1
|
Afrisham R, Farrokhi V, Ayyoubzadeh SM, Vatannejad A, Fadaei R, Moradi N, Jadidi Y, Alizadeh S. CCN5/WISP2 serum levels in patients with coronary artery disease and type 2 diabetes and its correlation with inflammation and insulin resistance; a machine learning approach. Biochem Biophys Rep 2024; 40:101857. [PMID: 39552711 PMCID: PMC11564987 DOI: 10.1016/j.bbrep.2024.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Studies have shown various effects of CCN5/WISP2 on metabolic pathways, yet no prior investigation has established a link between its serum levels and CAD and/or T2DM. Therefore, this study seeks to explore the relation between CCN5 and the risk factor of CAD and/or diabetes, in comparison to individuals with good health, marking a pioneering endeavor in this field. Methods This case-control study investigates serum levels of CCN5, TNF-α, IL-6, adiponectin, and fasting insulin in a population of 160 individuals recruited into four equal groups (T2DM, CAD, CAD-T2DM, and healthy controls). Statistical tests comprise Chi-square tests, ANOVA, Spearman correlation, and logistic regression. ROC curves were used to represent the diagnostic potential of CCN5. Disease states are predicted by machine learning algorithms: Decision Tree, Gradient Boosted Trees, Random Forest, Naïve Bayes, and KNN. These models' performance was evaluated by various metrics, all of which were ensured to be robust by applying 10-fold cross-validation. Analyses were done in SPSS and GraphPad Prism and RapidMiner software. Results The CAD, T2DM, and CAD-T2DM groups had significantly higher CCN5 concentrations compared to the healthy control group (CAD: 336.87 ± 107.36 ng/mL, T2DM: 367.46 ± 102.15 ng/mL, CAD-T2DM: 404.68 ± 108.15 ng/mL, control: 205.62 ± 63.34 ng/mL; P < 0.001). A positive and significant correlation was observed between CCN5 and cytokines (IL-6 and TNF-α) in all patient groups (P < 0.05). Multinomial logistic regression analysis indicated a significant association between CCN5 and T2DM-CAD, T2DM, and CAD conditions (P < 0.001) even after adjusting for gender, BMI, and age (P < 0.001). Regarding the machine learning models, the Naïve Bayes model showed the best performance for classifying cases of T2DM, achieving an AUC value of 0.938±0.066. For predicting CAD, the Random Forest classifier achieved the highest AUC value of 0.994±0.020. In the case of CAD-T2DM prediction, the Naïve Bayes model demonstrated the highest AUC of 0.981±0.059, along with an Accuracy of 97.50 % ± 7.91 % and an F-measure of 96.67 % ± 10.54 %. Conclusion Our study has revealed, for the first time, a positive connection between CCN5 serum levels and the risk of developing T2DM and CAD. Nonetheless, more research is needed to ascertain whether CCN5 can serve as a predictive marker.
Collapse
Affiliation(s)
- Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- Department of Hematology and Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nariman Moradi
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology and Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Hamdan Alshganbee MF, Nabatchian F, Farrokhi V, Fadaei R, Moradi N, Afrisham R. A positive association of serum CCN5/WISP2 levels with the risk of developing gestational diabetes mellitus: a case-control study. J Physiol Sci 2023; 73:22. [PMID: 37794318 DOI: 10.1186/s12576-023-00879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION CCN5/WISP2 is prominently manifest in adipose tissue and has been linked to the pathogenesis of obesity, diabetes, and insulin resistance. However, discrepancies exist in previous studies, and little is known about its association with gestational diabetes mellitus (GDM). The current investigation is designed to examine the correlation of WISP2 with risk factors in GDM patients in comparison to healthy pregnant women for the first time. METHODS This case-control study measured serum levels of CCN5, TNF-α, IL-6, adiponectin, and fasting insulin using ELISA kits in 88 GDM patients and 88 pregnant women. RESULTS The GDM group had remarkably higher serum levels of CCN5 (379.41 ± 83.078 ng/ml) compared to controls (212.02 ± 77.935 ng/ml). In a similar vein, it was observed that patients diagnosed with GDM exhibited elevated levels of pro-inflammatory cytokines such as IL-6 and TNF-α; while conversely, adiponectin levels were found to be significantly lower than those observed in the control group (P < 0.0001). In women with GDM, a positive and significant correlation was observed between CCN5 and BMI, FBG, insulin, HOMA-IR, as well as IL-6 and TNF-α levels. In the adjusted model, the risk of GDM was significantly increased with elevated serum CCN5 level. CONCLUSION Our research indicates a noteworthy and affirmative correlation between the levels of CCN5 in the serum and the risk of developing GDM, along with its associated risk factors such as BMI, insulin resistance index, FBG, and inflammatory cytokines (TNF-α and IL-6). These findings suggest that CCN5 could potentially play a role in the etiology of GDM.
Collapse
Affiliation(s)
| | - Fariba Nabatchian
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nariman Moradi
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Guo L, Quan M, Pang W, Yin Y, Li F. Cytokines and exosomal miRNAs in skeletal muscle-adipose crosstalk. Trends Endocrinol Metab 2023; 34:666-681. [PMID: 37599201 DOI: 10.1016/j.tem.2023.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Skeletal muscle and adipose tissues (ATs) are secretory organs that release secretory factors including cytokines and exosomes. These factors mediate muscle-adipose crosstalk to regulate systemic metabolism via paracrine and endocrine pathways. Myokines and adipokines are cytokines secreted by skeletal muscle and ATs, respectively. Exosomes loaded with nucleic acids, proteins, lipid droplets, and organelles can fuse with the cytoplasm of target cells to perform regulatory functions. A major regulatory component of exosomes is miRNA. In addition, numerous novel myokines and adipokines have been identified through technological innovations. These discoveries have identified new biomarkers and sparked new insights into the molecular regulation of skeletal muscle growth and adipose deposition. The knowledge may contribute to potential diagnostic and therapeutic targets in metabolic disease.
