoring systems had excellent intra- and inter-examiner reliability. Conclusion The spontaneous bone lesions observed in male Sprague Dawley rats can obscure the effect of the diet-induced obesity if the classical scoring system is used to assess joint degeneration. The newly proposed scoring method provides a reliable method to distinguish classical OA joint degeneration from spontaneous Non-typical lesions occurring in these rats.
Collapse
Affiliation(s)
- Nada Abughazaleh
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | | | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Walter Herzog
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Das S, Preethi B, Kushwaha S, Shrivastava R. Therapeutic strategies to modulate gut microbial health: Approaches for sarcopenia management. Histol Histopathol 2024; 39:1395-1425. [PMID: 38497338 DOI: 10.14670/hh-18-730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sarcopenia is a progressive and generalized loss of skeletal muscle and functions associated with ageing with currently no definitive treatment. Alterations in gut microbial composition have emerged as a significant contributor to the pathophysiology of multiple diseases. Recently, its association with muscle health has pointed to its potential role in mediating sarcopenia. The current review focuses on the association of gut microbiota and mediators of muscle health, connecting the dots between the influence of gut microbiota and their metabolites on biomarkers of sarcopenia. It further delineates the mechanism by which the gut microbiota affects muscle health with progressing age, aiding the formulation of a multi-modal treatment plan involving nutritional supplements and pharmacological interventions along with lifestyle changes compiled in the review. Nutritional supplements containing proteins, vitamin D, omega-3 fatty acids, creatine, curcumin, kefir, and ursolic acid positively impact the gut microbiome. Dietary fibres foster a conducive environment for the growth of beneficial microbes such as Bifidobacterium, Faecalibacterium, Ruminococcus, and Lactobacillus. Probiotics and prebiotics act by protecting against reactive oxygen species (ROS) and inflammatory cytokines. They also increase the production of gut microbiota metabolites like short-chain fatty acids (SCFAs), which aid in improving muscle health. Foods rich in polyphenols are anti-inflammatory and have an antioxidant effect, contributing to a healthier gut. Pharmacological interventions like faecal microbiota transplantation (FMT), non-steroidal anti-inflammatory drugs (NSAIDs), ghrelin mimetics, angiotensin-converting enzyme inhibitors (ACEIs), and butyrate precursors lead to the production of anti-inflammatory fatty acids and regulate appetite, gut motility, and microbial impact on gut health. Further research is warranted to deepen our understanding of the interaction between gut microbiota and muscle health for developing therapeutic strategies for ameliorating sarcopenic muscle loss.
Collapse
Affiliation(s)
- Shreya Das
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - B Preethi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, India.
| | - Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India.
| |
Collapse
|
11
|
Abughazaleh N, Smith H, Seerattan RA, Hart DA, Reimer RA, Herzog W. Development of shoulder osteoarthritis and bone lesions in female and male rats subjected to a high fat/sucrose diet. Sci Rep 2024; 14:25871. [PMID: 39468197 PMCID: PMC11519393 DOI: 10.1038/s41598-024-76703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Oligofructose prebiotic fiber supplementation has been reported to mitigate the effects of a high fat/high sucrose diet and reduce knee joint degeneration in male rats. However, few studies investigated the development of osteoarthritis and bone lesions as a function of sex and in joints other than the knee. This study was aimed at to quantifying the effect of a HFS diet and prebiotic fiber supplementation on shoulder joint health in male and female Sprague-Dawley rats. Rats were randomized into 6 groups: 2 groups fed a chow diet: Chow-Male n = 11, Chow-female n = 12; 2 groups fed a HFS diet: HFS-Male n = 11, HFS-Female n = 12; and 2 groups fed a prebiotic fiber supplement in addition to the HFS diet: Fiber-Male n = 6, Fiber- Female n = 12. After 12 weeks, shoulder joints were histologically assessed for OA. Body composition, serum lipid profile, insulin resistance and fecal microbiota were also assessed. Shoulders in male and female rats appear to be protected against degeneration when exposed to a HFS diet. Male rats developed bone lesions while females did not. Fiber supplementation was more effective in males than in females suggesting that fiber supplementation may have sex-specific effects on the gut microbiota.
Collapse
Affiliation(s)
- Nada Abughazaleh
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| | - Hannah Smith
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | | | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Department of Surgery, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Li T, Yin D, Shi R. Gut-muscle axis mechanism of exercise prevention of sarcopenia. Front Nutr 2024; 11:1418778. [PMID: 39221163 PMCID: PMC11362084 DOI: 10.3389/fnut.2024.1418778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Sarcopenia refers to an age-related systemic skeletal muscle disorder, which is characterized by loss of muscle mass and weakening of muscle strength. Gut microbiota can affect skeletal muscle through a variety of mechanisms. Gut microbiota present distinct features among elderly people and sarcopenia patients, including a decrease in microbial diversity, which might be associated with the quality and function of the skeletal muscle. There might be a gut-muscle axis; where gut microbiota and skeletal muscle may affect each other bi-directionally. Skeletal muscle can affect the biodiversity of the gut microbiota, and the latter can, in turn, affect the anabolism of skeletal muscle. This review examines recent studies exploring the relationship between gut microbiota and skeletal muscle, summarizes the effects of exercise on gut microbiota, and discusses the possible mechanisms of the gut-muscle axis.
Collapse
Affiliation(s)
| | | | - Rengfei Shi
- School of Health and Exercise, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
13
|
Li R, Lian R, Siriwardena HT, Jiang J, Yang M. Nexus Between Sarcopenia and Microbiome Research: A Bibliometric Exploration. J Multidiscip Healthc 2024; 17:3011-3025. [PMID: 38948393 PMCID: PMC11213534 DOI: 10.2147/jmdh.s469747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024] Open
Abstract
Despite over 30 years of microbiome and skeletal muscle research, no quantitative analysis of sarcopenia and the microbiome literature had been conducted. Our bibliometric study examined research status, hotspots, and future trends. We utilized bibliometric techniques to search the Science Citation Index Extended Database on February 27, 2023, using the Bibliometrix package in R to create a map displaying scientific production and subject categories. Collaborative network maps between countries/regions were visualized using Scimago Graphica, while VOSviewer explored collaboration modes among individuals and institutions. We analyzed the top 25 emerging keywords, top co-occurring keyword networks, and co-occurring keyword clusters using CiteSpace. A total of 997 articles were retrieved for sarcopenia and microbiome, of which 633 papers were analyzed. Both the number of publications and total citation frequency had been continuously increasing. The United States had the highest total citation frequency, while China had the highest number of publications. Research on the impact of the microbiome on sarcopenia was in its nascent stage and spans multiple disciplines, including nutrition, microbiology, geriatrics, immunology, endocrinology and metabolism, molecular biology, and sports medicine. The University of Copenhagen contributed the most to the number of publications (n=16), with Tibbett M (n=7) and Hulver MW (n=7) among the top authors. The most published journal was "Nutrients" (n=24). Analysis of keywords and clusters revealed new research hotspots in microbes and sarcopenia, such as malnutrition, dietary fiber, signaling pathways, frailty, and intestinal permeability. Research on the impact of the microbiome on sarcopenia is in its infancy and spans multiple disciplines. Malnutrition, dietary fiber, signaling pathways, frailty, and intestinal microbes are currently research hotspots. Furthermore, the visual atlas analysis of research on microbes and sarcopenia helps to track the knowledge structure in research fields related to sarcopenia and microbes, providing direction for future research.
Collapse
Affiliation(s)
- Runjie Li
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Geriatrics, Ya ‘an People’s Hospital, Ya ‘an, People’s Republic of China
| | - Rongna Lian
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Hiruni T Siriwardena
- West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Jiaojiao Jiang
- Rehabilitation Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ming Yang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
14
|
Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, Lynch GS, Contreras O. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Mol Aspects Med 2024; 97:101277. [PMID: 38788527 PMCID: PMC11692456 DOI: 10.1016/j.mam.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.
Collapse
Affiliation(s)
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, 32610, FL, USA; Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | - Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Parkville 3010, Australia.
| | - Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
15
|
Hoornenborg CW, Somogyi E, Bruggink JE, Boyle CN, Lutz TA, Emous M, van Beek AP, Nyakas C, van Dijk G. Weight loss in adult male Wistar rats by Roux-en-Y gastric bypass is primarily explained by caloric intake reduction and presurgery body weight. Am J Physiol Regul Integr Comp Physiol 2024; 326:R507-R514. [PMID: 38586888 PMCID: PMC11381017 DOI: 10.1152/ajpregu.00169.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024]
Abstract
Diets varying in macronutrient composition, energy density, and/or palatability may cause differences in outcome of bariatric surgery. In the present study, rats feeding a healthy low-fat (LF) diet or an obesogenic high-fat/sucrose diet (HF/S) were either subjected to Roux-en-Y gastric bypass surgery (RYGB) or sham surgery, and weight loss trajectories and various energy balance parameters were assessed. Before RYGB, rats eating an HF/S (n = 14) diet increased body weight relative to rats eating an LF diet (n = 20; P < 0.01). After RYGB, absolute weight loss was larger in HF/S (n = 6) relative to LF feeding (n = 6) rats, and this was associated with reduced cumulative energy intake (EI; P < 0.05) and increased locomotor activity (LA; P < 0.05-0.001), finally leading to similar levels of reduced body fat content in HF/S and LF rats 3 wk after surgery. Regression analysis revealed that variation in RYGB-induced body weight loss was best explained by models including 1) postoperative cumulative EI and preoperative body weight (R2 = 0.87) and 2) postoperative cumulative EI and diet (R2 = 0.79), each without significant contribution of LA. Particularly rats on the LF diet became transiently more hypothermic and circadianally arrhythmic following RYGB (i.e., indicators of surgery-associated malaise) than HF/S feeding rats. Our data suggest that relative to feeding an LF diet, continued feeding an HF/S diet does not negatively impact recovery from RYGB surgery, yet it promotes RYGB-induced weight loss. The RYGB-induced weight loss is primarily explained by reduced cumulative EI and higher preoperative body weight, leading to comparably low levels of body fat content in HF/S and LF feeding rats.NEW & NOTEWORTHY Relative to feeding an LF diet, continued feeding an HF/S diet does not negatively impact recovery from RYGB surgery in rats. Relative to feeding an LF diet, continued feeding an HF/S diet promotes RYGB-induced weight loss. The RYGB-induced weight loss is primarily explained by reduced cumulative EI and higher preoperative body weight, leading to comparably low levels of body fat content in HF/S and LF feeding rats.
