1
|
Hellenbrand DJ, Lee JS, Mickelson EJ, Baer MC, Ott EL, Martinson NR, Ceelen MR, Hilger KH, Nielsen BE, Jacobs AN, Mishra RR, Hurley SA, Murphy WL, Hanna AS. Mineral coated microparticles delivering Interleukin-4, Interleukin-10, and Interleukin-13 reduce inflammation and improve function after spinal cord injury in a rat. Exp Neurol 2025; 386:115179. [PMID: 39914642 DOI: 10.1016/j.expneurol.2025.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
After spinal cord injury (SCI) there is excessive inflammation and extensive infiltration of immune cells that leads to additional neural damage. Interleukin (IL)-4, IL-10, and IL-13 are anti-inflammatories that have been shown to reduce several pro-inflammatory species, alter macrophage state, and provide neuroprotection. However, these anti-inflammatories have a short half-life, do not cross the blood-spinal cord barrier, and large systemic doses of ant-inflammatory cytokines can cause increased susceptibility to infections. In this study, we used mineral coated microparticles (MCMs) to bind, stabilize and deliver biologically active IL-4, IL-10, and IL-13 in a sustained manner directly to the injury site. Rats with a T10 SCI were given an intraspinal injection of cytokine-loaded MCMs 6 h post-injury. Testing of 27 cytokine/chemokine levels 24 h post-injury demonstrated that MCMs delivering IL-4, IL-10, and IL-13 significantly reduced inflammation (P < 0.0001). Rats treated with MCMs+(IL-4, IL-10, IL-13) had significantly higher Basso-Beattie-Bresnahan locomotor rating scores (P = 0.0021), Ladder Rung Test scores (P = 0.0021), and significantly longer latency threshold with the Hargreaves Test (P = 0.0123), compared to Injured Controls. Analyses of post-fixed spinal cords revealed significantly less spinal cord atrophy (P = 0.0344) in rats treated with MCMs+(IL-4, IL-10, IL-13), and diffusion tensor imaging tractography revealed significantly more tracts spanning the injury site (P = 0.0025) in rats treated with MCMs+(IL-4, IL-10, IL-13) compared to Injured Controls. In conclusion, MCMs delivering IL-4, IL-10, and IL-13 significantly reduced inflammation post-SCI, resulting in significantly less spinal cord damage and a significant improvement in hind limb function.
Collapse
Affiliation(s)
- Daniel J Hellenbrand
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jae Sung Lee
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ethan J Mickelson
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Matthew C Baer
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Emily L Ott
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Natalie R Martinson
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Matthew R Ceelen
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Keegan H Hilger
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Brooke E Nielsen
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Alison N Jacobs
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raveena R Mishra
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Samuel A Hurley
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA; Forward BIO Institute, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Amgad S Hanna
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
2
|
Gottipati MK, D'Amato AR, Saksena J, Popovich PG, Wang Y, Gilbert RJ. Delayed administration of interleukin-4 coacervate alleviates the neurotoxic phenotype of astrocytes and promotes functional recovery after a contusion spinal cord injury. J Neural Eng 2024; 21:046052. [PMID: 39029499 DOI: 10.1088/1741-2552/ad6596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Objective. Macrophages and astrocytes play a crucial role in the aftermath of a traumatic spinal cord injury (SCI). Infiltrating macrophages adopt a pro-inflammatory phenotype while resident astrocytes adopt a neurotoxic phenotype at the injury site, both of which contribute to neuronal death and inhibit axonal regeneration. The cytokine interleukin-4 (IL-4) has shown significant promise in preclinical models of SCI by alleviating the macrophage-mediated inflammation and promoting functional recovery. However, its effect on neurotoxic reactive astrocytes remains to be elucidated, which we explored in this study. We also studied the beneficial effects of a sustained release of IL-4 from an injectable biomaterial compared to bolus administration of IL-4.Approach. We fabricated a heparin-based coacervate capable of anchoring and releasing bioactive IL-4 and tested its efficacyin vitroandin vivo. Main results. We show that IL-4 coacervate is biocompatible and drives a robust anti-inflammatory macrophage phenotype in culture. We also show that IL-4 and IL-4 coacervate can alleviate the reactive neurotoxic phenotype of astrocytes in culture. Finally, using a murine model of contusion SCI, we show that IL-4 and IL-4 coacervate, injected intraspinally 2 d post-injury, can reduce macrophage-mediated inflammation, and alleviate neurotoxic astrocyte phenotype, acutely and chronically, while also promoting neuroprotection with significant improvements in hindlimb locomotor recovery. We observed that IL-4 coacervate can promote a more robust regenerative macrophage phenotypein vitro, as well as match its efficacyin vivo,compared to bolus IL-4.Significance. Our work shows the promise of coacervate as a great choice for local and prolonged delivery of cytokines like IL-4. We support this by showing that the coacervate can release bioactive IL-4, which acts on macrophages and astrocytes to promote a pro-regenerative environment following a SCI leading to robust neuroprotective and functional outcomes.
Collapse
Affiliation(s)
- Manoj K Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
- Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
| | - Anthony R D'Amato
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, NY 14853, United States of America
| | - Jayant Saksena
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
- Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
| | - Yadong Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, NY 14853, United States of America
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
| |
Collapse
|
3
|
Gopalakrishnan B, Galili U, Dunbar A, Solorio L, Shi R, Li J. α-Gal Nanoparticles in CNS Trauma: I. In Vitro Activation of Microglia Towards a Pro-Healing State. Tissue Eng Regen Med 2024; 21:409-419. [PMID: 38099990 PMCID: PMC10987450 DOI: 10.1007/s13770-023-00613-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Macrophages and microglia play critical roles after spinal cord injury (SCI), with the pro-healing, anti-inflammatory (M2) subtype being implicated in tissue repair. We hypothesize that promoting this phenotype within the post-injured cord microenvironment may provide beneficial effects for mitigating tissue damage. As a proof of concept, we propose the use of nanoparticles incorporating the carbohydrate antigen, galactose-α-1,3-galactose (α-gal epitope) as an immunomodulator to transition human microglia (HMC3) cells toward a pro-healing state. METHODS Quiescent HMC3 cells were acutely exposed to α-gal nanoparticles in the presence of human serum and subsequently characterized for changes in cell shape, expression of anti or pro-inflammatory markers, and secretion of phenotype-specific cytokines. RESULTS HMC3 cells treated with serum activated α-gal nanoparticles exhibited rapid enlargement and shape change in addition to expressing CD68. Moreover, these activated cells showed increased expression of anti-inflammatory markers like Arginase-1 and CD206 without increasing production of pro-inflammatory cytokines TNF-α or IL-6. CONCLUSION This study is the first to show that resting human microglia exposed to a complex of α-gal nanoparticles and anti-Gal (from human serum) can be activated and polarized toward a putative M2 state. The data suggests that α-gal nanoparticles may have therapeutic relevance to the CNS microenvironment, in both recruiting and polarizing macrophages/microglia at the application site. The immunomodulatory activity of these α-gal nanoparticles post-SCI is further described in the companion work (Part II).
Collapse
Affiliation(s)
- Bhavani Gopalakrishnan
- Center for Paralysis Research (VCPR), Purdue University, 408 S. University St, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - August Dunbar
- Center for Paralysis Research (VCPR), Purdue University, 408 S. University St, West Lafayette, IN, 47907, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Riyi Shi
- Center for Paralysis Research (VCPR), Purdue University, 408 S. University St, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jianming Li
- Center for Paralysis Research (VCPR), Purdue University, 408 S. University St, West Lafayette, IN, 47907, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Baig MS, Barmpoutsi S, Bharti S, Weigert A, Hirani N, Atre R, Khabiya R, Sharma R, Sarup S, Savai R. Adaptor molecules mediate negative regulation of macrophage inflammatory pathways: a closer look. Front Immunol 2024; 15:1355012. [PMID: 38482001 PMCID: PMC10933033 DOI: 10.3389/fimmu.2024.1355012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 04/13/2024] Open
Abstract
Macrophages play a central role in initiating, maintaining, and terminating inflammation. For that, macrophages respond to various external stimuli in changing environments through signaling pathways that are tightly regulated and interconnected. This process involves, among others, autoregulatory loops that activate and deactivate macrophages through various cytokines, stimulants, and other chemical mediators. Adaptor proteins play an indispensable role in facilitating various inflammatory signals. These proteins are dynamic and flexible modulators of immune cell signaling and act as molecular bridges between cell surface receptors and intracellular effector molecules. They are involved in regulating physiological inflammation and also contribute significantly to the development of chronic inflammatory processes. This is at least partly due to their involvement in the activation and deactivation of macrophages, leading to changes in the macrophages' activation/phenotype. This review provides a comprehensive overview of the 20 adaptor molecules and proteins that act as negative regulators of inflammation in macrophages and effectively suppress inflammatory signaling pathways. We emphasize the functional role of adaptors in signal transduction in macrophages and their influence on the phenotypic transition of macrophages from pro-inflammatory M1-like states to anti-inflammatory M2-like phenotypes. This endeavor mainly aims at highlighting and orchestrating the intricate dynamics of adaptor molecules by elucidating the associated key roles along with respective domains and opening avenues for therapeutic and investigative purposes in clinical practice.
Collapse
Affiliation(s)
- Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Spyridoula Barmpoutsi
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Shreya Bharti
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Shivmuni Sarup
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
5
|
Guo J, Yang T, Zhang W, Yu K, Xu X, Li W, Song L, Gu X, Cao R, Cui S. Inhibition of CD44 suppresses the formation of fibrotic scar after spinal cord injury via the JAK2/STAT3 signaling pathway. iScience 2024; 27:108935. [PMID: 38323002 PMCID: PMC10846335 DOI: 10.1016/j.isci.2024.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Fibrotic scar is one of the main impediments to axon regeneration following spinal cord injury (SCI). In this study, we found that CD44 was upregulated during the formation of fibrotic scar, and blocking CD44 by IM7 caused downregulation of fibrosis-related extracellular matrix proteins at both 2 and 12 weeks post-spinal cord injury. More Biotinylated dextran amine (BDA)-traced corticospinal tract axons crossed the scar area and extended into the distal region after IM7 administration. A recovery of motor and sensory function was observed based on Basso Mouse Scale (BMS) scores and tail-flick test. In vitro experiments revealed that inhibiting CD44 and JAK2/STAT3 signaling pathway decreased the proliferation, differentiation, and migration of fibroblasts induced by the inflammatory supernatant. Collectively, these findings highlight the critical role of CD44 and its downstream JAK2/STAT3 signaling pathway in fibrotic scar formation, suggesting a potential therapeutic target for SCI.
Collapse
Affiliation(s)
- Jin Guo
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Tuo Yang
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Weizhong Zhang
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Kaiming Yu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Xiong Xu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Weizhen Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Lili Song
- Department of Hand & Microsurgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Rangjuan Cao
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| |
Collapse
|
6
|
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, Yuan Y, Wang C. Macrophage polarization in spinal cord injury repair and the possible role of microRNAs: A review. Heliyon 2023; 9:e22914. [PMID: 38125535 PMCID: PMC10731087 DOI: 10.1016/j.heliyon.2023.e22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The prevention, treatment, and rehabilitation of spinal cord injury (SCI) have always posed significant medical challenges. After mechanical injury, disturbances in microcirculation, edema formation, and the generation of free radicals lead to additional damage, impeding effective repair processes and potentially exacerbating further dysfunction. In this context, inflammatory responses, especially the activation of macrophages, play a pivotal role. Different phenotypes of macrophages have distinct effects on inflammation. Activation of classical macrophage cells (M1) promotes inflammation, while activation of alternative macrophage cells (M2) inhibits inflammation. The polarization of macrophages is crucial for disease healing. A non-coding RNA, known as microRNA (miRNA), governs the polarization of macrophages, thereby reducing inflammation following SCI and facilitating functional recovery. This study elucidates the inflammatory response to SCI, focusing on the infiltration of immune cells, specifically macrophages. It examines their phenotype and provides an explanation of their polarization mechanisms. Finally, this paper introduces several well-known miRNAs that contribute to macrophage polarization following SCI, including miR-155, miR-130a, and miR-27 for M1 polarization, as well as miR-22, miR-146a, miR-21, miR-124, miR-223, miR-93, miR-132, and miR-34a for M2 polarization. The emphasis is placed on their potential therapeutic role in SCI by modulating macrophage polarization, as well as the present developments and obstacles of miRNA clinical therapy.