Collapse
Affiliation(s)
- Liu Guo
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Menchus Quan
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Weijun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fengna Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Zheng Y, Shen P, Tong M, Li H, Ren C, Wu F, Li H, Yang H, Cai B, Du W, Zhao X, Yao S, Quan R. WISP2 downregulation inhibits the osteogenic differentiation of BMSCs in congenital scoliosis by regulating Wnt/β-catenin pathway. Biochim Biophys Acta Mol Basis Dis 2023:166783. [PMID: 37302424 DOI: 10.1016/j.bbadis.2023.166783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Bone marrow mesenchymal stem cells (BMSCs) are instrumental in bone development, metabolism, and marrow microenvironment homeostasis. Despite this, the relevant effects and mechanisms of BMSCs on congenital scoliosis (CS) remain undefined. Herein, it becomes our focus to reveal the corresponding effects and mechanisms implicated. METHODS BMSCs from CS patients (hereafter referred as CS-BMSCs) and healthy donors (NC-BMSCs) were observed and identified. Differentially expressed genes in BMSCs were analyzed utilizing scRNA-seq and RNA-seq profiles. The multi-differentiation potential of BMSCs following the transfection or infection was evaluated. The expression levels of factors related to osteogenic differentiation and Wnt/β-catenin pathway were further determined as appropriate. RESULTS A decreased osteogenic differentiation ability was shown in CS-BMSCs. Both the proportion of LEPR+ BMSCs and the expression level of WNT1-inducible-signaling pathway protein 2 (WISP2) were decreased in CS-BMSCs. WISP2 knockdown suppressed the osteogenic differentiation of NC-BMSCs, while WISP2 overexpression facilitated the osteogenesis of CS-BMSCs via acting on the Wnt/β-catenin pathway. CONCLUSIONS Our study collectively indicates WISP2 knockdown blocks the osteogenic differentiation of BMSCs in CS by regulating Wnt/β-catenin signaling, thus providing new insights into the aetiology of CS.
Collapse
Affiliation(s)
- Yang Zheng
- Zhejiang Chinese Medical University, Hangzhou, China; Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Panyang Shen
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Tong
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangchao Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Conglin Ren
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengqing Wu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hanyu Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Yang
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingbing Cai
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Weibin Du
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Xing Zhao
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shasha Yao
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Renfu Quan
- Zhejiang Chinese Medical University, Hangzhou, China; Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China; Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Xega V, Alami T, Liu JL. Recent progress on the role of cellular communication network factors (CCN) 3, 4 and 6 in regulating adiposity, liver fibrosis and pancreatic islets. J Cell Commun Signal 2023:10.1007/s12079-023-00765-8. [PMID: 37245185 DOI: 10.1007/s12079-023-00765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
CCN/WISP (cellular communication network factors, or Wnt-inducted secreted proteins) family of proteins consists of six extracellular matrix (ECM)-associated proteins that regulate development, cell adhesion and proliferation, ECM remodeling, inflammation, and tumorigenesis. In the last two decades, metabolic regulation by these matricellular proteins has been studied extensively, several excellent reviews have covered the roles of CCN1, -2 and - 5. In this brief review, we will focus on those lesser-known members and more recent discoveries, together with other recent articles presenting a more complete picture of the current state of knowledge. We have found that CCN2, -4, and - 5 promote pancreatic islet function, while CCN3 plays a unique and negative role. CCN3 and - 4 are pro-adiposity leading to insulin resistance, but CCN5 and - 6 are anti-adiposity. While CCN2 and - 4 promote tissue fibrosis and inflammation, all other four members are clearly anti-fibrotic. As for cellular signaling, they are known to interact with integrins, other cell membrane proteins and ECM thereby regulate Akt/protein kinase B, myocardin-related transcription factor (MRTF), and focal adhesion kinase. Yet, a cohesive mechanism of action to comprehensively explain those major functions is still lacking.
Collapse
Affiliation(s)
- Viktoria Xega
- MeDiC Program, The Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Tara Alami
- MeDiC Program, The Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Jun-Li Liu
- MeDiC Program, The Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
6
|
Carbinatti T, Régnier M, Parlati L, Benhamed F, Postic C. New insights into the inter-organ crosstalk mediated by ChREBP. Front Endocrinol (Lausanne) 2023; 14:1095440. [PMID: 36923222 PMCID: PMC10008936 DOI: 10.3389/fendo.2023.1095440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/11/2023] [Indexed: 03/01/2023] Open
Abstract
Carbohydrate response element binding protein (ChREBP) is a glucose responsive transcription factor recognized by its critical role in the transcriptional control of glycolysis and de novo lipogenesis. Substantial advances in the field have revealed novel ChREBP functions. Indeed, due to its actions in different tissues, ChREBP modulates the inter-organ communication through secretion of peptides and lipid factors, ensuring metabolic homeostasis. Dysregulation of these orchestrated interactions is associated with development of metabolic diseases such as type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). Here, we recapitulate the current knowledge about ChREBP-mediated inter-organ crosstalk through secreted factors and its physiological implications. As the liver is considered a crucial endocrine organ, we will focus in this review on the role of ChREBP-regulated hepatokines. Lastly, we will discuss the involvement of ChREBP in the progression of metabolic pathologies, as well as how the impairment of ChREBP-dependent signaling factors contributes to the onset of such diseases.
Collapse
|
7
|
Das R, Giri J, K Paul P, Froelich N, Chinnadurai R, McCoy S, Bushman W, Galipeau J. A STAT5-Smad3 dyad regulates adipogenic plasticity of visceral adipose mesenchymal stromal cells during chronic inflammation. NPJ Regen Med 2022; 7:41. [PMID: 36045134 PMCID: PMC9433418 DOI: 10.1038/s41536-022-00244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Adipogenic differentiation of visceral adipose tissue-resident multipotent mesenchymal stromal cells (VA-MSC) into adipocytes is metabolically protective. Under chronic inflammatory stress, this neoadipogenesis process is suppressed by various pro-inflammatory cytokines and growth factors. However, the underlying mechanism(s) regulating VA-MSC plasticity remains largely unexplored. Using an adipogenic differentiation screen, we identified IFNγ and TGFβ as key inhibitors of primary human VA-MSC differentiation. Further studies using human and mouse VA-MSCs and a chronic high-fat diet-fed murine model revealed that IFNγ/JAK2-activated STAT5 transcription factor is a central regulator of VA-MSC differentiation under chronic inflammatory conditions. Furthermore, our results indicate that under such conditions, IFNγ-activated STAT5 and TGFβ-activated Smad3 physically interact via Smad4. This STAT5-Smad4-Smad3 complex plays a crucial role in preventing the early adipogenic commitment of VA-MSCs by suppressing key pro-adipogenic transcription factors, including CEBPδ, CEBPα, and PPARγ. Genetic or pharmacological disruption of IFNγ-TGFβ synergy by inhibiting either STAT5 or Smad3 rescued adipogenesis under chronic inflammatory stress. Overall, our study delineates a central mechanism of MSC plasticity regulation by the convergence of multiple inflammatory signaling pathways.
