1
|
Elfaki I, Mir R, J Tayeb F, Barnawi J, Alalawy AI, Mirghani H, Alshammari SE, Dabla PK. Pharmacogenetics of CYP2C19*17: Functional and Clinical Implications of CYP2C19*17 - rs12248560 (c.-806C>T) in the Development of Type 2 Diabetes. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2022; 15:1897-1904. [DOI: 10.13005/bpj/2528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The prevalence of diabetes mellitus (DM) is increasing worldwide including Saudi Arabia. DM increases mortality rate, morbidity and vascular complications, accompanied by poor general health status and low quality of life. CYP2C19*17 polymorphism in CYP2C19 gene is associated with the clinical outcome of drugs that are substrates of CYP2C19. CYP2C19*17 confers reduced susceptibility to certain illnesses. This research was conducted to develop a robust method to genotype the rs12248560 single nucleotide variation (SNV). We enrolled 206 subjects: 100 subjects were clinically confirmed cases of type 2 diabetes (T2D), and 106 subjects were healthy controls in this study. Samples from all subjects were screened for the CYP2C19 rs12248560 (c.-806C>T) by the amplification-refractory mutation system PCR (ARMS-PCR). The frequencies of CYP2C19*17 TT, CT, CC genotypes in T2D cases were 12%, 21%, and 67%, respectively whereas those in healthy controls were 70.75%, 26.41%, and 2.83%, respectively. The difference was significant (p < 0.035). T allele (fT) prevalence was found to be substantially greater in T2D cases compared to healthy controls (0.22 vs. 0.16). Results indicated that the CYP2C19*17 - TT genotype is associated with increased susceptibility to T2D with OR = 4.47, RR = 2.64, (p < 0.024). Moreover, the ARMS-based assay proved to be an easy method for the determination of CYP2C19*17 genotypes with reduced cost and good accuracy. In addition, this result helps in the detection and stratification of the individuals who are at risk for the development of T2D. Nevertheless, this finding needs to be validated in molecular genetic studies with increased specimen size and in different ethnicities.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- 1Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Rashid Mir
- 2Prince and Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Faris J Tayeb
- 2Prince and Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Jameel Barnawi
- 2Prince and Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Adel Ibrahim Alalawy
- 1Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Hyder Mirghani
- 3Internal Medicine and Endocrine, Medical Department, Faculty of Medicine, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Sanad E Alshammari
- 4Department of Pharmacology and Toxicology, College of Pharmacy, Hail University, Hail, Saudi Arabia
| | - Pradeep Kumar Dabla
- 5 Department of Biochemistry, G.B.Pant Institute of Postgraduate Medical Education & Research (GIPMER),Associated Maulana Azad Medical College, Delhi, India
| |
Collapse
|
2
|
Scott ER, Yang Y, Botton MR, Seki Y, Hoshitsuki K, Harting J, Baybayan P, Cody N, Nicoletti P, Moriyama T, Chakraborty S, Yang JJ, Edelmann L, Schadt EE, Korlach J, Scott SA. Long-read HiFi sequencing of NUDT15: Phased full-gene haplotyping and pharmacogenomic allele discovery. Hum Mutat 2022; 43:1557-1566. [PMID: 36057977 PMCID: PMC9875722 DOI: 10.1002/humu.24457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023]
Abstract
To determine the phase of NUDT15 sequence variants for more comprehensive star (*) allele diplotyping, we developed a novel long-read single-molecule real-time HiFi amplicon sequencing method. A 10.5 kb NUDT15 amplicon assay was validated using reference material positive controls and additional samples for specimen type and blinded accuracy assessment. Triplicate NUDT15 HiFi sequencing of two reference material samples had nonreference genotype concordances of >99.9%, indicating that the assay is robust. Notably, short-read genome sequencing of a subset of samples was unable to determine the phase of star (*) allele-defining NUDT15 variants, resulting in ambiguous diplotype results. In contrast, long-read HiFi sequencing phased all variants across the NUDT15 amplicons, including a *2/*9 diplotype that previously was characterized as *1/*2 in the 1000 Genomes Project v3 data set. Assay throughput was also tested using 8.5 kb amplicons from 100 Ashkenazi Jewish individuals, which identified a novel NUDT15 *1 suballele (c.-121G>A) and a rare likely deleterious coding variant (p.Pro129Arg). Both novel alleles were Sanger confirmed and assigned as *1.007 and *20, respectively, by the PharmVar Consortium. Taken together, NUDT15 HiFi amplicon sequencing is an innovative method for phased full-gene characterization and novel allele discovery, which could improve NUDT15 pharmacogenomic testing and subsequent phenotype prediction.
Collapse
Affiliation(s)
- Erick R Scott
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yao Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mariana R Botton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Sema4, Stamford, Connecticut, USA
| | - Yoshinori Seki
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Keito Hoshitsuki
- School of Pharmacy, University of Pittsburgh, Pennsylvania, Pittsburgh, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John Harting
- Pacific Biosciences, Menlo Park, California, USA
| | | | - Neal Cody
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Sema4, Stamford, Connecticut, USA
| | - Paola Nicoletti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Sema4, Stamford, Connecticut, USA
| | - Takaya Moriyama
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lisa Edelmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Sema4, Stamford, Connecticut, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Sema4, Stamford, Connecticut, USA
| | | | - Stuart A Scott
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Sema4, Stamford, Connecticut, USA
| |
Collapse
|
3
|
Responses to the Tepotinib in Gastric Cancers with MET Amplification or MET Exon 14 Skipping Mutations and High Expression of Both PD-L1 and CD44. Cancers (Basel) 2022; 14:cancers14143444. [PMID: 35884507 PMCID: PMC9318186 DOI: 10.3390/cancers14143444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Both MET exon 14 skipping mutation (METex14SM) and high copy-number variation (CNV) lead to enhanced carcinogenesis; additionally, programmed-death ligand 1 (PD-L1) is often upregulated in cancers. In this study, we characterized the expression of MET (including METex14SM), PD-L1, and CD44 in human gastric cancer (GC) cells as well as the differential susceptibility of these cells to tepotinib. Tepotinib treatments inhibited the growth of five GC cells in a dose-dependent manner with a concomitant induction of cell death. Tepotinib treatments also significantly reduced the expression of phospho-MET, total MET, c-Myc, VEGFR2, and Snail protein in SNU620, MKN45, and Hs746T cells. Notably, tepotinib significantly reduced the expression of CD44 and PD-L1 in METex14SM Hs746T cells. By contrast, tepotinib was only slightly active against SNU638 and KATO III cells. Migration was reduced to a greater extent in the tepotinib-treated group than in the control group. Tepotinib may have therapeutic effects on c-MET-amplified GC, a high expression of both PD-L1 and CD44, and METex14SM. Clinical studies are needed to confirm these therapeutic effects.
Collapse
|
4
|
A view of response and resistance to atomoxetine treatment in children with ADHD: effects of CYP2C19 polymorphisms and BDNF levels. Eur J Clin Pharmacol 2022; 78:1095-1104. [PMID: 35486119 DOI: 10.1007/s00228-022-03321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Although several genes have previously been studied about the treatment of Attention Deficit Hyperactivity Disorder (ADHD), the number of studies investigating the effects of genes on atomoxetine (ATX) treatment is very limited. In this study, we aimed to investigate the effect of CYP2C19 polymorphisms, which have a role in ATX biotransformation, on the treatment response and also to assess whether there is a relationship between BDNF and treatment response in children and adolescents with ADHD. METHODS One hundred children with ADHD and 100 healthy controls (HCs) were included in this study. The treatment response was assessed 2 months after the start of the ATX treatment. DNA samples from peripheral venous blood were replicated using PCR and analyzed using the ILLUMINA next-generation sequencing method. The resulting fastqs were analyzed using Basespace's Variant Interpreter Program. Plasma BDNF levels were evaluated with ELISA kits. RESULTS Treatment response was found to be lower in both heterozygous and homozygous carriers of the c.681G > A (CYP2C19*2) polymorphism. When the BDNF level was compared, it was found to be significantly higher in the ADHD group compared to HCs. Also, BDNF has a stronger predictive value for assessing resistance to ATX treatment. CONCLUSIONS To our knowledge, this is the first study to assess the effects of CYP2C19 polymorphisms and BDNF levels together on ATX treatment in children. Further studies with an extensive population are needed to better understand the effects of CYP2C19 polymorphisms on treatment and side effects, as well as the effects of BDNF levels.
