1
|
Teruya T, Sunagawa S, Mori A, Masuzaki H, Yanagida M. Markers for obese and non-obese Type 2 diabetes identified using whole blood metabolomics. Sci Rep 2023; 13:2460. [PMID: 36774491 PMCID: PMC9922320 DOI: 10.1038/s41598-023-29619-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Definitive differences in blood metabolite profiles between obese and non-obese Type 2 diabetes (T2D) have not been established. We performed an LC-MS-based non-targeted metabolomic analysis of whole blood samples collected from subjects classified into 4 types, based on the presence or absence of obesity and T2D. Of the 125 compounds identified, 20, comprising mainly nucleobases and glucose metabolites, showed significant increases or decreases in the T2D group. These included cytidine, UDP-glucuronate, UMP, 6-phosphogluconate, and pentose-phosphate. Among those 20 compounds, 11 enriched in red blood cells (RBCs) have rarely been studied in the context of diabetes, indicating that RBC metabolism is more extensively disrupted than previously known. Correlation analysis revealed that these T2D markers include 15 HbA1c-associated and 5 irrelevant compounds that may reflect diabetic conditions by a different mechanism than that of HbA1c. In the obese group, enhanced protein and fatty acid catabolism causes increases in 13 compounds, including methylated or acetylated amino acids and short-chain carnitines. Our study, which may be considered a pilot investigation, suggests that changes in blood metabolism due to obesity and diabetes are large, but essentially independent.
Collapse
Affiliation(s)
- Takayuki Teruya
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
- R&D Cluster Programs Section, Technology Development and Innovation Center, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Sumito Sunagawa
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ayaka Mori
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
- Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan.
| |
Collapse
|
2
|
Borgström C, Persson VC, Rogova O, Osiro KO, Lundberg E, Spégel P, Gorwa-Grauslund M. Using phosphoglucose isomerase-deficient (pgi1Δ) Saccharomyces cerevisiae to map the impact of sugar phosphate levels on D-glucose and D-xylose sensing. Microb Cell Fact 2022; 21:253. [PMID: 36456947 PMCID: PMC9713995 DOI: 10.1186/s12934-022-01978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Despite decades of engineering efforts, recombinant Saccharomyces cerevisiae are still less efficient at converting D-xylose sugar to ethanol compared to the preferred sugar D-glucose. Using GFP-based biosensors reporting for the three main sugar sensing routes, we recently demonstrated that the sensing response to high concentrations of D-xylose is similar to the response seen on low concentrations of D-glucose. The formation of glycolytic intermediates was hypothesized to be a potential cause of this sensing response. In order to investigate this, glycolysis was disrupted via the deletion of the phosphoglucose isomerase gene (PGI1) while intracellular sugar phosphate levels were monitored using a targeted metabolomic approach. Furthermore, the sugar sensing of the PGI1 deletants was compared to the PGI1-wildtype strains in the presence of various types and combinations of sugars. RESULTS Metabolomic analysis revealed systemic changes in intracellular sugar phosphate levels after deletion of PGI1, with the expected accumulation of intermediates upstream of the Pgi1p reaction on D-glucose and downstream intermediates on D-xylose. Moreover, the analysis revealed a preferential formation of D-fructose-6-phosphate from D-xylose, as opposed to the accumulation of D-fructose-1,6-bisphosphate that is normally observed when PGI1 deletants are incubated on D-fructose. This may indicate a role of PFK27 in D-xylose sensing and utilization. Overall, the sensing response was different for the PGI1 deletants, and responses to sugars that enter the glycolysis upstream of Pgi1p (D-glucose and D-galactose) were more affected than the response to those entering downstream of the reaction (D-fructose and D-xylose). Furthermore, the simultaneous exposure to sugars that entered upstream and downstream of Pgi1p (D-glucose with D-fructose, or D-glucose with D-xylose) resulted in apparent synergetic activation and deactivation of the Snf3p/Rgt2p and cAMP/PKA pathways, respectively. CONCLUSIONS Overall, the sensing assays indicated that the previously observed D-xylose response stems from the formation of downstream metabolic intermediates. Furthermore, our results indicate that the metabolic node around Pgi1p and the level of D-fructose-6-phosphate could represent attractive engineering targets for improved D-xylose utilization.
Collapse
Affiliation(s)
- Celina Borgström
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden ,grid.17063.330000 0001 2157 2938Present Address: BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Viktor C. Persson
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Oksana Rogova
- grid.4514.40000 0001 0930 2361Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Karen O. Osiro
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden ,Present Address: Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília, DF 70770-901 Brazil
| | - Ester Lundberg
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Peter Spégel
- grid.4514.40000 0001 0930 2361Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Marie Gorwa-Grauslund
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Abd Almaksoud HM, El-Hawary SS, Atia MAM, Sayed AM, El-Daly M, Kamel AA, Elimam H, Abdelmohsen UR, Saber FR. Anti-androgenic potential of the fruit extracts of certain Egyptian Sabal species and their genetic variability studies: a metabolomic-molecular modeling approach. Food Funct 2022; 13:7813-7830. [PMID: 35766799 DOI: 10.1039/d1fo03930j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work aimed to evaluate the anti-androgenic activity of S. blackburniana Glazebrook, S. causiarum (O. F. Cook) Becc, and S. palmetto (Walter) Lodd. Ex Schult fruit extracts in rats using Hershberger assay. Furthermore, to annotate secondary metabolites using LC-HRMS technique, to investigate underlying mechanisms responsible for 5-α-reductase inhibitory activity in silico and to compare cytotoxic effects in vitro against human prostatic stromal myofibroblast (WPMY-1) and human benign prostatic hyperplasia (BPH-1) cell lines using MTT, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (spectrophotometrically). The results showed significant anti-androgenic implications with varying degrees, markedly decreased sex organ weights, reduction in testosterone and increase in LH and FSH serum levels. Genetic diversity study ensured the correct genotype and revealed outperformance of SCoT compared with CBDP markers to interpret polymorphism among selected species. S. blackburniana exhibited selective cytotoxic activity against BPH-1 compared to finasteride. Molecular docking of 59 dereplicated metabolites belonging to various chemical classes revealed that helasaoussazine, pinoresinol and tetra-O-caffeoylquinic acid are the top inhibitors of 5-α-reductase-2. Our study provides an insight into the anti-androgenic activity of selected species of Egyptian Sabal supported by docking study for the first time, demonstrates safety toward liver and kidney and highlights a new potential therapeutic candidate for anti-androgenic related disease such as benign prostatic hyperplasia.
Collapse
Affiliation(s)
| | - Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Mohamed A M Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Mahmoud El-Daly
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61519, Egypt
| | - Amr Abdallah Kamel
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61519, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt.,Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt. .,Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, 61111 New Minia City, Minia, Egypt
| | - Fatema R Saber
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
4
|
Shraim R, Nieuwenhuis BPS. The search for Schizosaccharomyces fission yeasts in environmental meta-transcriptomes. Yeast 2021; 39:83-94. [PMID: 34967063 DOI: 10.1002/yea.3689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 11/07/2022] Open
Abstract
Fission yeast is an important model organism in evolutionary genetics and cell biology research. Nevertheless, most research is limited to a single laboratory strain and knowledge of its natural occurrence is limited, which reduces our understanding of its life history and hinders isolation of new strains from nature. Understanding the natural diversity of fission yeast can provide insight into its genetic and phenotypic diversity and the evolutionary processes that shaped these. Here we aimed to identify candidate natural habitats of fission yeasts by searching through a large collection of publicly available environmental metatranscriptomic datasets. Using a custom pipeline, we processed over 13,000 NCBI SRA accessions, from a wide range of 34 different environmental categories. Overall, we found a very low abundance of putative yeast transcripts, with most fission yeast signatures coming from the categories of 'food' and 'terrestrial arthropods'. Additionally, a signal could be found in a variety of marine and fresh aquatic habitats. Our results do not provide a conclusive answer on the natural habitat of fission yeasts, but our analysis further narrows the range of locations where fission yeasts naturally occur.