Collapse
Affiliation(s)
- Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Feng Tian
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Ruochen Du
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Jiahui Tong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Xueting Ding
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Yitong Yuan
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Chunfang Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| |
Collapse
|
7
|
Basak U, Sarkar T, Mukherjee S, Chakraborty S, Dutta A, Dutta S, Nayak D, Kaushik S, Das T, Sa G. Tumor-associated macrophages: an effective player of the tumor microenvironment. Front Immunol 2023; 14:1295257. [PMID: 38035101 PMCID: PMC10687432 DOI: 10.3389/fimmu.2023.1295257] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer progression is primarily caused by interactions between transformed cells and the components of the tumor microenvironment (TME). TAMs (tumor-associated macrophages) make up the majority of the invading immune components, which are further categorized as anti-tumor M1 and pro-tumor M2 subtypes. While M1 is known to have anti-cancer properties, M2 is recognized to extend a protective role to the tumor. As a result, the tumor manipulates the TME in such a way that it induces macrophage infiltration and M1 to M2 switching bias to secure its survival. This M2-TAM bias in the TME promotes cancer cell proliferation, neoangiogenesis, lymphangiogenesis, epithelial-to-mesenchymal transition, matrix remodeling for metastatic support, and TME manipulation to an immunosuppressive state. TAMs additionally promote the emergence of cancer stem cells (CSCs), which are known for their ability to originate, metastasize, and relapse into tumors. CSCs also help M2-TAM by revealing immune escape and survival strategies during the initiation and relapse phases. This review describes the reasons for immunotherapy failure and, thereby, devises better strategies to impair the tumor-TAM crosstalk. This study will shed light on the understudied TAM-mediated tumor progression and address the much-needed holistic approach to anti-cancer therapy, which encompasses targeting cancer cells, CSCs, and TAMs all at the same time.
Collapse
Affiliation(s)
- Udit Basak
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Tania Sarkar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Debadatta Nayak
- Central Council for Research in Homeopathy (CCRH), New Delhi, India
| | - Subhash Kaushik
- Central Council for Research in Homeopathy (CCRH), New Delhi, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
8
|
Sun Y, Jiang G, Wu Q, Ye L, Li B. The role of tumor-associated macrophages in the progression, prognosis and treatment of endometrial cancer. Front Oncol 2023; 13:1213347. [PMID: 37810971 PMCID: PMC10556650 DOI: 10.3389/fonc.2023.1213347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the main immune cells in the tumor microenvironment (TME) of endometrial cancer (EC). TAMs recruitment and polarization in EC is regulated by the TME of EC, culminating in a predominantly M2-like macrophage infiltration. TAMs promote lymphatic angiogenesis through cytokine secretion, aid immune escape of EC cells by synergizing with other immune cells, and contribute to the development of EC through secretion of exosomes so as to promoting EC development. EC is a hormone- and metabolism-dependent cancer, and TAMs promote EC through interactions on estrogen receptor (ER) and metabolic factors such as the metabolism of glucose, lipids, and amino acids. In addition, we have explored the predictive significance of some TAM-related indicators for EC prognosis, and TAMs show remarkable promise as a target for EC immunotherapy.
Collapse
Affiliation(s)
- Yihan Sun
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Genyi Jiang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qianhua Wu
- School of Medicine, Tongji University, Shanghai, China
| | - Lei Ye
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bilan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Zhang WZ, Chen LL, Yang S, Zhong YT, Lu X, Wang Y, Wang ZB, Tu Y. Clinical characterization of EFHD2 (swiprosin-1) in Glioma-associated macrophages and its role in regulation of immunosuppression. Genomics 2023; 115:110702. [PMID: 37673235 DOI: 10.1016/j.ygeno.2023.110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Glioblastoma has been extensively studied due to its high mortality and short survival. The evolution mechanism of tumor-associated macrophages (TAMs) to Glioma-associated microglia and macrophages (GAMs) in the tumor microenvironment (TME) remains to be elucidated. The tumor cell-to-cell interaction patterns have not been well defined yet. The EF-Hand Domain Family Member D2 (EFHD2) has been reported to be differentially expressed as an immunomodulatory molecule in a variety of cancers. But large-scale clinical data from multiple ethnic communities have not been used to investigate the role of EFHD2 in glioma. RNA-seq data from 313 or 657 glioma patients from the Chinese Glioma Genome Atlas (CGGA) database and 603 glioma patients from the Cancer Genome Atlas (TCGA) database were analyzed retrospectively. Cell localization was performed using single-cell sequencing data from the CGGA database and the GSE131928 dataset. Mouse glioma cell lines and primary macrophages isolated from Efhd2 knockout mice were co-cultured to validate the immunomodulatory effects of EFHD2 on macrophages and the remodeling of TME of glioblastoma. EFHD2 is enriched in high-grade gliomas, isocitrate dehydrogenase wild-type, and 1p/19q non-co-deficient gliomas. It is a potential biomarker of glioma-proneuronal subtypes and an independent prognostic factor for overall survival in patients with malignant glioblastoma. EFHD2 regulates the monocyte-macrophage system function and positively correlates with immunosuppressive checkpoints. Further experimental data demonstrates that Efhd2 influences the polarization state of GAMs and inhibits the secretion of TGF-β1. In vitro experiments have revealed that macrophages lacking Efhd2 suppress the vitality of two glioma cell lines and decelerate the growth of glioma xenografts. In conclusion, EFHD2 promises to be a key target for TME-related immunotherapy.
Collapse
Affiliation(s)
- Wen-Zhao Zhang
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Lin-Lin Chen
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Shuo Yang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Yu-Ting Zhong
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Xin Lu
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Yan Wang
- School of Pharmacy, Naval Medical University, Shanghai, China.
| | - Zhi-Bin Wang
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China.
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
10
|
Yadav S, Shah D, Dalai P, Agrawal-Rajput R. The tale of antibiotics beyond antimicrobials: Expanding horizons. Cytokine 2023; 169:156285. [PMID: 37393846 DOI: 10.1016/j.cyto.2023.156285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Antibiotics had proved to be a godsend for mankind since their discovery. They were once the magical solution to the vexing problem of infection-related deaths. German scientist Paul Ehrlich had termed salvarsan as the silver bullet to treatsyphilis.As time passed, the magic of newly discovered silver bullets got tarnished with raging antibiotic resistance among bacteria and associated side-effects. Still, antibiotics remain the primary line of treatment for bacterial infections. Our understanding of their chemical and biological activities has increased immensely with advancement in the research field. Non-antibacterial effects of antibiotics are studied extensively to optimise their safer, broad-range use. These non-antibacterial effects could be both useful and harmful to us. Various researchers across the globe including our lab are studying the direct/indirect effects and molecular mechanisms behind these non-antibacterial effects of antibiotics. So, it is interesting for us to sum up the available literature. In this review, we have briefed the possible reason behind the non-antibacterial effects of antibiotics, owing to the endosymbiotic origin of host mitochondria. We further discuss the physiological and immunomodulatory effects of antibiotics. We then extend the review to discuss molecular mechanisms behind the plausible use of antibiotics as anticancer agents.
Collapse
Affiliation(s)
- Shivani Yadav
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Dhruvi Shah
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Parmeswar Dalai
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
11
|
Kopper TJ, Yu X, Graner MW. Immunopathology of Extracellular Vesicles in Macrophage and Glioma Cross-Talk. J Clin Med 2023; 12:3430. [PMID: 37240536 PMCID: PMC10219523 DOI: 10.3390/jcm12103430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastomas (GBM) are a devastating disease with extremely poor clinical outcomes. Resident (microglia) and infiltrating macrophages are a substantial component of the tumor environment. In GBM and other cancers, tumor-derived extracellular vesicles (EVs) suppress macrophage inflammatory responses, impairing their ability to identify and phagocytose cancerous tissues. Furthermore, these macrophages then begin to produce EVs that support tumor growth and migration. This cross-talk between macrophages/microglia and gliomas is a significant contributor to GBM pathophysiology. Here, we review the mechanisms through which GBM-derived EVs impair macrophage function, how subsequent macrophage-derived EVs support tumor growth, and the current therapeutic approaches to target GBM/macrophage EV crosstalk.
Collapse
Affiliation(s)
| | | | - Michael W. Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave., Aurora, CO 80045, USA; (T.J.K.); (X.Y.)
| |
Collapse
|
12
|
Raghav PK, Mann Z, Ahluwalia SK, Rajalingam R. Potential treatments of COVID-19: Drug repurposing and therapeutic interventions. J Pharmacol Sci 2023; 152:1-21. [PMID: 37059487 PMCID: PMC9930377 DOI: 10.1016/j.jphs.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection is caused when Spike-protein (S-protein) present on the surface of SARS-CoV-2 interacts with human cell surface receptor, Angiotensin-converting enzyme 2 (ACE2). This binding facilitates SARS-CoV-2 genome entry into the human cells, which in turn causes infection. Since the beginning of the pandemic, many different therapies have been developed to combat COVID-19, including treatment and prevention. This review is focused on the currently adapted and certain other potential therapies for COVID-19 treatment, which include drug repurposing, vaccines and drug-free therapies. The efficacy of various treatment options is constantly being tested through clinical trials and in vivo studies before they are made medically available to the public.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | | | - Simran Kaur Ahluwalia
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Lee CY, Chooi WH, Ng S, Chew SY. Modulating neuroinflammation through molecular, cellular and biomaterial-based approaches to treat spinal cord injury. Bioeng Transl Med 2023; 8:e10389. [PMID: 36925680 PMCID: PMC10013833 DOI: 10.1002/btm2.10389] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022] Open
Abstract
The neuroinflammatory response that is elicited after spinal cord injury contributes to both tissue damage and reparative processes. The complex and dynamic cellular and molecular changes within the spinal cord microenvironment result in a functional imbalance of immune cells and their modulatory factors. To facilitate wound healing and repair, it is necessary to manipulate the immunological pathways during neuroinflammation to achieve successful therapeutic interventions. In this review, recent advancements and fresh perspectives on the consequences of neuroinflammation after SCI and modulation of the inflammatory responses through the use of molecular-, cellular-, and biomaterial-based therapies to promote tissue regeneration and functional recovery will be discussed.