Collapse
|
5
|
Gaedigk A, Boone EC, Scherer SE, Lee SB, Numanagić I, Sahinalp C, Smith JD, McGee S, Radhakrishnan A, Qin X, Wang WY, Farrow EG, Gonzaludo N, Halpern AL, Nickerson DA, Miller NA, Pratt VM, Kalman LV. CYP2C8, CYP2C9, and CYP2C19 Characterization Using Next-Generation Sequencing and Haplotype Analysis: A GeT-RM Collaborative Project. J Mol Diagn 2022; 24:337-350. [PMID: 35134542 PMCID: PMC9069873 DOI: 10.1016/j.jmoldx.2021.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 01/13/2023] Open
Abstract
Pharmacogenetic tests typically target selected sequence variants to identify haplotypes that are often defined by star (∗) allele nomenclature. Due to their design, these targeted genotyping assays are unable to detect novel variants that may change the function of the gene product and thereby affect phenotype prediction and patient care. In the current study, 137 DNA samples that were previously characterized by the Genetic Testing Reference Material (GeT-RM) program using a variety of targeted genotyping methods were recharacterized using targeted and whole genome sequencing analysis. Sequence data were analyzed using three genotype calling tools to identify star allele diplotypes for CYP2C8, CYP2C9, and CYP2C19. The genotype calls from next-generation sequencing (NGS) correlated well to those previously reported, except when novel alleles were present in a sample. Six novel alleles and 38 novel suballeles were identified in the three genes due to identification of variants not covered by targeted genotyping assays. In addition, several ambiguous genotype calls from a previous study were resolved using the NGS and/or long-read NGS data. Diplotype calls were mostly consistent between the calling algorithms, although several discrepancies were noted. This study highlights the utility of NGS for pharmacogenetic testing and demonstrates that there are many novel alleles that are yet to be discovered, even in highly characterized genes such as CYP2C9 and CYP2C19.
Collapse
Affiliation(s)
- Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri; University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Erin C Boone
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri
| | - Steven E Scherer
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Seung-Been Lee
- Precision Medicine Institute, Macrogen Inc., Seongnam, Republic of Korea
| | - Ibrahim Numanagić
- Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada
| | - Cenk Sahinalp
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Sean McGee
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | | | - Xiang Qin
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Wendy Y Wang
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri
| | - Emily G Farrow
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri; Center for Genomic Medicine, Children's Mercy Kansas City, Kansas City, Missouri
| | - Nina Gonzaludo
- Medical Genomics Research, Illumina Inc., San Diego, California
| | - Aaron L Halpern
- Medical Genomics Research, Illumina Inc., San Diego, California
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Neil A Miller
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri; Center for Genomic Medicine, Children's Mercy Kansas City, Kansas City, Missouri
| | - Victoria M Pratt
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lisa V Kalman
- Informatics and Data Science Branch, Division of Laboratory Systems, Centers for Disease Control and Prevention, Atlanta, Georgia.
| |
Collapse
|
6
|
A genetic polymorphism in P2RY 1 impacts response to clopidogrel in cats with hypertrophic cardiomyopathy. Sci Rep 2021; 11:12522. [PMID: 34131167 PMCID: PMC8206363 DOI: 10.1038/s41598-021-91372-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Clopidogrel is converted to its active metabolite by cytochrome P450 isoenzymes and irreversibly inhibits platelet activation by antagonizing the adenosine-diphosphate (ADP) receptor. It is frequently used in cats with hypertrophic cardiomyopathy (HCM) to prevent thromboembolic complications. However, significant interpatient variability of the response to clopidogrel therapy has been suspected. In this study, we assessed the impact of single nucleotide polymorphisms (SNPs) within ADP receptor (P2RY1, P2RY12) and cytochrome P450 isoenzyme (CYP2C41) genes on platelet inhibition by clopidogrel administration in cats with HCM. Forty-nine cats completed the study, and blood samples were obtained before and after clopidogrel therapy to assess the degree of platelet inhibition based on flow cytometry and whole blood platelet aggregometry. Plasma concentrations of clopidogrel metabolites were measured after the last dose of clopidogrel. Whole blood platelet aggregometry revealed a significant reduction of platelet inhibition by clopidogrel in cats with the P2RY1:A236G and the P2RY12:V34I variants. The association with the P2RY1:A236G variant and clopidogrel resistance remained significant after adjustment for multiple comparisons. This study demonstrated that a genetic polymorphism in the P2RY1 gene altered response to clopidogrel therapy and suggests that clinicians may consider alternative or additional thromboprophylactic therapy in cats with the P2RY1:A236G variant.
Collapse
|
7
|
Díaz-Ordóñez L, Ramírez-Montaño D, Candelo E, González-Restrepo C, Silva-Peña S, Rojas CA, Sepulveda Copete M, Echavarria HR, Pachajoa H. Evaluation of CYP2C19 Gene Polymorphisms in Patients with Acid Peptic Disorders Treated with Esomeprazole. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:509-520. [PMID: 33953602 PMCID: PMC8092628 DOI: 10.2147/pgpm.s285144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 11/23/2022]
Abstract
Background CYP2C19 is a highly polymorphic gene that encodes an enzyme with the same name and whose function is associated with the metabolism of many important drugs, such as proton pump inhibitors (such as esomeprazole, which is used for the treatment of acid peptic disease). Genetic variants in CYP2C19 alter protein function and affect drug metabolism. This study aims to genotypically and phenotypically characterize the genetic variants in the CYP2C19 gene in 12 patients with acid peptic disorders and different therapeutic profiles to proton pump inhibitor (PPI) drugs. The patients were randomly selected from a controlled, randomized and blinded clinical pilot trial of 33 patients. We determined the presence and frequency of single nucleotide polymorphisms (SNPs) within exons 1–5 and 9, the intron-exon junctions, and a fragment in the 3ʹ UTR region of the CYP2C19 gene using Sanger sequencing. Undescribed polymorphisms were analyzed by free online bioinformatics tools to evaluate the potential molecular effects of these genetic variants. Results We identified nine polymorphisms, six of which had no reported functions. One of these genetic variants, with a functional impact, not yet reported (p.Arg132Trp) was predicted by bioinformatic tools as potentially pathogenic. This finding suggests that p.Arg132Trp could be related to poor metabolizers of drugs metabolized by CYP2C19. Conclusion We identified the genotype spectrum of variants in CYP2C19. The genotype spectrum of variants in CYP2C19 could predict the treatment response and could support to evaluate clinical efficacy in patients treated with esomeprazole.