Collapse
Affiliation(s)
- Rasha Shraim
- The SFI Centre for Research Training in Genomics Data Sciences, National University of Ireland Galway and Department of Public Health and Primary Care, School of Medicine, Trinity College Dublin, Republic of Ireland.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Germany
| | - Bart P S Nieuwenhuis
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
5
|
Teruya T, Chen YJ, Kondoh H, Fukuji Y, Yanagida M. Whole-blood metabolomics of dementia patients reveal classes of disease-linked metabolites. Proc Natl Acad Sci U S A 2021; 118:e2022857118. [PMID: 34493657 PMCID: PMC8449400 DOI: 10.1073/pnas.2022857118] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/08/2021] [Indexed: 01/03/2023] Open
Abstract
Dementia is caused by factors that damage neurons. We quantified small molecular markers in whole blood of dementia patients, using nontargeted liquid chromatography-mass spectroscopy (LC-MS). Thirty-three metabolites, classified into five groups (A to E), differed significantly in dementia patients, compared with healthy elderly subjects. Seven A metabolites present in plasma, including quinolinic acid, kynurenine, and indoxyl-sulfate, increased. Possibly they act as neurotoxins in the central nervous system (CNS). The remaining 26 compounds (B to E) decreased, possibly causing a loss of support or protection of the brain in dementia. Six B metabolites, normally enriched in red blood cells (RBCs), all contain trimethylated ammonium moieties. These metabolites include ergothioneine and structurally related compounds that have scarcely been investigated as dementia markers, validating the examination of RBC metabolites. Ergothioneine, a potent antioxidant, is significantly decreased in various cognition-related disorders, such as mild cognitive impairment and frailty. C compounds also include some oxidoreductants and are normally abundant in RBCs (NADP+, glutathione, adenosine triphosphate, pantothenate, S-adenosyl-methionine, and gluconate). Their decreased levels in dementia patients may also contribute to depressed brain function. Twelve D metabolites contains plasma compounds, such as amino acids, glycerophosphocholine, dodecanoyl-carnitine, and 2-hydroxybutyrate, which normally protect the brain, but their diminution in dementia may reduce that protection. Seven D compounds have been identified previously as dementia markers. B to E compounds may be critical to maintain the CNS by acting directly or indirectly. How RBC metabolites act in the CNS and why they diminish significantly in dementia remain to be determined.
Collapse
Affiliation(s)
- Takayuki Teruya
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Yung-Ju Chen
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhide Fukuji
- National Hospital Organization Ryukyu Hospital, Okinawa 904-1201, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan;
| |
Collapse
|
6
|
Human age-declined saliva metabolic markers determined by LC-MS. Sci Rep 2021; 11:18135. [PMID: 34518599 PMCID: PMC8437986 DOI: 10.1038/s41598-021-97623-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/26/2021] [Indexed: 01/20/2023] Open
Abstract
Metabolites in human biofluids reflect individual physiological states influenced by various factors. Using liquid chromatography-mass spectrometry (LC–MS), we conducted non-targeted, non-invasive metabolomics using saliva of 27 healthy volunteers in Okinawa, comprising 13 young (30 ± 3 year) and 14 elderly (76 ± 4 year) subjects. Few studies have comprehensively identified age-dependent changes in salivary metabolites. Among 99 salivary metabolites, 21 were statistically age-related. All of the latter decline in abundance with advancing age, except ATP, which increased 1.96-fold in the elderly, possibly due to reduced ATP consumption. Fourteen age-linked and highly correlated compounds function in a metabolic network involving the pentose-phosphate pathway, glycolysis/gluconeogenesis, amino acids, and purines/pyrimidines nucleobases. The remaining seven less strongly correlated metabolites, include ATP, anti-oxidation-related glutathione disulfide, muscle-related acetyl-carnosine, N-methyl-histidine, creatinine, RNA-related dimethyl-xanthine and N-methyl-adenosine. In addition, glutamate and N-methyl-histidine are related to taste, so their decline suggests that the elderly lose some ability to taste. Reduced redox metabolism and muscle activity are suggested by changes in glutathione and acetyl-carnosine. These age-linked salivary metabolites together illuminate a metabolic network that reflects a decline of oral functions during human aging.
Collapse
|
7
|
亀田 雅, 近藤 祥. [Metabolites for frailty biomarkers]. Nihon Ronen Igakkai Zasshi 2021; 58:333-340. [PMID: 34483155 DOI: 10.3143/geriatrics.58.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Whole Blood Metabolomics in Aging Research. Int J Mol Sci 2020; 22:ijms22010175. [PMID: 33375345 PMCID: PMC7796096 DOI: 10.3390/ijms22010175] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023] Open
Abstract
Diversity is observed in the wave of global aging because it is a complex biological process exhibiting individual variability. To assess aging physiologically, markers for biological aging are required in addition to the calendar age. From a metabolic perspective, the aging hypothesis includes the mitochondrial hypothesis and the calorie restriction (CR) hypothesis. In experimental models, several compounds or metabolites exert similar lifespan-extending effects, like CR. However, little is known about whether these metabolic modulations are applicable to human longevity, as human aging is greatly affected by a variety of factors, including lifestyle, genetic or epigenetic factors, exposure to stress, diet, and social environment. A comprehensive analysis of the human blood metabolome captures complex changes with individual differences. Moreover, a non-targeted analysis of the whole blood metabolome discloses unexpected aspects of human biology. By using such approaches, markers for aging or aging-relevant conditions were identified. This information should prove valuable for future diagnosis or clinical interventions in diseases relevant to aging.
Collapse
|
9
|
Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 2020; 33:190-217. [PMID: 32051057 PMCID: PMC7653990 DOI: 10.1017/s0954422419000301] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Ergothioneine (ERG) is an unusual thio-histidine betaine amino acid that has potent antioxidant activities. It is synthesised by a variety of microbes, especially fungi (including in mushroom fruiting bodies) and actinobacteria, but is not synthesised by plants and animals who acquire it via the soil and their diet, respectively. Animals have evolved a highly selective transporter for it, known as solute carrier family 22, member 4 (SLC22A4) in humans, signifying its importance, and ERG may even have the status of a vitamin. ERG accumulates differentially in various tissues, according to their expression of SLC22A4, favouring those such as erythrocytes that may be subject to oxidative stress. Mushroom or ERG consumption seems to provide significant prevention against oxidative stress in a large variety of systems. ERG seems to have strong cytoprotective status, and its concentration is lowered in a number of chronic inflammatory diseases. It has been passed as safe by regulatory agencies, and may have value as a nutraceutical and antioxidant more generally.
Collapse
Affiliation(s)
- Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Louise C. Kenny
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Crown Street, LiverpoolL8 7SS, UK
| | - Cathal M. McCarthy
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Republic of Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Republic of Ireland
| | - Kalaivani Paramasivan
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Timothy J. Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|
10
|
Teruya T, Goga H, Yanagida M. Aging markers in human urine: A comprehensive, non-targeted LC-MS study. FASEB Bioadv 2020; 2:720-733. [PMID: 33336159 PMCID: PMC7734427 DOI: 10.1096/fba.2020-00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022] Open
Abstract
Metabolites in human biofluids document the physiological status of individuals. We conducted comprehensive, non-targeted, non-invasive metabolomic analysis of urine from 27 healthy human subjects, comprising 13 young adults (30 ± 3 years) and 14 seniors (76 ± 4 years). Quantitative analysis of 99 metabolites revealed 55 that displayed significant differences in abundance between the two groups. Forty-four did not show a statistically significant relationship with age. These include 13 standard amino acids, 5 methylated, 4 acetylated, and 9 other amino acids, 6 nucleosides, nucleobases, and derivatives, 4 sugar derivatives, 5 sugar phosphates, 4 carnitines, 2 hydroxybutyrates, 1 choline, and 1 ethanolamine derivative, and glutathione disulfide. Abundances of 53 compounds decreased, while 2 (glutathione disulfide, myo-inositol) increased in elderly people. The great majority of age-linked markers were highly correlated with creatinine. In contrast, 44 other urinary metabolites, including urate, carnitine, hippurate, and betaine, were not age-linked, neither declining nor increasing in elderly subjects. As metabolite profiles of urine and blood are quite different, age-related information in urine offers additional valuable insights into aging mechanisms of endocrine system. Correlation analysis of urinary metabolites revealed distinctly inter-related groups of compounds.