Collapse
Affiliation(s)
- Cheryl Yi‐Pin Lee
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Shi‐Yan Ng
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Sing Yian Chew
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
14
|
Khaing ZZ, Chen JY, Safarians G, Ezubeik S, Pedroncelli N, Duquette RD, Prasse T, Seidlits SK. Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:3824. [PMID: 36835233 PMCID: PMC9960771 DOI: 10.3390/ijms24043824] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spinal cord injury (SCI) often causes loss of sensory and motor function resulting in a significant reduction in quality of life for patients. Currently, no therapies are available that can repair spinal cord tissue. After the primary SCI, an acute inflammatory response induces further tissue damage in a process known as secondary injury. Targeting secondary injury to prevent additional tissue damage during the acute and subacute phases of SCI represents a promising strategy to improve patient outcomes. Here, we review clinical trials of neuroprotective therapeutics expected to mitigate secondary injury, focusing primarily on those in the last decade. The strategies discussed are broadly categorized as acute-phase procedural/surgical interventions, systemically delivered pharmacological agents, and cell-based therapies. In addition, we summarize the potential for combinatorial therapies and considerations.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sohib Ezubeik
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca D. Duquette
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tobias Prasse
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Orthopedics and Trauma Surgery, University of Cologne, 50931 Cologne, Germany
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
15
|
Effect of Azithromycin on Sciatic Nerve Injury in the Wistar Rats. Neurochem Res 2023; 48:161-171. [PMID: 36030336 DOI: 10.1007/s11064-022-03721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 01/11/2023]
Abstract
After a severe peripheral nerve injury, complete functional recovery is rare. Modulating the inflammatory response could be an effective way to enhance peripheral nerve regeneration. The present study aimed to determine the effect of azithromycin on functional recovery following sciatic nerve crush in Wistar rats. 40 male Wistar rats were used in four groups, including: the negative control, sham, and two groups of azithromycin (15 and 150 mg/kg/day) (n = 10).The rats' right sciatic nerve was crushed using a non-serrated clamp. In experimental groups, animals were treated with azithromycin (15 and 150 mg/kg/day) for 7 days. Then, sensory-motor functions were evaluated over eight weeks. Real-time PCR was used to measure the expression of NGF and BDNF genes. At the end of the 4th week, the sensory recovery accelerated in the azithromycin-treated rats so that the reaction times in the groups treated with 15 mg/kg and 150 mg/kg doses of azithromycin reached 5.14 s and 6.61 s, respectively, which were significantly lower than the 12 s in the negative control group (P < 0.05).Eventually, the mean SFI values in the negative control and both azithromycin-treated groups recovered to preoperative levels in the 8th week, with no significant difference between the sciatic lesion groups. Findings showed a seven-day course of azithromycin administered immediately after a sciatic nerve crush could accelerate regeneration and improve motor and sensory function recovery compared to negative controls. These significant effects were observed in both the azithromycin 15 mg/kg and the azithromycin 150 mg/kg treatment groups. Azithromycin treatment upregulated the expression of NGF and BDNF genes in crushed sciatic nerve. Our findings suggest that a seven-day treatment of azithromycin after a sciatic nerve injury could accelerate the regeneration process and improve functional recovery.
Collapse
|
16
|
Rau J, Weise L, Moore R, Terminel M, Brakel K, Cunningham R, Bryan J, Stefanov A, Hook MA. Intrathecal minocycline does not block the adverse effects of repeated, intravenous morphine administration on recovery of function after SCI. Exp Neurol 2023; 359:114255. [PMID: 36279935 DOI: 10.1016/j.expneurol.2022.114255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/18/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Opioids are among the most effective analgesics for the management of pain in the acute phase of a spinal cord injury (SCI), and approximately 80% of patients are treated with morphine in the first 24 h following SCI. We have found that morphine treatment in the first 7 days after SCI increases symptoms of pain at 42 days post-injury and undermines the recovery of locomotor function in a rodent model. Prior research has implicated microglia/macrophages in opioid-induced hyperalgesia and the development of neuropathic pain. We hypothesized that glial activation may also underlie the development of morphine-induced pain and cell death after SCI. Supporting this hypothesis, our previous studies found that intrathecal and intravenous morphine increase the number of activated microglia and macrophages present at the spinal lesion site, and that the adverse effects of intrathecal morphine can be blocked with intrathecal minocycline. Recognizing that the cellular expression of opioid receptors, and the intracellular signaling pathways engaged, can change with repeated administration of opioids, the current study tested whether minocycline was also protective with repeated intravenous morphine administration, more closely simulating clinical treatment. Using a rat model of SCI, we co-administered intravenous morphine and intrathecal minocycline for the first 7 days post injury and monitored sensory and locomotor recovery. Contrary to our hypothesis and previous findings with intrathecal morphine, we found that minocycline did not prevent the negative effects of morphine. Surprisingly, we also found that intrathecal minocycline alone is detrimental for locomotor recovery after SCI. Using ex vivo cell cultures, we investigated how minocycline and morphine altered microglia/macrophage function. Commensurate with published studies, we found that minocycline blocked the effects of morphine on the release of pro-inflammatory cytokines but, like morphine, it increased glial phagocytosis. While phagocytosis is critical for the removal of cellular and extracellular debris at the spinal injury site, increased phagocytosis after injury has been linked to the clearance of stressed but viable neurons and protracted inflammation. In sum, our data suggest that both morphine and minocycline alter the acute immune response, and reduce locomotor recovery after SCI.
Collapse
Affiliation(s)
- Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| | - Lara Weise
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA.
| | - Robbie Moore
- Department of Microbial Pathogenesis and Immunology, Texas A&M Institute for Neuroscience, Address: 8447 Riverside Parkway, Medical and Research Education Building 2, Bryan, TX 77807, USA.
| | - Mabel Terminel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA
| | - Kiralyn Brakel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA
| | - Rachel Cunningham
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA
| | - Jessica Bryan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| | - Alexander Stefanov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| |
Collapse
|
17
|
Soni SS, D'Elia AM, Alsasa A, Cho S, Tylek T, O'Brien EM, Whitaker R, Spiller KL, Rodell CB. Sustained release of drug-loaded nanoparticles from injectable hydrogels enables long-term control of macrophage phenotype. Biomater Sci 2022; 10:6951-6967. [PMID: 36341688 PMCID: PMC9724601 DOI: 10.1039/d2bm01113a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels may be pre-formed through dynamic crosslinks, allowing for injection and subsequent retention in the tissue by shear-thinning and self-healing processes, respectively. These properties enable the site-specific delivery of encapsulated therapeutics; yet, the sustained release of small-molecule drugs and their cell-targeted delivery remains challenging due to their rapid diffusive release and non-specific cellular biodistribution. Herein, we develop an injectable hydrogel system composed of a macrophage-targeted nanoparticle (cyclodextrin nanoparticles, CDNPs) crosslinked by adamantane-modified hyaluronic acid (Ad-HA). The polymer-nanoparticle hydrogel uniquely leverages cyclodextrin's interaction with small molecule drugs to create a spatially discrete drug reservoir and with adamantane to yield dynamic, injectable hydrogels. Through an innovative two-step drug screening approach and examination of 45 immunomodulatory drugs with subsequent in-depth transcriptional profiling of both murine and human macrophages, we identify celastrol as a potent inhibitor of pro-inflammatory (M1-like) behavior that furthermore promotes a reparatory (M2-like) phenotype. Celastrol encapsulation within the polymer-nanoparticle hydrogels permitted shear-thinning injection and sustained release of drug-laden nanoparticles that targeted macrophages to modulate cell behavior for greater than two weeks in vitro. The modular hydrogel system is a promising approach to locally modulate cell-specific phenotype in a range of applications for immunoregenerative medicine.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Abdulrahman Alsasa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Sylvia Cho
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Tina Tylek
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Erin M O'Brien
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Ricardo Whitaker
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis. Cells 2022; 11:cells11233768. [PMID: 36497029 PMCID: PMC9737582 DOI: 10.3390/cells11233768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Current therapeutics targeting chronic phases of multiple sclerosis (MS) are considerably limited in reversing the neural damage resulting from repeated inflammation and demyelination insults in the multi-focal lesions. This inflammation is propagated by the activation of microglia, the endogenous immune cell aiding in the central nervous system homeostasis. Activated microglia may transition into polarized phenotypes; namely, the classically activated proinflammatory phenotype (previously categorized as M1) and the alternatively activated anti-inflammatory phenotype (previously, M2). These transitional microglial phenotypes are dynamic states, existing as a continuum. Shifting microglial polarization to an anti-inflammatory status may be a potential therapeutic strategy that can be harnessed to limit neuroinflammation and further neurodegeneration in MS. Our research has observed that the obstruction of signaling by inhibitory myelin proteins such as myelin-associated inhibitory factor, Nogo-A, with its receptor (NgR), can regulate microglial cell function and activity in pre-clinical animal studies. Our review explores the microglial role and polarization in MS pathology. Additionally, the potential therapeutics of targeting Nogo-A/NgR cellular mechanisms on microglia migration, polarization and phagocytosis for neurorepair in MS and other demyelination diseases will be discussed.
Collapse
|
20
|
Wang S, Sun J, Dastgheyb RM, Li Z. Tumor-derived extracellular vesicles modulate innate immune responses to affect tumor progression. Front Immunol 2022; 13:1045624. [PMID: 36405712 PMCID: PMC9667034 DOI: 10.3389/fimmu.2022.1045624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 04/23/2024] Open
Abstract
Immune cells are capable of influencing tumor progression in the tumor microenvironment (TME). Meanwhile, one mechanism by which tumor modulate immune cells function is through extracellular vesicles (EVs), which are cell-derived extracellular membrane vesicles. EVs can act as mediators of intercellular communication and can deliver nucleic acids, proteins, lipids, and other signaling molecules between cells. In recent years, studies have found that EVs play a crucial role in the communication between tumor cells and immune cells. Innate immunity is the first-line response of the immune system against tumor progression. Therefore, tumor cell-derived EVs (TDEVs) which modulate the functional change of innate immune cells serve important functions in the context of tumor progression. Emerging evidence has shown that TDEVs dually enhance or suppress innate immunity through various pathways. This review aims to summarize the influence of TDEVs on macrophages, dendritic cells, neutrophils, and natural killer cells. We also summarize their further effects on the progression of tumors, which may provide new ideas for developing novel tumor therapies targeting EVs.
Collapse
Affiliation(s)
- Siqi Wang
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jiaxin Sun
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Raha M. Dastgheyb
- School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Zhigang Li
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
21
|
Terminel MN, Bassil C, Rau J, Trevino A, Ruiz C, Alaniz R, Hook MA. Morphine-induced changes in the function of microglia and macrophages after acute spinal cord injury. BMC Neurosci 2022; 23:58. [PMID: 36217122 PMCID: PMC9552511 DOI: 10.1186/s12868-022-00739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background Opioids are among the most effective and commonly prescribed analgesics for the treatment of acute pain after spinal cord injury (SCI). However, morphine administration in the early phase of SCI undermines locomotor recovery, increases cell death, and decreases overall health in a rodent contusion model. Based on our previous studies we hypothesize that morphine acts on classic opioid receptors to alter the immune response. Indeed, we found that a single dose of intrathecal morphine increases the expression of activated microglia and macrophages at the injury site. Whether similar effects of morphine would be seen with repeated intravenous administration, more closely simulating clinical treatment, is not known. Methods To address this, we used flow cytometry to examine changes in the temporal expression of microglia and macrophages after SCI and intravenous morphine. Next, we explored whether morphine changed the function of these cells through the engagement of cell-signaling pathways linked to neurotoxicity using Western blot analysis. Results Our flow cytometry studies showed that 3 consecutive days of morphine administration after an SCI significantly increased the number of microglia and macrophages around the lesion. Using Western blot analysis, we also found that repeated administration of morphine increases β-arrestin, ERK-1 and dynorphin (an endogenous kappa opioid receptor agonist) production by microglia and macrophages. Conclusions These results suggest that morphine administered immediately after an SCI changes the innate immune response by increasing the number of immune cells and altering neuropeptide synthesis by these cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00739-3.