Collapse
Affiliation(s)
- Lorena Díaz-Ordóñez
- Basic Medical Science Department, Faculty of Health Sciences, Universidad Icesi, Cali, Colombia.,Clinical Genetic Department, Fundación Valle del Lili, Cali, Colombia.,Research Centre in Rare Diseases and Congenital Abnormalities (CIACER), Universidad Icesi, Cali, Colombia
| | - Diana Ramírez-Montaño
- Basic Medical Science Department, Faculty of Health Sciences, Universidad Icesi, Cali, Colombia.,Clinical Genetic Department, Fundación Valle del Lili, Cali, Colombia.,Research Centre in Rare Diseases and Congenital Abnormalities (CIACER), Universidad Icesi, Cali, Colombia
| | - Estephania Candelo
- Clinical Genetic Department, Fundación Valle del Lili, Cali, Colombia.,Research Centre in Rare Diseases and Congenital Abnormalities (CIACER), Universidad Icesi, Cali, Colombia.,Research Centre, Fundación Valle de Lili, Cali, Colombia
| | | | - Sebastián Silva-Peña
- Basic Medical Science Department, Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
| | | | | | | | - Harry Pachajoa
- Basic Medical Science Department, Faculty of Health Sciences, Universidad Icesi, Cali, Colombia.,Clinical Genetic Department, Fundación Valle del Lili, Cali, Colombia.,Research Centre in Rare Diseases and Congenital Abnormalities (CIACER), Universidad Icesi, Cali, Colombia
| |
Collapse
|
8
|
Honig A, Sacagiu T, Filioglo A, Simaan N, Kalish Y, Gomori JM, Horev A, Leker RR, Cohen JE. Clopidogrel underactivity is a common in patients with acute symptomatic severe carotid stenosis. J Neurol Sci 2021; 425:117450. [PMID: 33878658 DOI: 10.1016/j.jns.2021.117450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Clopidogrel is commonly used for secondary stroke prevention in patients with large vessel stenosis. Reduced Clopidogrel high on treatment platelet reactivity (CR) can lead to Clopidogrel underactivity (CU) causing acute thrombosis. However, the prevalence of CU among patients with acute symptomatic carotid disease remains unknown. Therefore, we aimed to find the prevalence and identify the predictors for CU among patients with acutely symptomatic carotid stenosis. PATIENTS AND METHODS Over the span of 14 months, CR was measured at the time of endovascular procedure in all patients undergoing angiography and stenting because of acute symptomatic carotid stenosis. Only patients treated per institutional protocol with a combination of Clopidogrel and Aspirin were included. CR was measured with VerifyNowP2Y12 reaction units (PRU) and CU was defined as PRU > 208. Patients with CU were compared to those without CU. RESULTS Thirty-five patients were included (mean age 71.3 ± 10, 76% men) and twelve (34.3%, mean age 71.8 ± 8.4, 58% men) had CU at the time of endovascular intervention. On univariate analysis more severe carotid stenosis was seen in CU patients (92.6 ± 6.5% vs 81.6 ± 13.6%, p = 0.013) and percent stenosis was independently associated with CU on multivariate analysis (p = 0.023). CONCLUSIONS CU is present in 1 of every 3 patients with acutely symptomatic carotid disease. The current results suggest that CR testing should become part of routine care in patients with acutely symptomatic carotid disease.
Collapse
Affiliation(s)
- A Honig
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - T Sacagiu
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Filioglo
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - N Simaan
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Y Kalish
- Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - J M Gomori
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Horev
- Department of Neurology, Soroka- University Medical Center, Beer-Sheva, Israel
| | - R R Leker
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - J E Cohen
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
9
|
Carvalho Henriques B, Yang EH, Lapetina D, Carr MS, Yavorskyy V, Hague J, Aitchison KJ. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front Genet 2020; 11:491895. [PMID: 33363564 PMCID: PMC7753050 DOI: 10.3389/fgene.2020.491895] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Many genetic variants in drug metabolizing enzymes and transporters have been shown to be relevant for treating psychiatric disorders. Associations are strong enough to feature on drug labels and for prescribing guidelines based on such data. A range of commercial tests are available; however, there is variability in included genetic variants, methodology, and interpretation. We herein provide relevant background for understanding clinical associations with specific variants, other factors that are relevant to consider when interpreting such data (such as age, gender, drug-drug interactions), and summarize the data relevant to clinical utility of pharmacogenetic testing in psychiatry and the available prescribing guidelines. We also highlight areas for future research focus in this field.
Collapse
Affiliation(s)
| | - Esther H. Yang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Diego Lapetina
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michael S. Carr
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Vasyl Yavorskyy
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Joshua Hague
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Espinoza N, Galdames J, Navea D, Farfán MJ, Salas C. Frequency of the CYP2C19*17 polymorphism in a Chilean population and its effect on voriconazole plasma concentration in immunocompromised children. Sci Rep 2019; 9:8863. [PMID: 31222084 PMCID: PMC6586657 DOI: 10.1038/s41598-019-45345-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/03/2019] [Indexed: 11/09/2022] Open
Abstract
Invasive fungal infections (IFIs) are the most frequent cause of morbidity and mortality in immunocompromised children. Voriconazole is the first-line antifungal choice in the treatment of IFIs like aspergillosis. Voriconazole pharmacokinetics vary widely among patients and voriconazole is metabolized mainly in the liver by the CYP2C19 enzyme, which is highly polymorphic. The CYP2C19*17 allele is characterized by the presence of four single nucleotide polymorphisms expressing an ultra-rapid enzyme phenotype with an accelerated voriconazole metabolism, is associated with low (sub-therapeutic) plasma levels in patients treated with the standard dose. Considering that in our center a high percentage of children have sub-therapeutic levels of voriconazole when treated with standard doses, we sought to determine the frequency of the CYP2C19*17 polymorphism (rs12248560) in a Chilean population and determine the association between voriconazole concentrations and the rs12248560 variant in immunocompromised children. First, we evaluated the frequency of the rs12248560 variant in a group of 232 healthy Chilean children, and we found that 180 children (77.6%) were non-carriers of the rs12248560 variant, 49 children (21.1%) were heterozygous carriers for rs12248560 variant and only 3 children (1.3%) were homozygous carriers for rs12248560 variant, obtaining an allelic frequency of 12% for variant in a Chilean population. To determine the association between voriconazole concentrations and the rs12248560 variant, we analyzed voriconazole plasma concentrations in a second group of 33 children treated with voriconazole. In these patients, carriers of the rs12248560 variant presented significantly lower voriconazole plasma concentrations than non-carriers (p = 0,011). In this study, we show the presence of the rs12248560 variant in a Chilean population and its accelerating effect on the pharmacokinetics of voriconazole in pediatric patients. From these data, it would be advisable to consider the variant of the patient prior to calculating the dosage of voriconazole.
Collapse
Affiliation(s)
- N Espinoza
- Laboratorio Clínico, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile
| | - J Galdames
- Laboratorio Clínico, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile
| | - D Navea
- Laboratorio Clínico, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile
| | - M J Farfán
- Laboratorio Clínico, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile. .,Departamento de Pediatría y Cirugía Infantil, Campus Oriente, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - C Salas
- Laboratorio Clínico, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile.
| |
Collapse
|
11
|
Roses SM, Christianson T, Dombrowski K. Acute Respiratory Distress Syndrome Associated With Clopidogrel in a Young Male Patient. Front Med (Lausanne) 2019; 6:38. [PMID: 30906739 PMCID: PMC6419477 DOI: 10.3389/fmed.2019.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/11/2019] [Indexed: 11/16/2022] Open
Abstract
Background: Clopidogrel is a commonly prescribed antiplatelet drug in patients with stents and histories of arterial vascular disease. It generally has a favorable side effect profile with increasing bleeding risk as the main concern as an adverse event. Case Presentation: A 19-year-old previously healthy male presented to the neurological intensive care unit with a subarachnoid hemorrhage requiring a flow diverting stent to secure the aneurysm. The patient was stable for 2 weeks and had no changes to management or medication within 48 h of antiplatelet therapy. Within hours of first-time dosing of clopidogrel, the patient experienced a syncopal episode and dyspnea. He was difficult to arouse and using accessory muscles to breath with an otherwise benign exam. He was hypoxic with bibasilar crackles requiring bilevel positive airway pressure (BiPap). Imaging showed bilateral pulmonary edema and he was diagnosed with moderate acute respiratory distress syndrome (ARDS). Infectious, cardiogenic, and contrast-induced ARDS were ruled out. Upon cessation of clopidogrel, his pulmonary function and mental status improved. Conclusions: This is the first reported case of a young and immunocompetent patient's severe pulmonary edema leading to acute respiratory distress syndrome in association with first- time dosing of clopidogrel.