Collapse
Affiliation(s)
- Rahul Das
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jayeeta Giri
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Pradyut K Paul
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Nicole Froelich
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Raghavan Chinnadurai
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Medicine, Mercer University, Savannah, GA, 31404, USA
| | - Sara McCoy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Wade Bushman
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
8
|
Single-cell transcriptomics profiling the compatibility mechanism of As 2O 3-indigo naturalis formula based on bone marrow stroma cells. Biomed Pharmacother 2022; 151:113182. [PMID: 35643069 DOI: 10.1016/j.biopha.2022.113182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022] Open
Abstract
Compound realgar natural indigo tablet is the only oral arsenic agent widely used in acute promyelocytic leukemia (APL) treatment. However, as a therapeutic drug for diseases of the blood system, the scientific knowledge of As2O3-indigo naturalis formula compatibility has not been studied in bone marrow stromal cells (BMSCs). We chose arsenic trioxide (As2O3: A), tanshinone IIA (T) and indirubin (I) as representative active compounds of realgar, indigo naturalis, and Salvia miltiorrhiza, respectively, to evaluated the pharmaceutical mechanism and the compatibility of ATI (drug combination) using single-cell RNA sequencing (scRNA-seq). The overlapped genes associated with both disease and drug were selected in BMSCs for in-depth analysis. Results show that joint applications of ATI had the strongest therapeutic efficacy in a murine APL model. Lepr-MSCs, OLCs and BMECs were the sensitive cell groups targeted by ATI in the murine APL model. ATI could regulate the related genes of osteogenic differentiation, adipogenic differentiation, and endothelial cell migration in bone marrow mesenchymal lineage cells in murine APL model and improve normal hematopoiesis-related gene expression and poor prognosis of Lepr-MSCs, OLCs and BMECs in mice with leukemia according to scRNA-seq data. The strongest regulatory effects were found in the joint applications of ATI. ATI combination had the potential mechanism to maintain the stability of the hematopoietic microenvironment and promote hematopoiesis to assist in the treatment of APL. This study illustrated the potential mechanism of ATI in regulating BMSCs from the overall perspective of the hematopoietic microenvironment, and broadened the scientific understanding of ATI compatibility in BMSCs.
Collapse
|
9
|
Metabolic Effects of CCN5/WISP2 Gene Deficiency and Transgenic Overexpression in Mice. Int J Mol Sci 2021; 22:ijms222413418. [PMID: 34948212 PMCID: PMC8709456 DOI: 10.3390/ijms222413418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022] Open
Abstract
CCN5/WISP2 is a matricellular protein, the expression of which is under the regulation of Wnt signaling and IGF-1. Our initial characterization supports the notion that CCN5 might promote the proliferation and survival of pancreatic β-cells and thus improve the metabolic profile of the animals. More recently, the roles of endogenous expression of CCN5 and its ectopic, transgenic overexpression on metabolic regulation have been revealed through two reports. Here, we attempt to compare the experimental findings from those studies, side-by-side, in order to further establish its roles in metabolic regulation. Prominent among the discoveries was that a systemic deficiency of CCN5 gene expression caused adipocyte hypertrophy, increased adipogenesis, and lipid accumulation, resulting in insulin resistance and glucose intolerance, which were further exacerbated upon high-fat diet feeding. On the other hand, the adipocyte-specific and systemic overexpression of CCN5 caused an increase in lean body mass, improved insulin sensitivity, hyperplasia of cardiomyocytes, and increased heart mass, but decreased fasting glucose levels. CCN5 is clearly a regulator of adipocyte proliferation and maturation, affecting lean/fat mass ratio and insulin sensitivity. Not all results from these models are consistent; moreover, several important aspects of CCN5 physiology are yet to be explored.
Collapse
|
10
|
Verbrugge SAJ, Alhusen JA, Kempin S, Pillon NJ, Rozman J, Wackerhage H, Kleinert M. Genes controlling skeletal muscle glucose uptake and their regulation by endurance and resistance exercise. J Cell Biochem 2021; 123:202-214. [PMID: 34812516 DOI: 10.1002/jcb.30179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022]
Abstract
Exercise improves the insulin sensitivity of glucose uptake in skeletal muscle. Due to that, exercise has become a cornerstone treatment for type 2 diabetes mellitus (T2DM). The mechanisms by which exercise improves skeletal muscle insulin sensitivity are, however, incompletely understood. We conducted a systematic review to identify all genes whose gain or loss of function alters skeletal muscle glucose uptake. We subsequently cross-referenced these genes with recently generated data sets on exercise-induced gene expression and signaling. Our search revealed 176 muscle glucose-uptake genes, meaning that their genetic manipulation altered glucose uptake in skeletal muscle. Notably, exercise regulates the expression or phosphorylation of more than 50% of the glucose-uptake genes or their protein products. This included many genes that previously have not been associated with exercise-induced insulin sensitivity. Interestingly, endurance and resistance exercise triggered some common but mostly unique changes in expression and phosphorylation of glucose-uptake genes or their protein products. Collectively, our work provides a resource of potentially new molecular effectors that play a role in the incompletely understood regulation of muscle insulin sensitivity by exercise.