Collapse
Affiliation(s)
- Mabel N Terminel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA.
| | - Carla Bassil
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Amanda Trevino
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Cristina Ruiz
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Robert Alaniz
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| |
Collapse
|
22
|
Cramer M, Pineda Molina C, Hussey G, Turnquist HR, Badylak SF. Transcriptomic Regulation of Macrophages by Matrix-Bound Nanovesicle-Associated Interleukin-33. Tissue Eng Part A 2022; 28:867-878. [PMID: 35770892 PMCID: PMC9634988 DOI: 10.1089/ten.tea.2022.0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
The innate immune response, particularly the phenotype of responding macrophages, has significant clinical implications in the remodeling outcome following implantation of biomaterials and engineered tissues. In general, facilitation of an anti-inflammatory (M2-like) phenotype is associated with tissue repair and favorable outcomes, whereas pro-inflammatory (M1-like) activation can contribute to chronic inflammation and a classic foreign body response. Biologic scaffolds composed of extracellular matrix (ECM) and, more recently, matrix-bound nanovesicles (MBV) embedded within the ECM are known to direct macrophages toward an anti-inflammatory phenotype and stimulate a constructive remodeling outcome. The mechanisms of MBV-mediated macrophage activation are not fully understood, but interleukin-33 (IL-33) within the MBV appears critical for M2-like activation. Previous work has shown that IL-33 is encapsulated within the lumen of MBV and stimulates phenotypical changes in macrophages independent of its canonical surface receptor stimulation-2 (ST2). In the present study, we used next-generation RNA sequencing to determine the gene signature of macrophages following exposure to MBV with and without intraluminal IL-33. MBV-associated IL-33 instructed an anti-inflammatory phenotype in both wild-type and st2-/- macrophages by upregulating M2-like and downregulating M1-like genes. The repertoire of genes regulated by ST2-independent IL-33 signaling were broadly related to the inflammatory response and crosstalk between cells of both the innate and adaptive immune systems. These results signify the importance of the MBV intraluminal protein IL-33 in stimulating a pro-remodeling M2-like phenotype in macrophages and provides guidance for the designing of next-generation biomaterials and tissue engineering strategies. Impact statement The phenotype of responding macrophages is predictive of the downstream remodeling response to an implanted biomaterial. The clinical impact of macrophage phenotype has motivated studies to investigate the factors that regulate macrophage activation. Matrix-bound nanovesicles (MBV) embedded within the extracellular matrix direct macrophages toward an anti-inflammatory (M2)-like phenotype that is indicative of a favorable remodeling response. Although the mechanisms of MBV-mediated macrophage activation are not fully understood, the intraluminal protein interleukin-33 (IL-33) is clearly a contributing signaling molecule. The present study identifies those genes regulated by MBV-associated IL-33 that promote a pro-remodeling M2-like macrophage activation state and can guide future therapies in regenerative medicine.
Collapse
Affiliation(s)
- Madeline Cramer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Catalina Pineda Molina
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Heth R. Turnquist
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen F. Badylak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Kushwah N, Woeppel K, Dhawan V, Shi D, Cui XT. Effects of neuronal cell adhesion molecule L1 and nanoparticle surface modification on microglia. Acta Biomater 2022; 149:273-286. [PMID: 35764240 PMCID: PMC10018678 DOI: 10.1016/j.actbio.2022.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Microelectrode arrays for neural recording suffer from low yield and stability partly due to the inflammatory host responses. A neuronal cell adhesion molecule L1 coating has been shown to promote electrode-neuron integration, reduce microglia activation and improve recording. Coupling L1 to surface via a nanoparticle (NP) base layer further increased the protein surface density and stability. However, the exact L1-microglia interaction in these coatings has not been studied. Here we cultured primary microglia on L1 modified surfaces (with and without NP) and characterized microglia activation upon phorbol myristate acetate (PMA) and lipopolysaccharide (LPS) stimulation. Results showed L1 coatings reduced microglia's superoxide production in response to PMA and presented intrinsic antioxidant properties. Meanwhile, L1 decreased iNOS, NO, and pro-inflammatory cytokines (TNF alpha, IL-6, IL-1 beta), while increased anti-inflammatory cytokines (TGF beta 1, IL-10) in LPS stimulated microglia. Furthermore, L1 increased Arg-1 expression and phagocytosis upon LPS stimulation. Rougher NP surface showed lower number of microglia attached per area than their smooth counterpart, lower IL-6 release and superoxide production, and higher intrinsic reducing potential. Finally, we examined the effect of L1 and nanoparticle modifications on microglia response in vivo over 8 weeks with 2-photon imaging. Microglial coverage on the implant surface was found to be lower on the L1 modified substrates relative to unmodified, consistent with the in vitro observation. Our results indicate L1 significantly reduces superoxide production and inflammatory response of microglia and promotes wound healing, while L1 immobilization via a nanoparticle base layer brings added benefit without adverse effects. STATEMENT OF SIGNIFICANCE: Surface modification of microelectrode arrays with L1 has been shown to reduce microglia coverage on neural probe surface in vivo and improves neural recording, but the specific mechanism of action is not fully understood. The results in this study show that surface bound L1 reduces superoxide production from cultured microglia via direct reduction reaction and signaling pathways, increases anti-inflammatory cytokine release and phagocytosis in response to PMA or LPS stimulation. Additionally, roughening the surface with nanoparticles prior to L1 immobilization further increased the benefit of L1 in reducing microglia activation and oxidative stress. Together, our findings shed light on the mechanisms of action of nanotextured and neuroadhesive neural implant coatings and guide future development of seamless tissue interface.
Collapse
Affiliation(s)
- Neetu Kushwah
- Neural Tissue/Electrode Interface and Neural Tissue Engineering lab, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Kevin Woeppel
- Neural Tissue/Electrode Interface and Neural Tissue Engineering lab, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; Center for Neural Basis of Cognition, Pittsburgh, PA 15213, United States
| | - Vaishnavi Dhawan
- Neural Tissue/Electrode Interface and Neural Tissue Engineering lab, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; Center for Neural Basis of Cognition, Pittsburgh, PA 15213, United States
| | - Delin Shi
- Neural Tissue/Electrode Interface and Neural Tissue Engineering lab, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; Center for Neural Basis of Cognition, Pittsburgh, PA 15213, United States
| | - Xinyan Tracy Cui
- Neural Tissue/Electrode Interface and Neural Tissue Engineering lab, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, United States; Center for Neural Basis of Cognition, Pittsburgh, PA 15213, United States.
| |
Collapse
|
24
|
Barks JD, Liu Y, Dopp IA, Silverstein FS. Azithromycin reduces inflammation-amplified hypoxic-ischemic brain injury in neonatal rats. Pediatr Res 2022; 92:415-423. [PMID: 34625655 PMCID: PMC8989723 DOI: 10.1038/s41390-021-01747-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Systemic inflammation amplifies neonatal hypoxic-ischemic (HI) brain injury. Azithromycin (AZ), an antibiotic with anti-inflammatory properties, improves sensorimotor function and reduces tissue damage after neonatal rat HI brain injury. The objective of this study was to determine if AZ is neuroprotective in two neonatal rat models of inflammation-amplified HI brain injury. DESIGN/METHODS Seven-day-old (P7) rats received injections of toll-like receptor agonists lipopolysaccharide (LPS) or Pam3Cys-Ser-(Lys)4 (PAM) prior to right carotid ligation followed by 50 min (LPS + HI) or 60 min (PAM + HI) in 8% oxygen. Outcomes included contralateral forelimb function (forepaw placing; grip strength), survival, %Intact right hemisphere (brain damage), and a composite score incorporating these measures. We compared postnatal day 35 outcomes in controls and groups treated with three or five AZ doses. Then, we compared P21 outcomes when the first (of five) AZ doses were administered 1, 2, or 4 h after HI. RESULTS In both LPS + HI and PAM + HI models, AZ improved sensorimotor function, survival, brain tissue preservation, and composite scores. Benefits increased with five- vs. three-dose AZ and declined with longer initiation delay. CONCLUSIONS Perinatal systemic infection is a common comorbidity of neonatal asphyxia brain injury and contributes to adverse outcomes. These data support further evaluation of AZ as a candidate treatment for neonatal neuroprotection. IMPACT AZ treatment decreases sensorimotor impairment and severity of brain injury, and improves survival, after inflammation-amplified HI brain injury, and this can be achieved even with a 2 h delay in initiation. This neuroprotective benefit is seen in models of inflammation priming by both Gram-negative and Gram-positive infections. This extends our previous findings that AZ treatment is neuroprotective after HI brain injury in neonatal rats.
Collapse
Affiliation(s)
- John D.E. Barks
- Department of Pediatrics, University of Michigan Medical School, The University of Michigan, Ann Arbor, MI
| | - Yiqing Liu
- Department of Pediatrics, University of Michigan Medical School, The University of Michigan, Ann Arbor, MI
| | - Ian A. Dopp
- Department of Pediatrics, University of Michigan Medical School, The University of Michigan, Ann Arbor, MI
| | - Faye S. Silverstein
- Department of Pediatrics, University of Michigan Medical School, The University of Michigan, Ann Arbor, MI,Department of Neurology, University of Michigan Medical School, The University of Michigan, Ann Arbor, MI
| |
Collapse
|
25
|
Nakamura A, Grossman S, Song K, Xega K, Zhang Y, Cvet D, Berger A, Shapiro G, Huszar D. The SUMOylation inhibitor subasumstat potentiates rituximab activity by IFN1-dependent macrophage and NK cell stimulation. Blood 2022; 139:2770-2781. [PMID: 35226739 PMCID: PMC11022956 DOI: 10.1182/blood.2021014267] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/07/2022] [Indexed: 11/20/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) is a member of a ubiquitin-like protein superfamily. SUMOylation is a reversible posttranslational modification that has been implicated in the regulation of various cellular processes including inflammatory responses and expression of type 1 interferons (IFN1). In this report, we have explored the activity of the selective small molecule SUMOylation inhibitor subasumstat (TAK-981) in promoting antitumor innate immune responses. We demonstrate that treatment with TAK-981 results in IFN1-dependent macrophage and natural killer (NK) cell activation, promoting macrophage phagocytosis and NK cell cytotoxicity in ex vivo assays. Furthermore, pretreatment with TAK-981 enhanced macrophage phagocytosis or NK cell cytotoxicity against CD20+ target cells in combination with the anti-CD20 antibody rituximab. In vivo studies demonstrated enhanced antitumor activity of TAK-981 and rituximab in CD20+ lymphoma xenograft models. Combination of TAK-981 with anti-CD38 antibody daratumumab also resulted in enhanced antitumor activity. TAK-981 is currently being studied in phase 1 clinical trials (#NCT03648372, #NCT04074330, #NCT04776018, and #NCT04381650; www.clinicaltrials.gov) for the treatment of patients with lymphomas and solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Allison Berger
- Oncology Therapeutic Area Unit, Takeda Development Center Americas, Inc., Cambridge, MA
| | | | | |
Collapse
|
26
|
Venditto VJ, Feola DJ. Delivering macrolide antibiotics to heal a broken heart - And other inflammatory conditions. Adv Drug Deliv Rev 2022; 184:114252. [PMID: 35367307 PMCID: PMC9063468 DOI: 10.1016/j.addr.2022.114252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Drug carriers to deliver macrolide antibiotics, such as azithromycin, show promise as antibacterial agents. Macrolide drug carriers have largely focused on improving the drug stability and pharmacokinetics, while reducing adverse reactions and improving antibacterial activity. Recently, macrolides have shown promise in treating inflammatory conditions by promoting a reparative effect and limiting detrimental pro-inflammatory responses, which shifts the immunologic setpoint from suppression to balance. While macrolide drug carriers have only recently been investigated for their ability to modulate immune responses, the previous strategies that deliver macrolides for antibacterial therapy provide a roadmap for repurposing the macrolide drug carriers for therapeutic interventions targeting inflammatory conditions. This review describes the antibacterial and immunomodulatory activity of macrolides, while assessing the past in vivo evaluation of drug carriers used to deliver macrolides with the intention of presenting a case for increased effort to translate macrolide drug carriers into the clinic.