Collapse
Affiliation(s)
- C Warner Hoornenborg
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Endocrinology, University Medical Center Groningen, Groningen, The Netherlands
| | - Edit Somogyi
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- School of PhD Studies, University of Physical Education, Budapest, Hungary
| | - Jan E Bruggink
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Christina N Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Marloes Emous
- Department of Bariatric and Metabolic Surgery, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - André P van Beek
- Department of Endocrinology, University Medical Center Groningen, Groningen, The Netherlands
| | - Csaba Nyakas
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- School of PhD Studies, University of Physical Education, Budapest, Hungary
| | - Gertjan van Dijk
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Karjalainen K, Tanska P, Collins KH, Herzog W, Korhonen RK, Moo EK. Independent and combined effects of obesity and traumatic joint injury to the structure and composition of rat knee cartilage. Connect Tissue Res 2024; 65:117-132. [PMID: 38530304 DOI: 10.1080/03008207.2024.2310838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by articular cartilage degradation. Risk factors for OA include joint trauma, obesity, and inflammation, each of which can affect joint health independently, but their interaction and the associated consequences of such interaction were largely unexplored. Here, we studied compositional and structural alterations in knee joint cartilages of Sprague-Dawley rats exposed to two OA risk factors: joint injury and diet-induced obesity. Joint injury was imposed by surgical transection of anterior cruciate ligaments (ACLx), and obesity was induced by a high fat/high sucrose diet. Depth-dependent proteoglycan (PG) content and collagen structural network of cartilage were measured from histological sections collected previously in Collins et al.. (2015). We found that ACLx primarily affected the superficial cartilages. Compositionally, ACLx led to reduced PG content in lean animals, but increased PG content in obese rats. Structurally, ACLx caused disorganization of collagenous network in both lean and obese animals through increased collagen orientation in the superficial tissues and a change in the degree of fibrous alignment. However, the cartilage degradation attributed to joint injury and obesity was not necessarily additive when the two risk factors were present simultaneously, particularly for PG content and collagen orientation in the superficial tissues. Interestingly, sham surgeries caused a through-thickness disorganization of collagen network in lean and obese animals. We conclude that the interactions of multiple OA risk factors are complex and their combined effects cannot be understood by superposition principle. Further research is required to elucidate the interactive mechanism between OA subtypes.
Collapse
Affiliation(s)
- Kalle Karjalainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Kelsey H Collins
- Laboratory of Musculoskeletal Crosstalk, Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, USA
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Eng Kuan Moo
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| |
Collapse
|
17
|
Jia X, Chen Q, Wu H, Liu H, Jing C, Gong A, Zhang Y. Exploring a novel therapeutic strategy: the interplay between gut microbiota and high-fat diet in the pathogenesis of metabolic disorders. Front Nutr 2023; 10:1291853. [PMID: 38192650 PMCID: PMC10773723 DOI: 10.3389/fnut.2023.1291853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
In the past two decades, the rapid increase in the incidence of metabolic diseases, including obesity, diabetes, dyslipidemia, non-alcoholic fatty liver disease, hypertension, and hyperuricemia, has been attributed to high-fat diets (HFD) and decreased physical activity levels. Although the phenotypes and pathologies of these metabolic diseases vary, patients with these diseases exhibit disease-specific alterations in the composition and function of their gut microbiota. Studies in germ-free mice have shown that both HFD and gut microbiota can promote the development of metabolic diseases, and HFD can disrupt the balance of gut microbiota. Therefore, investigating the interaction between gut microbiota and HFD in the pathogenesis of metabolic diseases is crucial for identifying novel therapeutic strategies for these diseases. This review takes HFD as the starting point, providing a detailed analysis of the pivotal role of HFD in the development of metabolic disorders. It comprehensively elucidates the impact of HFD on the balance of intestinal microbiota, analyzes the mechanisms underlying gut microbiota dysbiosis leading to metabolic disruptions, and explores the associated genetic factors. Finally, the potential of targeting the gut microbiota as a means to address metabolic disturbances induced by HFD is discussed. In summary, this review offers theoretical support and proposes new research avenues for investigating the role of nutrition-related factors in the pathogenesis of metabolic disorders in the organism.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Wu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hongbo Liu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chunying Jing
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Binu AJ, Kapoor N, Bhattacharya S, Kishor K, Kalra S. Sarcopenic Obesity as a Risk Factor for Cardiovascular Disease: An Underrecognized Clinical Entity. Heart Int 2023; 17:6-11. [PMID: 38419720 PMCID: PMC10897945 DOI: 10.17925/hi.2023.17.2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/15/2023] [Indexed: 03/02/2024] Open
Abstract
Sarcopenic obesity (SO) is a chronic condition and an emerging health challenge, in view of the growing elderly population and the obesity epidemic. Due to a lack of awareness among treating doctors and the non-specific nauture of the associated symptoms, SO remains grossly underdiagnosed. There is no consensus yet on a standard definition or diagnostic criteria for SO, which limits the estimation of the global prevalence of this condition. It has been linked to numerous metabolic derangements, cardiovascular disease (CVD) and mortality. The treatment of SO is multimodal and requires expertise across multiple specialties. While dietary modifications and exercise regimens have shown a potential therapeutic benefit, there is currently no proven pharmacological management for SO. However, numerous drugs and the role of bariatric surgery are still under trial, and have great scope for further research. This article covers the available literature regarding the definition, diagnostic criteria, and prevalence of SO, with available evidence linking it to CVD, metabolic disease and mortality, and an overview of current directives on management.
Collapse
Affiliation(s)
- Aditya John Binu
- Department of Cardiology, Christian Medical College, Vellore, India
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
- Non-communicable Disease Unit, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Kamal Kishor
- Department of Cardiology, Rama Hospital, Karnal, India
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
- University Center for Research & Development, Chandigarh University, Mohali, India
| |
Collapse
|
19
|
Delgado-Bravo M, Hart DA, Reimer RA, Herzog W. Alterations in skeletal muscle morphology and mechanics in juvenile male Sprague Dawley rats exposed to a high-fat high-sucrose diet. Sci Rep 2023; 13:12013. [PMID: 37491416 PMCID: PMC10368627 DOI: 10.1038/s41598-023-38487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
Although once a health concern largely considered in adults, the obesity epidemic is now prevalent in pediatric populations. While detrimental effects on skeletal muscle function have been seen in adulthood, the effects of obesity on skeletal muscle function in childhood is not clearly understood. The purpose of this study was to determine if the consumption of a high-fat high-sucrose (HFS) diet, starting in the post-weaning period, leads to changes in skeletal muscle morphology and mechanics after 14 weeks on the HFS diet. Eighteen 3-week-old male CD-Sprague Dawley rats were randomly assigned to a HFS (C-HFS, n = 10) or standard chow diet (C-CHOW, n = 8). Outcome measures included: weekly energy intake, activity levels, oxygen consumption, body mass, body composition, metabolic profile, serum protein levels, and medial gastrocnemius gene expression, morphology, and mechanics. The main findings from this study were that C-HFS rats: (1) had a greater body mass and percent body fat than control rats; (2) showed early signs of metabolic syndrome; (3) demonstrated potential impairment in muscle remodeling; (4) produced lower relative muscle force; and (5) had a shift in the force-length relationship, indicating that the medial gastrocnemius had shorter muscle fiber lengths compared to those of C-CHOW rats. Based on the results of this study, we conclude that exposure to a HFS diet led to increased body mass, body fat percentage, and early signs of metabolic syndrome, resulting in functional deficits in MG of childhood rats.
Collapse
Affiliation(s)
- Mauricio Delgado-Bravo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Carrera de Kinesiología, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David A Hart
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Raylene A Reimer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
20
|
Guiducci L, Nicolini G, Forini F. Dietary Patterns, Gut Microbiota Remodeling, and Cardiometabolic Disease. Metabolites 2023; 13:760. [PMID: 37367916 DOI: 10.3390/metabo13060760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
The cardiovascular and metabolic disorders, collectively known as cardiometabolic disease (CMD), are high morbidity and mortality pathologies associated with lower quality of life and increasing health-care costs. The influence of the gut microbiota (GM) in dictating the interpersonal variability in CMD susceptibility, progression and treatment response is beginning to be deciphered, as is the mutualistic relation established between the GM and diet. In particular, dietary factors emerge as pivotal determinants shaping the architecture and function of resident microorganisms in the human gut. In turn, intestinal microbes influence the absorption, metabolism, and storage of ingested nutrients, with potentially profound effects on host physiology. Herein, we present an updated overview on major effects of dietary components on the GM, highlighting the beneficial and detrimental consequences of diet-microbiota crosstalk in the setting of CMD. We also discuss the promises and challenges of integrating microbiome data in dietary planning aimed at restraining CMD onset and progression with a more personalized nutritional approach.