Collapse
Affiliation(s)
- Sander A J Verbrugge
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany.,Exercise Biology Group, Department for Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Julia A Alhusen
- Molecular Endocrinology, Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum Munich, Helmholtz Diabetes Center (HMGU), Munich, Germany
| | - Shimon Kempin
- Exercise Biology Group, Department for Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Henning Wackerhage
- Exercise Biology Group, Department for Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Maximilian Kleinert
- Muscle Physiology and Metabolism Group, German Institute of Human Nutrition, Potsdam - Rehbrücke, Nuthetal, Germany.,Department of Nutrition, Exercise and Sports, Faculty of Science, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Srinivasa S, Garcia-Martin R, Torriani M, Fitch KV, Carlson AR, Kahn CR, Grinspoon SK. Altered pattern of circulating miRNAs in HIV lipodystrophy perturb key adipose differentiation and inflammation pathways. JCI Insight 2021; 6:e150399. [PMID: 34383714 PMCID: PMC8492307 DOI: 10.1172/jci.insight.150399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
We identified a microRNA (miRNA) profile characterizing HIV lipodystrophy and explored the downstream mechanistic implications with respect to adipocyte biology and the associated clinical phenotype. miRNA profiles were extracted from small extracellular vesicles (sEVs) of HIV-infected individuals with and without lipodystrophic changes and individuals without HIV, among whom we previously showed significant reductions in adipose Dicer expression related to HIV. miR-20a-3p was increased and miR-324-5p and miR-186 were reduced in sEVs from HIV lipodystrophic individuals. Changes in these miRNAs correlated with adipose Dicer expression and clinical markers of lipodystrophy, including fat redistribution, insulin resistance, and hypertriglyceridemia. Human preadipocytes transfected with mimic miR-20a-3p, anti–miR-324-5p, or anti–miR-186 induced consistent changes in latent transforming growth factor beta binding protein 2 (Ltbp2), Wisp2, and Nebl expression. Knockdown of Ltbp2 downregulated markers of adipocyte differentiation (Fabp4, Pparγ, C/ebpa, Fasn, adiponectin, Glut4, CD36), and Lamin C, and increased expression of genes involved in inflammation (IL1β, IL6, and Ccl20). Our studies suggest a likely unique sEV miRNA signature related to dysregulation of Dicer in adipose tissue in HIV. Enhanced miR-20a-3p or depletion of miR-186 and miR-324-5p may downregulate Ltbp2 in HIV, leading to dysregulation in adipose differentiation and inflammation, which could contribute to acquired HIV lipodystrophy and associated metabolic and inflammatory perturbations.
Collapse
Affiliation(s)
- Suman Srinivasa
- Metabolic Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| | - Ruben Garcia-Martin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, boston, United States of America
| | - Martin Torriani
- Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| | - Kathleen V Fitch
- Metabolic Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| | - Anna R Carlson
- Metabolic Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, boston, United States of America
| | - Steven K Grinspoon
- Metabolic Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
| |
Collapse
|
12
|
Fryk E, Olausson J, Mossberg K, Strindberg L, Schmelz M, Brogren H, Gan LM, Piazza S, Provenzani A, Becattini B, Lind L, Solinas G, Jansson PA. Hyperinsulinemia and insulin resistance in the obese may develop as part of a homeostatic response to elevated free fatty acids: A mechanistic case-control and a population-based cohort study. EBioMedicine 2021; 65:103264. [PMID: 33712379 PMCID: PMC7992078 DOI: 10.1016/j.ebiom.2021.103264] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background It is commonly accepted that in obesity free fatty acids (FFA) cause insulin resistance and hyperglycemia, which drives hyperinsulinemia. However, hyperinsulinemia is observed in subjects with normoglycaemia and thus the paradigm above should be reevaluated. Methods We describe two studies: MD-Lipolysis, a case control study investigating the mechanisms of obesity-driven insulin resistance by a systemic metabolic analysis, measurements of adipose tissue lipolysis by microdialysis, and adipose tissue genomics; and POEM, a cohort study used for validating differences in circulating metabolites in relation to adiposity and insulin resistance observed in the MD-Lipolysis study. Findings In insulin-resistant obese with normal glycaemia from the MD-Lipolysis study, hyperinsulinemia was associated with elevated FFA. Lipolysis, assessed by glycerol release per adipose tissue mass or adipocyte surface, was similar between obese and lean individuals. Adipose tissue from obese subjects showed reduced expression of genes mediating catecholamine-driven lipolysis, lipid storage, and increased expression of genes driving hyperplastic growth. In the POEM study, FFA levels were specifically elevated in obese-overweight subjects with normal fasting glucose and high fasting levels of insulin and C-peptide. Interpretation In obese subjects with normal glycaemia elevated circulating levels of FFA at fasting are the major metabolic derangement candidate driving fasting hyperinsulinemia. Elevated FFA in obese with normal glycaemia were better explained by increased fat mass rather than by adipose tissue insulin resistance. These results support the idea that hyperinsulinemia and insulin resistance may develop as part of a homeostatic adaptive response to increased adiposity and FFA. Funding Swedish-Research-Council (2016-02660); Diabetesfonden (DIA2017-250; DIA2018-384; DIA2020-564); Novo-Nordisk-Foundation (NNF17OC0027458; NNF19OC0057174); Cancerfonden (CAN2017/472; 200840PjF); Swedish-ALF-agreement (2018-74560).