Collapse
|
27
|
Noor Mohamed NMH, Lim V, Mohamed R, Ismail IS. Regulation of the Macrophage Cellular Response by Clinacanthus nutans Extracts in J774.2 Macrophages. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Licero J, Illan MS, Descorbeth M, Cordero K, Figueroa JD, De Leon M. Fatty acid-binding protein 4 (FABP4) inhibition promotes locomotor and autonomic recovery in rats following spinal cord injury. J Neurotrauma 2022; 39:1099-1112. [PMID: 35297679 PMCID: PMC9347423 DOI: 10.1089/neu.2021.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The inflammatory response associated with traumatic spinal cord injury (SCI) contributes to locomotor and sensory impairments. Pro-inflammatory (M1) macrophages/microglia (MφMG) are the major cellular players in this response as they promote chronic inflammation resulting in injury expansion and tissue damage. Fatty Acid-Binding Protein 4 (FABP4) promotes M1 MφMG differentiation; however, it is unknown if FABP4 also plays a role in the etiology of SCI. The present study investigates whether FABP4's gene expression influences functional recovery following SCI. Analysis of qPCR data shows a robust induction of FABP4 mRNA (>100 fold) in rats subjected to a T9-T10 contusion injury compared to control. Western blot experiments reveal significant upregulation of FABP4 protein at the injury epicenter, and immunofluorescence analysis identifies this upregulation occurs in CD11b+ MφMG. Furthermore, upregulation of FABP4 gene expression correlates with PPARγ downregulation, inactivation of Iκβα, and the activation of the NF-κB pathway. Analysis of locomotor recovery using the Basso-Beattie-Bresnahan's (BBB) locomotor scale and the CatWalk gait analysis system shows that injured rats treated with FABP4 inhibitor BMS309403 have significant improvements in locomotion compared to vehicle controls. Additionally, inhibitor-treated rats exhibit enhanced autonomic bladder reflex recovery. Immunofluorescence experiments also show the administration of the FABP4 inhibitor increases the number of CD163+ and Liver Arginase+ M2 MφMG within the epicenter and penumbra of the injured spinal cord 28 dpi. These findings show that FABP4 may significantly exacerbate locomotor and sensory impairments during SCI by modulating macrophage/microglial activity.
Collapse
Affiliation(s)
- Jenniffer Licero
- Loma Linda University, Center for Health Disparities and Molecular Medicine, 142 Mortensen Hall, 11085 Campus St, Loma Linda, California, United States, 92354;
| | - Miguel S Illan
- Loma Linda University, Center for Health Disparities and Molecular Medicine, 142 Mortensen Hall, 11085 Campus St, Loma Linda, California, United States, 92354;
| | - Magda Descorbeth
- Loma Linda University, Center for Health Disparities and Molecular Medicine, Loma Linda, California, United States;
| | - Kathia Cordero
- Loma Linda University, Center for Health Disparities and Molecular Medicine, Loma Linda, California, United States;
| | - Johnny D Figueroa
- Loma Linda University, Center for Health Disparities and Molecular Medicine, Loma Linda, California, United States;
| | - Marino De Leon
- Loma Linda University, Center for Health Disparities and Molecular Medicine, 142 Mortensen Hall, 11085 Campus St, Loma Linda, California, United States, 92354;
| |
Collapse
|
29
|
Fu H, Hu D, Chen J, Wang Q, Zhang Y, Qi C, Yu T. Repair of the Injured Spinal Cord by Schwann Cell Transplantation. Front Neurosci 2022; 16:800513. [PMID: 35250447 PMCID: PMC8891437 DOI: 10.3389/fnins.2022.800513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/27/2022] [Indexed: 01/12/2023] Open
Abstract
Spinal cord injury (SCI) can result in sensorimotor impairments or disability. Studies of the cellular response to SCI have increased our understanding of nerve regenerative failure following spinal cord trauma. Biological, engineering and rehabilitation strategies for repairing the injured spinal cord have shown impressive results in SCI models of both rodents and non-human primates. Cell transplantation, in particular, is becoming a highly promising approach due to the cells’ capacity to provide multiple benefits at the molecular, cellular, and circuit levels. While various cell types have been investigated, we focus on the use of Schwann cells (SCs) to promote SCI repair in this review. Transplantation of SCs promotes functional recovery in animal models and is safe for use in humans with subacute SCI. The rationales for the therapeutic use of SCs for SCI include enhancement of axon regeneration, remyelination of newborn or sparing axons, regulation of the inflammatory response, and maintenance of the survival of damaged tissue. However, little is known about the molecular mechanisms by which transplanted SCs exert a reparative effect on SCI. Moreover, SC-based therapeutic strategies face considerable challenges in preclinical studies. These issues must be clarified to make SC transplantation a feasible clinical option. In this review, we summarize the recent advances in SC transplantation for SCI, and highlight proposed mechanisms and challenges of SC-mediated therapy. The sparse information available on SC clinical application in patients with SCI is also discussed.
Collapse
Affiliation(s)
- Haitao Fu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Die Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Jinli Chen
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qizun Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Key Laboratory of Biomechanics of Hebei Province, Department of Trauma Emergency Center, The Third Hospital of Hebei Medical University, Orthopaedics Research Institution of Hebei Province, Shijiazhuang, China
| | - Chao Qi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Chao Qi,
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Tengbo Yu,
| |
Collapse
|
30
|
Dolma S, Adhikari K, Mamidi T, Roy A, Pathak Z, Kumar H. Ethamsylate Attenuates Mutilated Secondary Pathogenesis and Exhibits a Neuroprotective Role in Experimental Model of Spinal Cord Injury. Neuroscience 2022; 484:26-37. [PMID: 34995714 DOI: 10.1016/j.neuroscience.2021.12.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
Abstract
Deficits in the neuronal connection that succumbs to the impairment of sensory and motor neurons are the hallmarks of spinal cord injury (SCI). Secondary pathogenesis, which initiates after the primary mechanical insult to the spinal cord, depicts a pivotal role in producing inflammation, lesion formation and ultimately causes fibrotic scar formation in the chronic period. This fibrotic scar formed acts as a major hindrance in facilitating axonal regeneration and is one of the root causes of motor impairment. Cascade of secondary events in SCI begins with injury-induced blood spinal cord barrier rupture that promotes increased migration of neutrophils, macrophages, and other inflammatory cells at the injury site to initiate the secondary damages. This phenomenon leads to the release of matrix metalloproteinase, cytokines and chemokines, reactive oxygen species, and other proteolytic enzymes at the lesion site. These factors assist in the activation of the TGF-β1 signaling pathway, which further leads to excessive proliferation of perivascular fibroblast, followed by deposition of collagen and fibronectin matrix, which are the main components of the fibrotic scar. Subsequently, this scar formed inhibits the propagation of action potential from one neuron to adjacent neurons. Ethamsylate, an anti-hemorrhagic drug, has the potential to maintain early hemostasis as well as restore capillary resistance. Therefore, we hypothesized that ethamsylate, by virtue of its anti-hemorrhagic activity, reduces hemorrhagic ischemia-induced neuronal apoptosis, maintains the blood spinal cord barrier integrity, and decreases secondary damage severity, thereby reduce the extent of fibrotic scar formation, and demonstrates a neuroprotective role in SCI.
Collapse
Affiliation(s)
- Sonam Dolma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Kirti Adhikari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Teena Mamidi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Zarna Pathak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
31
|
The effect of tacrolimus-containing polyethylene glycol-modified maghemite nanospheres on reducing oxidative stress and accelerating the healing spinal cord injury of rats based on increasing M2 macrophages. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Yuan G, Fu C, Yang ST, Yuh DY, Hajishengallis G, Yang S. RGS12 Drives Macrophage Activation and Osteoclastogenesis in Periodontitis. J Dent Res 2021; 101:448-457. [PMID: 34796776 DOI: 10.1177/00220345211045303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Periodontitis is a complex inflammatory disease affecting the supporting structures of teeth and is associated with systemic inflammatory disorders. Regulator of G-protein signaling 12 (RGS12), the largest protein in the RGS protein family, plays a crucial role in the development of inflammation and bone remodeling. However, the role and mechanism(s) by which RGS12 may regulate periodontitis have not been elucidated. Here, we showed that ablation of RGS12 in Mx1+ hematopoietic cells blocked bone loss in the ligature-induced periodontitis model, as evidenced morphometrically and by micro-computed tomography analysis of the alveolar bone. Moreover, hematopoietic cell-specific deletion of RGS12 inhibited osteoclast formation and activity as well as the production of inflammatory cytokines such as IL1β, IL6, and TNFα in the diseased periodontal tissue. In the in vitro experiments, we found that the overexpression of RGS12 promoted the reprogramming of macrophages to the proinflammatory M1 type, but not the anti-inflammatory M2 type, and enhanced the ability of macrophages for migration. Conversely, knockdown of RGS12 in macrophages inhibited the production of inflammatory cytokines and migration of macrophages in response to lipopolysaccharide stimulation. Our results demonstrate for the first time that inhibition of RGS12 in macrophages is a promising therapeutic target for the treatment of periodontitis.
Collapse
Affiliation(s)
- G Yuan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Fu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthodontics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Department of Orthodontics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - S T Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D Y Yuh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei
| | - G Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Rismanbaf A, Afshari K, Ghasemi M, Badripour A, Haj-Mirzaian A, Dehpour AR, Shafaroodi H. Therapeutic Effects of Azithromycin on Spinal Cord Injury in Male Wistar Rats: A Role for Inflammatory Pathways. J Neurol Surg A Cent Eur Neurosurg 2021; 83:411-419. [PMID: 34781403 DOI: 10.1055/s-0041-1735854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Inflammatory responses, including macrophages/microglia imbalance, are associated with spinal cord injury (SCI) complications. Accumulating evidence also suggests an anti-inflammatory property of azithromycin (AZM). MATERIAL AND METHODS Male Wistar rats were subjected to T9 vertebra laminectomy. SCI was induced by spinal cord compression at this level with an aneurysmal clip for 60 seconds. They were divided into three groups: the sham-operated group and two SCI treatment (normal saline as a vehicle control vs. AZM at 180 mg/kg/d intraperitoneally for 3 days postsurgery; first dose: 30 minutes after surgery) groups. Locomotor scaling and behavioral tests for neuropathic pain were evaluated and compared through a 28-day period. At the end of the study, tissue samples were taken to assess neuroinflammatory changes and neural demyelination using ELISA and histopathologic examinations, respectively. In addition, the proportion of M1/M2 macrophage polarization was assessed by using flow cytometry. RESULTS Post-SCI AZM treatment (180 mg/kg/d for 3 days) significantly improved locomotion (p < 0.01) and decreased sensitivity to mechanical (p < 0.01) and thermal allodynia (p < 0.001). Moreover, there was a significant tumor necrosis factor-α (TNF-α) decline (p < 0.01) and interleukin-10 (IL-10) elevation (p < 0.01) in the spinal cord tissue of the AZM-treated group compared with the control groups 28 days post-SCI. AZM significantly improved neuroinflammation as evidenced by reduction of the M1 expression, elevation of M2 macrophages, and reduction of the M1/M2 ratio in both the dorsal root ganglion and the spinal cord tissue after SCI compared with controls (p < 0.01). CONCLUSION AZM treatment can be considered a therapeutic agent for SCI, as it could reduce neuroinflammation and SCI sensory/locomotor complications.