Collapse
Affiliation(s)
- Letizia Guiducci
- CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| | | | - Francesca Forini
- CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
21
|
Tan Y, Liu X, Yang Y, Li B, Yu F, Zhao W, Fu C, Yu X, Han Z, Cheng M. Metabolomics analysis reveals serum biomarkers in patients with diabetic sarcopenia. Front Endocrinol (Lausanne) 2023; 14:1119782. [PMID: 37033246 PMCID: PMC10073735 DOI: 10.3389/fendo.2023.1119782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION Diabetic sarcopenia (DS) is characterized by muscle atrophy, slower nerve conduction, reduced maximum tension generated by skeletal muscle contraction, and slower contraction rate. Hence, DS can cause limb movement degeneration, slow movement, reduced balance, reduced metabolic rate, falls, fractures, etc. Moreover, the relevant early biological metabolites and their pathophysiological mechanism have yet to be characterized. METHOD The current cross-sectional study employed serum metabolomics analysis to screen potential noninvasive biomarkers in patients with diabetic sarcopenia. A total of 280 diabetic patients were enrolled in the study (n = 39 sarcopenia [DS], n = 241 without sarcopenia [DM]). Ten patients were randomly selected from both groups. Non-targeted metabolomic analysis was performed by ultra-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. RESULTS A total of 632 differential metabolites were identified, including 82 that were significantly differentially abundant (P < 0.05, VIP > 1, FC > 1.2 or FC < 0.8). Compared with the DM group, the contents of pentadecanoic acid, 5'-methylthioadenosine (5'-MTA), N,N-dimethylarginine (asymmetric dimethylarginine, ADMA), and glutamine in the DS group were significantly increased, while that of isoxanthohumol was decreased. DISCUSSION Based on receiver operating characteristic curve analysis, pentadecanoic acid, 5'-MTA, ADMA, and glutamine may serve as potential biomarkers of DS. Moreover, ATP-binding cassette (ABC) transporters and the mammalian target of the rapamycin signaling pathway were found to potentially have important regulatory roles in the occurrence and development of DS (P < 0.05). Collectively, the differential metabolites identified in this study provide new insights into the underlying pathophysiology of DS and serve as a basis for therapeutic interventions.
Collapse
Affiliation(s)
- Yuwei Tan
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Xiaosong Liu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Yinping Yang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Aixinzhuoer Medical Laboratory, Jinan, China
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Chunli Fu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Xin Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Zhenxia Han
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
- *Correspondence: Mei Cheng,
| |
Collapse
|
22
|
Rajeswari M, Pola S, Sravani DSL. Nutritional Modulation of Gut Microbiota Alleviates Metabolic and Neurological Disorders. HUMAN MICROBIOME IN HEALTH, DISEASE, AND THERAPY 2023:97-125. [DOI: 10.1007/978-981-99-5114-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Wang Y, Zhang Y, Lane NE, Wu J, Yang T, Li J, He H, Wei J, Zeng C, Lei G. Population-based metagenomics analysis reveals altered gut microbiome in sarcopenia: data from the Xiangya Sarcopenia Study. J Cachexia Sarcopenia Muscle 2022; 13:2340-2351. [PMID: 35851765 PMCID: PMC9530518 DOI: 10.1002/jcsm.13037] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Several studies have examined gut microbiota and sarcopenia using 16S ribosomal RNA amplicon sequencing; however, this technique may not be able to identify altered specific species and functional capacities of the microbes. We performed shotgun metagenomic sequencing to compare the gut microbiome composition and function between individuals with and without sarcopenia. METHODS Participants were from a community-based observational study conducted among the residents of rural areas in China. Appendicular skeletal muscle mass was assessed using direct segmental multi-frequency bioelectrical impedance and grip strength using a Jamar Hydraulic Hand dynamometer. Physical performance was evaluated using the Short Physical Performance Battery, 5-time chair stand test and gait speed with the 6 m walk test. Sarcopenia and its severity were diagnosed according to the Asian Working Group for Sarcopenia 2019 algorithm. The gut microbiome was profiled by shotgun metagenomic sequencing to determine the microbial composition and function. A gut microbiota-based model for classification of sarcopenia was constructed using the random forest model, and its performance was assessed using the area under receiver-operating characteristic curve (AUC). RESULTS The study sample included 1417 participants (women: 58.9%; mean age: 63.3 years; sarcopenia prevalence: 10.0%). β-diversity indicated by Bray-Curtis distance (genetic level: P = 0.004; taxonomic level of species: P = 0.020), but not α-diversity indicated by Shannon index (genetic level: P = 0.962; taxonomic level of species: P = 0.922), was significantly associated with prevalent sarcopenia. After adjusting for potential confounders, participants with sarcopenia had higher relative abundance of Desulfovibrio piger (P = 0.003, Q = 0.090), Clostridium symbiosum (P < 0.001, Q = 0.035), Hungatella effluvii (P = 0.003, Q = 0.090), Bacteroides fluxus (P = 0.002, Q = 0.089), Absiella innocuum (P = 0.002, Q = 0.072), Coprobacter secundus (P = 0.002, Q = 0.085) and Clostridium citroniae (P = 0.001, Q = 0.060) than those without sarcopenia. The relative abundance of six species (Desulfovibrio piger, Clostridium symbiosum, Hungatella effluvii, Bacteroides fluxus, Absiella innocuum, and Clostridium citroniae) was also positively associated with sarcopenia severity. A differential species-based model was constructed to separate participants with sarcopenia from controls. The value of the AUC was 0.852, suggesting that model has a decent discriminative performance. Desulfovibrio piger ranked the highest in this model. Functional annotation analysis revealed that the phenylalanine, tyrosine, and tryptophan biosynthesis were depleted (P = 0.006, Q = 0.071), while alpha-Linolenic acid metabolism (P = 0.008, Q = 0.094), furfural degradation (P = 0.001, Q = 0.029) and staurosporine biosynthesis (P = 0.006, Q = 0.072) were enriched in participants with sarcopenia. Desulfovibrio piger was significantly associated with staurosporine biosynthesis (P < 0.001). CONCLUSIONS This large population-based observational study provided empirical evidence that alterations in the gut microbiome composition and function were observed among individuals with sarcopenia.
Collapse
Affiliation(s)
- Yilun Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nancy E Lane
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, University of California, Davis, CA, USA
| | - Jing Wu
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China
| | - Tuo Yang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiatian Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongyi He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Wei
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China.,Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Chen B, Li D, Leng D, Kui H, Bai X, Wang T. Gut microbiota and meat quality. Front Microbiol 2022; 13:951726. [PMID: 36081790 PMCID: PMC9445620 DOI: 10.3389/fmicb.2022.951726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sustainable meat production is important to providing safe and quality protein sources for humans worldwide. Intensive artificial selection and high energy input into the diet of many commercial animals for the last decade has significantly increased the daily gain of body weight and shortened the raising period, but unexpectedly decreased the meat quality. The gastrointestinal tract of animals harbors a diverse and complex microbial community that plays a vital role in the digestion and absorption of nutrients, immune system development, pathogen exclusion, and meat quality. Fatty acid composition and oxidative stress in adipose and muscle tissue influences meat quality in livestock and poultry. Recent studies showed that nutraceuticals are receiving increased attention, which could alter the intestinal microbiota and regulate the fat deposition and immunity of hosts to improve their meat quality. Understanding the microbiota composition, the functions of key bacteria, and the host-microbiota interaction is crucial for the development of knowledge-based strategies to improve both animal meat quality and host health. This paper reviews the microorganisms that affect the meat quality of livestock and poultry. A greater understanding of microbial changes that accompany beneficial dietary changes will lead to novel strategies to improve livestock and poultry meat product quality.
Collapse
Affiliation(s)
- Binlong Chen
- College of Animal Science, Xichang University, Xichang, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- *Correspondence: Diyan Li,
| | - Dong Leng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua Kui
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xue Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Tao Wang,
| |
Collapse
|
25
|
Molecular Mechanisms of Inflammation in Sarcopenia: Diagnosis and Therapeutic Update. Cells 2022; 11:cells11152359. [PMID: 35954203 PMCID: PMC9367570 DOI: 10.3390/cells11152359] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Sarcopenia is generally an age-related condition that directly impacts the quality of life. It is also related to chronic diseases such as metabolic dysfunction associated with diabetes and obesity. This means that everyone will be vulnerable to sarcopenia at some point in their life. Research to find the precise molecular mechanisms implicated in this condition can increase knowledge for the better prevention, diagnosis, and treatment of sarcopenia. Our work gathered the most recent research regarding inflammation in sarcopenia and new therapeutic agents proposed to target its consequences in pyroptosis and cellular senescence. Finally, we compared dual X-ray absorptiometry (DXA), magnetic resonance imaging (MRI), and ultrasound (US) as imaging techniques to diagnose and follow up on sarcopenia, indicating their respective advantages and disadvantages. Our goal is for the scientific evidence presented here to help guide future research to understand the molecular mechanisms involved in sarcopenia, new treatment strategies, and their translation into clinical practice.
Collapse
|
26
|
Yao N, Yang Y, Li X, Wang Y, Guo R, Wang X, Li J, Xie Z, Li B, Cui W. Effects of Dietary Nutrients on Fatty Liver Disease Associated With Metabolic Dysfunction (MAFLD): Based on the Intestinal-Hepatic Axis. Front Nutr 2022; 9:906511. [PMID: 35782947 PMCID: PMC9247350 DOI: 10.3389/fnut.2022.906511] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently become the most common liver disease with a global prevalence of over 25% and is expected to increase. Recently, experts have reached a consensus that “fatty liver disease associated with metabolic dysfunction or MAFLD” may be a more appropriate and inclusive definition than NAFLD. Like the former name NAFLD, MAFLD, as a manifestation of multiple system metabolic disorders involving the liver, has certain heterogeneity in its pathogenesis, clinical manifestations, pathological changes and natural outcomes. We found that there is a delicate dynamic balance among intestinal microflora, metabolites and host immune system to maintain a healthy intestinal environment and host health. On the contrary, this imbalance is related to diseases such as MAFLD. However, there are no clear studies on how dietary nutrients affect the intestinal environment and participate in the pathogenesis of MAFLD. This review summarizes the interactions among dietary nutrients, intestinal microbiota and MAFLD in an attempt to provide evidence for the use of dietary supplements to regulate liver function in patients with MAFLD. These dietary nutrients influence the development and progression of MAFLD mainly through the hepatic-intestinal axis by altering dietary energy absorption, regulating bile acid metabolism, changing intestinal permeability and producing ethanol. Meanwhile, the nutrients have the ability to combat MAFLD in terms of enriching abundance of intestinal microbiota, reducing Firmicutes/Bacteroidetes ratio and promoting abundance of beneficial gut microbes. Therefore, family therapy with MAFLD using a reasonable diet could be considered.