Collapse
Affiliation(s)
- Emanuel Fryk
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Josefin Olausson
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Mossberg
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Lena Strindberg
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Schmelz
- Department of Anesthesiology and Intensive Care Medicine Mannheim, University of Heidelberg, Heidelberg Germany
| | - Helén Brogren
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Li-Ming Gan
- Department of Cardiology Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Silvano Piazza
- Centre for Integrative Biology, CIBIO, University of Trento, Trento Italy; Computational Biology, International Centre for Genetic Engineering and Biotechnology, ICGEB, 34149 Trieste, Italy
| | | | - Barbara Becattini
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Lars Lind
- Dep of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Giovanni Solinas
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Per-Anders Jansson
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
BMP7 overexpression in adipose tissue induces white adipogenesis and improves insulin sensitivity in ob/ob mice. Int J Obes (Lond) 2020; 45:449-460. [PMID: 33110143 DOI: 10.1038/s41366-020-00700-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/26/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES During obesity, hypertrophic enlargement of white adipose tissue (WAT) promotes ectopic lipid deposition and development of insulin resistance. In contrast, WAT hyperplasia is associated with preservation of insulin sensitivity. The complex network of factors that regulates white adipogenesis is not fully understood. Bone morphogenic protein 7 (BMP7) can induce brown adipogenesis, but its role on white adipogenesis remains to be elucidated. Here, we assessed BMP7-mediated effects on white adipogenesis in ob/ob mice. METHODS BMP7 was overexpressed in either WAT or liver of ob/ob mice using adeno-associated viral (AAV) vectors. Analysis of gene expression, histological and morphometric alterations, and metabolites and hormones concentrations were carried out. RESULTS Overexpression of BMP7 in adipocytes of subcutaneous and visceral WAT increased fat mass, the proportion of small-size adipocytes and the expression of adipogenic and mature adipocyte genes, suggesting induction of adipogenesis irrespective of fat depot. These changes were associated with reduced hepatic steatosis and improved insulin sensitivity. In contrast, liver-specific overproduction of BMP7 did not promote WAT hyperplasia despite BMP7 circulating levels were similar to those achieved after genetic engineering of WAT. CONCLUSIONS This study unravels a new autocrine/paracrine role of BMP7 on white adipogenesis and highlights that BMP7 may modulate WAT plasticity and increase insulin sensitivity.
Collapse
|
14
|
Gowda SGB, Liang C, Gowda D, Hou F, Kawakami K, Fukiya S, Yokota A, Chiba H, Hui SP. Identification of short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs) in a murine model by nontargeted analysis using ultra-high-performance liquid chromatography/linear ion trap quadrupole-Orbitrap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8831. [PMID: 32415683 DOI: 10.1002/rcm.8831] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 05/26/2023]
Abstract
RATIONALE Fatty acid esters of hydroxy fatty acids (FAHFAs) are recently discovered endogenous lipids with outstanding health benefits. FAHFAs are known to exhibit antioxidant, antidiabetic and anti-inflammatory properties. The number of known long-chain FAHFAs in mammalian tissues and dietary resources increased recently because of the latest developments in high-resolution tandem mass spectrometry techniques. However, there are no reports on the identification of short-chain fatty acid esterified hydroxy fatty acids (SFAHFAs). METHODS Intestinal contents, tissues, and plasma of rats fed with high-fat diet (HFD) and normal diet (ND) were analyzed for fatty acids, hydroxy fatty acids, and FAHFAs using ultra-high-performance liquid chromatography (UHPLC) and linear trap quadrupole-Orbitrap mass spectrometry (LTQ Orbitrap MS) with negative heated electrospray ionization. RESULTS Untargeted analysis of total lipid extracts from murine samples (male 13-week-old WKAH/HKmSlc rats) led to the identification of several new SFAHFAs of acetic acid or propanoic acid esterified long-chain (>C20)-hydroxy fatty acids. Furthermore, MS3 analysis revealed the position of the hydroxyl group in the long-chain fatty acid as C-2. The relative amounts of SFAHFAs were quantified in intestinal contents and their tissues (Cecum, small intestine, and large intestine), liver, and plasma of rats fed with HFD and ND. The large intestine showed the highest abundance of SFAHFAs with a concentration range from 0.84 to 57 pmol/mg followed by the cecum with a range of 0.66 to 28.6 pmol/mg. The SFAHFAs were significantly altered between the HFD and ND groups, with a strong decreasing tendency under HFD conditions. CONCLUSIONS Identification of these novel SFAHFAs can contribute to a better understanding of the chemical and biological properties of individual SFAHFAs and their possible sources in the gut, which in turn helps us tackle the role of these lipids in various metabolic diseases.
Collapse
Affiliation(s)
| | - Chongsheng Liang
- Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo, 060-0812, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo, 060-0812, Japan
| | - Fengjue Hou
- Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo, 060-0812, Japan
| | - Kentaro Kawakami
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Satoru Fukiya
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Atsushi Yokota
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-3-1-15, Higashi-Ku, Sapporo, 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo, 060-0812, Japan
| |
Collapse
|
15
|
Bagchi DP, Li Z, Corsa CA, Hardij J, Mori H, Learman BS, Lewis KT, Schill RL, Romanelli SM, MacDougald OA. Wntless regulates lipogenic gene expression in adipocytes and protects against diet-induced metabolic dysfunction. Mol Metab 2020; 39:100992. [PMID: 32325263 PMCID: PMC7264081 DOI: 10.1016/j.molmet.2020.100992] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Obesity is a key risk factor for many secondary chronic illnesses, including type 2 diabetes and cardiovascular disease. Canonical Wnt/β-catenin signaling is established as an important endogenous inhibitor of adipogenesis. This pathway is operative in mature adipocytes; however, its roles in this context remain unclear due to complexities of Wnt signaling and differences in experimental models. In this study, we used novel cultured cell and mouse models to investigate functional roles of Wnts secreted from adipocytes. METHODS We generated adipocyte-specific Wntless (Wls) knockout mice and cultured cell models to investigate molecular and metabolic consequences of disrupting Wnt secretion from mature adipocytes. To characterize Wls-deficient cultured adipocytes, we evaluated the expression of Wnt target and lipogenic genes and the downstream functional effects on carbohydrate and lipid metabolism. We also investigated the impact of adipocyte-specific Wls deletion on adipose tissues and global glucose metabolism in mice fed normal chow or high-fat diets. RESULTS Many aspects of the Wnt signaling apparatus are expressed and operative in mature adipocytes, including the Wnt chaperone Wntless. Deletion of Wntless in cultured adipocytes results in the inhibition of de novo lipogenesis and lipid monounsaturation, likely through repression of Srebf1 (SREBP1c) and Mlxipl (ChREBP) and impaired cleavage of immature SREBP1c into its active form. Adipocyte-specific Wls knockout mice (Wls-/-) have lipogenic gene expression in adipose tissues and isolated adipocytes similar to that of controls when fed a normal chow diet. However, closer investigation reveals that a subset of Wnts and downstream signaling targets are upregulated within stromal-vascular cells of Wls-/- mice, suggesting that adipose tissues defend loss of Wnt secretion from adipocytes. Interestingly, this compensation is lost with long-term high-fat diet challenges. Thus, after six months of a high-fat diet, Wls-/- mice are characterized by decreased adipocyte lipogenic gene expression, reduced visceral adiposity, and improved glucose homeostasis. CONCLUSIONS Taken together, these studies demonstrate that adipocyte-derived Wnts regulate de novo lipogenesis and lipid desaturation and coordinate the expression of lipogenic genes in adipose tissues. In addition, we report that Wnt signaling within adipose tissues is defended, such that a loss of Wnt secretion from adipocytes is sensed and compensated for by neighboring stromal-vascular cells. With chronic overnutrition, this compensatory mechanism is lost, revealing that Wls-/- mice are resistant to diet-induced obesity, adipocyte hypertrophy, and metabolic dysfunction.