Collapse
Affiliation(s)
- Ali Rismanbaf
- Department of Pharmacology and Toxicology, Islamic Azad University Tehran Medical Sciences, School of Pharmacy, Tehran, Iran (the Islamic Republic of)
| | - Khashayar Afshari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of).,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Abolfazl Badripour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| |
Collapse
|
34
|
Anderson-Baucum E, Piñeros AR, Kulkarni A, Webb-Robertson BJ, Maier B, Anderson RM, Wu W, Tersey SA, Mastracci TL, Casimiro I, Scheuner D, Metz TO, Nakayasu ES, Evans-Molina C, Mirmira RG. Deoxyhypusine synthase promotes a pro-inflammatory macrophage phenotype. Cell Metab 2021; 33:1883-1893.e7. [PMID: 34496231 PMCID: PMC8432737 DOI: 10.1016/j.cmet.2021.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022]
Abstract
The metabolic inflammation (meta-inflammation) of obesity is characterized by proinflammatory macrophage infiltration into adipose tissue. Catalysis by deoxyhypusine synthase (DHPS) modifies the translation factor eIF5A to generate a hypusine (Hyp) residue. Hypusinated eIF5A (eIF5AHyp) controls the translation of mRNAs involved in inflammation, but its role in meta-inflammation has not been elucidated. Levels of eIF5AHyp were found to be increased in adipose tissue macrophages from obese mice and in murine macrophages activated to a proinflammatory M1-like state. Global proteomics and transcriptomics revealed that DHPS deficiency in macrophages altered the abundance of proteins involved in NF-κB signaling, likely through translational control of their respective mRNAs. DHPS deficiency in myeloid cells of obese mice suppressed M1 macrophage accumulation in adipose tissue and improved glucose tolerance. These findings indicate that DHPS promotes the post-transcriptional regulation of a subset of mRNAs governing inflammation and chemotaxis in macrophages and contributes to a proinflammatory M1-like phenotype.
Collapse
Affiliation(s)
- Emily Anderson-Baucum
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Annie R Piñeros
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Abhishek Kulkarni
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | - Bernhard Maier
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ryan M Anderson
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Wenting Wu
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah A Tersey
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Teresa L Mastracci
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Isabel Casimiro
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Donalyn Scheuner
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
35
|
Elchaninov A, Lokhonina A, Vishnyakova P, Soboleva A, Poltavets A, Artemova D, Makarov A, Glinkina V, Goldshtein D, Bolshakova G, Sukhikh G, Fatkhudinov T. MARCO + Macrophage Dynamics in Regenerating Liver after 70% Liver Resection in Mice. Biomedicines 2021; 9:biomedicines9091129. [PMID: 34572315 PMCID: PMC8471044 DOI: 10.3390/biomedicines9091129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages play a key role in liver regeneration. The fates of resident macrophages after 70% resection are poorly investigated. In this work, using the MARCO macrophage marker (abbreviated from macrophage receptor with collagenous structure), we studied the dynamics of mouse liver resident macrophages after 70% resection. METHODS In BALB/c male mice, a model of liver regeneration after 70% resection was reproduced. The dynamics of markers CD68, TIM4, and MARCO were studied immunohistochemically and by using a Western blot. RESULTS The number of MARCO- and CD68-positive macrophages in the regenerating liver increased 1 day and 3 days after resection, respectively. At the same time, the content of the MARCO protein increased in the sorted macrophages of the regenerating liver on the third day. CONCLUSIONS The data indicate that the number of MARCO-positive macrophages in the regenerating liver increases due to the activation of MARCO synthesis in the liver macrophages. The increased expression of MARCO by macrophages can be regarded as a sign of their activation. In the present study, stimulation with LPS led to an increase in the expression of the Marco gene in both Kupffer cells and macrophages of bone marrow origin.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
- Correspondence:
| | - Anastasia Lokhonina
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
| | - Anna Soboleva
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| | - Anastasiya Poltavets
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
| | - Daria Artemova
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| | - Andrey Makarov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
| | - Valeria Glinkina
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
| | - Dmitry Goldshtein
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia;
| | - Galina Bolshakova
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
| | - Timur Fatkhudinov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| |
Collapse
|
36
|
Macrophage Polarization States in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22136995. [PMID: 34209703 PMCID: PMC8268869 DOI: 10.3390/ijms22136995] [Citation(s) in RCA: 826] [Impact Index Per Article: 206.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
The M1/M2 macrophage paradigm plays a key role in tumor progression. M1 macrophages are historically regarded as anti-tumor, while M2-polarized macrophages, commonly deemed tumor-associated macrophages (TAMs), are contributors to many pro-tumorigenic outcomes in cancer through angiogenic and lymphangiogenic regulation, immune suppression, hypoxia induction, tumor cell proliferation, and metastasis. The tumor microenvironment (TME) can influence macrophage recruitment and polarization, giving way to these pro-tumorigenic outcomes. Investigating TME-induced macrophage polarization is critical for further understanding of TAM-related pro-tumor outcomes and potential development of new therapeutic approaches. This review explores the current understanding of TME-induced macrophage polarization and the role of M2-polarized macrophages in promoting tumor progression.
Collapse
|
37
|
Jaynes JM, Sable R, Ronzetti M, Bautista W, Knotts Z, Abisoye-Ogunniyan A, Li D, Calvo R, Dashnyam M, Singh A, Guerin T, White J, Ravichandran S, Kumar P, Talsania K, Chen V, Ghebremedhin A, Karanam B, Bin Salam A, Amin R, Odzorig T, Aiken T, Nguyen V, Bian Y, Zarif JC, de Groot AE, Mehta M, Fan L, Hu X, Simeonov A, Pate N, Abu-Asab M, Ferrer M, Southall N, Ock CY, Zhao Y, Lopez H, Kozlov S, de Val N, Yates CC, Baljinnyam B, Marugan J, Rudloff U. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci Transl Med 2021; 12:12/530/eaax6337. [PMID: 32051227 DOI: 10.1126/scitranslmed.aax6337] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
Solid tumors elicit a detectable immune response including the infiltration of tumor-associated macrophages (TAMs). Unfortunately, this immune response is co-opted into contributing toward tumor growth instead of preventing its progression. We seek to reestablish an antitumor immune response by selectively targeting surface receptors and endogenous signaling processes of the macrophage subtypes driving cancer progression. RP-182 is a synthetic 10-mer amphipathic analog of host defense peptides that selectively induces a conformational switch of the mannose receptor CD206 expressed on TAMs displaying an M2-like phenotype. RP-182-mediated activation of this receptor in human and murine M2-like macrophages elicits a program of endocytosis, phagosome-lysosome formation, and autophagy and reprograms M2-like TAMs to an antitumor M1-like phenotype. In syngeneic and autochthonous murine cancer models, RP-182 suppressed tumor growth, extended survival, and was an effective combination partner with chemo- or immune checkpoint therapy. Antitumor activity of RP-182 was also observed in CD206high patient-derived xenotransplantation models. Mechanistically, via selective reduction of immunosuppressive M2-like TAMs, RP-182 improved adaptive and innate antitumor immune responses, including increased cancer cell phagocytosis by reprogrammed TAMs.
Collapse
Affiliation(s)
- Jesse M Jaynes
- College of Agriculture, Environment and Nutrition Sciences, Integrative Biosciences Program, Tuskegee University, Tuskegee, AL 36088, USA.,Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Rushikesh Sable
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Ronzetti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Wendy Bautista
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Zachary Knotts
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Abisola Abisoye-Ogunniyan
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA.,Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Dandan Li
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Raul Calvo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Myagmarjav Dashnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Anju Singh
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Theresa Guerin
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sarangan Ravichandran
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Parimal Kumar
- Sequencing Facility and Single Cell Analysis Facility, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Keyur Talsania
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Vicky Chen
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Anghesom Ghebremedhin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ahmad Bin Salam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ruksana Amin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Taivan Odzorig
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Taylor Aiken
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.,Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Victoria Nguyen
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yansong Bian
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jelani C Zarif
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Amber E de Groot
- James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Monika Mehta
- Sequencing Facility and Single Cell Analysis Facility, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility, Center for Cancer Research of the National Cancer Institute, Frederick, MD 21701, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Nathan Pate
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Mones Abu-Asab
- Section of Histopathology, National Eye Institute, Bethesda, MD 20892, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Chan-Young Ock
- Department of Hemato Oncology, Seoul National University Hospital, Seoul 03080, Korea
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | | | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Natalia de Val
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA.,Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 21701, USA
| | - Clayton C Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA.
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Rahbar A, Shakyba S, Ghaderi M, Kazemi K, Fagheh AF, Farsinejad P, Khosravi A, Louyeh PA, Mirzaeyian E, Chamanara M, Akhavan-Sigari R. Ivermectin-functionalized multiwall carbon nanotube enhanced the locomotor activity and neuropathic pain by modulating M1/M2 macrophage and decrease oxidative stress in rat model of spinal cord injury. Heliyon 2021; 7:e07311. [PMID: 34235282 PMCID: PMC8247094 DOI: 10.1016/j.heliyon.2021.e07311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/22/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022] Open
Abstract
Since the inflammation and oxidative stress is the main pathophysiological pathway of neural damage in spinal cord injury (SCI), we tried to evaluate the role of ivermectin (IVM) combined with multi-walled carbon nanotube (MWCNT) in the treatment settings of SCI and its underlying mechanism. Wistar rats with T9 vertebra laminectomy in five groups of: sham-operated, vehicle, IVM (0.1 mg/kg), IVM-MWCNT (0.1 mg/kg), and minocycline (90 mg/kg) were used. We evaluated the locomotor scaling and other behavioral tests for neuropathic pain. Also, tissue samples were obtained to evaluate the expression of M1 and M2 macrophage marker, concentration of TNF-α, IL-1β, and IL-1, and oxidative stress level to assess neuroinflammatory changes. Both IVM and IVM-MWCNT after induction of SCI significantly enhanced the experimental tasks' outcomes, including locomotion and neuropathic tests. Also, decreasing in pro-inflammatory cytokines including TNF-α, IL-1β, and IL-1 in the spinal cord and dorsal root ganglion tissues was also notable in both IVM and IVM-MWCNT-treated groups 28 days after induction of SCI in compared to the vehicle-treated SCI group. Both IVM and IVM-MWCNT significantly decreased oxidative stress, induced by SCI, based on the results of ROS and NADPH activity. IVM-MWCNT-treated animals indicated better outcome in every previous experiment in comparison to IVM-treated animals. The effectiveness of IVM-MWCNT was similar to minocycline treatment in all experimental task (as positive control group). IVM-MWCNT might be a novel treatment in spinal cord injury, which could act through decreasing the oxidative stress and increase the polarization of M1 in comparison to M2 macrophages.