Collapse
Affiliation(s)
- Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yixue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xiaotong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yuxiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xuhan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Zechun Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Bo Li
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
- Weiwei Cui
| |
Collapse
|
27
|
Mückter E, Lozoya M, Müller A, Weissig V, Nourbakhsh M. Farnesol-Loaded Nanoliposomes Inhibit Inflammatory Gene Expression in Primary Human Skeletal Myoblasts. BIOLOGY 2022; 11:biology11050701. [PMID: 35625428 PMCID: PMC9138524 DOI: 10.3390/biology11050701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
There is a substantial unmet need for the treatment of skeletal muscle mass loss that is associated with aging and obesity-related increases in FFA. Unsaturated FFAs stimulate the inflammatory gene expression in human skeletal myoblasts (SkMs). Farnesol is a hydrophobic acyclic sesquiterpene alcohol with potential anti-inflammatory effects. Here, we created farnesol-loaded small unilamellar (SUVs) or multilamellar lipid-based vesicles (MLVs), and investigated their effects on inflammatory gene expression in primary human skeletal myoblasts. The attachment of SUVs or MLVs to SkMs was tracked using BODIPY, a fluorescent lipid dye. The data showed that farnesol-loaded SUVs reduced FFA-induced IL6 and LIF expression by 77% and 70% in SkMs, respectively. Farnesol-loaded MLVs were less potent in inhibiting FFA-induced IL6 and LIF expression. In all experiments, equal concentrations of free farnesol did not exert significant effects on SkMs. This report suggests that farnesol, if efficiently directed into myoblasts through liposomes, may curb FFA-induced inflammation in human skeletal muscle.
Collapse
Affiliation(s)
- Eva Mückter
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (E.M.); (A.M.)
| | - Maria Lozoya
- College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA; (M.L.); (V.W.)
| | - Aline Müller
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (E.M.); (A.M.)
| | - Volkmar Weissig
- College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA; (M.L.); (V.W.)
| | - Mahtab Nourbakhsh
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (E.M.); (A.M.)
- Correspondence: ; Tel.: +49-241-80-85837
| |
Collapse
|
28
|
Sullivan BP, Nie Y, Evans S, Kargl CK, Hettinger ZR, Garner RT, Hubal MJ, Kuang S, Stout J, Gavin TP. Obesity and exercise training alter inflammatory pathway skeletal muscle small extracellular vesicle miRNAs. Exp Physiol 2022; 107:462-475. [PMID: 35293040 PMCID: PMC9323446 DOI: 10.1113/ep090062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
New Findings What is the central question of this study? Is 1 week of exercise training sufficient to reduce local and systemic inflammation? Do obesity and short‐term concurrent aerobic and resistance exercise training alter skeletal muscle extracellular vesicle (EV) contents? What is the main finding and its importance? Obesity alters skeletal muscle small EV microRNAs targeting inflammatory and growth pathways. Exercise training alters skeletal muscle small EV microRNAs targeting inflammatory pathways, indicative of reduced inflammation. Our findings provide support for the hypotheses that EVs play a vital role in intercellular communication during health and disease and that EVs mediate many of the beneficial effects of exercise.
Abstract Obesity is associated with chronic inflammation characterized by increased levels of inflammatory cytokines, whereas exercise training reduces inflammation. Small extracellular vesicles (EVs; 30–150 nm) participate in cell‐to‐cell communication in part through microRNA (miRNA) post‐transcriptional regulation of mRNA. We examined whether obesity and concurrent aerobic and resistance exercise training alter skeletal muscle EV miRNA content and inflammatory signalling. Vastus lateralis biopsies were obtained from sedentary individuals with (OB) and without obesity (LN). Before and after 7 days of concurrent aerobic and resistance training, muscle‐derived small EV miRNAs and whole‐muscle mRNAs were measured. Pathway analysis revealed that obesity alters small EV miRNAs that target inflammatory (SERPINF1, death receptor and Gαi) and growth pathways (Wnt/β‐catenin, PTEN, PI3K/AKT and IGF‐1). In addition, exercise training alters small EV miRNAs in an anti‐inflammatory manner, targeting the IL‐10, IL‐8, Toll‐like receptor and nuclear factor‐κB signalling pathways. In whole muscle, IL‐8 mRNA was reduced by 50% and Jun mRNA by 25% after exercise training, consistent with the anti‐inflammatory effects of exercise on skeletal muscle. Obesity and 7 days of concurrent exercise training differentially alter skeletal muscle‐derived small EV miRNA contents targeting inflammatory and anabolic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Monica J Hubal
- Indiana University- Purdue University Indianapolis, Indianapolis, IN
| | | | - Julianne Stout
- Indiana University School of Medicine-West Lafayette, West Lafayette, IN
| | | |
Collapse
|
29
|
Li Z, Wei Y, Wang Y, Zhang R, Zhang C, Wang C, Yan X. Preparation of Highly Substituted Sulfated Alfalfa Polysaccharides and Evaluation of Their Biological Activity. Foods 2022; 11:foods11050737. [PMID: 35267371 PMCID: PMC8909867 DOI: 10.3390/foods11050737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Alfalfa polysaccharides (AP) receive wide attention in the field of medicine, because of their anti-inflammatory property. However, AP has high molecular weight and poor water solubility, resulting in low biological activity. We wanted to obtain highly bioactive alfalfa polysaccharides for further research. Herein, we successfully synthesized highly substituted sulfated alfalfa polysaccharides (SAP) via the chlorosulfonic acid (CSA)-pyridine (Pyr) method, which was optimized using response surface methodology (RSM). Under the best reaction conditions, that is, the reaction temperature, time, and ratio of CSA to Pyr being 55 °C, 2.25 h, and 1.5:1, respectively, the maximum degree of substitution of SAP can reach up to 0.724. Fourier transform infrared spectroscopy also confirmed the existence of sulfonic acid groups on SAP. Despite the increased average molecular weight of SAP, its water solubility is improved, which is beneficial for its biological activity. Further in vitro results showed that SAP exhibited better antioxidant activity and antibacterial ability than AP. Besides, the former can efficiently enhance the viability of oxidatively stressed intestinal epithelial cells compared with the latter. Furthermore, SAP has the potential to inhibit obesity. It is concluded that sulfation modification could improve the antioxidant, antibacterial, bovine intestinal epithelial cells’ proliferation-promoting, and the obesity inhibition abilities of AP. The improvement of AP biological activity may provide references for the utilization of plant extracts that have weaker biological activity.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Yuanhao Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Yawen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Ran Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Chuanjie Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Caixing Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225000, China
- Correspondence: (C.W.); (X.Y.); Tel./Fax: +86-514-8797-2208 (X.Y.)
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (C.W.); (X.Y.); Tel./Fax: +86-514-8797-2208 (X.Y.)
| |
Collapse
|
30
|
Islam MR, Arthur S, Haynes J, Butts MR, Nepal N, Sundaram U. The Role of Gut Microbiota and Metabolites in Obesity-Associated Chronic Gastrointestinal Disorders. Nutrients 2022; 14:624. [PMID: 35276983 PMCID: PMC8838694 DOI: 10.3390/nu14030624] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The gut microbiota is a complex community of microorganisms that has become a new focus of attention due to its association with numerous human diseases. Research over the last few decades has shown that the gut microbiota plays a considerable role in regulating intestinal homeostasis, and disruption to the microbial community has been linked to chronic disease conditions such as inflammatory bowel disease (IBD), colorectal cancer (CRC), and obesity. Obesity has become a global pandemic, and its prevalence is increasing worldwide mostly in Western countries due to a sedentary lifestyle and consumption of high-fat/high-sugar diets. Obesity-mediated gut microbiota alterations have been associated with the development of IBD and IBD-induced CRC. This review highlights how obesity-associated dysbiosis can lead to the pathogenesis of IBD and CRC with a special focus on mechanisms of altered absorption of short-chain fatty acids (SCFAs).
Collapse
Affiliation(s)
| | | | | | | | | | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.R.I.); (S.A.); (J.H.); (M.R.B.); (N.N.)
| |
Collapse
|
31
|
Ilyas Z, Perna S, A. Alalwan T, Zahid MN, Spadaccini D, Gasparri C, Peroni G, Faragli A, Alogna A, La Porta E, Ali Redha A, Negro M, Cerullo G, D’Antona G, Rondanelli M. The Ketogenic Diet: Is It an Answer for Sarcopenic Obesity? Nutrients 2022; 14:620. [PMID: 35276979 PMCID: PMC8838342 DOI: 10.3390/nu14030620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/02/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
This review aims to define the effectiveness of the ketogenic diet (KD) for the management of sarcopenic obesity. As the combination of sarcopenia and obesity appears to have multiple negative metabolic effects, this narrative review discusses the effects of the ketogenic diet as a possible synergic intervention to decrease visceral adipose tissue (VAT) and fatty infiltration of the liver as well as modulate and improve the gut microbiota, inflammation and body composition. The results of this review support the evidence that the KD improves metabolic health and expands adipose tissue γδ T cells that are important for glycaemia control during obesity. The KD is also a therapeutic option for individuals with sarcopenic obesity due to its positive effect on VAT, adipose tissue, cytokines such as blood biochemistry, gut microbiota, and body composition. However, the long-term effect of a KD on these outcomes requires further investigations before general recommendations can be made.
Collapse
Affiliation(s)
- Zahra Ilyas
- Department of Laboratory, Bahrain Specialist Hospital, Juffair P.O. Box 10588, Bahrain
- Department of Biology, College of Science, Sakhir Campus, University of Bahrain, Zallaq P.O. Box 32038, Bahrain; (S.P.); (T.A.A.); (M.N.Z.)
| | - Simone Perna
- Department of Biology, College of Science, Sakhir Campus, University of Bahrain, Zallaq P.O. Box 32038, Bahrain; (S.P.); (T.A.A.); (M.N.Z.)
| | - Tariq A. Alalwan
- Department of Biology, College of Science, Sakhir Campus, University of Bahrain, Zallaq P.O. Box 32038, Bahrain; (S.P.); (T.A.A.); (M.N.Z.)
| | - Muhammad Nauman Zahid
- Department of Biology, College of Science, Sakhir Campus, University of Bahrain, Zallaq P.O. Box 32038, Bahrain; (S.P.); (T.A.A.); (M.N.Z.)
| | - Daniele Spadaccini
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (D.S.); (C.G.); (G.P.)