Collapse
Affiliation(s)
- Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ziru Li
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Callie A Corsa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Hardij
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Brian S Learman
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, USA.
| | - Kenneth T Lewis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Rebecca L Schill
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Steven M Romanelli
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Zhang Z, Jiang H, Li X, Chen X, Huang Y. MiR-92a regulates brown adipocytes differentiation, mitochondrial oxidative respiration, and heat generation by targeting SMAD7. J Cell Biochem 2020; 121:3825-3836. [PMID: 31692088 DOI: 10.1002/jcb.29539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Brown adipocytes are rich in mitochondria and linked to the body's blood fat levels and obesity. MiR-92a is negatively correlated with the activity of brown adipocytes. This study aimed to explore the mechanism of miR-92a on brown adipocytes. The expression of miR-92a in C2C12 cell was detected by a quantitative real-time-polymerase chain reaction (qRT-PCR). C2C12 cells were induced to brown adipocytes. The direct target gene of miR-92a was determined using the dual-luciferase reporter assay. Brown adipocytes were treated with isoprenaline (Iso) and transfected by miR-92a inhibitor and siSMAD7. The expression of heat-producing genes and adipose differentiation genes related to brown adipocytes were detected by qRT-PCR and Western blot analysis. The expression of SMAD7, p-SMAD2, and p-SMAD3 were detected using Western blot analysis. The mitochondrial content was measured by mitotracker fluorescent staining. MiR-92a inhibitor significantly decreased the expression of miR-92a in C2C12 cells. MiR-92a inhibitor could upregulate the expression of Ucp1, Cox7a1, Elovl3, Ppargc1α, PPARγ, and FABP4, and its effect on Ucp1 was increased after the treatment of isoprenaline. Moreover, miR-92a inhibitor increased mitochondrial content, oxygen consumption rate (OCR) and the expression of SMAD7 and suppressed the expressions of p-SMAD2 and p-SMAD3, whereas miR-92a directly targeted SMAD7 to exert its inhibitory effects. SiSMAD7 reversed the effects of the inhibitor on heat-producing genes, mitochondrial content, OCR and the expressions of SMAD7, p-SMAD2, and p-SMAD3 in brown adipocytes. Blocking miR-92a might promote brown adipocytes differentiation, mitochondrial oxidative respiration, and thermogenesis by targeting SMAD7 to inhibit the expressions of p-SMAD2 and p-SMAD3.
Collapse
Affiliation(s)
- Zhipin Zhang
- Child Care Clinic, Ruian Maternity and Child Care Hospital, Ruian, Zhejiang Province, China
| | - Huixin Jiang
- Child Care Clinic, Ruian Maternity and Child Care Hospital, Ruian, Zhejiang Province, China
| | - Xiang Li
- Child Care Clinic, Ruian Maternity and Child Care Hospital, Ruian, Zhejiang Province, China
| | - Xiaomin Chen
- Child Care Clinic, Ruian Maternity and Child Care Hospital, Ruian, Zhejiang Province, China
| | - Yihua Huang
- Child Care Clinic, Ruian Maternity and Child Care Hospital, Ruian, Zhejiang Province, China
| |
Collapse
|
17
|
Serial Xenotransplantation in NSG Mice Promotes a Hybrid Epithelial/Mesenchymal Gene Expression Signature and Stemness in Rhabdomyosarcoma Cells. Cancers (Basel) 2020; 12:cancers12010196. [PMID: 31941033 PMCID: PMC7016569 DOI: 10.3390/cancers12010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/13/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Serial xenotransplantation of sorted cancer cells in immunodeficient mice remains the most complex test of cancer stem cell (CSC) phenotype. However, we have demonstrated in various sarcomas that putative CSC surface markers fail to identify CSCs, thereby impeding the isolation of CSCs for subsequent analyses. Here, we utilized serial xenotransplantation of unsorted rhabdomyosarcoma cells in NOD/SCID gamma (NSG) mice as a proof-of-principle platform to investigate the molecular signature of CSCs. Indeed, serial xenotransplantation steadily enriched for rhabdomyosarcoma stem-like cells characterized by enhanced aldehyde dehydrogenase activity and increased colony and sphere formation capacity in vitro. Although the expression of core pluripotency factors (SOX2, OCT4, NANOG) and common CSC markers (CD133, ABCG2, nestin) was maintained over the passages in mice, gene expression profiling revealed gradual changes in several stemness regulators and genes linked with undifferentiated myogenic precursors, e.g., SOX4, PAX3, MIR145, and CDH15. Moreover, we identified the induction of a hybrid epithelial/mesenchymal gene expression signature that was associated with the increase in CSC number. In total, 60 genes related to epithelial or mesenchymal traits were significantly altered upon serial xenotransplantation. In silico survival analysis based on the identified potential stemness-associated genes demonstrated that serial xenotransplantation of unsorted rhabdomyosarcoma cells in NSG mice might be a useful tool for the unbiased enrichment of CSCs and the identification of novel CSC-specific targets. Using this approach, we provide evidence for a recently proposed link between the hybrid epithelial/mesenchymal phenotype and cancer stemness.