Collapse
Affiliation(s)
- Takayuki Teruya
- G0 Cell UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Haruhisa Goga
- G0 Cell UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
- Forensic Laboratory, Department of Criminal InvestigationOkinawa Prefectural Police HQOkinawaJapan
| | - Mitsuhiro Yanagida
- G0 Cell UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
11
|
Sailwal M, Das AJ, Gazara RK, Dasgupta D, Bhaskar T, Hazra S, Ghosh D. Connecting the dots: Advances in modern metabolomics and its application in yeast system. Biotechnol Adv 2020; 44:107616. [DOI: 10.1016/j.biotechadv.2020.107616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
|
12
|
Abstract
Serine hydroxymethyltransferase 2 (SHMT2) converts serine plus tetrahydrofolate (THF) into glycine plus methylene-THF and is upregulated at the protein level in lung and other cancers. In order to better understand the role of SHMT2 in cancer a model system of HeLa cells engineered for inducible over-expression or knock-down of SHMT2 was characterized for cell proliferation and changes in metabolites and proteome as a function of SHMT2. Ectopic over-expression of SHMT2 increased cell proliferation in vitro and tumor growth in vivo. Knockdown of SHMT2 expression in vitro caused a state of glycine auxotrophy and accumulation of phosphoribosylaminoimidazolecarboxamide (AICAR), an intermediate of folate/1-carbon-pathway-dependent de novo purine nucleotide synthesis. Decreased glycine in the HeLa cell-based xenograft tumors with knocked down SHMT2 was potentiated by administration of the anti-hyperglycinemia agent benzoate. However, tumor growth was not affected by SHMT2 knockdown with or without benzoate treatment. Benzoate inhibited cell proliferation in vitro, but this was independent of SHMT2 modulation. The abundance of proteins of mitochondrial respiration complexes 1 and 3 was inversely correlated with SHMT2 levels. Proximity biotinylation in vivo (BioID) identified 48 mostly mitochondrial proteins associated with SHMT2 including the mitochondrial enzymes Acyl-CoA thioesterase (ACOT2) and glutamate dehydrogenase (GLUD1) along with more than 20 proteins from mitochondrial respiration complexes 1 and 3. These data provide insights into possible mechanisms through which elevated SHMT2 in cancers may be linked to changes in metabolism and mitochondrial function.
Collapse
|
13
|
Hu T, Shi C, Liu L, Li P, Sun Y, An Z. A single-injection targeted metabolomics profiling method for determination of biomarkers to reflect tripterygium glycosides efficacy and toxicity. Toxicol Appl Pharmacol 2020; 389:114880. [PMID: 31945383 DOI: 10.1016/j.taap.2020.114880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/13/2022]
Abstract
Metabolomics is a powerful tool for studying physiological state of the system. In this study, we proposed a single-injection targeted metabolomics method to identify reliable tripterygium glycosides efficacy and toxicity related biomarkers based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Through careful optimization of the UHPLC-MS/MS conditions, a total of 289 metabolites can be quantified in single-injection of 27 min using both positive and negative scanning modes with rapid polarity switching. Tripterygium glycosides is widely used in clinical for its excellent anti-inflammatory and immunosuppressive functions. However, it is the most common drug that can cause hepatotoxicity. In this study, the established metabolomics method was used for determination of biomarkers to reflect tripterygium glycosides efficacy and toxicity. Two different dosages were designed in the animal experiment, including therapeutic dosage and toxic dosage. Statistical analysis based on metabolite concentrations showed that the glutathione metabolism and pyrimidine metabolism were the obvious interfering pathways. This was highly consistent with previous studies. A total of 22 and 47 metabolites were screened as potential biomarkers related to the efficacy and hepatotoxicity of tripterygium glycosides, respectively. Receiver operating characteristic curve (ROC) analysis showed that ten metabolites, including cytosine, 5-methyluridine, deoxyuridine, 5-methylcytidine, deoxycytidine triphosphate (DCTP), keto-glutarate, d-ribose, dihydrofolate, nordeoxycholic acid and isodeoxycholic acid possessed area under the curve (AUC) of 1. The metabolites filtered here can better distinguish tripterygium glycosides treated rats from the control rats compared with the traditional blood indicators of liver function.
Collapse
Affiliation(s)
- Ting Hu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Chen Shi
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Lihong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Pengfei Li
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Yuan Sun
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Zhuoling An
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
14
|
Tada I, Tsugawa H, Meister I, Zhang P, Shu R, Katsumi R, Wheelock CE, Arita M, Chaleckis R. Creating a Reliable Mass Spectral-Retention Time Library for All Ion Fragmentation-Based Metabolomics. Metabolites 2019; 9:E251. [PMID: 31717785 PMCID: PMC6918128 DOI: 10.3390/metabo9110251] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
Accurate metabolite identification remains one of the primary challenges in a metabolomics study. A reliable chemical spectral library increases the confidence in annotation, and the availability of raw and annotated data in public databases facilitates the transfer of Liquid chromatography coupled to mass spectrometry (LC-MS) methods across laboratories. Here, we illustrate how the combination of MS2 spectra, accurate mass, and retention time can improve the confidence of annotation and provide techniques to create a reliable library for all ion fragmentation (AIF) data with a focus on the characterization of the retention time. The resulting spectral library incorporates information on adducts and in-source fragmentation in AIF data, while noise peaks are effectively minimized through multiple deconvolution processes. We also report the development of the Mass Spectral LIbrary MAnager (MS-LIMA) tool to accelerate library sharing and transfer across laboratories. This library construction strategy improves the confidence in annotation for AIF data in LC-MS-based metabolomics and will facilitate the sharing of retention time and mass spectral data in the metabolomics community.
Collapse
Affiliation(s)
- Ipputa Tada
- Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Shizuoka 411-8540, Japan
| | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, Kanagawa, Yokohama 230-0045, Japan
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama 230-0045, Japan
| | - Isabel Meister
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma 371-8510, Japan
| | - Pei Zhang
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma 371-8510, Japan
| | - Rie Shu
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma 371-8510, Japan
| | - Riho Katsumi
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma 371-8510, Japan
| | - Craig E. Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma 371-8510, Japan
| | - Masanori Arita
- RIKEN Center for Sustainable Resource Science, Kanagawa, Yokohama 230-0045, Japan
- Center for Information Biology, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Romanas Chaleckis
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma 371-8510, Japan
| |
Collapse
|
15
|
Rodrigues JV, Shakhnovich EI. Adaptation to mutational inactivation of an essential gene converges to an accessible suboptimal fitness peak. eLife 2019; 8:50509. [PMID: 31573512 PMCID: PMC6828540 DOI: 10.7554/elife.50509] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
The mechanisms of adaptation to inactivation of essential genes remain unknown. Here we inactivate E. coli dihydrofolate reductase (DHFR) by introducing D27G,N,F chromosomal mutations in a key catalytic residue with subsequent adaptation by an automated serial transfer protocol. The partial reversal G27- > C occurred in three evolutionary trajectories. Conversely, in one trajectory for D27G and in all trajectories for D27F,N strains adapted to grow at very low metabolic supplement (folAmix) concentrations but did not escape entirely from supplement auxotrophy. Major global shifts in metabolome and proteome occurred upon DHFR inactivation, which were partially reversed in adapted strains. Loss-of-function mutations in two genes, thyA and deoB, ensured adaptation to low folAmix by rerouting the 2-Deoxy-D-ribose-phosphate metabolism from glycolysis towards synthesis of dTMP. Multiple evolutionary pathways of adaptation converged to a suboptimal solution due to the high accessibility to loss-of-function mutations that block the path to the highest, yet least accessible, fitness peak. Predicting how viruses and bacteria evolve remains a challenge. The ability to anticipate when and how bacteria might develop drug resistance would make treating life-threatening diseases easier and could potentially help prevent drug resistance altogether. Studying bacterial evolution under different conditions and cataloguing all possible DNA mutations that allow these bacteria to survive are crucial steps in predicting the appearance of drug resistance. Studies have revealed that bacteria can adapt to sources of stress, such as antibiotics, in different ways – each involving mutations in distinct genes. However, not all the mutations provide the same benefits to the organism, and the factors that influence how bacteria will adapt are unclear. Now, Rodrigues and Shakhnovich have used a new approach to push the adaptation ability of the bacterium Escherichia coli to the limit. First, they genetically engineered different E. coli strains by introducing distinct mutations to an enzyme the bacterium needs to make DNA. These mutations make the resulting strains dependent on external molecules to synthesize new DNA. Next, the cells were grown in conditions where the supply of these DNA precursors was progressively decreased, forcing them to adapt. The obvious way for bacteria to adapt to these conditions would be to ‘revert’ the mutations that Rodrigues and Shakhnovich introduced in the first place. By using this approach, Rodrigues and Shakhnovich were able to test how often the obvious evolutionary solution happens compared with presumably less-preferred alternative routes. In rare cases, a specific mutation did restore the activity of the enzyme that enabled DNA synthesis. However, in most cases the bacteria found a different evolutionary solution whereby they all adapt to the decrease in external DNA precursors in the same way, but not by reverting the original mutation. Instead, further mutations disrupt the activity of two metabolic genes, allowing the cells to use the external DNA precursors more efficiently, and keep building DNA. These cells are therefore able to survive even when the levels of the external DNA components are very low, but they will die in the complete absence of these precursor molecules. This evolutionary solution leads to a non-optimal effect: mutations that restore the activity of the original enzyme, which are the best solution when the two metabolic genes are intact, are no longer as effective. This finding represents a clear example of interactions between genes determining evolutionary outcomes. Rodrigues and Shakhnovich showed that, since it is more likely for a random mutation to disrupt a gene than to revert a previous mutation, adaptations that are less-than-optimal but still work might predominate simply because they happen faster. Understanding why certain evolutionary adaptations prevail is an important step in predicting evolution and may lead to breakthroughs in many areas. For example, if scientists can identify mutations likely to make bacteria resistant to drugs, it may be possible to act proactively against the bacterial strains that carry those mutations. Eventually, if the factors that lead to specific adaptations are known, it may be possible to exploit this knowledge to create weaknesses in the bacteria’s own defences.