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (D.S.); (C.G.); (G.P.)
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (D.S.); (C.G.); (G.P.)
| | - Alessandro Faragli
- Department of Internal Medicine/Cardiology, Deutsches Herzzentrum Berlin, 13353 Berlin, Germany;
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Alessio Alogna
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Edoardo La Porta
- Department of Cardionephrology, Istituto Clinico Ligure Di Alta Specialità (ICLAS), GVM Care and Research, 16035 Rapallo, Italy;
- Department of Internal Medicine (DiMi), University of Genova, 16121 Genova, Italy
| | - Ali Ali Redha
- Department of Chemistry, College of Science, Sakhir Campus, University of Bahrain, Zallaq P.O. Box 32038, Bahrain;
- Chemistry Department, School of Science, Loughborough University, Loughborough LE11 3TU, UK
| | - Massimo Negro
- CRIAMS-Sport Medicine Centre, 27058 Voghera, Italy; (M.N.); (G.D.)
| | - Giuseppe Cerullo
- Department of Movement and Wellbeing Sciences, University of Naples “Parthenope”, 80133 Napoli, Italy;
| | - Giuseppe D’Antona
- CRIAMS-Sport Medicine Centre, 27058 Voghera, Italy; (M.N.); (G.D.)
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
32
|
Clayton ZS, Gioscia-Ryan RA, Justice JN, Lubieniecki KL, Hutton DA, Rossman MJ, Zigler MC, Seals DR. Lifelong physical activity attenuates age- and Western-style diet-related declines in physical function and adverse changes in skeletal muscle mass and inflammation. Exp Gerontol 2022; 157:111632. [PMID: 34822971 DOI: 10.1016/j.exger.2021.111632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
It is unknown if consumption of a Western diet (WD; high-fat/sucrose), versus a non-WD (healthy diet), accelerates declines in physical function over the adult lifespan, and whether regular voluntary activity attenuates age- and WD-associated declines in function. Accordingly, we studied 4 cohorts of mice that consumed either normal chow [NC] or WD with or without access (sedentary, Sed) to voluntary wheel running [VWR] beginning at 3 mo of age. We assessed coordination, grip strength and endurance every 6 mo throughout life, and measured skeletal muscle mass and inflammation at 3 pre-determined ages (6-7, 13-14 and 19-20 mo). Age-related declines (% change 3-18 mo) in physical function were accelerated in WD-Sed versus NC-Sed (coordination: +47 ± 5%; grip strength: +18 ± 2%; endurance: +32 ± 5%; all p < 0.05). VWR attenuated declines in physical function within diet group (coordination: -31 ± 3% with WD-VWR; -18 ± 2% with NC-VWR; grip strength: -26 ± 2% with WD-VWR; -24 ± 2% with NC-VWR; endurance: -48 ± 4% with WD-VWR; -23 ± 6% with NC-VWR; all p < 0.05). Skeletal muscle mass loss and pro-inflammatory cytokine abundance were exacerbated by WD throughout life (mass: NC-Sed [-]7-28%, WD-Sed [-]17-40%; inflammation: NC-Sed [+]40-65%, WD-Sed [+]40-84%, all p < 0.05 versus NC-Sed), and attenuated by VWR (mass: NC-VWR, [-]0-10%, WD-VWR [-]0-10%; inflammation: NC-VWR [+]0-30%, WD-VWR [+]0-42%, all p < 0.05 versus diet-matched Sed group). Our results depict the temporal impairment of physical function over the lifespan in mice, acceleration of dysfunction with WD, the protective effects of voluntary exercise, and the potential associations with skeletal muscle mass and inflammation.
Collapse
Affiliation(s)
- Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Rachel A Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Jamie N Justice
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Kara L Lubieniecki
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - David A Hutton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Melanie C Zigler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America.
| |
Collapse
|
33
|
Feng J, Zhang L, Tang X, Hu W, Zhou P. Major yolk protein from sea cucumber (Stichopus japonicus) attenuates acute colitis via regulation of microbial dysbiosis and inflammatory responses. Food Res Int 2022; 151:110841. [PMID: 34980380 DOI: 10.1016/j.foodres.2021.110841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 11/27/2021] [Indexed: 11/15/2022]
Abstract
Inflammatory bowel disease afflicted individuals and most medications have adverse effects. The objection of this study is to investigate whether the major yolk protein (MYP) could aid in the remission of colitis. The function of MYP on acute colitis was assessed through a dextran sulfate sodium -induced colitis mice model. Compared to the model group, the anti-inflammatory cytokines increased significantly in the MYP group, whereas the pro-inflammatory cytokines were not significantly different between the model and treatment group. The results also showed that supplementation of MYP improved the shift in microbial community composition of mice with colitis induced by DSS. In addition, MYP supplementation enriched the contents of fecal short-chain fatty acids. The alleviation of MYP on the colitis was probably related to repair the dysbiosis state of colonic microbiota, which thus induced an increase in short-chain fatty acids level and secrete anti-inflammatory cytokines (IL-4 and IL-10). In sum, oral MYP may be a potential candidate for the attenuating of acute colitis.
Collapse
Affiliation(s)
- Jianhui Feng
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Lina Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Xue Tang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Wei Hu
- Shandong Homey Aquatic Development CO., Rongcheng, Shandong Province 264000, China
| | - Peng Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
34
|
Rauen M, Hao D, Müller A, Mückter E, Bollheimer LC, Nourbakhsh M. Free Fatty Acid Species Differentially Modulate the Inflammatory Gene Response in Primary Human Skeletal Myoblasts. BIOLOGY 2021; 10:biology10121318. [PMID: 34943232 PMCID: PMC8698660 DOI: 10.3390/biology10121318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary Epidemiological studies show that obesity increases the risk of muscle mass loss with age, a syndrome called sarcopenic obesity. Obesity leads to increased free fatty acids (FFAs) and excessive fat deposits, which impair the integrity of skeletal muscles by unknown mechanisms. This report indicates that FFAs directly affect human skeletal muscle cell replication and inflammatory gene expression. The structural characteristics of FFAs play a decisive role in triggering both processes. Thus, the characterization of abundant FFA species in the skeletal muscle of obese individuals may become a useful tool to predict the progression of sarcopenic obesity. Abstract Age-related loss of skeletal muscle is associated with obesity and inflammation. In animal models, intramuscular fat deposits compromise muscle integrity; however, the relevant fat components that mediate muscular inflammation are not known. Previously, we hypothesized that free fatty acids (FFAs) may directly induce inflammatory gene expression in skeletal muscle cells of obese rats. Here, we examined this hypothesis in primary human skeletal myoblasts (SkMs) using multiplex expression analysis of 39 inflammatory proteins in response to different FFA species. Multiplex mRNA quantification confirmed that the IL6, IL1RA, IL4, LIF, CXCL8, CXCL1, CXCL12 and CCL2 genes were differentially regulated by saturated and unsaturated C16 or C18 FFAs. Fluorescence staining revealed that only saturated C16 and C18 strongly interfere with myoblast replication independent of desmin expression, mitochondrial abundance and oxidative activity. Furthermore, we addressed the possible implications of 71 human receptor tyrosine kinases (RTKs) in FFA-mediated effects. Phosphorylated EphB6 and TNK2 were associated with impaired myoblast replication by saturated C16 and C18 FFAs. Our data suggest that abundant FFA species in human skeletal muscle tissue may play a decisive role in the progression of sarcopenic obesity by affecting inflammatory signals or myoblast replication.
Collapse
|
35
|
Rios JL, Hart DA, Reimer RA, Herzog W. Prebiotic and Exercise Do Not Alter Knee Osteoarthritis in a Rat Model of Established Obesity. Cartilage 2021; 13:1456S-1466S. [PMID: 32940053 PMCID: PMC8804820 DOI: 10.1177/1947603520959399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Metabolic disturbance is a known risk factor for cardiovascular disease and has been identified as a risk factor for the development of knee osteoarthritis. In this study, we sought to determine the effects of prebiotic fiber supplementation, aerobic exercise, and the combination of the 2 interventions, on the progression of knee osteoarthritis in a high-fat/high-sucrose diet-induced rat model of metabolic disturbance. DESIGN Twelve-week-old male CD-Sprague-Dawley rats were either fed a standard chow diet, or a high-fat/high-sucrose diet. After 12 weeks on diets, rats consuming the high-fat/high-sucrose diet were randomized into 4 subgroups: a sedentary, an aerobic exercise, a prebiotic fiber supplementation, and an aerobic exercise combined with prebiotic fiber supplementation group. The aerobic exercise intervention consisted of a progressive treadmill training program for 12 weeks, while the prebiotic fiber was added to the high-fat/high-sucrose diet at a dose of 10% by weight for 12 weeks. Outcome measures included knee joint damage, body mass, percent body fat, bone mineral density, insulin sensitivity, and serum lipid profile. RESULTS Aerobic exercise, or the combination of prebiotic fiber and aerobic exercise, improved select markers of metabolic disturbance, but not knee joint damage. However, these results need to be considered in view of the fact that the chow-fed rats had similar knee OA-like damage as the high-fat/high-sucrose-fed rats. CONCLUSION Exercise or prebiotics did not increase joint damage and might be good strategies for populations with metabolic knee osteoarthritis to alleviate other health-related problems, such as diabetes or cardiovascular disorders.