Collapse
Affiliation(s)
- Alireza Rahbar
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Shakyba
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Milad Ghaderi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Avid Farhang Fagheh
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parsa Farsinejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ayda Khosravi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Afraz Louyeh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Erwin Mirzaeyian
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
39
|
Stewart AN, Lowe JL, Glaser EP, Mott CA, Shahidehpour RK, McFarlane KE, Bailey WM, Zhang B, Gensel JC. Acute inflammatory profiles differ with sex and age after spinal cord injury. J Neuroinflammation 2021; 18:113. [PMID: 33985529 PMCID: PMC8120918 DOI: 10.1186/s12974-021-02161-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
Background Sex and age are emerging as influential variables that affect spinal cord injury (SCI) recovery. Despite a changing demographic towards older age at the time of SCI, the effects of sex or age on inflammation remain to be elucidated. This study determined the sex- and age-dependency of the innate immune response acutely after SCI. Methods Male and female mice of ages 4- and 14-month-old received T9 contusion SCI and the proportion of microglia, monocyte-derived macrophages (MDM), and neutrophils surrounding the lesion were determined at 3- and 7-day post-injury (DPI) using flow cytometry. Cell counts of microglia and MDMs were obtained using immunohistochemistry to verify flow cytometry results at 3-DPI. Microglia and MDMs were separately isolated using fluorescence-activated cell sorting (FACS) at 3-day post-injury (DPI) to assess RNA expression of 27 genes associated with activation, redox, and debris metabolism/clearance. Results Flow cytometry revealed that being female and older at the time of injury significantly increased MDMs relative to other phagocytes, specifically increasing the ratio of MDMs to microglia at 3-DPI. Cell counts using immunohistochemistry revealed that male mice have more total microglia within SCI lesions that can account for a lower MDM/microglia ratio. With NanoString analyses of 27 genes, only 1 was differentially expressed between sexes in MDMs; specifically, complement protein C1qa was increased in males. No genes were affected by age in MDMs. Only 2 genes were differentially regulated in microglia between sexes after controlling for false discovery rate, specifically CYBB (NOX2) as a reactive oxygen species (ROS)-associated marker as well as MRC1 (CD206), a gene associated with reparative phenotypes. Both genes were increased in female microglia. No microglial genes were differentially regulated between ages. Differences between microglia and MDMs were found in 26 of 27 genes analyzed, all expressed higher in MDMs with three exceptions. Specifically, C1qa, cPLA2, and CD86 were expressed higher in microglia. Conclusions These findings indicate that inflammatory responses to SCI are sex-dependent at both the level of cellular recruitment and gene expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02161-8.
Collapse
Affiliation(s)
- Andrew N Stewart
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - John L Lowe
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.,Science Honors Program of Georgetown College, Georgetown, KY, 40324, USA
| | - Ethan P Glaser
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Caitlin A Mott
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Ryan K Shahidehpour
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Katelyn E McFarlane
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - William M Bailey
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Bei Zhang
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.,Present address: Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - John C Gensel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
40
|
Brown EV, Falnikar A, Heinsinger N, Cheng L, Andrews CE, DeMarco M, Lepore AC. Cervical spinal cord injury-induced neuropathic pain in male mice is associated with a persistent pro-inflammatory macrophage/microglial response in the superficial dorsal horn. Exp Neurol 2021; 343:113757. [PMID: 33991526 DOI: 10.1016/j.expneurol.2021.113757] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 01/31/2023]
Abstract
A significant portion of individuals living with traumatic spinal cord injury (SCI) experiences some degree of debilitating neuropathic pain (NP). This pain remains largely intractable in a majority of cases, due in part to an incomplete understanding of its underlying mechanisms. Central sensitization, an increase in excitability of pain transmission neurons located in superficial dorsal horn (sDH), plays a key role in development and maintenance of SCI-induced NP. Resident microglia and peripheral monocyte-derived macrophages (referred to collectively as MMΦ) are involved in promoting SCI-induced DH neuron hyperexcitability. Importantly, these MMΦ consist of populations of cells that can exert pro-inflammatory or anti-inflammatory signaling within injured spinal cord. It is critical to spatiotemporally characterize this heterogeneity to understand MMΦ contribution to NP after SCI. Given that a majority of SCI cases are cervical in nature, we used a model of unilateral C5/C6 contusion that results in persistent at-level thermal hyperalgesia and mechanical allodynia, two forms of NP-related behavior, in the forepaw. The aim of this study was to characterize the sDH MMΦ response within intact cervical spinal cord segments caudal to the lesion (i.e. the location of primary afferent nociceptive input from the forepaw plantar surface). Cervical SCI promoted a persistent MMΦ response in sDH that coincided with the chronic NP phenotype. Using markers of pro- and anti-inflammatory MMΦ, we found that the MMΦ population within sDH exhibited significant heterogeneity that evolved over time post-injury, including a robust and persistent increase in pro-inflammatory MMΦ that was especially pronounced at later times. C5/C6 contusion SCI also induced below-level thermal hyperalgesia and mechanical allodynia in the hindpaw; however, we did not observe a pronounced MMΦ response in sDH of L4/L5 spinal cord, suggesting that different inflammatory cell mechanisms occurring in sDH may be involved in at-level versus below-level NP following SCI. In conclusion, our findings reveal significant MMΦ heterogeneity both within and across pain transmission locations after SCI. These data also show a prominent and persistent pro-inflammatory MMΦ response, suggesting a possible role in DH neuron hyperexcitability and NP.
Collapse
Affiliation(s)
- Eric V Brown
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, BLSB 245, Philadelphia, PA 19107, United States
| | - Aditi Falnikar
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, BLSB 245, Philadelphia, PA 19107, United States
| | - Nicolette Heinsinger
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, BLSB 245, Philadelphia, PA 19107, United States
| | - Lan Cheng
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, BLSB 245, Philadelphia, PA 19107, United States
| | - Carrie E Andrews
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, BLSB 245, Philadelphia, PA 19107, United States
| | - Michael DeMarco
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, BLSB 245, Philadelphia, PA 19107, United States
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, BLSB 245, Philadelphia, PA 19107, United States.
| |
Collapse
|
41
|
Han GH, Kim SJ, Ko WK, Lee D, Han IB, Sheen SH, Hong JB, Sohn S. Transplantation of tauroursodeoxycholic acid-inducing M2-phenotype macrophages promotes an anti-neuroinflammatory effect and functional recovery after spinal cord injury in rats. Cell Prolif 2021; 54:e13050. [PMID: 33960559 PMCID: PMC8168422 DOI: 10.1111/cpr.13050] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives In this study, we study the transplantation of tauroursodeoxycholic acid (TUDCA)‐induced M2‐phenotype (M2) macrophages and their ability to promote anti‐neuroinflammatory effects and functional recovery in a spinal cord injury (SCI) model. Methods To this end, compared to the granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), we evaluated whether TUDCA effectively differentiates bone marrow–derived macrophages (BMDMs) into M2 macrophages. Results The M2 expression markers in the TUDCA‐treated BMDM group were increased more than those in the GM‐CSF‐treated BMDM group. After the SCI and transplantation steps, pro‐inflammatory cytokine levels and the mitogen‐activated protein kinase (MAPK) pathway were significantly decreased in the TUDCA‐induced M2 group more than they were in the GM‐CSF‐induced M1 group and in the TUDCA group. Moreover, the TUDCA‐induced M2 group showed significantly enhanced tissue volumes and improved motor functions compared to the GM‐CSF‐induced M1 group and the TUDCA group. In addition, biotinylated dextran amine (BDA)–labelled corticospinal tract (CST) axons and neuronal nuclei marker (NeuN) levels were increased in the TUDCA‐induced M2 group more than those in the GM‐CSF‐induced M1 group and the TUDCA group. Conclusions This study demonstrates that the transplantation of TUDCA‐induced M2 macrophages promotes an anti‐neuroinflammatory effect and motor function recovery in SCI. Therefore, we suggest that the transplantation of TUDCA‐induced M2 macrophages represents a possible alternative cell therapy for SCI.
Collapse
Affiliation(s)
- Gong Ho Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Korea.,Department of Biomedical Science, CHA University, Seongnam-si, Korea
| | - Seong Jun Kim
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Korea.,Department of Biomedical Science, CHA University, Seongnam-si, Korea
| | - Wan-Kyu Ko
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Korea.,Department of Biomedical Science, CHA University, Seongnam-si, Korea
| | - Daye Lee
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Korea.,Department of Biomedical Science, CHA University, Seongnam-si, Korea
| | - In-Bo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Korea
| | - Seung Hun Sheen
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Korea
| | - Je Beom Hong
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seil Sohn
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Korea
| |
Collapse
|
42
|
Veiras LC, Shen JZY, Bernstein EA, Regis GC, Cao D, Okwan-Duodu D, Khan Z, Gibb DR, Dominici FP, Bernstein KE, Giani JF. Renal Inflammation Induces Salt Sensitivity in Male db/db Mice through Dysregulation of ENaC. J Am Soc Nephrol 2021; 32:1131-1149. [PMID: 33731332 PMCID: PMC8259671 DOI: 10.1681/asn.2020081112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/21/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Hypertension is considered a major risk factor for the progression of diabetic kidney disease. Type 2 diabetes is associated with increased renal sodium reabsorption and salt-sensitive hypertension. Clinical studies show that men have higher risk than premenopausal women for the development of diabetic kidney disease. However, the renal mechanisms that predispose to salt sensitivity during diabetes and whether sexual dimorphism is associated with these mechanisms remains unknown. METHODS Female and male db/db mice exposed to a high-salt diet were used to analyze the progression of diabetic kidney disease and the development of hypertension. RESULTS Male, 34-week-old, db/db mice display hypertension when exposed to a 4-week high-salt treatment, whereas equivalently treated female db/db mice remain normotensive. Salt-sensitive hypertension in male mice was associated with no suppression of the epithelial sodium channel (ENaC) in response to a high-salt diet, despite downregulation of several components of the intrarenal renin-angiotensin system. Male db/db mice show higher levels of proinflammatory cytokines and more immune-cell infiltration in the kidney than do female db/db mice. Blocking inflammation, with either mycophenolate mofetil or by reducing IL-6 levels with a neutralizing anti-IL-6 antibody, prevented the development of salt sensitivity in male db/db mice. CONCLUSIONS The inflammatory response observed in male, but not in female, db/db mice induces salt-sensitive hypertension by impairing ENaC downregulation in response to high salt. These data provide a mechanistic explanation for the sexual dimorphism associated with the development of diabetic kidney disease and salt sensitivity.
Collapse
Affiliation(s)
- Luciana C. Veiras
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Justin Z. Y. Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ellen A. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Giovanna C. Regis
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Derick Okwan-Duodu
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - David R. Gibb
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Fernando P. Dominici
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California,Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jorge F. Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California,Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
43
|
Imaging of Inflammation in Spinal Cord Injury: Novel Insights on the Usage of PFC-Based Contrast Agents. Biomedicines 2021; 9:biomedicines9040379. [PMID: 33916774 PMCID: PMC8065995 DOI: 10.3390/biomedicines9040379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/04/2022] Open
Abstract
Labeling of macrophages with perfluorocarbon (PFC)-based compounds allows the visualization of inflammatory processes by 19F-magnetic resonance imaging (19F-MRI), due to the absence of endogenous background. Even if PFC-labeling of monocytes/macrophages has been largely investigated and used, information is lacking about the impact of these agents over the polarization towards one of their cell subsets and on the best way to image them. In the present work, a PFC-based nanoemulsion was developed to monitor the course of inflammation in a model of spinal cord injury (SCI), a pathology in which the understanding of immunological events is of utmost importance to select the optimal therapeutic strategies. The effects of PFC over macrophage polarization were studied in vitro, on cultured macrophages, and in vivo, in a mouse SCI model, by testing and comparing various cell tracking protocols, including single and multiple administrations, the use of MRI or Point Resolved Spectroscopy (PRESS), and application of pre-saturation of Kupffer cells. The blood half-life of nanoemulsion was also investigated by 19F Magnetic Resonance Spectroscopy (MRS). In vitro and in vivo results indicate the occurrence of a switch towards the M2 (anti-inflammatory) phenotype, suggesting a possible theranostic function of these nanoparticles. The comparative work presented here allows the reader to select the most appropriate protocol according to the research objectives (quantitative data acquisition, visual monitoring of macrophage recruitment, theranostic purpose, rapid MRI acquisition, etc.). Finally, the method developed here to determine the blood half-life of the PFC nanoemulsion can be extended to other fluorinated compounds.