Collapse
Affiliation(s)
- João V Rodrigues
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
16
|
Tominaga A, Higuchi Y, Mori H, Akai M, Suyama A, Yamada N, Takegawa K. Catechol O-methyltransferase homologs in Schizosaccharomyces pombe are response factors to alkaline and salt stress. Appl Microbiol Biotechnol 2019; 103:4881-4887. [PMID: 31053915 DOI: 10.1007/s00253-019-09858-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/28/2019] [Accepted: 04/17/2019] [Indexed: 11/28/2022]
Abstract
How cells of the fission yeast Schizosaccharomyces pombe respond to alkaline stress is not well understood. Here, to elucidate the molecular mechanism underlying the alkaline stress response in S. pombe, we performed DNA microarray analysis. We found that a homolog of human catechol O-methyltransferase 2 (COMT2) is highly upregulated in S. pombe cells exposed to alkaline conditions. We designated the S. pombe homolog as cmt2+ and also identified its paralog, cmt1+, in the S. pombe genome. Reverse transcription PCR confirmed that both cmt1+ and cmt2+ are upregulated within 1 h of exposure to alkaline stress and downregulated within 30 min of returning to an acidic environment. Moreover, we verified that recombinant Cmt proteins exhibit catechol O-methyltransferase activity. To further characterize the expression of cmt1+ and cmt2+, we carried out an EGFP reporter assay using their promoter sequences, which showed that both genes respond not only to alkaline but also to salt stress. Collectively, our findings indicate that the cmt promoter might be an advantageous expression system for use in S. pombe under alkaline culture conditions.
Collapse
Affiliation(s)
- Akihiro Tominaga
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hikari Mori
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Makoto Akai
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akiko Suyama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naotaka Yamada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
17
|
Sajiki K, Tahara Y, Villar-Briones A, Pluskal T, Teruya T, Mori A, Hatanaka M, Ebe M, Nakamura T, Aoki K, Nakaseko Y, Yanagida M. Genetic defects in SAPK signalling, chromatin regulation, vesicle transport and CoA-related lipid metabolism are rescued by rapamycin in fission yeast. Open Biol 2019; 8:rsob.170261. [PMID: 29593117 PMCID: PMC5881033 DOI: 10.1098/rsob.170261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022] Open
Abstract
Rapamycin inhibits TOR (target of rapamycin) kinase, and is being used clinically to treat various diseases ranging from cancers to fibrodysplasia ossificans progressiva. To understand rapamycin mechanisms of action more comprehensively, 1014 temperature-sensitive (ts) fission yeast (Schizosaccharomyces pombe) mutants were screened in order to isolate strains in which the ts phenotype was rescued by rapamycin. Rapamycin-rescued 45 strains, among which 12 genes responsible for temperature sensitivity were identified. These genes are involved in stress-activated protein kinase (SAPK) signalling, chromatin regulation, vesicle transport, and CoA- and mevalonate-related lipid metabolism. Subsequent metabolome analyses revealed that rapamycin upregulated stress-responsive metabolites, while it downregulated purine biosynthesis intermediates and nucleotide derivatives. Rapamycin alleviated abnormalities in cell growth and cell division caused by sty1 mutants (Δsty1) of SAPK. Notably, in Δsty1, rapamycin reduced greater than 75% of overproduced metabolites (greater than 2× WT), like purine biosynthesis intermediates and nucleotide derivatives, to WT levels. This suggests that these compounds may be the points at which the SAPK/TOR balance regulates continuous cell proliferation. Rapamycin might be therapeutically useful for specific defects of these gene functions.
Collapse
Affiliation(s)
- Kenichi Sajiki
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Yuria Tahara
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Alejandro Villar-Briones
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Tomáš Pluskal
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Takayuki Teruya
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ayaka Mori
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuko Hatanaka
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Masahiro Ebe
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Takahiro Nakamura
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Keita Aoki
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukinobu Nakaseko
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
18
|
Diverse metabolic reactions activated during 58-hr fasting are revealed by non-targeted metabolomic analysis of human blood. Sci Rep 2019; 9:854. [PMID: 30696848 PMCID: PMC6351603 DOI: 10.1038/s41598-018-36674-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/21/2018] [Indexed: 12/30/2022] Open
Abstract
During human fasting, metabolic markers, including butyrates, carnitines, and branched-chain amino acids, are upregulated for energy substitution through gluconeogenesis and use of stored lipids. We performed non-targeted, accurate semiquantitative metabolomic analysis of human whole blood, plasma, and red blood cells during 34–58 hr fasting of four volunteers. During this period, 44 of ~130 metabolites increased 1.5~60-fold. Consistently fourteen were previously reported. However, we identified another 30 elevated metabolites, implicating hitherto unrecognized metabolic mechanisms induced by fasting. Metabolites in pentose phosphate pathway are abundant, probably due to demand for antioxidants, NADPH, gluconeogenesis and anabolic metabolism. Global increases of TCA cycle-related compounds reflect enhanced mitochondrial activity in tissues during fasting. Enhanced purine/pyrimidine metabolites support RNA/protein synthesis and transcriptional reprogramming, which is promoted also by some fasting-related metabolites, possibly via epigenetic modulations. Thus diverse, pronounced metabolite increases result from greatly activated catabolism and anabolism stimulated by fasting. Anti-oxidation may be a principal response to fasting.
Collapse
|
19
|
Chaleckis R, Ohashi K, Meister I, Naz S, Wheelock CE. Metabolomic Analysis of Yeast and Human Cells: Latest Advances and Challenges. Methods Mol Biol 2019; 2049:233-245. [PMID: 31602615 DOI: 10.1007/978-1-4939-9736-7_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) based nontargeted metabolomics has been applied to a wide range of biological samples and can provide information on thousands of compounds. However, reliable identification of the compounds remains a challenge affecting result interpretation. In this protocol, we describe comparable yeast cell and whole blood metabolome sample preparation for extracting similar compound groups, and we present a LC-MS method using the all ion fragmentation (AIF) approach for the purposes of increasing accuracy in metabolite annotation. Our method enables database-dependent targeted as well as nontargeted metabolomics analysis from the same data acquisition, while simultaneously improving the accuracy in metabolite identification to increase the quality of the resulting biological information.
Collapse
Affiliation(s)
- Romanas Chaleckis
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan.
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Kazuto Ohashi
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Isabel Meister
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Shama Naz
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Sajiki K, Tahara Y, Uehara L, Sasaki T, Pluskal T, Yanagida M. Genetic regulation of mitotic competence in G 0 quiescent cells. SCIENCE ADVANCES 2018; 4:eaat5685. [PMID: 30116786 PMCID: PMC6093628 DOI: 10.1126/sciadv.aat5685] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/04/2018] [Indexed: 05/03/2023]
Abstract
Quiescent (G0 phase) cells must maintain mitotic competence (MC) to restart the cell cycle. This is essential for reproduction in unicellular organisms and also for development and cell replacement in higher organisms. Recently, suppression of MC has gained attention as a possible therapeutic strategy for cancer. Using a Schizosaccharomyces pombe deletion-mutant library, we identified 85 genes required to maintain MC during the G0 phase induced by nitrogen deprivation. G0 cells must recycle proteins and RNA, governed by anabolism, catabolism, transport, and availability of small molecules such as antioxidants. Protein phosphatases are also essential to maintain MC. In particular, Nem1-Spo7 protects the nucleus from autophagy by regulating Ned1, a lipin. These genes, designated GZE (G-Zero Essential) genes, reveal the landscape of genetic regulation of MC.