Collapse
Affiliation(s)
- Jaqueline Lourdes Rios
- Human Performance Laboratory, Faculty of
Kinesiology, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint
Health, University of Calgary, Calgary, Alberta, Canada
| | - David A. Hart
- Human Performance Laboratory, Faculty of
Kinesiology, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint
Health, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A. Reimer
- Human Performance Laboratory, Faculty of
Kinesiology, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint
Health, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular
Biology, University of Calgary, Calgary, Alberta, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of
Kinesiology, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint
Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Bolam SM, Park YE, Konar S, Callon KE, Workman J, Monk AP, Coleman B, Cornish J, Vickers MH, Munro JT, Musson DS. Obesity Impairs Enthesis Healing After Rotator Cuff Repair in a Rat Model. Am J Sports Med 2021; 49:3959-3969. [PMID: 34694156 DOI: 10.1177/03635465211049219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Being overweight or obese is associated with poor outcomes and an increased risk of failure after rotator cuff (RC) surgery. However, the effect of obesity on enthesis healing has not been well characterized. HYPOTHESES Diet-induced obesity (DIO) would result in inferior enthesis healing in a rat model of RC repair, and a dietary intervention in the perioperative period would improve enthesis healing. STUDY DESIGN Controlled laboratory study. METHODS Male Sprague-Dawley rats were divided into 3 weight-matched groups (n = 26 per group): control diet (CD), high-fat diet (HFD), or HFD until surgery and then CD thereafter (HF-CD). After 12 weeks, the left supraspinatus tendon was detached, followed by immediate repair. Animals were sacrificed, and RCs were harvested at 2 and 12 weeks after surgery for biomechanical and histological evaluations. Metabolic end points were assessed using dual-energy X-ray absorptiometry and plasma analyses. RESULTS DIO was established in the HFD and HF-CD groups before surgery and subsequently reversed in the HF-CD group after surgery. At 12 weeks after surgery, the body fat percentage (P = .0021) and plasma leptin concentration (P = .0025) were higher in the HFD group compared with the CD group. Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD groups compared with the CD group at 12 weeks after surgery, with semiquantitative scores of 6.20 (P = .0078), 4.98 (P = .0003), and 8.68 of 15, respectively. The repaired entheses in the HF-CD group had a significantly lower load to failure (P = .0278) at 12 weeks after surgery compared with the CD group, while the load to failure in the HFD group was low but not significantly different (P = .0960). There were no differences in the biomechanical and histological results between the groups at 2 weeks after surgery. Body mass at the time of surgery, plasma leptin concentration, and body fat percentage were negatively correlated with histology scores and plasma leptin concentration was correlated with load to failure at 12 weeks after surgery. CONCLUSION DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring a normal weight with dietary changes after surgery did not improve healing outcomes. CLINICAL RELEVANCE Obesity is a potentially modifiable factor that impairs RC healing and increases the risk of failure after surgery. Exploring interventions that improve the metabolic state of obese patients and counseling patients appropriately about their modest expectations after repair should be considered.
Collapse
Affiliation(s)
- Scott M Bolam
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand.,Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Young-Eun Park
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Subhajit Konar
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Karen E Callon
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Josh Workman
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - A Paul Monk
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Brendan Coleman
- Department of Orthopaedic Surgery, Middlemore Hospital, Auckland, New Zealand
| | - Jillian Cornish
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jacob T Munro
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand.,Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - David S Musson
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand.,Department of Nutrition and Dietetics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
37
|
Smith IC, Ostertag C, O'Reilly JJ, Rios JL, Klancic T, MacDonald GZ, Collins KH, Reimer RA, Herzog W. Contractility of permeabilized rat vastus intermedius muscle fibres following high-fat, high-sucrose diet consumption. Appl Physiol Nutr Metab 2021; 46:1389-1399. [PMID: 34139131 DOI: 10.1139/apnm-2021-0238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity is a worldwide health concern associated with impaired physical function. It is not clear if contractile protein dysfunction contributes to the impairment of muscle function observed with obesity. The purpose of this study was to examine if diet-induced obesity affects contractile function of chemically permeabilized vastus intermedius fibres of male Sprague-Dawley rats expressing fast myosin heavy chain (MHC) IIa or slow MHC I. Rats consumed either a high-fat, high sucrose (HFHS) diet or a standard (CHOW) diet beginning as either weanlings (7-week duration: WEAN7 cohort, or 14-week duration: WEAN14 cohort) or young adults (12-week duration: ADULT12 cohort, 24-week duration: ADULT24 cohort). HFHS-fed rats had higher (P < 0.05) whole-body adiposity (derived from dual-energy X-ray absorptiometry) than CHOW-fed rats in all cohorts. Relative to CHOW diet groups, the HFHS diet was associated with impaired force production in (a) MHC I fibres in the ADULT24 cohort; and (b) MHC IIa fibres in the ADULT12 and ADULT24 cohorts combined. However, the HFHS diet did not significantly affect the Ca2+-sensitivity of force production, unloaded shortening velocity, or ratio of active force to active stiffness in any cohort. We conclude that diet-induced obesity can impair force output of permeabilized muscle fibres of adult rats. Novelty: We assessed contractile function of permeabilized skeletal muscle fibres in a rat model of diet-induced obesity. The high-fat, high-sucrose diet was associated with impaired force output of fibres expressing MHC I or MHC IIa in some cohorts of rats. Other measures of contractile function were not significantly affected by diet.
Collapse
Affiliation(s)
- Ian C Smith
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Curtis Ostertag
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer J O'Reilly
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jaqueline L Rios
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Teja Klancic
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Graham Z MacDonald
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Kelsey H Collins
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A Reimer
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Walter Herzog
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Biomechanics Laboratory, School of Sports, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
38
|
Collins KH, Schwartz DJ, Lenz KL, Harris CA, Guilak F. Taxonomic changes in the gut microbiota are associated with cartilage damage independent of adiposity, high fat diet, and joint injury. Sci Rep 2021; 11:14560. [PMID: 34267289 PMCID: PMC8282619 DOI: 10.1038/s41598-021-94125-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/30/2021] [Indexed: 12/02/2022] Open
Abstract
Lipodystrophic mice are protected from cartilage damage following joint injury. This protection can be reversed by the implantation of a small adipose tissue graft. The purpose of this study was to evaluate the relationship between the gut microbiota and knee cartilage damage while controlling for adiposity, high fat diet, and joint injury using lipodystrophic (LD) mice. LD and littermate control (WT) mice were fed a high fat diet, chow diet, or were rescued with fat implantation, then challenged with destabilization of the medial meniscus surgery to induce osteoarthritis (OA). 16S rRNA sequencing was conducted on feces. MaAslin2 was used to determine associations between taxonomic relative abundance and OA severity. While serum LPS levels between groups were similar, synovial fluid LPS levels were increased in both limbs of HFD WT mice compared to all groups, except for fat transplanted animals. The Bacteroidetes:Firmicutes ratio of the gut microbiota was significantly reduced in HFD and OA-rescued animals when compared to chow. Nine novel significant associations were found between gut microbiota taxa and OA severity. These findings suggest the presence of causal relationships the gut microbiome and cartilage health, independent of diet or adiposity, providing potential therapeutic targets through manipulation of the microbiome.
Collapse
Affiliation(s)
- Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Drew J Schwartz
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristin L Lenz
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
| | - Charles A Harris
- Division of Endocrinology, Washington University, St. Louis, MO, USA
- Early Clinical Development & Experimental Sciences, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA.
- Shriners Hospitals for Children, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.
| |
Collapse
|
39
|
Wang G, Zhu G, Chen C, Zheng Y, Ma F, Zhao J, Lee YK, Zhang H, Chen W. Lactobacillus strains derived from human gut ameliorate metabolic disorders via modulation of gut microbiota composition and short-chain fatty acids metabolism. Benef Microbes 2021; 12:267-281. [PMID: 34109894 DOI: 10.3920/bm2020.0148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regulation on gut microbiota and short-chain fatty acids (SCFAs) are believed to be a pathway to suppress the development of metabolic syndrome. In this study, three Lactobacillus strains derived from the human gut were investigated for their effects on alleviation of metabolic disorders. These strains were individually administered to metabolic disorder rats induced by high-fat-high-sucrose (HFHS) diet. Each strain exhibited its own characteristics in attenuating the impaired glucose-insulin homeostasis, hepatic oxidative damage and steatosis. Correlation analysis between SCFAs and host metabolic parameters suggested that Lactobacillus protective effects on metabolic disorders are partly mediated by recovery of SCFAs production, especially the faecal acetic acid. Correspondingly, it indicated that probiotics restore the gut microbiota dysbiosis in different extent, thereby protect against metabolic disorders in a manner that is associated with microbiota, but not totally reverse the changed composition of microbiota to the normal state. Thus, Lactobacillus strains partly protect against diet-induced metabolic syndrome by microbiota modulation and acetate elevation.
Collapse
Affiliation(s)
- G Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - G Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - C Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - Y Zheng
- Infinitus (China) company Ltd., Guangzhou 510623, China P.R
| | - F Ma
- Infinitus (China) company Ltd., Guangzhou 510623, China P.R
| | - J Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China P.R.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China P.R
| | - Y-K Lee
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore
| | - H Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China P.R.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China P.R.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China P.R
| | - W Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China P.R.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China P.R
| |
Collapse
|
40
|
Abulmeaty MMA, Almajwal AM, Alnumair KS, Razak S, Hasan MM, Fawzy A, Farraj AI, Abudawood M, Aljuraiban GS. Effect of Long-Term Continuous Light Exposure and Western Diet on Adropin Expression, Lipid Metabolism, and Energy Homeostasis in Rats. BIOLOGY 2021; 10:biology10050413. [PMID: 34066943 PMCID: PMC8148543 DOI: 10.3390/biology10050413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/15/2022]
Abstract
Long-term continuous light exposure (CL) and western diet (WD) effects on Adropin expression, RORα, and Rev-erb-α nuclear receptors and energy homeostasis were studied in rats. Thirty-two male Wistar rats (250-290 g) were enrolled for 3 months in the following groups (n = 8/group): (a) Normal control group (NC), (b) CL group, (c) WD group, and (d) CL + WD group. Then, indirect calorimetry and food intake (FI) were measured. Finally, Adropin, hormone-sensitive lipase (HSL), adipocyte triglyceride lipase (ATGL), and free fatty acids (FFA) were measured. Additionally, the histopathology and gene expression of Enho, RORα, and Rev-erb-α genes were done. The CL alone elevated the Adropin plasma level and gene expression, increased RORα expression, and decreased the Rev-erb-α nuclear receptor expression mainly in the liver and kidney. Besides, CL increased the total energy expenditure (TEE) and decreased the respiratory quotient. WD alone or in combination with the CL reversed gene expression of Enho, RORα, and Rev-erb-α. Combined CL and WD increased the TEE, reduced the food intake, increased the ATGL, and reduced the Adropin level in addition to widespread degenerative changes in the liver, spleen, and renal tissues. The deleterious effects of CL and WD on energy homeostasis may include Adropin with the involvement of the RORα and Rev-erb-α nuclear receptors.