Collapse
Affiliation(s)
| | | | - Keith Dombrowski
- Department of Neurology, Duke University, Durham, NC, United States
| |
Collapse
|
12
|
Qiao W, Martis S, Mendiratta G, Shi L, Botton MR, Yang Y, Gaedigk A, Vijzelaar R, Edelmann L, Kornreich R, Desnick RJ, Scott SA. Integrated CYP2D6 interrogation for multiethnic copy number and tandem allele detection. Pharmacogenomics 2018; 20:9-20. [PMID: 30730286 DOI: 10.2217/pgs-2018-0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM To comprehensively interrogate CYP2D6 by integrating genotyping, copy number analysis and novel strategies to identify CYP2D6*36 and characterize CYP2D6 duplications. METHODS Genotyping of 16 CYP2D6 alleles, multiplex ligation-dependent probe amplification (MLPA) and CYP2D6*36 and duplication allele-specific genotyping were performed on 427 African-American, Asian, Caucasian, Hispanic, and Ashkenazi Jewish individuals. RESULTS A novel PCR strategy determined that almost half of all CYP2D6*10 (100C>T) alleles are actually *36 (isolated or in tandem with *10) and all identified duplication alleles were characterized. Integrated results from all testing platforms enabled the refinement of genotype frequencies across all studied populations. CONCLUSION The polymorphic CYP2D6 gene requires comprehensive interrogation to characterize allelic variation across ethnicities, which was enabled in this study by integrating multiplexed genotyping, MLPA copy number analysis, novel PCR strategies and duplication allele-specific genotyping.
Collapse
Affiliation(s)
- Wanqiong Qiao
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Suparna Martis
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Geetu Mendiratta
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Lisong Shi
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Mariana R Botton
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Yao Yang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Raymon Vijzelaar
- MRC-Holland, Willem Schoutenstraat 6, Amsterdam, The Netherlands
| | - Lisa Edelmann
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Ruth Kornreich
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Robert J Desnick
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart A Scott
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| |
Collapse
|
13
|
Pharmacogenetic and clinical predictors of response to clopidogrel plus aspirin after acute coronary syndrome in Egyptians. Pharmacogenet Genomics 2018; 28:207-213. [PMID: 30188374 PMCID: PMC9903350 DOI: 10.1097/fpc.0000000000000349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Dual antiplatelet therapy (DAPT) with aspirin and clopidogrel reduces the risk for recurrent cardiovascular events after acute coronary syndrome (ACS). However, there is significant variation in response to DAPT that may be influenced by both genetic and nongenetic factors. This study aimed to assess the effect of genetic polymorphisms in PON-1, PEAR-1, P2Y12, CES1, and CYP2C19, along with clinical, demographic, and social factors, on variation in response to DAPT in Egyptians. PARTICIPANTS AND METHODS This study included 230 Egyptians treated with clopidogrel 75 mg/day and aspirin 81 mg/day for at least 12 months following their first ACS. Simple and multivariable logistic regression analyses were carried out to identify factors associated with major adverse cardiovascular events (MACE), defined as the occurrence of recurrent ACS, ischemic stroke, stent-related revascularization, or death, in clopidogrel-treated participants. RESULTS Using multivariable logistic regression analysis, the CYP2C19*2 polymorphism was the only genetic predictor of MACE [odds ratio (OR): 2.23, 95% confidence interval (CI): 1.15-4.33, P=0.01]. In addition, proton pump inhibitor use (OR: 4.77, 95% CI: 1.47-15.54, P=0.009) and diabetes (OR: 1.83, 95% CI: 1.03-3.26, P=0.03) were associated with higher cardiovascular risk, whereas statin use was associated with lower risk (OR: 0.43, 95% CI: 0.25-0.76, P=0.003). The contribution of these four genetic and nongenetic factors explained 19% of the variability in risk for MACE in Egyptians treated with DAPT. CONCLUSION These results highlight that CYP2C19*2, along with diabetes, and use of proton pump inhibitor and statin are important factors jointly associated with variability in clinical response to DAPT following ACS in Egyptians.
Collapse
|
14
|
Zhou Y, Lauschke VM. Comprehensive overview of the pharmacogenetic diversity in Ashkenazi Jews. J Med Genet 2018; 55:617-627. [PMID: 29970487 DOI: 10.1136/jmedgenet-2018-105429] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/28/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adverse drug reactions are a major concern in drug development and clinical therapy. Genetic polymorphisms in genes involved in drug metabolism and transport are major determinants of treatment efficacy and adverse reactions, and constitute important biomarkers for drug dosing, efficacy and safety. Importantly, human populations and subgroups differ substantially in their pharmacogenetic variability profiles, with important consequences for personalised medicine strategies and precision public health approaches. Despite their long migration history, Ashkenazi Jews constitute a rather isolated population with a unique genetic signature that is distinctly different from other populations. OBJECTIVE To provide a comprehensive overview of the pharmacogenetic profile in Ashkenazim. METHODS We analysed next-generation sequencing data from 5076 Ashkenazim individuals and used sequence data from 117 425 non-Jewish individuals as reference. RESULTS We derived frequencies of 164 alleles in 17 clinically relevant pharmacogenes and derived profiles of putative functional consequences, providing the most comprehensive data set of Jewish pharmacogenetic diversity published to date. Furthermore, we detected 127 variants with an aggregated frequency of 20.7% that were specifically found in Ashkenazim, of which 55 variants were putatively deleterious (aggregated frequency of 9.4%). CONCLUSION The revealed pattern of pharmacogenetic variability in Ashkenazi Jews is distinctly different from other populations and is expected to translate into unique functional consequences, especially for the metabolism of CYP2A6, CYP2C9, NAT2 and VKORC1 substrates. We anticipate that the presented data will serve as a powerful resource for the guidance of pharmacogenetic treatment decisions and the optimisation of population-specific genotyping strategies in the Ashkenazi diaspora.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Caudle KE, Keeling NJ, Klein TE, Whirl-Carrillo M, Pratt VM, Hoffman JM. Standardization can accelerate the adoption of pharmacogenomics: current status and the path forward. Pharmacogenomics 2018; 19:847-860. [PMID: 29914287 DOI: 10.2217/pgs-2018-0028] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Successfully implementing pharmacogenomics into routine clinical practice requires an efficient process to order genetic tests and report the results to clinicians and patients. Lack of standardized approaches and terminology in clinical laboratory processes, ordering of the test and reporting of test results all impede this workflow. Expert groups such as the Association for Molecular Pathology and the Clinical Pharmacogenetics Implementation Consortium have published recommendations for standardizing laboratory genetic testing, reporting and terminology. Other resources such as PharmGKB, ClinVar, ClinGen and PharmVar have established databases of nomenclature for pharmacogenetic alleles and variants. Opportunities remain to develop new standards and further disseminate existing standards which will accelerate the implementation of pharmacogenomics.
Collapse
Affiliation(s)
- Kelly E Caudle
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nicholas J Keeling
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA.,Department of Pharmacy Administration, University of Mississippi School of Pharmacy, Oxford, MS 38655, USA
| | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | | | - Victoria M Pratt
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - James M Hoffman
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA.,Office of Quality & Patient Care, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
16
|
Vijzelaar R, Botton MR, Stolk L, Martis S, Desnick RJ, Scott SA. Multi-ethnic SULT1A1 copy number profiling with multiplex ligation-dependent probe amplification. Pharmacogenomics 2018; 19:761-770. [PMID: 29790428 PMCID: PMC6021911 DOI: 10.2217/pgs-2018-0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/30/2018] [Indexed: 02/03/2023] Open
Abstract
AIM To develop a SULT1A1 multiplex ligation-dependent probe amplification assay and to investigate multi-ethnic copy number variant frequencies. METHODS A novel multiplex ligation-dependent probe amplification assay was developed and tested on 472 African-American, Asian, Caucasian, Hispanic and Ashkenazi Jewish individuals. RESULTS The frequencies of atypical total copy number (i.e., greater or less than two) were 38.7% for Hispanics, 38.9% for Ashkenazi Jewish, 43.2% for Caucasians, 53.6% for Asians and 64.1% for African-Americans. Heterozygous SULT1A1 deletion carriers (slow sulfators) were most common among Caucasians (8.4%), whereas African-Americans had the highest frequencies of three or more copies (rapid sulfators; 60.9%). CONCLUSION Different ethnic and racial populations have varying degrees of SULT1A1-mediated sulfation activity, which warrants further research and that may have utility for drug response prediction among SULT1A1-metabolized medications.