Collapse
Affiliation(s)
- Kenichi Sajiki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
- Corresponding author. (K.S.); (M.Y.)
| | - Yuria Tahara
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Lisa Uehara
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Toshio Sasaki
- Research Support Imaging Section, OIST, Onna, Okinawa, Japan
| | - Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
- Corresponding author. (K.S.); (M.Y.)
| |
Collapse
|
21
|
Hayashi T, Teruya T, Chaleckis R, Morigasaki S, Yanagida M. S-Adenosylmethionine Synthetase Is Required for Cell Growth, Maintenance of G0 Phase, and Termination of Quiescence in Fission Yeast. iScience 2018; 5:38-51. [PMID: 30240645 PMCID: PMC6123894 DOI: 10.1016/j.isci.2018.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/04/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023] Open
Abstract
S-adenosylmethionine is an important compound, because it serves as the methyl donor in most methyl transfer reactions, including methylation of proteins, nucleic acids, and lipids. However, cellular defects in the genetic disruption of S-adenosylmethionine synthesis are not well understood. Here, we report the isolation and characterization of temperature-sensitive mutants of fission yeast S-adenosylmethionine synthetase (Sam1). Levels of S-adenosylmethionine and methylated histone H3 were greatly diminished in sam1 mutants. sam1 mutants stopped proliferating in vegetative culture and arrested specifically in G2 phase without cell elongation. Furthermore, sam1 mutants lost viability during nitrogen starvation-induced G0 phase quiescence. After release from the G0 state, sam1 mutants could neither increase in cell size nor re-initiate DNA replication in the rich medium. Sam1 is thus required for cell growth and proliferation, and maintenance of and exit from quiescence. sam1 mutants lead to broad cellular and drug response defects, as expected, since S. pombe contains more than 90 S-adenosylmethionine-dependent methyltransferases.
Collapse
Affiliation(s)
- Takeshi Hayashi
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Takayuki Teruya
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Romanas Chaleckis
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Susumu Morigasaki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
22
|
Rivas-Ubach A, Liu Y, Bianchi TS, Tolić N, Jansson C, Paša-Tolić L. Moving beyond the van Krevelen Diagram: A New Stoichiometric Approach for Compound Classification in Organisms. Anal Chem 2018; 90:6152-6160. [PMID: 29671593 DOI: 10.1021/acs.analchem.8b00529] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
van Krevelen diagrams (O/C vs H/C ratios of elemental formulas) have been widely used in studies to obtain an estimation of the main compound categories present in environmental samples. However, the limits defining a specific compound category based solely on O/C and H/C ratios of elemental formulas have never been accurately listed or proposed to classify metabolites in biological samples. Furthermore, while O/C vs H/C ratios of elemental formulas can provide an overview of the compound categories, such classification is inefficient because of the large overlap among different compound categories along both axes. We propose a more accurate compound classification for biological samples analyzed by high-resolution mass spectrometry based on an assessment of the C/H/O/N/P stoichiometric ratios of over 130 000 elemental formulas of compounds classified in 6 main categories: lipids, peptides, amino sugars, carbohydrates, nucleotides, and phytochemical compounds (oxy-aromatic compounds). Our multidimensional stoichiometric compound classification (MSCC) constraints showed a highly accurate categorization of elemental formulas to the main compound categories in biological samples with over 98% of accuracy representing a substantial improvement over any classification based on the classic van Krevelen diagram. This method represents a signficant step forward in environmental research, especially ecological stoichiometry and eco-metabolomics studies, by providing a novel and robust tool to improve our understanding of the ecosystem structure and function through the chemical characterization of biological samples.
Collapse
Affiliation(s)
- Albert Rivas-Ubach
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Yina Liu
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States.,Geochemical and Environmental Research Group , Texas A&M University , College Station , Texas 77845 , United States
| | - Thomas S Bianchi
- Department of Geological Sciences , University of Florida , Gainesville , Florida 32611-2120 , United States
| | - Nikola Tolić
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Christer Jansson
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| |
Collapse
|
23
|
Abstract
SIGNIFICANCE L-ergothioneine is synthesized in actinomycetes, cyanobacteria, methylobacteria, and some fungi. In contrast to other low-molecular-weight redox buffers, glutathione and mycothiol, ergothioneine is primarily present as a thione rather than a thiol at physiological pH, which makes it resistant to autoxidation. Ergothioneine regulates microbial physiology and enables the survival of microbes under stressful conditions encountered in their natural environments. In particular, ergothioneine enables pathogenic microbes, such as Mycobacterium tuberculosis (Mtb), to withstand hostile environments within the host to establish infection. Recent Advances: Ergothioneine has been reported to maintain bioenergetic homeostasis in Mtb and protect Mtb against oxidative stresses, thereby enhancing the virulence of Mtb in a mouse model. Furthermore, ergothioneine augments the resistance of Mtb to current frontline anti-TB drugs. Recently, an opportunistic fungus, Aspergillus fumigatus, which infects immunocompromised individuals, has been found to produce ergothioneine, which is important in conidial health and germination, and contributes to the fungal resistance against redox stresses. CRITICAL ISSUES The molecular mechanisms of the functions of ergothioneine in microbial physiology and pathogenesis are poorly understood. It is currently not known if ergothioneine is used in detoxification or antioxidant enzymatic pathways. As ergothioneine is involved in bioenergetic and redox homeostasis and antibiotic susceptibility of Mtb, it is of utmost importance to advance our understanding of these mechanisms. FUTURE DIRECTIONS A clear understanding of the role of ergothioneine in microbes will advance our knowledge of how this thione enhances microbial virulence and resistance to the host's defense mechanisms to avoid complete eradication. Antioxid. Redox Signal. 28, 431-444.
Collapse
Affiliation(s)
| | - Krishna C Chinta
- 2 Deptartment of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Vineel P Reddy
- 2 Deptartment of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Adrie J C Steyn
- 1 Africa Health Research Institute , Durban, South Africa .,2 Deptartment of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama.,3 UAB Center for Free Radical Biology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
24
|
Kfoury A, Armaro M, Collodet C, Sordet-Dessimoz J, Giner MP, Christen S, Moco S, Leleu M, de Leval L, Koch U, Trumpp A, Sakamoto K, Beermann F, Radtke F. AMPK promotes survival of c-Myc-positive melanoma cells by suppressing oxidative stress. EMBO J 2018; 37:embj.201797673. [PMID: 29440228 DOI: 10.15252/embj.201797673] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 12/21/2022] Open
Abstract
Although c-Myc is essential for melanocyte development, its role in cutaneous melanoma, the most aggressive skin cancer, is only partly understood. Here we used the NrasQ61KINK4a-/- mouse melanoma model to show that c-Myc is essential for tumor initiation, maintenance, and metastasis. c-Myc-expressing melanoma cells were preferentially found at metastatic sites, correlated with increased tumor aggressiveness and high tumor initiation potential. Abrogation of c-Myc caused apoptosis in primary murine and human melanoma cells. Mechanistically, c-Myc-positive melanoma cells activated and became dependent on the metabolic energy sensor AMP-activated protein kinase (AMPK), a metabolic checkpoint kinase that plays an important role in energy and redox homeostasis under stress conditions. AMPK pathway inhibition caused apoptosis of c-Myc-expressing melanoma cells, while AMPK activation protected against cell death of c-Myc-depleted melanoma cells through suppression of oxidative stress. Furthermore, TCGA database analysis of early-stage human melanoma samples revealed an inverse correlation between C-MYC and patient survival, suggesting that C-MYC expression levels could serve as a prognostic marker for early-stage disease.