Collapse
Affiliation(s)
- Mahmoud Mustafa Ali Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (A.M.A.); (K.S.A.); (S.R.); (G.S.A.)
- Department of Medical Physiology, School of Medicine, Zagazig University, Zagazig 44519, Egypt;
- Correspondence: ; Tel.: +966-54-815-5983
| | - Ali Madi Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (A.M.A.); (K.S.A.); (S.R.); (G.S.A.)
| | - Khalid S. Alnumair
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (A.M.A.); (K.S.A.); (S.R.); (G.S.A.)
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (A.M.A.); (K.S.A.); (S.R.); (G.S.A.)
| | - Mai Mohammed Hasan
- Department of Medical Physiology, School of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Amal Fawzy
- Department of Medical Biochemistry, School of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Abdullah Ibrahim Farraj
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (A.I.F.); (M.A.)
| | - Manal Abudawood
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (A.I.F.); (M.A.)
| | - Ghadeer S. Aljuraiban
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (A.M.A.); (K.S.A.); (S.R.); (G.S.A.)
| |
Collapse
|
41
|
Tan TC, Chong TKY, Low AHL, Leung YY. Microbiome and osteoarthritis: New insights from animal and human studies. Int J Rheum Dis 2021; 24:984-1003. [PMID: 33961348 DOI: 10.1111/1756-185x.14123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 01/08/2023]
Abstract
Osteoarthritis (OA) is a common cause of disability, especially among the elderly. With an ageing and increasingly obese population, OA will become more prevalent. Obesity and metabolic syndrome are risk factors for OA and have been implicated in its pathogenesis. The gut microbiome may shed light on this possible common pathogenesis. Recent animal and human studies have gained important insights into the relationship between OA, obesity, and the gut microbiome. Animal studies have demonstrated links between obesity and increased severity of OA and altered gut microbial DNA profile. Use of prebiotics and probiotics in animal trials provides proof-of-concept that interventional options to the gut microbiome can modulate the progression of OA favorably. Current evidence in human studies is limited. Shifts in gut microbial profile and reduced gut microbial diversity have been associated with people with OA, as well as blood and synovial fluid lipopolysaccharide endotoxemia. Linkages between microbiome dysbiosis and host responses may help in the understanding of OA pathogenesis and the discovery of therapeutic targets. This narrative review provides a summary of up-to-date animal and human studies on the gut microbiome and its link with OA.
Collapse
Affiliation(s)
- Tze Chin Tan
- Department of Rheumatology & Immunology, Singapore General Hospital, Singapore City, Singapore.,Duke-NUS Medical School, Singapore City, Singapore
| | - Timothy Kit Yeong Chong
- Department of Rheumatology & Immunology, Singapore General Hospital, Singapore City, Singapore
| | - Andrea Hsiu Ling Low
- Department of Rheumatology & Immunology, Singapore General Hospital, Singapore City, Singapore.,Duke-NUS Medical School, Singapore City, Singapore
| | - Ying Ying Leung
- Department of Rheumatology & Immunology, Singapore General Hospital, Singapore City, Singapore.,Duke-NUS Medical School, Singapore City, Singapore
| |
Collapse
|
42
|
Alterations in intestinal microbiota diversity, composition, and function in patients with sarcopenia. Sci Rep 2021; 11:4628. [PMID: 33633246 PMCID: PMC7907362 DOI: 10.1038/s41598-021-84031-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
16S rRNA sequencing of human fecal samples has been tremendously successful in identifying microbiome changes associated with both aging and disease. A number of studies have described microbial alterations corresponding to physical frailty and nursing home residence among aging individuals. A gut-muscle axis through which the microbiome influences skeletal muscle growth/function has been hypothesized. However, the microbiome has yet to be examined in sarcopenia. Here, we collected fecal samples of 60 healthy controls (CON) and 27 sarcopenic (Case)/possibly sarcopenic (preCase) individuals and analyzed the intestinal microbiota using 16S rRNA sequencing. We observed an overall reduction in microbial diversity in Case and preCase samples. The genera Lachnospira, Fusicantenibacter, Roseburia, Eubacterium, and Lachnoclostridium—known butyrate producers—were significantly less abundant in Case and preCase subjects while Lactobacillus was more abundant. Functional pathways underrepresented in Case subjects included numerous transporters and phenylalanine, tyrosine, and tryptophan biosynthesis suggesting that protein processing and nutrient transport may be impaired. In contrast, lipopolysaccharide biosynthesis was overrepresented in Case and PreCase subjects suggesting that sarcopenia is associated with a pro-inflammatory metagenome. These analyses demonstrate structural and functional alterations in the intestinal microbiota that may contribute to loss of skeletal muscle mass and function in sarcopenia.
Collapse
|
43
|
Sindi AS, Geddes DT, Wlodek ME, Muhlhausler BS, Payne MS, Stinson LF. Can we modulate the breastfed infant gut microbiota through maternal diet? FEMS Microbiol Rev 2021; 45:6133472. [PMID: 33571360 DOI: 10.1093/femsre/fuab011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Initial colonisation of the infant gut is robustly influenced by regular ingestion of human milk, a substance that contains microbes, microbial metabolites, immune proteins, and oligosaccharides. Numerous factors have been identified as potential determinants of the human milk and infant gut microbiota, including maternal diet; however, there is limited data on the influence of maternal diet during lactation on either of these. Here, we review the processes thought to contribute to human milk and infant gut bacterial colonisation and provide a basis for considering the role of maternal dietary patterns during lactation in shaping infant gut microbial composition and function. Although only one observational study has directly investigated the influence of maternal diet during lactation on the infant gut microbiome, data from animal studies suggests that modulation of the maternal gut microbiota, via diet or probiotics, may influence the mammary or milk microbiota. Additionally, evidence from human studies suggests that the maternal diet during pregnancy may affect the gut microbiota of the breastfed infant. Together, there is a plausible hypothesis that maternal diet during lactation may influence the infant gut microbiota. If substantiated in further studies, this may present a potential window of opportunity for modulating the infant gut microbiome in early life.
Collapse
Affiliation(s)
- Azhar S Sindi
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Mary E Wlodek
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Beverly S Muhlhausler
- CSIRO, Adelaide, South Australia, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
44
|
Caloric restriction following early-life high fat-diet feeding represses skeletal muscle TNF in male rats. J Nutr Biochem 2021; 91:108598. [PMID: 33549890 DOI: 10.1016/j.jnutbio.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Chronic metabolic diseases are on the rise worldwide and their etiology is multifactorial. Among them, inflammatory components like Tumor Necrosis Factor (TNF), contribute to whole-body metabolic impairment. Caloric Restriction (CR) combats metabolic diseases, but how it reduces inflammation remains understudied. We aimed to evaluate the impact of chronic CR on muscle inflammation, in particular TNF. In our study, 4-week old male Sprague-Dawley rats were fed a high-fat diet (HF, 45% Kcal of fat from lard) ad libitum for 3 months. After estimation of their energy requirement (1 month), they were then divided into three groups: HF ad libitum (OL), weight maintenance with AIN93M (9.5% Kcal from fat; ML, 100% of energy requirement), and caloric restriction (CR, AIN93M with 75% of energy requirement). This dietary intervention continued for six months. At this point, rats were sacrificed and gastrocnemius muscle was collected. CR induced a profound shift in fat and lean mass, and decreased growth factor IGF-1. Muscle qPCR analysis showed a marked decrease in inflammation and TNF (premRNA, mRNA, and protein) by CR, accompanied by Tnf promoter DNA hypermethylation. CR increased expression of histone deacetylase Sirt6 and decreased methyltransferase Suv39h1, together with decreased Tnf promoter and coding region binding of NF- κB and C/EBP-β. Following miRNA database mining, qPCR analysis revealed that CR downregulated the proinflammatory miR-19b and increased the anti-inflammatory miR-181a and its known targets. Chronic CR is able to regulate muscle-specific inflammation by targeting the NF-κB pathway as well as transcriptional and post-transcriptional regulation of Tnf gene.