Collapse
Affiliation(s)
- Raymon Vijzelaar
- MRC-Holland, Willem Schoutenstraat 1, Amsterdam, The Netherlands
| | - Mariana R Botton
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, A Mount Sinai Venture, Stamford, CT 06902, USA
| | - Lisette Stolk
- MRC-Holland, Willem Schoutenstraat 1, Amsterdam, The Netherlands
| | - Suparna Martis
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J Desnick
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart A Scott
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, A Mount Sinai Venture, Stamford, CT 06902, USA
| |
Collapse
|
17
|
Hiratsuka M, Hirasawa N, Oshima Y, Kodama S, Miyata T, Dan T, Takatoku H, Kuribayashi H, Nakamura R, Saito Y. Points-to-consider documents: Scientific information on the evaluation of genetic polymorphisms during non-clinical studies and phase I clinical trials in the Japanese population. Drug Metab Pharmacokinet 2018; 33:141-149. [PMID: 29703433 DOI: 10.1016/j.dmpk.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/05/2017] [Accepted: 01/15/2018] [Indexed: 01/11/2023]
Abstract
Pharmacotherapy shows striking individual differences in pharmacokinetics and pharmacodynamics, involving drug efficacy and adverse reactions. Recent genetic research has revealed that genetic polymorphisms are important intrinsic factors for these inter-individual differences. This pharmacogenomic information could help develop safer and more effective precision pharmacotherapies and thus, regulatory guidance/guidelines were developed in this area, especially in the EU and US. The Project for the Promotion of Progressive Medicine, Medical Devices, and Regenerative Medicine by the Ministry of Health, Labour and Welfare, performed by Tohoku University, reported scientific information on the evaluation of genetic polymorphisms, mainly on drug metabolizing enzymes and transporters, during non-clinical studies and phase I clinical trials in Japanese subjects/patients. We anticipate that this paper will be helpful in drug development for the regulatory usage of pharmacogenomic information, most notably pharmacokinetics.
Collapse
Affiliation(s)
- Masahiro Hiratsuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Noriyasu Hirasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Susumu Kodama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; National Institute of Health Sciences (NIHS), Tokyo, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshio Miyata
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takashi Dan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | - Ryosuke Nakamura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; National Institute of Health Sciences (NIHS), Tokyo, Japan
| | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; National Institute of Health Sciences (NIHS), Tokyo, Japan
| |
Collapse
|
18
|
Recommendations for Clinical CYP2C19 Genotyping Allele Selection: A Report of the Association for Molecular Pathology. J Mol Diagn 2018; 20:269-276. [PMID: 29474986 DOI: 10.1016/j.jmoldx.2018.01.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/07/2017] [Accepted: 01/26/2018] [Indexed: 11/21/2022] Open
Abstract
This document was developed by the Pharmacogenomics (PGx) Working Group of the Association for Molecular Pathology Clinical Practice Committee, whose aim is to recommend variants for inclusion in clinical pharmacogenomic testing panels. The goals of the Association for Molecular Pathology PGx Working Group are to define the key attributes of PGx alleles recommended for clinical testing and to define a minimum set of variants that should be included in clinical PGx genotyping assays. These recommendations include a minimum panel of variant alleles (tier 1) and an extended panel of variant alleles (tier 2) that will aid clinical laboratories when designing PGx assays. The Working Group considered variant allele frequencies in different populations and ethnicities, the availability of reference materials, and other technical considerations for PGx testing when developing these recommendations. These CYP2C19 genotyping recommendations are the first of a series of recommendations for PGx testing. These recommendations are not to be interpreted as restrictive, but they are meant to provide a helpful guide.
Collapse
|
19
|
Pharmacogenomic Impact of CYP2C19 Variation on Clopidogrel Therapy in Precision Cardiovascular Medicine. J Pers Med 2018; 8:jpm8010008. [PMID: 29385765 PMCID: PMC5872082 DOI: 10.3390/jpm8010008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Variability in response to antiplatelet therapy can be explained in part by pharmacogenomics, particularly of the CYP450 enzyme encoded by CYP2C19. Loss-of-function and gain-of-function variants help explain these interindividual differences. Individuals may carry multiple variants, with linkage disequilibrium noted among some alleles. In the current pharmacogenomics era, genomic variation in CYP2C19 has led to the definition of pharmacokinetic phenotypes for response to antiplatelet therapy, in particular, clopidogrel. Individuals may be classified as poor, intermediate, extensive, or ultrarapid metabolizers, based on whether they carry wild type or polymorphic CYP2C19 alleles. Variant alleles differentially impact platelet reactivity, concentration of plasma clopidogrel metabolites, and clinical outcomes. Interestingly, response to clopidogrel appears to be modulated by additional factors, such as sociodemographic characteristics, risk factors for ischemic heart disease, and drug-drug interactions. Furthermore, systems medicine studies suggest that a broader approach may be required to adequately assess, predict, preempt, and manage variation in antiplatelet response. Transcriptomics, epigenomics, exposomics, miRNAomics, proteomics, metabolomics, microbiomics, and mathematical, computational, and molecular modeling should be integrated with pharmacogenomics for enhanced prediction and individualized care. In this review of pharmacogenomic variation of CYP450, a systems medicine approach is described for tailoring antiplatelet therapy in clinical practice of precision cardiovascular medicine.
Collapse
|
20
|
Scott SA, Owusu Obeng A, Botton MR, Yang Y, Scott ER, Ellis SB, Wallsten R, Kaszemacher T, Zhou X, Chen R, Nicoletti P, Naik H, Kenny EE, Vega A, Waite E, Diaz GA, Dudley J, Halperin JL, Edelmann L, Kasarskis A, Hulot JS, Peter I, Bottinger EP, Hirschhorn K, Sklar P, Cho JH, Desnick RJ, Schadt EE. Institutional profile: translational pharmacogenomics at the Icahn School of Medicine at Mount Sinai. Pharmacogenomics 2017; 18:1381-1386. [PMID: 28982267 DOI: 10.2217/pgs-2017-0137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
For almost 50 years, the Icahn School of Medicine at Mount Sinai has continually invested in genetics and genomics, facilitating a healthy ecosystem that provides widespread support for the ongoing programs in translational pharmacogenomics. These programs can be broadly cataloged into discovery, education, clinical implementation and testing, which are collaboratively accomplished by multiple departments, institutes, laboratories, companies and colleagues. Focus areas have included drug response association studies and allele discovery, multiethnic pharmacogenomics, personalized genotyping and survey-based education programs, pre-emptive clinical testing implementation and novel assay development. This overview summarizes the current state of translational pharmacogenomics at Mount Sinai, including a future outlook on the forthcoming expansions in overall support, research and clinical programs, genomic technology infrastructure and the participating faculty.