Collapse
|
18
|
Abstract
Accumulating knowledge on the biology and function of the adipose tissue has led to a major shift in our understanding of its role in health and disease. The adipose tissue is now recognized as a crucial regulator of cardiovascular health, mediated by the secretion of several bioactive products, including adipocytokines, microvesicles and gaseous messengers, with a wide range of endocrine and paracrine effects on the cardiovascular system. The adipose tissue function and secretome are tightly controlled by complex homeostatic mechanisms and local cell-cell interactions, which can become dysregulated in obesity. Systemic or local inflammation and insulin resistance lead to a shift in the adipose tissue secretome from anti-inflammatory and anti-atherogenic towards a pro-inflammatory and pro-atherogenic profile. Moreover, the interplay between the adipose tissue and the cardiovascular system is bidirectional, with vascular-derived and heart-derived signals directly affecting adipose tissue biology. In this Review, we summarize the current knowledge of the biology and regional variability of adipose tissue in humans, deciphering the complex molecular mechanisms controlling the crosstalk between the adipose tissue and the cardiovascular system, and their possible clinical translation. In addition, we highlight the latest developments in adipose tissue imaging for cardiovascular risk stratification and discuss how therapeutic targeting of the adipose tissue can improve prevention and treatment of cardiovascular disease.
Collapse
|
19
|
Kaddour N, Zhang D, Gao ZH, Liu JL. Recombinant protein CCN5/WISP2 promotes islet cell proliferation and survival in vitro. Growth Factors 2019; 37:120-130. [PMID: 31437074 DOI: 10.1080/08977194.2019.1652400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pancreatic ß cell proliferation, survival and function are key elements that need to be considered in developing novel antidiabetic therapies. We recently identified CCN5/WISP2 to have potential growth promoting properties when overexpressed in ß cells; however, further investigations are needed to validate those properties. In this study, we demonstrated that exogenous treatment of insulinoma cells and primary islets with recombinant CCN5 (rh-CCN5) protein enhanced the proliferative capacity which was correlated with activation of cell-cycle regulators CDK4 and cyclin D1. Furthermore, pre-incubation of these cells with rh-CCN5 enhanced their survival rate after being exposed to harsh treatments such as streptozotocin and high concentrations of glucose and free fatty acids. CCN5 as well caused an upregulation in the expression of key genes associated with ß cell identity and function such as GLUT-2 and GCK. Finally, CCN5 activated FAK and downstream ERK kinases which are known to stimulate cell proliferation and survival. Hence, our results validate the growth promoting activities of rh-CCN5 in ß cells and open the door for further investigations in vivo.
Collapse
Affiliation(s)
- Nancy Kaddour
- Frasers Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Di Zhang
- Frasers Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Zu-Hua Gao
- Department of Pathology, McGill University Health Centre, Montreal, Canada
| | - Jun-Li Liu
- Frasers Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
20
|
Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, Beguinot F, Miele C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci 2019; 20:ijms20092358. [PMID: 31085992 PMCID: PMC6539070 DOI: 10.3390/ijms20092358] [Citation(s) in RCA: 854] [Impact Index Per Article: 170.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a critical risk factor for the development of type 2 diabetes (T2D), and its prevalence is rising worldwide. White adipose tissue (WAT) has a crucial role in regulating systemic energy homeostasis. Adipose tissue expands by a combination of an increase in adipocyte size (hypertrophy) and number (hyperplasia). The recruitment and differentiation of adipose precursor cells in the subcutaneous adipose tissue (SAT), rather than merely inflating the cells, would be protective from the obesity-associated metabolic complications. In metabolically unhealthy obesity, the storage capacity of SAT, the largest WAT depot, is limited, and further caloric overload leads to the fat accumulation in ectopic tissues (e.g., liver, skeletal muscle, and heart) and in the visceral adipose depots, an event commonly defined as “lipotoxicity.” Excessive ectopic lipid accumulation leads to local inflammation and insulin resistance (IR). Indeed, overnutrition triggers uncontrolled inflammatory responses in WAT, leading to chronic low-grade inflammation, therefore fostering the progression of IR. This review summarizes the current knowledge on WAT dysfunction in obesity and its associated metabolic abnormalities, such as IR. A better understanding of the mechanisms regulating adipose tissue expansion in obesity is required for the development of future therapeutic approaches in obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Michele Longo
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Federica Zatterale
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Jamal Naderi
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Luca Parrillo
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Gregory Alexander Raciti
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Claudia Miele
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| |
Collapse
|
21
|
Hammarstedt A, Gogg S, Hedjazifar S, Nerstedt A, Smith U. Impaired Adipogenesis and Dysfunctional Adipose Tissue in Human Hypertrophic Obesity. Physiol Rev 2019; 98:1911-1941. [PMID: 30067159 DOI: 10.1152/physrev.00034.2017] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The subcutaneous adipose tissue (SAT) is the largest and best storage site for excess lipids. However, it has a limited ability to expand by recruiting and/or differentiating available precursor cells. When inadequate, this leads to a hypertrophic expansion of the cells with increased inflammation, insulin resistance, and a dysfunctional prolipolytic tissue. Epi-/genetic factors regulate SAT adipogenesis and genetic predisposition for type 2 diabetes is associated with markers of an impaired SAT adipogenesis and development of hypertrophic obesity also in nonobese individuals. We here review mechanisms for the adipose precursor cells to enter adipogenesis, emphasizing the role of bone morphogenetic protein-4 (BMP-4) and its endogenous antagonist gremlin-1, which is increased in hypertrophic SAT in humans. Gremlin-1 is a secreted and a likely important mechanism for the impaired SAT adipogenesis in hypertrophic obesity. Transiently increasing BMP-4 enhances adipogenic commitment of the precursor cells while maintained BMP-4 signaling during differentiation induces a beige/brown oxidative phenotype in both human and murine adipose cells. Adipose tissue growth and development also requires increased angiogenesis, and BMP-4, as a proangiogenic molecule, may also be an important feedback regulator of this. Hypertrophic obesity is also associated with increased lipolysis. Reduced lipid storage and increased release of FFA by hypertrophic SAT are important mechanisms for the accumulation of ectopic fat in the liver and other places promoting insulin resistance. Taken together, the limited expansion and storage capacity of SAT is a major driver of the obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Ann Hammarstedt
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Silvia Gogg
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Shahram Hedjazifar
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Annika Nerstedt
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Ulf Smith
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
22
|
CCN5 knockout mice exhibit lipotoxic cardiomyopathy with mild obesity and diabetes. PLoS One 2018; 13:e0207228. [PMID: 30485307 PMCID: PMC6261567 DOI: 10.1371/journal.pone.0207228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/26/2018] [Indexed: 01/01/2023] Open
Abstract
Obesity is associated with various human disorders, such as type 2 diabetes, cardiovascular diseases, hypertension, and cancers. In this study, we observed that knockout (KO) of CCN5, which encodes a matricellular protein, caused mild obesity in mice. The CCN5 KO mice also exhibited mild diabetes characterized by high fasting glucose levels and impaired insulin and glucose tolerances. Cardiac hypertrophy, ectopic lipid accumulation, and impaired lipid metabolism in hearts were observed in the CCN5 KO mice, as determined using histology, quantitative RT-PCR, and western blotting. Fibrosis was significantly greater in hearts from the CCN5 KO mice both in interstitial and perivascular regions, which was accompanied by higher expression of pro-fibrotic and pro-inflammatory genes. Both systolic and diastolic functions were significantly impaired in hearts from the CCN5 KO mice, as assessed using echocardiography. Taken together, these results indicate that CCN5 KO leads to lipotoxic cardiomyopathy with mild obesity and diabetes in mice.