Collapse
|
44
|
Abstract
Extracellular vesicles (EVs), nano- to micro- sized vesicles released from cells, have garnered attention in recent years for their role in intercellular communication. Specifically, EVs from various cell sources including stem cells, have shown to have an exacerbatory or therapeutic effect in the content of pro- and anti-inflammatory environments through their interaction with immune recipient cells. This review aims to the coalescence information surrounding EVs derived from various sources and their interaction with microglia in neutral, anti, and pro- inflammatory environments. Overall, in homeostatic environments, EVs from many CNS lineages have been shown to have specific interactions with recipient microglia. In complex inflammatory environments, such as the tumor micro-environment (TME), EVs have been shown to further influence immune dampening through transition of microglia to a more M2-like phenotype. While not advantageous in the TME, this effect can be harnessed therapeutically in proinflammatory neurological conditions such as stroke, Alzheimer's, and Parkinson's. EVs derived from various stem cell and non-stem cell derived sources were found to attenuate proinflammatory responses in microglia in in vitro and in vivo models of these conditions. EVs loaded with anti-inflammatory therapeutics furthered this anti-inflammatory effect on recipient microglia. Graphical Abstract Extracellular Vesicles (EVs) from multiple cells types modulate microglial polarization. Cartoon depicting common ways microglia are activated through inflammatory and disease processes. EVs, derived from stem and non-stem sources, have been shown to attenuate proinflammatory responses in in vitro and in vivo.
Collapse
Affiliation(s)
- Samantha E Spellicy
- Regenerative Bioscience Center, Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, University of Georgia, 425 River Road, Athens, GA, 30602, USA
- University System of Georgia MD/PhD Program, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Steven L Stice
- Regenerative Bioscience Center, Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, University of Georgia, 425 River Road, Athens, GA, 30602, USA.
- Aruna Bio Inc, Athens, GA, 30602, USA.
| |
Collapse
|
45
|
Kopper TJ, Zhang B, Bailey WM, Bethel KE, Gensel JC. The effects of myelin on macrophage activation are phenotypic specific via cPLA 2 in the context of spinal cord injury inflammation. Sci Rep 2021; 11:6341. [PMID: 33737707 PMCID: PMC7973514 DOI: 10.1038/s41598-021-85863-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/05/2021] [Indexed: 01/31/2023] Open
Abstract
Spinal cord injury (SCI) produces chronic, pro-inflammatory macrophage activation that impairs recovery. The mechanisms driving this chronic inflammation are not well understood. Here, we detail the effects of myelin debris on macrophage physiology and demonstrate a novel, activation state-dependent role for cytosolic phospholipase-A2 (cPLA2) in myelin-mediated potentiation of pro-inflammatory macrophage activation. We hypothesized that cPLA2 and myelin debris are key mediators of persistent pro-inflammatory macrophage responses after SCI. To test this, we examined spinal cord tissue 28-days after thoracic contusion SCI in 3-month-old female mice and observed both cPLA2 activation and intracellular accumulation of lipid-rich myelin debris in macrophages. In vitro, we utilized bone marrow-derived macrophages to determine myelin's effects across a spectrum of activation states. We observed phenotype-specific responses with myelin potentiating only pro-inflammatory (LPS + INF-γ; M1) macrophage activation, whereas myelin did not induce pro-inflammatory responses in unstimulated or anti-inflammatory (IL-4; M2) macrophages. Specifically, myelin increased levels of pro-inflammatory cytokines, reactive oxygen species, and nitric oxide production in M1 macrophages as well as M1-mediated neurotoxicity. PACOCF3 (cPLA2 inhibitor) blocked myelin's detrimental effects. Collectively, we provide novel spatiotemporal evidence that myelin and cPLA2 play an important role in the pathophysiology of SCI inflammation and the phenotype-specific response to myelin implicate diverse roles of myelin in neuroinflammatory conditions.
Collapse
Affiliation(s)
- Timothy J Kopper
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Bei Zhang
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - William M Bailey
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kara E Bethel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - John C Gensel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
46
|
Yadav N, Thakur AK, Shekhar N, Ayushi. Potential of Antibiotics for the Treatment and Management of Parkinson Disease: An Overview. Curr Drug Res Rev 2021; 13:166-171. [PMID: 33719951 DOI: 10.2174/2589977513666210315095133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/04/2020] [Accepted: 01/22/2021] [Indexed: 11/22/2022]
Abstract
Evidences have emerged over the last 2 decades to ascertain the proof of concepts viz. mitochondrial dysfunction, inflammation-derived oxidative damage and cytokine-induced toxicity that play a significant role in Parkinson's disease (PD). The available pharmacotherapies for PD are mainly symptomatic and typically indications of L-DOPA to restrain dopamine deficiency and their consequences. In the 21st century, the role of the antibiotics has emerged at the forefront of medicine in health and human illness. There are several experimental and pre-clinical evidences that supported the potential use of antibiotic as neuroprotective agent. The astonishing effects of antibiotics and their neuroprotective properties against neurodegeneration and neuro-inflammation would be phenomenal for the development of effective therapy against PD. Antibiotics are also testified as useful not only to prevent the formation of alpha-synuclein but also act on mitochondrial dysfunction and neuro-inflammation. Thus, the possible therapy with antibiotics in PD would impact both the pathways leading to neuronal cell death in substantia nigra and pars compacta in midbrain. Moreover, the antibiotic based pharmacotherapy will open a scientific research passageway to add more to the evidence based and rational use of antibiotics for the treatment and management of PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Narayan Yadav
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| | - Ajit Kumar Thakur
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| | - Nikhila Shekhar
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| | - Ayushi
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| |
Collapse
|
47
|
Kopper TJ, Gensel JC. Continued development of azithromycin as a neuroprotective therapeutic for the treatment of spinal cord injury and other neurological conditions. Neural Regen Res 2021; 16:508-509. [PMID: 32985477 PMCID: PMC7996014 DOI: 10.4103/1673-5374.293146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/02/2020] [Accepted: 05/15/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Timothy J. Kopper
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - John C. Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
48
|
Mora-Navarro C, Ozpinar EW, Sze D, Martin DP, Freytes DO. Transcriptome-targeted analysis of human peripheral blood-derived macrophages when cultured on biomaterial meshes. Biomed Mater 2021; 16:025006. [PMID: 33445160 PMCID: PMC11626613 DOI: 10.1088/1748-605x/abdbdb] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Surgical meshes are commonly used to repair defects and support soft tissues. Macrophages (Mφs) are critical cells in the wound healing process and are involved in the host response upon foreign biomaterials. There are various commercially available permanent and absorbable meshes used by surgeons for surgical interventions. Polypropylene (PP) meshes represent a permanent biomaterial that can elicit both inflammatory and anti-inflammatory responses. In contrast, poly-4-hydroxybutyrate (P4HB) based meshes are absorbable and linked to positive clinical outcomes but have a poorly characterized immune response. This study evaluated the in vitro targeted transcriptomic response of human Mφs seeded for 48 h on PP and P4HB surgical meshes. The in vitro measured response from human Mφs cultured on P4HB exhibited inflammatory and anti-inflammatory gene expression profiles typically associated with wound healing, which aligns with in vivo animal studies from literature. The work herein provides in vitro evidence for the early transcriptomic targeted signature of human Mφs upon two commonly used surgical meshes. The findings suggest a transition from an inflammatory to a non-inflammatory phenotype by P4HB as well as an upregulation of genes annotated under the pathogen response pathway.
Collapse
Affiliation(s)
- Camilo Mora-Navarro
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, 4208D Engineering Building III, Raleigh, NC, United States of America
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| | - Emily W Ozpinar
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, 4208D Engineering Building III, Raleigh, NC, United States of America
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| | - Daphne Sze
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, 4208D Engineering Building III, Raleigh, NC, United States of America
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| | | | - Donald O Freytes
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, 4208D Engineering Building III, Raleigh, NC, United States of America
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
49
|
Venditto VJ, Haydar D, Abdel-Latif A, Gensel JC, Anstead MI, Pitts MG, Creameans J, Kopper TJ, Peng C, Feola DJ. Immunomodulatory Effects of Azithromycin Revisited: Potential Applications to COVID-19. Front Immunol 2021; 12:574425. [PMID: 33643308 PMCID: PMC7906979 DOI: 10.3389/fimmu.2021.574425] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
The rapid advancement of the COVID-19 pandemic has prompted an accelerated pursuit to identify effective therapeutics. Stages of the disease course have been defined by viral burden, lung pathology, and progression through phases of the immune response. Immunological factors including inflammatory cell infiltration and cytokine storm have been associated with severe disease and death. Many immunomodulatory therapies for COVID-19 are currently being investigated, and preliminary results support the premise of targeting the immune response. However, because suppressing immune mechanisms could also impact the clearance of the virus in the early stages of infection, therapeutic success is likely to depend on timing with respect to the disease course. Azithromycin is an immunomodulatory drug that has been shown to have antiviral effects and potential benefit in patients with COVID-19. Multiple immunomodulatory effects have been defined for azithromycin which could provide efficacy during the late stages of the disease, including inhibition of pro-inflammatory cytokine production, inhibition of neutrophil influx, induction of regulatory functions of macrophages, and alterations in autophagy. Here we review the published evidence of these mechanisms along with the current clinical use of azithromycin as an immunomodulatory therapeutic. We then discuss the potential impact of azithromycin on the immune response to COVID-19, as well as caution against immunosuppressive and off-target effects including cardiotoxicity in these patients. While azithromycin has the potential to contribute efficacy, its impact on the COVID-19 immune response requires additional characterization so as to better define its role in individualized therapy.
Collapse
Affiliation(s)
- Vincent J. Venditto
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Dalia Haydar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ahmed Abdel-Latif
- Gill Heart Institute and Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - John C. Gensel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Michael I. Anstead
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Michelle G. Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Jarrod Creameans
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Timothy J. Kopper
- Department of Physiology, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Chi Peng
- Gill Heart Institute and Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - David J. Feola
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
50
|
CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy. Nat Commun 2021; 12:877. [PMID: 33563975 PMCID: PMC7873057 DOI: 10.1038/s41467-021-20893-2] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
The immunosuppressive tumor microenvironment (TME) represents a major barrier for effective immunotherapy. Tumor-associated macrophages (TAMs) are highly heterogeneous and plastic cell components of the TME which can either promote tumor progression (M2-like) or boost antitumor immunity (M1-like). Here, we demonstrate that a subset of TAMs that express folate receptor β (FRβ) possess an immunosuppressive M2-like profile. In syngeneic tumor mouse models, chimeric antigen receptor (CAR)-T cell-mediated selective elimination of FRβ+ TAMs in the TME results in an enrichment of pro-inflammatory monocytes, an influx of endogenous tumor-specific CD8+ T cells, delayed tumor progression, and prolonged survival. Preconditioning of the TME with FRβ-specific CAR-T cells also improves the effectiveness of tumor-directed anti-mesothelin CAR-T cells, while simultaneous co-administration of both CAR products does not. These results highlight the pro-tumor role of FRβ+ TAMs in the TME and the therapeutic implications of TAM-depleting agents as preparative adjuncts to conventional immunotherapies that directly target tumor antigens.
Collapse
|