Collapse
Affiliation(s)
- Stuart A Scott
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Aniwaa Owusu Obeng
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Department of Pharmacy, the Mount Sinai Medical Center, NY 10029, USA
| | - Mariana R Botton
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Yao Yang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Erick R Scott
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Stephen B Ellis
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | | | - Tom Kaszemacher
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Xiang Zhou
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Rong Chen
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Paola Nicoletti
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Hetanshi Naik
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Eimear E Kenny
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Aida Vega
- Mount Sinai Faculty Practice Associates Primary Care Program, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Eva Waite
- Mount Sinai Faculty Practice Associates Primary Care Program, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - George A Diaz
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Joel Dudley
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Jonathan L Halperin
- The Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Lisa Edelmann
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Andrew Kasarskis
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Jean-Sébastien Hulot
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sorbonne Universités, UPMC Univ Paris 06, Faculty of Medicine, UMRS_1166 ICAN, Institute of Cardiometabolism & Nutrition, AP-HP, Pitié-Salpêtrière Hospital, Institute of Cardiology, Paris, France
| | - Inga Peter
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Berlin Institute of Health, Berlin, Germany
| | - Kurt Hirschhorn
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Pamela Sklar
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Department of Psychiatry & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Judy H Cho
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Department of Medicine, Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, NY 10029 USA
| | - Robert J Desnick
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Eric E Schadt
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| |
Collapse
|
21
|
Lauschke VM, Ingelman-Sundberg M. Requirements for comprehensive pharmacogenetic genotyping platforms. Pharmacogenomics 2016; 17:917-24. [PMID: 27248710 DOI: 10.2217/pgs-2016-0023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recent research highlighted the large extent of rare variants in pharmacogenes and, on this basis, it was estimated that rare variants account for 30-40% of the functional variability in pharmacogenes. It has been proposed that comprehensive next-generation sequencing (NGS)-based sequencing of pharmacogenes could soon be a cost-effective methodology for clinical routine genotyping. Yet, multiple challenges on technical, interpretative and ethical levels need to be overcome to enable the reasonable dissemination of comprehensive pharmacogenetic genotyping, that includes rare genetic variation, into clinical practice. We argue that current pre-emptive pharmacogenetic testing cannot be based on comprehensive approaches but needs to be restricted to validated variants. Rather, comprehensive strategies should only be used for retrospective analyses of patients exhibiting unanticipated drug responses. Thereby, subsequent to computational analyses and functional validations, emerging variants with confirmed functional relevance can be incorporated into candidate genotyping strategies, thus refining and enhancing future pre-emptive genetic testing.
Collapse
Affiliation(s)
- Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
22
|
CYPC19*17 POLYMORPHISM AS A RISK-FACTOR FOR NSAIDS-INDUCED ULCERS. EUREKA: HEALTH SCIENCES 2016. [DOI: 10.21303/2504-5679.2016.00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The new risk-factors for peptic ulcers induced by the use of nonsteroidal antiinflammatory drugs, such as polymorphism of different isoenzymes of cytochrome P450 were considered in the article. The aim of the research was to study different genetic polymorphism of several ferments CYP2C9 and CYP2C19 in inclination to NSAIDS-gastropathies by the way of estimation the risk of appearance of Helicobacter pylori (HP)-positive or Hp-negative NSAIDS- induced peptic ulcers, complicated or not with upper gastrointestinal bleeding.
124 persons were examined (76 men, 48 women in the age of 56,2+/–9,1 years) with Hp-positive or Hp-negative NSAIDS-induced peptic ulcers, that were performed genotyping of isoferments of cytochrome system (CYP2C9, CYP2C19). Based on investigations of 5 different isoenzymes (CYP 2C9*2, CYP 2C9*3, CYP 2C19*2, CYP 2C19*3 and CYP 2C19*17). It was founded that peptic ulcers are strictly associated only with CYP 2C19*17-genotype, possibly due to its involvement in arachidonic acid metabolism and gastroprotection. Thus, polymorphism CYP 2C19*17 can be considered as one of the risk factors for NSAID-gastropathy though the future researches are needed.
Collapse
|
23
|
Moya G, Dorado P, Ferreiro V, Naranjo MEG, Peñas-Lledó EM, LLerena A. High frequency of CYP2D6 ultrarapid metabolizer genotypes in an Ashkenazi Jewish population from Argentina. THE PHARMACOGENOMICS JOURNAL 2016; 17:378-381. [PMID: 27068265 DOI: 10.1038/tpj.2016.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/29/2015] [Accepted: 02/26/2016] [Indexed: 11/09/2022]
Abstract
A twofold higher frequency of CYP2D6 ultrarapid metabolizers (estimated from genotype: gUMs) was reported among Ashkenazi Jews (AJ) living in New York (USA) than in other North American Caucasians, which might be important to guide the prescription for CYP2D6 substrates in AJ communities around the world. This study was aimed to determine whether the high frequency of CYP2D6 gUMs described in AJ from USA was replicated in AJ from Argentina when compared with other multiethnic admixture Argentines (GA). The frequency of the most common allelic variants and of CYP2D6 gUMs (>2 active genes) and poor metabolizers (0 active genes, gPMs) was also compared among the studied Argentine populations. CYP2D6 genotyping was performed in 173 AJ and 246 GA DNA samples of unrelated donors from the metropolitan area of Buenos Aires. CYP2D6 alleles (*2, *3, *4, *5, *6, *10, *17, *35, *41 and multiple copies), genotypes and functional phenotype frequencies were determined. The frequencies of gUMs and gPMs in AJ from Argentina were 11.5% and 5.2%, respectively, whereas in GA, the frequencies of gUM and gPMs were 6.5% and 4.9%, respectively. Comparisons between AJ and GA showed that gUMs frequencies were twofold higher (P<0.05) in AJ than GA. CYP2D6*35 allele was more frequent in GA than AJ, whereas CYP2D6*41 and *1xN were more frequent in AJ than in GA (P<0.05). This study supports the previously reported high frequency of gUMs on another Ashkenazi population in New York. The present findings also support the interethnic variability of CYP2D6 genetic polymorphism in the overall Argentine population.
Collapse
Affiliation(s)
- G Moya
- CICAB Clinical Research Center, Extremadura University and Medical School, Badajoz, Spain.,Pontifical Catholic University of Argentina, Beunos Aires, Argentina.,Genos Laboratory, Buenos Aires, Argentina
| | - P Dorado
- CICAB Clinical Research Center, Extremadura University and Medical School, Badajoz, Spain
| | - V Ferreiro
- Genos Laboratory, Buenos Aires, Argentina
| | - M E G Naranjo
- CICAB Clinical Research Center, Extremadura University and Medical School, Badajoz, Spain
| | - E M Peñas-Lledó
- CICAB Clinical Research Center, Extremadura University and Medical School, Badajoz, Spain
| | - A LLerena
- CICAB Clinical Research Center, Extremadura University and Medical School, Badajoz, Spain.,CIBERSAM, Madrid, Spain
| |
Collapse
|
24
|
Claudio-Campos K, Duconge J, Cadilla CL, Ruaño G. Pharmacogenetics of drug-metabolizing enzymes in US Hispanics. Drug Metab Pers Ther 2016; 30:87-105. [PMID: 25431893 DOI: 10.1515/dmdi-2014-0023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/02/2014] [Indexed: 12/19/2022]
Abstract
Although the Hispanic population is continuously growing in the United States, they are underrepresented in pharmacogenetic studies. This review addresses the need for compiling available pharmacogenetic data in US Hispanics, discussing the prevalence of clinically relevant polymorphisms in pharmacogenes encoding for drug-metabolizing enzymes. CYP3A5*3 (0.245-0.867) showed the largest frequency in a US Hispanic population. A higher prevalence of CYP2C9*3, CYP2C19*4, and UGT2B7 IVS1+985 A>G was observed in US Hispanic vs. non-Hispanic populations. We found interethnic and intraethnic variability in frequencies of genetic polymorphisms for metabolizing enzymes, which highlights the need to define the ancestries of participants in pharmacogenetic studies. New approaches should be integrated in experimental designs to gain knowledge about the clinical relevance of the unique combination of genetic variants occurring in this admixed population. Ethnic subgroups in the US Hispanic population may harbor variants that might be part of multiple causative loci or in linkage-disequilibrium with functional variants. Pharmacogenetic studies in Hispanics should not be limited to ascertain commonly studied polymorphisms that were originally identified in their parental populations. The success of the Personalized Medicine paradigm will depend on recognizing genetic diversity between and within US Hispanics and the uniqueness of their genetic backgrounds.