Collapse
Affiliation(s)
- Alain Kfoury
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Marzia Armaro
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Caterina Collodet
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland.,Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
| | - Jessica Sordet-Dessimoz
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | | | - Stefan Christen
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - Sofia Moco
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - Marion Leleu
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Laurence de Leval
- Institute of Pathology, University Hospital Lausanne, Lausanne, Switzerland
| | - Ute Koch
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg, Germany
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland.,Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
| | - Friedrich Beermann
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| |
Collapse
|
25
|
Nakazawa N, Teruya T, Sajiki K, Kumada K, Villar-Briones A, Arakawa O, Takada J, Saitoh S, Yanagida M. Fission yeast ceramide ts mutants cwh43 exhibit defects in G0 quiescence, nutrient metabolism, and lipid homeostasis. J Cell Sci 2018; 131:jcs.217331. [DOI: 10.1242/jcs.217331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Cellular nutrient states control whether cells proliferate, or whether they enter or exit quiescence. Here, we report characterizations of fission yeast temperature-sensitive (ts) mutants of the evolutionarily conserved transmembrane protein, Cwh43, and explore its relevance to utilization of glucose, nitrogen-source, and lipids. GFP-tagged Cwh43 localizes at ER associated with the nuclear envelope and the plasma membrane, as in budding yeast. We found that cwh43 mutants failed to divide in low glucose and lost viability during quiescence under nitrogen starvation. In cwh43 mutant, comprehensive metabolome analysis demonstrated dramatic changes in marker metabolites that altered under low glucose and/or nitrogen starvation, although cwh43 apparently consumed glucose in the culture media. Furthermore, we found that cwh43 mutant had elevated levels of triacylglycerols (TGs) and coenzyme A, and that it accumulated lipid droplets. Notably, TG biosynthesis was required to maintain cell division in cwh43 mutant. Thus, Cwh43 affects utilization of glucose and nitrogen-sources, as well as storage lipid metabolism. These results may fit to a notion developed in budding yeast that Cwh43 conjugates ceramide to GPI (glycosylphosphatidylinositol)-anchored proteins and maintains integrity of membrane organization.
Collapse
Affiliation(s)
- Norihiko Nakazawa
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Takayuki Teruya
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Kenichi Sajiki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Kazuki Kumada
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Alejandro Villar-Briones
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Orie Arakawa
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Junko Takada
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Shigeaki Saitoh
- Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
26
|
Rosebrock AP, Caudy AA. Metabolite Extraction from Saccharomyces cerevisiae for Liquid Chromatography-Mass Spectrometry. Cold Spring Harb Protoc 2017; 2017:pdb.prot089086. [PMID: 28864564 DOI: 10.1101/pdb.prot089086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prior to mass spectrometric analysis, cellular small molecules must be extracted and separated from interfering components such as salts and culture medium. To ensure minimal perturbation of metabolism, yeast cells grown in liquid culture are rapidly harvested by filtration as described here. Simultaneous quenching of metabolism and extraction is afforded by immediate immersion in low-temperature organic solvent. Samples prepared using this method are suitable for a range of downstream liquid chromatography-mass spectrometry analyses and are stable in solvent for >1 yr at -80°C.
Collapse
Affiliation(s)
- Adam P Rosebrock
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S3E1, Canada
| | - Amy A Caudy
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S3E1, Canada; .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S3E1, Canada
| |
Collapse
|
27
|
Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth MF, Verfaillie C, Grünewald TGP, Fendt SM. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun 2017; 8:15267. [PMID: 28492237 PMCID: PMC5437289 DOI: 10.1038/ncomms15267] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
Metastases are the leading cause of mortality in patients with cancer. Metastasis formation requires cancer cells to adapt their cellular phenotype. However, how metabolism supports this adaptation of cancer cells is poorly defined. We use 2D versus 3D cultivation to induce a shift in the cellular phenotype of breast cancer cells. We discover that proline catabolism via proline dehydrogenase (Prodh) supports growth of breast cancer cells in 3D culture. Subsequently, we link proline catabolism to in vivo metastasis formation. In particular, we find that PRODH expression and proline catabolism is increased in metastases compared to primary breast cancers of patients and mice. Moreover, inhibiting Prodh is sufficient to impair formation of lung metastases in the orthotopic 4T1 and EMT6.5 mouse models, without adverse effects on healthy tissue and organ function. In conclusion, we discover that Prodh is a potential drug target for inhibiting metastasis formation.
Collapse
Affiliation(s)
- Ilaria Elia
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, Leuven 3000, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, Leuven 3000, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, Leuven 3000, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, Leuven 3000, Belgium
| | - Stefan Christen
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, Leuven 3000, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, Leuven 3000, Belgium
| | - Ruben Boon
- Stem Cell Institute, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Enrico Radaelli
- Center for the Biology of Disease, VIB Leuven and Center for Human Genetics, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Martin F. Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Thalkirchner Strasse 36, Munich 80337, Germany
| | | | - Thomas G. P. Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Thalkirchner Strasse 36, Munich 80337, Germany
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, Leuven 3000, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, Leuven 3000, Belgium
| |
Collapse
|
28
|
Li K, Naviaux JC, Bright AT, Wang L, Naviaux RK. A robust, single-injection method for targeted, broad-spectrum plasma metabolomics. Metabolomics 2017; 13:122. [PMID: 28943831 PMCID: PMC5583274 DOI: 10.1007/s11306-017-1264-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/30/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Metabolomics is a powerful emerging technology for studying the systems biology and chemistry of health and disease. Current targeted methods are often limited by the number of analytes that can be measured, and/or require multiple injections. METHODS We developed a single-injection, targeted broad-spectrum plasma metabolomic method on a SCIEX Qtrap 5500 LC-ESI-MS/MS platform. Analytical validation was conducted for the reproducibility, linearity, carryover and blood collection tube effects. The method was also clinically validated for its potential utility in the diagnosis of chronic fatigue syndrome (CFS) using a cohort of 22 males CFS and 18 age- and sex-matched controls. RESULTS Optimization of LC conditions and MS/MS parameters enabled the measurement of 610 key metabolites from 63 biochemical pathways and 95 stable isotope standards in a 45-minute HILIC method using a single injection without sacrificing sensitivity. The total imprecision (CVtotal) of peak area was 12% for both the control and CFS pools. The 8 metabolites selected in our previous study (PMID: 27573827) performed well in a clinical validation analysis even when the case and control samples were analyzed 1.5 years later on a different instrument by a different investigator, yielding a diagnostic accuracy of 95% (95% CI 85-100%) measured by the area under the ROC curve. CONCLUSIONS A reliable and reproducible, broad-spectrum, targeted metabolomic method was developed, capable of measuring over 600 metabolites in plasma in a single injection. The method might be a useful tool in helping the diagnosis of CFS or other complex diseases.
Collapse
Affiliation(s)
- Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego, School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467 USA
- Department of Medicine, University of California, San Diego, School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467 USA
| | - Jane C. Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego, School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467 USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467 USA
| | - A. Taylor Bright
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego, School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467 USA
- Department of Medicine, University of California, San Diego, School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467 USA
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego, School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467 USA
- Department of Medicine, University of California, San Diego, School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467 USA
| | - Robert K. Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego, School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467 USA
- Department of Medicine, University of California, San Diego, School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467 USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467 USA
- Department of Pathology, University of California, San Diego, School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467 USA
| |
Collapse
|
29
|
Pluskal T, Yanagida M. Metabolomic Analysis of Schizosaccharomyces pombe: Sample Preparation, Detection, and Data Interpretation. Cold Spring Harb Protoc 2016; 2016:2016/12/pdb.top079921. [PMID: 27934694 DOI: 10.1101/pdb.top079921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Metabolomics is a modern field of chemical biology that strives to simultaneously quantify hundreds of cellular metabolites. Techniques for metabolomic analysis in Schizosaccharomyces pombe have only recently been developed. Here we introduce methods that provide a complete workflow for metabolomic analysis in S. pombe Based on available literature, we estimate the yeast metabolome to comprise on the order of several thousand different metabolites. We discuss the feasibility of extraction and detection of such a large number of metabolites, and the influences of various parameters on the results. Among the parameters addressed are cell cultivation conditions, metabolite extraction techniques, and detection and quantification methods. Further, we provide recommendations on data management and data processing for metabolomic experiments, and describe possible pitfalls regarding the interpretation of metabolomic data. Finally, we briefly discuss potential future developments of this technique.
Collapse
Affiliation(s)
- Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Kunigami, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Kunigami, Okinawa 904-0495, Japan
| |
Collapse
|
30
|
Pluskal T, Yanagida M. Measurement of Metabolome Samples Using Liquid Chromatography-Mass Spectrometry, Data Acquisition, and Processing. Cold Spring Harb Protoc 2016; 2016:2016/12/pdb.prot091561. [PMID: 27934688 DOI: 10.1101/pdb.prot091561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a protocol for metabolomic sample measurement using hydrophilic interaction chromatography (HILIC) combined with high-resolution Orbitrap mass spectrometry (MS). We also introduce a raw data processing method using MZmine 2 software, and include a list of 111 metabolite peaks (with their m/z values and retention times) previously identified in metabolome samples using this method.