Collapse
|
45
|
Qiao J, Wu Y, Ren Y. The impact of a high fat diet on bones: potential mechanisms. Food Funct 2021; 12:963-975. [PMID: 33443523 DOI: 10.1039/d0fo02664f] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-fat diet led to bone loss via gut microbiota and fatty acid imbalances, immune disorder and adipose tissue accumulation inside and outside the bone marrow.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Endocrinology and Metabolism
- the Second Affiliated Hospital of Zhejiang University School of Medicine
- Hangzhou
- 310009
- China
| | - Yiwen Wu
- Department of Neurosurgery
- Ningbo Hospital
- Zhejiang University School of Medicine
- Ningbo 315010
- China
| | - Yuezhong Ren
- Department of Endocrinology and Metabolism
- the Second Affiliated Hospital of Zhejiang University School of Medicine
- Hangzhou
- 310009
- China
| |
Collapse
|
46
|
Parsanathan R, Achari AE, Manna P, Jain SK. l-Cysteine and Vitamin D Co-Supplementation Alleviates Markers of Musculoskeletal Disorders in Vitamin D-Deficient High-Fat Diet-Fed Mice. Nutrients 2020; 12:nu12113406. [PMID: 33171932 PMCID: PMC7694620 DOI: 10.3390/nu12113406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Vitamin D (VD) deficiency is associated with musculoskeletal disorders. This study examines whether co-supplementation of l-cysteine (LC) and VD is better than monotherapy with LC or VD at alleviating musculoskeletal dyshomeostasis in the skeletal muscle of VD-deficient high-fat diet (HFD-VD-) fed mice. Mice were fed a healthy diet or an HFD; for VD-deficient animals, the mice were maintained on a HFD-VD-diet (16 weeks); after the first 8 weeks, the HFD-VD-diet-fed mice were supplemented for another 8 weeks with LC, VD-alone, or the same doses of LC + VD by oral gavage. Saline and olive oil served as controls. Myotubes were exposed with high-glucose, palmitate, Monocyte Chemoattractant Protein 1 (MCP-1), and Tumor Necrosis Factor (TNF), to mimic the in vivo microenvironment. In vitro deficiencies of glutathione and hydrogen sulfide were induced by knockdown of GCLC and CSE genes. Relative gene expression of biomarkers (myogenic: MyoD, Mef2c, Csrp3; muscle dystrophy: Atrogin1, Murf1, and Myostatin; bone modeling and remodeling: RANK, RANKL, OPG) were analyzed using qRT-PCR. Co-supplementatoin with LC + VD showed beneficial effects on gene expression of myogenic markers and OPG but reduced markers of dystrophy, RANK/RANKL in comparison to LC or VD alone-supplementation. In vitro myotubes treated with glutathione (GSH) precursors also showed a positive effect on OPG and the myogenesis genes, and inhibited RANK/RANKL and muscle-dystrophy markers. This study reveals that the co-supplementation of LC with VD significantly alleviates the markers of musculoskeletal disorders in the skeletal muscle better than monotherapy with LC or VD in HFD-VD-fed mice.
Collapse
|
47
|
Exercise and/or Genistein Treatment Impact Gut Microbiota and Inflammation after 12 Weeks on a High-Fat, High-Sugar Diet in C57BL/6 Mice. Nutrients 2020; 12:nu12113410. [PMID: 33172007 PMCID: PMC7694625 DOI: 10.3390/nu12113410] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Genistein (Gen) and exercise (Exe) have been postulated as potential strategies to ameliorate obesity, inflammation, and gut microbiota (GM) with promising results. However, the impact of the combination of both Exe and Gen is yet to be investigated. We aimed to analyze the impacts of Exe, Gen, and their combined effects on GM and inflammation in mice after a 12-week high-fat, high-sugar diet (HFD). Eighty-three C57BL/6 mice were randomized to control, HFD, HFD + Exe, HFD + Gen, or HFD + Exe + Gen. The V4 region of the 16S rRNA gene was analyzed with Illumina MiSeq. Serum samples were used to analyze interleukin (Il)-6 and Tumor Necrosis Factor alpha (TNF-alpha). The HFD + Exe and HFD + Exe + Gen treatments resulted in significantly greater microbial richness compared to HFD. All the treatments had a significantly different impact on the GM community structure. Ruminococcus was significantly more abundant after the HFD + Exe + Gen treatment when compared to all the other HFD groups. Exe + Gen resulted in serum Il-6 concentrations similar to that of controls. TNF-alpha concentrations did not differ by treatment. Overall, Exe had a positive impact on microbial richness, and Ruminococcus might be the driving bacteria for the GM structure differences. Exe + Gen may be an effective treatment for preventing HFD-induced inflammation.
Collapse
|
48
|
Supplementation of Bacillus sp. DU-106 reduces hypercholesterolemia and ameliorates gut dysbiosis in high-fat diet rats. Appl Microbiol Biotechnol 2020; 105:287-299. [PMID: 33128611 DOI: 10.1007/s00253-020-10977-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Gut microbiota modulation by a probiotic is a novel therapy for hypercholesterolemia mitigation. This study initially investigated the potential hypocholesterolemic effect of Bacillus sp. DU-106 in hypercholesterolemic rats and explored its potential relation with gut microbiota. Sprague-Dawley rats received a high-fat diet, or a high-fat diet supplemented with 7.5 × 109 and 1.5 × 1010 CFU/kg bw/day Bacillus sp. DU-106 (low-dose and high-dose groups). At the end of 9 weeks, Bacillus sp. DU-106 treatment significantly decreased the body weight, liver index, and total cholesterol. 16S rRNA sequencing showed that Bacillus sp. DU-106 intervention significantly increased bacterial richness and particularly increased the genus abundance of Turicibacter, Acinetobacter, Brevundimonas, and Bacillus and significantly decreased the abundance of Ralstonia. Metabolomic data further indicated that the supplementation of Bacillus sp. DU-106 remarkably changed the gut metabolic profiles of hypercholesterolemic rats and, in particular, elevated the metabolites of indole-3-acetate, methylsuccinic acid, creatine, glutamic acid, threonine, lysine, ascorbic acid, and pyridoxamine. Spearman's correlation analysis showed the close relation between the different genera and metabolites. In conclusion, Bacillus sp. DU-106 supplement ameliorated high-fat diet-induced hypercholesterolemia and showed potential probiotic benefits for the intestine. KEY POINTS: • A novel potential probiotic Bacillus sp. DU-106 ameliorated hypercholesterolemia in rats. • Bacillus sp. DU-106 supplement regulated gut microbiome structure and richness. • Bacillus sp. DU-106 supplement changed metabolic profiles in high-fat diet rats. • Significant correlations were observed between differential genera and metabolites.
Collapse
|
49
|
Ferreira RDS, Mendonça LABM, Ribeiro CFA, Calças NC, Guimarães RDCA, Nascimento VAD, Gielow KDCF, Carvalho CME, Castro APD, Franco OL. Relationship between intestinal microbiota, diet and biological systems: an integrated view. Crit Rev Food Sci Nutr 2020; 62:1166-1186. [PMID: 33115284 DOI: 10.1080/10408398.2020.1836605] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The health-disease process can be influenced by the intestinal microbiota. As this plays a fundamental role in protecting the organism, the importance of studying the composition and diversity of this community becomes increasingly evident. Changes in the composition of the intestinal bacterial community may result in dysbiosis, and this process may contribute to triggering various diseases in all biological systems. This imbalance of intestinal microbiota homeostasis may alter commensal bacteria and the host metabolism, as well as immune function. Dysbiosis also causes an increase in intestinal permeability due to exposure to molecular patterns associated with the pathogen and lipopolysaccharides, leading to a chronic inflammatory process that can result in diseases for all biological systems. In this context, dietary intervention through the use of probiotics, prebiotics and antioxidant foods can be considered a contribution to the modulation of intestinal microbiota. Probiotics have been used to provide up to 10 billion colony forming units, and probiotic foods, Kefir and fermented natural yogurt are also used. Prebiotics, in turn, are found in supplemental formulations of processed foods and in functional foods that are also sources of phenolic compounds, such as flavonoids, antioxidant and anti-inflammatory substances, polyunsaturated fatty acids, vitamins, and minerals. In this review, we will discuss the relationship between an imbalance in the intestinal microbiota with the development of diseases, besides indicating the need for future studies that can establish bacterial parameters for the gastrointestinal tract by modulating the intestinal microbiota, associated with the adoption of healthy habits during all life cycles.
Collapse
Affiliation(s)
- Rosângela Dos Santos Ferreira
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Camila Fontoura Acosta Ribeiro
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Natali Camposano Calças
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Valter Aragão do Nascimento
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Karine de Cássia Freitas Gielow
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Alinne Pereira de Castro
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil.,Center of Proteomic and Biochemical Analysis, Post Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia, Distrito Federal, Brazil
| |
Collapse
|
50
|
Yan H, Yu B, Degroote J, Spranghers T, Van Noten N, Majdeddin M, Van Poucke M, Peelman L, De Vrieze J, Boon N, Gielen I, Smet SD, Chen D, Michiels J. Antibiotic affects the gut microbiota composition and expression of genes related to lipid metabolism and myofiber types in skeletal muscle of piglets. BMC Vet Res 2020; 16:392. [PMID: 33066774 PMCID: PMC7568366 DOI: 10.1186/s12917-020-02592-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/28/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Early-life antibiotic administration is known to affect gut microbiota and host adiposity, but the effects of antibiotic exposure on skeletal muscle properties remain unknown. The present study evaluated the changes in skeletal muscle properties including myofiber characteristics and composition, as well as intramuscular fat (IMF) content in skeletal muscle of piglets when exposed to a tylosin-containing diet. RESULTS A total of 18 piglets (28 days of age) were randomly allocated into two groups: control basal diet (Control) and Control + 100 mg tylosin phosphate/kg of feed (Antibiotic). The trial lasted for 39 days. High-throughput amplicon sequencing revealed that no significant difference in initial gut microbiota composition was existed between Control and Antibiotic groups. Antibiotic administration increased body weight and growth rate and decreased feed to gain ratio of pigs (P < 0.05). The carcass lean and fat volumes of pigs were increased by the tylosin administration (P < 0.05). Antibiotic treatment increased myofiber density and the expression of genes related to type I and type IIb myofibers in longissimus muscle (P < 0.05). The IMF content in longissimus muscle was increased by antibiotic exposure (P < 0.05). Antibiotic administration increased expression of genes related to fatty acid uptake and de novo synthesis, and decreased expression of genes related to triglyceride hydrolysis (P < 0.05). Tylosin administration affected taxonomic distribution and beta diversity of the caecal and colonic microbiota of piglets. CONCLUSION These results confirm that the growth performance, myofiber composition and muscle lipid metabolism are affected by antibiotic administration, which may be associated with an altered gut microbiota, suggesting that the gut microbiota could be served as a potential target for modulating skeletal muscle properties of host.
Collapse
Affiliation(s)
- Honglin Yan
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya'an, 625014, People's Republic of China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya'an, 625014, People's Republic of China
| | - Jeroen Degroote
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Thomas Spranghers
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Noémie Van Noten
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Maryam Majdeddin
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Mario Van Poucke
- Department of Nutrition, Genetics and Ethology, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ingrid Gielen
- Department of Medical Imaging and Small Animal Orthopaedics, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya'an, 625014, People's Republic of China.
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|