Collapse
|
25
|
Pratt VM, Everts RE, Aggarwal P, Beyer BN, Broeckel U, Epstein-Baak R, Hujsak P, Kornreich R, Liao J, Lorier R, Scott SA, Smith CH, Toji LH, Turner A, Kalman LV. Characterization of 137 Genomic DNA Reference Materials for 28 Pharmacogenetic Genes: A GeT-RM Collaborative Project. J Mol Diagn 2015; 18:109-23. [PMID: 26621101 DOI: 10.1016/j.jmoldx.2015.08.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/24/2015] [Accepted: 08/13/2015] [Indexed: 10/22/2022] Open
Abstract
Pharmacogenetic testing is increasingly available from clinical laboratories. However, only a limited number of quality control and other reference materials are currently available to support clinical testing. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, has characterized 137 genomic DNA samples for 28 genes commonly genotyped by pharmacogenetic testing assays (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, DPYD, GSTM1, GSTP1, GSTT1, NAT1, NAT2, SLC15A2, SLC22A2, SLCO1B1, SLCO2B1, TPMT, UGT1A1, UGT2B7, UGT2B15, UGT2B17, and VKORC1). One hundred thirty-seven Coriell cell lines were selected based on ethnic diversity and partial genotype characterization from earlier testing. DNA samples were coded and distributed to volunteer testing laboratories for targeted genotyping using a number of commercially available and laboratory developed tests. Through consensus verification, we confirmed the presence of at least 108 variant pharmacogenetic alleles. These samples are also being characterized by other pharmacogenetic assays, including next-generation sequencing, which will be reported separately. Genotyping results were consistent among laboratories, with most differences in allele assignments attributed to assay design and variability in reported allele nomenclature, particularly for CYP2D6, UGT1A1, and VKORC1. These publicly available samples will help ensure the accuracy of pharmacogenetic testing.
Collapse
Affiliation(s)
- Victoria M Pratt
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Praful Aggarwal
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brittany N Beyer
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Paul Hujsak
- Department of Research & Development, Autogenomics Inc., Vista, California
| | - Ruth Kornreich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Liao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Lorier
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Stuart A Scott
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Lorraine H Toji
- Coriell Cell Repositories, Coriell Institute for Medical Research, Camden, New Jersey
| | - Amy Turner
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lisa V Kalman
- Division of Laboratory Systems, Centers for Disease Control and Prevention, Atlanta, Georgia.
| |
Collapse
|
26
|
Jiang XL, Samant S, Lesko LJ, Schmidt S. Clinical pharmacokinetics and pharmacodynamics of clopidogrel. Clin Pharmacokinet 2015; 54:147-66. [PMID: 25559342 DOI: 10.1007/s40262-014-0230-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute coronary syndromes (ACS) remain life-threatening disorders, which are associated with high morbidity and mortality. Dual antiplatelet therapy with aspirin and clopidogrel has been shown to reduce cardiovascular events in patients with ACS. However, there is substantial inter-individual variability in the response to clopidogrel treatment, in addition to prolonged recovery of platelet reactivity as a result of irreversible binding to P2Y12 receptors. This high inter-individual variability in treatment response has primarily been associated with genetic polymorphisms in the genes encoding for cytochrome (CYP) 2C19, which affect the pharmacokinetics of clopidogrel. While the US Food and Drug Administration has issued a boxed warning for CYP2C19 poor metabolizers because of potentially reduced efficacy in these patients, results from multivariate analyses suggest that additional factors, including age, sex, obesity, concurrent diseases and drug-drug interactions, may all contribute to the overall between-subject variability in treatment response. However, the extent to which each of these factors contributes to the overall variability, and how they are interrelated, is currently unclear. The objective of this review article is to provide a comprehensive update on the different factors that influence the pharmacokinetics and pharmacodynamics of clopidogrel and how they mechanistically contribute to inter-individual differences in the response to clopidogrel treatment.
Collapse
Affiliation(s)
- Xi-Ling Jiang
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona (Orlando), 6550 Sanger Road, Room 467, Orlando, FL, 32827, USA
| | | | | | | |
Collapse
|
27
|
Yang Y, Peter I, Scott SA. Pharmacogenetics in Jewish populations. ACTA ACUST UNITED AC 2015; 29:221-33. [PMID: 24867283 DOI: 10.1515/dmdi-2013-0069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/04/2014] [Indexed: 12/24/2022]
Abstract
Spanning over 2000 years, the Jewish population has a long history of migration, population bottlenecks, expansions, and geographical isolation, which has resulted in a unique genetic architecture among the Jewish people. As such, many Mendelian disease genes and founder mutations for autosomal recessive diseases have been discovered in several Jewish groups, which have prompted recent genomic studies in the Jewish population on common disease susceptibility and other complex traits. Although few studies on the genetic determinants of drug response variability have been reported in the Jewish population, a number of unique pharmacogenetic variants have been discovered that are more common in Jewish populations than in other major racial groups. Notable examples identified in the Ashkenazi Jewish (AJ) population include the vitamin K epoxide reductase complex subunit 1 (VKORC1) c.106G>T (p.D36Y) variant associated with high warfarin dosing requirements and the recently reported cytochrome P450 2C19 (CYP2C19) allele, CYP2C19*4B, that harbors both loss-of-function [*4 (c.1A>G)] and increased-function [*17 (c.-806C>T)] variants on the same haplotype. These data are encouraging in that like other ethnicities and subpopulations, the Jewish population likely harbors numerous pharmacogenetic variants that are uncommon or absent in other larger racial groups and ethnicities. In addition to unique variants, common multi-ethnic variants in key drug metabolism genes (e.g., ABCB1, CYP2C8, CYP2C9, CYP2C19, CYP2D6, NAT2) have also been detected in the AJ and other Jewish groups. This review aims to summarize the currently available pharmacogenetics literature and discuss future directions for related research with this unique population.
Collapse
|
28
|
Skierka JM, Black JL. Analysis of compound heterozygous CYP2C19 genotypes to determine cis and trans configurations. Pharmacogenomics 2015; 15:1197-205. [PMID: 25141895 DOI: 10.2217/pgs.14.72] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Through allele specific PCR we studied 220 CYP2C19 compound heterozygous samples, of unknown ethnicity, to determine the haplotype for each of the variations within a sample. MATERIALS & METHODS The genotypes assessed were: 180 *2 and *17 samples (100% in trans); 20 *2 and *11 samples (100% in cis); ten *4 and *17 samples (50% of the samples were *1/*4B and 50% *4A/*17); six *2, *11 and *17 samples (100% showed *2 and *11 in cis, and *17 in trans); two *2, *4 and *17 samples (100% *4B with *2 in trans); one sample with *17 and *34 (these were in trans); and one sample that contained *2, *17, c.463G>T (p.E155X; *17 and c.463G>T were in cis, with *2 in trans). RESULTS & CONCLUSION In our study, we observed a different frequency for the *4B allele (when a sample contains both *4 and *17); and identified *17 occurring in cis with a novel nonsense allele. Accurately assessing a patient's genotype, including assignment of a haplotype, can be important when making a phenotype prediction.