Collapse
Affiliation(s)
- Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Kunigami, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Kunigami, Okinawa 904-0495, Japan
| |
Collapse
|
31
|
Pluskal T, Nakamura T, Yanagida M. Preparation of Intracellular Metabolite Extracts from Liquid Schizosaccharomyces pombe Cultures. Cold Spring Harb Protoc 2016; 2016:2016/12/pdb.prot091553. [PMID: 27934687 DOI: 10.1101/pdb.prot091553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The success of metabolomic analysis relies heavily on the sample preparation protocol. Here we present a protocol for intracellular metabolite extraction from liquid fission yeast cultures based on rapid quenching in pure methanol at -40°C, bead-beating in 50% methanol for cell disruption, and 10 kDa cutoff ultrafiltration for removal of proteins. Samples are concentrated by vacuum evaporation and resuspended in 50% acetonitrile for mass spectrometric analysis. This protocol is optimal for extraction of polar metabolites such as amino acids, organic acids, nucleotides, sugars, or sugar-phosphates. Its implementation requires <6 h and allows preparation of multiple samples in parallel.
Collapse
Affiliation(s)
- Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Kunigami, Okinawa 904-0495, Japan
| | - Takahiro Nakamura
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Kunigami, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Kunigami, Okinawa 904-0495, Japan
| |
Collapse
|
32
|
Big data mining powers fungal research: recent advances in fission yeast systems biology approaches. Curr Genet 2016; 63:427-433. [PMID: 27730285 DOI: 10.1007/s00294-016-0657-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 01/05/2023]
Abstract
Biology research has entered into big data era. Systems biology approaches therefore become the powerful tools to obtain the whole landscape of how cell separate, grow, and resist the stresses. Fission yeast Schizosaccharomyces pombe is wonderful unicellular eukaryote model, especially studying its division and metabolism can facilitate to understanding the molecular mechanism of cancer and discovering anticancer agents. In this perspective, we discuss the recent advanced fission yeast systems biology tools, mainly focus on metabolomics profiling and metabolic modeling, protein-protein interactome and genetic interaction network, DNA sequencing and applications, and high-throughput phenotypic screening. We therefore hope this review can be useful for interested fungal researchers as well as bioformaticians.
Collapse
|
33
|
A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism. Cell Rep 2016; 16:1891-902. [PMID: 27477275 DOI: 10.1016/j.celrep.2016.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 05/19/2016] [Accepted: 07/03/2016] [Indexed: 01/20/2023] Open
Abstract
The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer.
Collapse
|
34
|
Individual variability in human blood metabolites identifies age-related differences. Proc Natl Acad Sci U S A 2016; 113:4252-9. [PMID: 27036001 DOI: 10.1073/pnas.1603023113] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Metabolites present in human blood document individual physiological states influenced by genetic, epigenetic, and lifestyle factors. Using high-resolution liquid chromatography-mass spectrometry (LC-MS), we performed nontargeted, quantitative metabolomics analysis in blood of 15 young (29 ± 4 y of age) and 15 elderly (81 ± 7 y of age) individuals. Coefficients of variation (CV = SD/mean) were obtained for 126 blood metabolites of all 30 donors. Fifty-five RBC-enriched metabolites, for which metabolomics studies have been scarce, are highlighted here. We found 14 blood compounds that show remarkable age-related increases or decreases; they include 1,5-anhydroglucitol, dimethyl-guanosine, acetyl-carnosine, carnosine, ophthalmic acid, UDP-acetyl-glucosamine,N-acetyl-arginine,N6-acetyl-lysine, pantothenate, citrulline, leucine, isoleucine, NAD(+), and NADP(+) Six of them are RBC-enriched, suggesting that RBC metabolomics is highly valuable for human aging research. Age differences are partly explained by a decrease in antioxidant production or increasing inefficiency of urea metabolism among the elderly. Pearson's coefficients demonstrated that some age-related compounds are correlated, suggesting that aging affects them concomitantly. Although our CV values are mostly consistent with those CVs previously published, we here report previously unidentified CVs of 51 blood compounds. Compounds having moderate to high CV values (0.4-2.5) are often modified. Compounds having low CV values, such as ATP and glutathione, may be related to various diseases because their concentrations are strictly controlled, and changes in them would compromise health. Thus, human blood is a rich source of information about individual metabolic differences.
Collapse
|
35
|
Pluskal T, Sajiki K, Becker J, Takeda K, Yanagida M. Diverse fission yeast genes required for responding to oxidative and metal stress: Comparative analysis of glutathione-related and other defense gene deletions. Genes Cells 2016; 21:530-42. [PMID: 27005325 DOI: 10.1111/gtc.12359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/22/2016] [Indexed: 12/25/2022]
Abstract
Living organisms have evolved multiple sophisticated mechanisms to deal with reactive oxygen species. We constructed a collection of twelve single-gene deletion strains of the fission yeast Schizosaccharomyces pombe designed for the study of oxidative and heavy metal stress responses. This collection contains deletions of biosynthetic enzymes of glutathione (Δgcs1 and Δgsa1), phytochelatin (Δpcs2), ubiquinone (Δabc1) and ergothioneine (Δegt1), as well as catalase (Δctt1), thioredoxins (Δtrx1 and Δtrx2), Cu/Zn- and Mn- superoxide dismutases (SODs; Δsod1 and Δsod2), sulfiredoxin (Δsrx1) and sulfide-quinone oxidoreductase (Δhmt2). First, we employed metabolomic analysis to examine the mutants of the glutathione biosynthetic pathway. We found that ophthalmic acid was produced by the same enzymes as glutathione in S. pombe. The identical genetic background of the strains allowed us to assess the severity of the individual gene knockouts by treating the deletion strains with oxidative agents. Among other results, we found that glutathione deletion strains were not particularly sensitive to peroxide or superoxide, but highly sensitive to cadmium stress. Our results show the astonishing diversity in cellular adaptation mechanisms to various types of oxidative and metal stress and provide a useful tool for further research into stress responses.
Collapse
Affiliation(s)
- Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Kenichi Sajiki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Joanne Becker
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Kojiro Takeda
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| |
Collapse
|
36
|
Abstract
Next-generation sequencing approaches have considerably advanced our understanding of genome function and regulation. However, the knowledge of gene function and complex cellular processes remains a challenge and bottleneck in biological research. Phenomics is a rapidly emerging area, which seeks to rigorously characterize all phenotypes associated with genes or gene variants. Such high-throughput phenotyping under different conditions can be a potent approach toward gene function. The fission yeast Schizosaccharomyces pombe (S. pombe) is a proven eukaryotic model organism that is increasingly used for genomewide screens and phenomic assays. In this review, we highlight current large-scale, cell-based approaches used with S. pombe, including computational colony-growth measurements, genetic interaction screens, parallel profiling using barcodes, microscopy-based cell profiling, metabolomic methods and transposon mutagenesis. These diverse methods are starting to offer rich insights into the relationship between genotypes and phenotypes.
Collapse
Affiliation(s)
- Charalampos Rallis
- a Research Department of Genetics , Evolution and Environment and UCL Institute of Healthy Ageing, University College London , London , UK
| | - Jürg Bähler
- a Research Department of Genetics , Evolution and Environment and UCL Institute of Healthy Ageing, University College London , London , UK
| |
Collapse
|
37
|
Chaleckis R, Ebe M, Pluskal T, Murakami I, Kondoh H, Yanagida M. Unexpected similarities between the Schizosaccharomyces and human blood metabolomes, and novel human metabolites. MOLECULAR BIOSYSTEMS 2015; 10:2538-51. [PMID: 25010571 DOI: 10.1039/c4mb00346b] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metabolomics, a modern branch of chemical biology, provides qualitative and quantitative information about the metabolic states of organisms or cells at the molecular level. Here we report non-targeted, metabolomic analyses of human blood, using liquid chromatography-mass spectrometry (LC-MS). We compared the blood metabolome to the previously reported metabolome of the fission yeast, Schizosaccharomyces pombe. The two metabolomic datasets were highly similar: 101 of 133 compounds identified in human blood (75%) were also present in S. pombe, and 45 of 57 compounds enriched in red blood cells (RBCs) (78%) were also present in yeast. The most abundant metabolites were ATP, glutathione, and glutamine. Apart from these three, the next most abundant metabolites were also involved in energy metabolism, anti-oxidation, and amino acid metabolism. We identified fourteen new blood compounds, eight of which were enriched in RBCs: citramalate, GDP-glucose, trimethyl-histidine, trimethyl-phenylalanine, trimethyl-tryptophan, trimethyl-tyrosine, UDP-acetyl-glucosamine, UDP-glucuronate, dimethyl-lysine, glutamate methyl ester, N-acetyl-(iso)leucine, N-acetyl-glutamate, N2-acetyl-lysine, and N6-acetyl-lysine. Ten of the newly identified blood metabolites were also detected in S. pombe, and ten of the 14 newly identified blood metabolites were methylated or acetylated amino acids. Trimethylated or acetylated free amino acids were also abundant in white blood cells. It may be possible to investigate their physiological roles using yeast genetics.