Collapse
|
23
|
Balas L, Feillet-Coudray C, Durand T. Branched Fatty Acyl Esters of Hydroxyl Fatty Acids (FAHFAs), Appealing Beneficial Endogenous Fat against Obesity and Type-2 Diabetes. Chemistry 2018; 24:9463-9476. [DOI: 10.1002/chem.201800853] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Laurence Balas
- Institut des Biomolécules Max Mousseron, IBMM; Université de Montpellier; CNRS, ENSCM; Faculté de Pharmacie; 15 av Charles Flahault, BP 14491 F-34093 Montpellier Cedex 05 France
| | | | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM; Université de Montpellier; CNRS, ENSCM; Faculté de Pharmacie; 15 av Charles Flahault, BP 14491 F-34093 Montpellier Cedex 05 France
| |
Collapse
|
24
|
Chen X, Ayala I, Shannon C, Fourcaudot M, Acharya NK, Jenkinson CP, Heikkinen S, Norton L. The Diabetes Gene and Wnt Pathway Effector TCF7L2 Regulates Adipocyte Development and Function. Diabetes 2018; 67:554-568. [PMID: 29317436 PMCID: PMC5860863 DOI: 10.2337/db17-0318] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
Abstract
The gene encoding for transcription factor 7-like 2 (TCF7L2) is the strongest type 2 diabetes mellitus (T2DM) candidate gene discovered to date. The TCF7L2 protein is a key transcriptional effector of the Wnt/β-catenin signaling pathway, which is an important developmental pathway that negatively regulates adipogenesis. However, the precise role that TCF7L2 plays in the development and function of adipocytes remains largely unknown. Using a combination of in vitro approaches, we first show that TCF7L2 protein is increased during adipogenesis in 3T3-L1 cells and primary adipocyte stem cells and that TCF7L2 expression is required for the regulation of Wnt signaling during adipogenesis. Inactivation of TCF7L2 protein by removing the high-mobility group (HMG)-box DNA binding domain in mature adipocytes in vivo leads to whole-body glucose intolerance and hepatic insulin resistance. This phenotype is associated with increased subcutaneous adipose tissue mass, adipocyte hypertrophy, and inflammation. Finally, we demonstrate that TCF7L2 mRNA expression is downregulated in humans with impaired glucose tolerance and adipocyte insulin resistance, highlighting the translational potential of these findings. In summary, our data indicate that TCF7L2 has key roles in adipose tissue development and function that may reveal, at least in part, how TCF7L2 contributes to the pathophysiology of T2DM.
Collapse
Affiliation(s)
- Xi Chen
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Iriscilla Ayala
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Chris Shannon
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Marcel Fourcaudot
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Nikhil K Acharya
- Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Christopher P Jenkinson
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Harlingen, TX
| | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Luke Norton
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| |
Collapse
|
25
|
Grünberg JR, Elvin J, Paul A, Hedjazifar S, Hammarstedt A, Smith U. CCN5/WISP2 and metabolic diseases. J Cell Commun Signal 2018; 12:309-318. [PMID: 29247377 PMCID: PMC5842198 DOI: 10.1007/s12079-017-0437-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022] Open
Abstract
Obesity and type 2 diabetes increase worldwide at an epidemic rate. It is expected that by the year 2030 around 500 million people will have diabetes; predominantly type 2 diabetes. The CCN family of proteins has become of interest in both metabolic and other common human diseases because of their effects on mesenchymal stem cell (MSCs) proliferation and differentiation as well as being important regulators of fibrosis. We here review current knowledge of the WNT1 inducible signaling pathway protein 2 (CCN5/WISP2). It has been shown to be an important regulator of both these processes through effects on both the canonical WNT and the TGFβ pathways. It is also under normal regulation by the adipogenic commitment factor BMP4, in contrast to conventional canonical WNT ligands, and allows MSCs to undergo normal adipose cell differentiation. CCN5/WISP2 is highly expressed in, and secreted by, MSCs and is an important regulator of MSCs growth. In a transgenic mouse model overexpressing CCN5/WISP2 in the adipose tissue, we have shown that it is secreted and circulating in the blood, the mice develop hypercellular white and brown adipose tissue, have increased lean body mass and enlarged hypercellular hearts. Obese transgenic mice had improved insulin sensitivity. Interestingly, the anti-fibrotic effect of CCN5/WISP2 is protective against heart failure by inhibition of the TGFβ pathway. Understanding how CCN5/WISP2 is regulated and signals is important and may be useful for developing new treatment strategies in obesity and metabolic diseases and it can also be a target in regenerative medicine.
Collapse
Affiliation(s)
- John R Grünberg
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Johannes Elvin
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Alexandra Paul
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Shahram Hedjazifar
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Ann Hammarstedt
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Ulf Smith
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| |
Collapse
|