Collapse
Affiliation(s)
- Jennifer M Skierka
- Personalized Genomics Laboratory, Department of Laboratory Medicine & Pathology, Mayo Clinic & Mayo Medical School, 200 First St SW, Rochester, MN 55905, USA
| | | |
Collapse
|
29
|
Scott SA, Tan Q, Baber U, Yang Y, Martis S, Bander J, Kornreich R, Hulot JS, Desnick RJ. An Allele-Specific PCR System for Rapid Detection and Discrimination of the CYP2C19∗4A, ∗4B, and ∗17 Alleles. J Mol Diagn 2013; 15:783-9. [DOI: 10.1016/j.jmoldx.2013.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 01/28/2023] Open
|
30
|
Martis S, Peter I, Hulot JS, Kornreich R, Desnick RJ, Scott SA. Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. THE PHARMACOGENOMICS JOURNAL 2013; 13:369-77. [PMID: 22491019 PMCID: PMC3396745 DOI: 10.1038/tpj.2012.10] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/16/2012] [Accepted: 03/05/2012] [Indexed: 02/06/2023]
Abstract
To determine CYP2C19 and CYP2C8 allele frequencies, 28 coding and/or functional variants were genotyped in 1250 African-American, Asian, Caucasian, Hispanic and Ashkenazi Jewish (AJ) individuals. The combined CYP2C19 variant allele frequencies ranged from ∼0.30 to 0.41; however, the CYP2C8 frequencies were much lower (∼0.04-0.13). After incorporating previously reported CYP2C9 genotyping results from these populations (36 total CYP2C variants), 16 multi-ethnic CYP2C haplotypes were inferred with frequencies >0.5%. Notably, the 2C19*17-2C9*1-2C8*2 haplotype was identified among African-Americans (8%) and Hispanics (2%), indicating that CYP2C19*17 does not always tag a CYP2C haplotype that encodes efficient CYP2C-substrate metabolism. The 2C19*1-2C9*2-2C8*3 haplotype was identified in all populations except African-Americans and additional novel haplotypes were identified in selected populations (for example, 2C19*2-2C9*1-2C8*4 and 2C19*4B-2C9*1-2C8*1), together indicating that both CYP2C19*17 and *2 can be linked with other CYP2C loss-of-function alleles. These results have important implications for pharmacogenomic association studies involving the CYP2C locus and are clinically relevant when administering CYP2C-substrate medications.
Collapse
Affiliation(s)
- Suparna Martis
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Jean-Sébastien Hulot
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, 10029
| | - Ruth Kornreich
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Robert J. Desnick
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Stuart A. Scott
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| |
Collapse
|
31
|
Martis S, Mei H, Vijzelaar R, Edelmann L, Desnick RJ, Scott SA. Multi-ethnic cytochrome-P450 copy number profiling: novel pharmacogenetic alleles and mechanism of copy number variation formation. THE PHARMACOGENOMICS JOURNAL 2012; 13:558-66. [PMID: 23164804 PMCID: PMC3580117 DOI: 10.1038/tpj.2012.48] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 01/11/2023]
Abstract
To determine the role of CYP450 copy number variation (CNV) beyond CYP2D6, 11 CYP450 genes were interrogated by MLPA and qPCR in 542 African-American, Asian, Caucasian, Hispanic, and Ashkenazi Jewish individuals. The CYP2A6, CYP2B6 and CYP2E1 combined deletion/duplication allele frequencies ranged from 2% to 10% in these populations. High-resolution microarray-based comparative genomic hybridization (aCGH) localized CYP2A6, CYP2B6 and CYP2E1 breakpoints to directly-oriented low-copy repeats. Sequencing localized the CYP2B6 breakpoint to a 529 bp intron 4 region with high homology to CYP2B7P1, resulting in the CYP2B6*29 partial deletion allele and the reciprocal, and novel, CYP2B6/2B7P1 duplicated fusion allele (CYP2B6*30). Together, these data identified novel CYP450 CNV alleles (CYP2B6*30 and CYP2E1*1Cx2) and indicate that common CYP450 CNV formation is likely mediated by non-allelic homologous recombination resulting in both full gene and gene-fusion copy number imbalances. Detection of these CNVs should be considered when interrogating these genes for pharmacogenetic drug selection and dosing.
Collapse
Affiliation(s)
- S Martis
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
32
|
CYP2C19*17 gain-of-function polymorphism is associated with peptic ulcer disease. Clin Pharmacol Ther 2012; 93:195-203. [PMID: 23267857 DOI: 10.1038/clpt.2012.215] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) in the CYP2C gene cluster have been extensively investigated as predisposing factors for nonsteroidal anti-inflammatory drug (NSAID)-induced peptic ulcer disease (PUD) or upper gastrointestinal bleeding (UGIB). However, results have been inconclusive owing to different study designs, limited genotyping strategies, and small sample sizes. We investigated whether eight functional SNPs in the CYP2C family of genes--CYP2C8*3 (rs11572080 and rs10509681), CYP2C8*4, CYP2C9*2, CYP2C9*3, CYP2C19*2, CYP2C19*3, and CYP2C19*17--are associated with PUD in 1,239 Caucasian patients. Logistic regression analysis showed that only CYP2C19*17 was associated with PUD (odds ratio additive model: 1.47 (95% confidence interval (CI) 1.12 to 1.92); P = 0.005; R(2) 16%), but not UGIB, independent of NSAID use or Helicobacter pylori infection. PUD distribution varied (P = 0.024) according to CYP2C19*17 genotype: *1/*1, 490 (64.3%); *1/*17, 304 (71.7%); and *17/*17, 31 (73.8%). CYP2C19*17, a gain-of-function polymorphism, is associated with PUD irrespective of etiology.
Collapse
|
33
|
Helsby NA, Burns KE. Molecular mechanisms of genetic variation and transcriptional regulation of CYP2C19. Front Genet 2012; 3:206. [PMID: 23087703 PMCID: PMC3467616 DOI: 10.3389/fgene.2012.00206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/24/2012] [Indexed: 12/11/2022] Open
Abstract
Inherited variation in the function of the drug metabolizing enzyme CYP2C19 was first observed 40 years ago. The SNP variants which underpin loss of CYP2C19 function have been elucidated and extensively studied in healthy populations. However, there has been relatively meagre translation of this information into the clinic. The presence of genotype-phenotype discordance in certain patients suggests that changes in the regulation of this gene, as well as loss of function SNPs, could play a role in deficient activity of this enzyme. Knowledge of the molecular mechanisms which control transcription of this gene, reviewed in this article, may aid the challenge of delivering CYP2C19 pharmacogenetics into clinical use.
Collapse
Affiliation(s)
- Nuala Ann Helsby
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | | |
Collapse
|
34
|
PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19. Pharmacogenet Genomics 2012; 22:159-65. [PMID: 22027650 DOI: 10.1097/fpc.0b013e32834d4962] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Strom CM, Goos D, Crossley B, Zhang K, Buller-Burkle A, Jarvis M, Quan F, Peng M, Sun W. Testing for variants in CYP2C19: population frequencies and testing experience in a clinical laboratory. Genet Med 2011; 14:95-100. [PMID: 22237437 DOI: 10.1038/gim.0b013e3182329870] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE We sought to determine the genotype frequencies for cytochrome p450 enzyme 2C19 variant alleles both in the US pan-ethnic population and various US ethnic groups and to establish the frequency of clinically actionable genotypes. METHODS Analytical results were obtained from 1,396 consecutive samples submitted for cytochrome p450 enzyme 2C19 genotyping tests and stored in a proprietary database. This database was queried and genotypes and predicted phenotypes established. Anonymized samples were obtained from specimens submitted for cystic fibrosis genotyping that contained ethnicity information. Samples from 357, 149, and 346 individuals self-identified as white, African American, and Hispanic, respectively, were analyzed. In addition, 342 anonymized samples submitted for Ashkenazi Jewish panel testing were analyzed. RESULTS Significant ethnic differences were observed in the frequencies of the *17 ultrarapid allele among the various groups studied. In the pan-ethnic population, 3.8% of tested patients were classified as ultrarapid metabolizers, 24% as extensive metabolizers heterozygous for a *17 ultrarapid allele, 27% as intermediate metabolizers, and 3.5% as poor metabolizers. Using stringent criteria, 7.3% of individuals would have clinically actionable genotypes. In addition, we detected two individuals with a haplotype of *2/*17 and a single individual with a haplotype of *4/*17 indicating that the *17 hypermetabolic allele can occur on a *1, *2, or *4 background.
Collapse
Affiliation(s)
- Charles M Strom
- Genetic Testing Center, Nichols Institute Quest Diagnostics, San Juan Capistrano, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|