Collapse
Affiliation(s)
- Romanas Chaleckis
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Murakami I, Chaleckis R, Pluskal T, Ito K, Hori K, Ebe M, Yanagida M, Kondoh H. Metabolism of skin-absorbed resveratrol into its glucuronized form in mouse skin. PLoS One 2014; 9:e115359. [PMID: 25506824 PMCID: PMC4266648 DOI: 10.1371/journal.pone.0115359] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 11/22/2014] [Indexed: 01/24/2023] Open
Abstract
Resveratrol (RESV) is a plant polyphenol, which is thought to have beneficial metabolic effects in laboratory animals as well as in humans. Following oral administration, RESV is immediately catabolized, resulting in low bioavailability. This study compared RESV metabolites and their tissue distribution after oral uptake and skin absorption. Metabolomic analysis of various mouse tissues revealed that RESV can be absorbed and metabolized through skin. We detected sulfated and glucuronidated RESV metabolites, as well as dihydroresveratrol. These metabolites are thought to have lower pharmacological activity than RESV. Similar quantities of most RESV metabolites were observed 4 h after oral or skin administration, except that glucuronidated RESV metabolites were more abundant in skin after topical RESV application than after oral administration. This result is consistent with our finding of glucuronidated RESV metabolites in cultured skin cells. RESV applied to mouse ears significantly suppressed inflammation in the TPA inflammation model. The skin absorption route could be a complementary, potent way to achieve therapeutic effects with RESV.
Collapse
Affiliation(s)
- Itsuo Murakami
- Geriatric unit, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Romanas Chaleckis
- Geriatric unit, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, Japan
| | - Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, Japan
| | - Ken Ito
- Geriatric unit, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Kousuke Hori
- Geriatric unit, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Masahiro Ebe
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, Japan
- * E-mail: (HK); (MY)
| | - Hiroshi Kondoh
- Geriatric unit, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
- * E-mail: (HK); (MY)
| |
Collapse
|
39
|
Zhang R, Watson DG, Wang L, Westrop GD, Coombs GH, Zhang T. Evaluation of mobile phase characteristics on three zwitterionic columns in hydrophilic interaction liquid chromatography mode for liquid chromatography-high resolution mass spectrometry based untargeted metabolite profiling of Leishmania parasites. J Chromatogr A 2014; 1362:168-79. [DOI: 10.1016/j.chroma.2014.08.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/30/2022]
|
40
|
Carpy A, Krug K, Graf S, Koch A, Popic S, Hauf S, Macek B. Absolute proteome and phosphoproteome dynamics during the cell cycle of Schizosaccharomyces pombe (Fission Yeast). Mol Cell Proteomics 2014; 13:1925-36. [PMID: 24763107 PMCID: PMC4125727 DOI: 10.1074/mcp.m113.035824] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/18/2014] [Indexed: 12/27/2022] Open
Abstract
To quantify cell cycle-dependent fluctuations on a proteome-wide scale, we performed integrative analysis of the proteome and phosphoproteome during the four major phases of the cell cycle in Schizosaccharomyces pombe. In highly synchronized cells, we identified 3753 proteins and 3682 phosphorylation events and relatively quantified 65% of the data across all phases. Quantitative changes during the cell cycle were infrequent and weak in the proteome but prominent in the phosphoproteome. Protein phosphorylation peaked in mitosis, where the median phosphorylation site occupancy was 44%, about 2-fold higher than in other phases. We measured copy numbers of 3178 proteins, which together with phosphorylation site stoichiometry enabled us to estimate the absolute amount of protein-bound phosphate, as well as its change across the cell cycle. Our results indicate that 23% of the average intracellular ATP is utilized by protein kinases to phosphorylate their substrates to drive regulatory processes during cell division. Accordingly, we observe that phosphate transporters and phosphate-metabolizing enzymes are phosphorylated and therefore likely to be regulated in mitosis.
Collapse
Affiliation(s)
- Alejandro Carpy
- From the ‡ Proteome Center Tuebingen, University of Tuebingen, Tuebingen 72076, Germany
| | - Karsten Krug
- From the ‡ Proteome Center Tuebingen, University of Tuebingen, Tuebingen 72076, Germany
| | - Sabine Graf
- ¶Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, 72076, Germany
| | - André Koch
- ¶Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, 72076, Germany
| | - Sasa Popic
- From the ‡ Proteome Center Tuebingen, University of Tuebingen, Tuebingen 72076, Germany
| | - Silke Hauf
- ¶Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, 72076, Germany
| | - Boris Macek
- From the ‡ Proteome Center Tuebingen, University of Tuebingen, Tuebingen 72076, Germany,
| |
Collapse
|
41
|
Pluskal T, Ueno M, Yanagida M. Genetic and metabolomic dissection of the ergothioneine and selenoneine biosynthetic pathway in the fission yeast, S. pombe, and construction of an overproduction system. PLoS One 2014; 9:e97774. [PMID: 24828577 PMCID: PMC4020840 DOI: 10.1371/journal.pone.0097774] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/24/2014] [Indexed: 12/22/2022] Open
Abstract
Ergothioneine is a small, sulfur-containing metabolite (229 Da) synthesized by various species of bacteria and fungi, which can accumulate to millimolar levels in tissues or cells (e.g. erythrocytes) of higher eukaryotes. It is commonly marketed as a dietary supplement due to its proposed protective and antioxidative functions. In this study we report the genes forming the two-step ergothioneine biosynthetic pathway in the fission yeast, Schizosaccharomyces pombe. We identified the first gene, egt1+ (SPBC1604.01), by sequence homology to previously published genes from Neurospora crassa and Mycobacterium smegmatis. We showed, using metabolomic analysis, that the Δegt1 deletion mutant completely lacked ergothioneine and its precursors (trimethyl histidine/hercynine and hercynylcysteine sulfoxide). Since the second step of ergothioneine biosynthesis has not been characterized in eukaryotes, we examined four putative homologs (Nfs1/SPBC21D10.11c, SPAC11D3.10, SPCC777.03c, and SPBC660.12c) of the corresponding mycobacterial enzyme EgtE. Among deletion mutants of these genes, only one (ΔSPBC660.12c, designated Δegt2) showed a substantial decrease in ergothioneine, accompanied by accumulation of its immediate precursor, hercynylcysteine sulfoxide. Ergothioneine-deficient strains exhibited no phenotypic defects during vegetative growth or quiescence. To effectively study the role of ergothioneine, we constructed an egt1+ overexpression system by replacing its native promoter with the nmt1+ promoter, which is inducible in the absence of thiamine. We employed three versions of the nmt1 promoter with increasing strength of expression and confirmed corresponding accumulations of ergothioneine. We quantified the intracellular concentration of ergothioneine in S. pombe (0.3, 157.4, 41.6, and up to 1606.3 µM in vegetative, nitrogen-starved, glucose-starved, and egt1+-overexpressing cells, respectively) and described its gradual accumulation under long-term quiescence. Finally, we demonstrated that the ergothioneine pathway can also synthesize selenoneine, a selenium-containing derivative of ergothioneine, when the culture medium is supplemented with selenium. We further found that selenoneine biosynthesis involves a novel intermediate compound, hercynylselenocysteine.
Collapse
Affiliation(s)
- Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, Japan
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima-shi, Hiroshima, Japan
| | - Masaru Ueno
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima-shi, Hiroshima, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, Japan
- * E-mail:
| |
Collapse
|
42
|
Does a shift to limited glucose activate checkpoint control in fission yeast? FEBS Lett 2014; 588:2373-8. [PMID: 24815688 DOI: 10.1016/j.febslet.2014.04.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 11/20/2022]
Abstract
Here we review cell cycle control in the fission yeast, Schizosaccharomyces pombe, in response to an abrupt reduction of glucose concentration in culture media. S. pombe arrests cell cycle progression when transferred from media containing 2.0% glucose to media containing 0.1%. After a delay, S. pombe resumes cell division at a surprisingly fast rate, comparable to that observed in 2% glucose. We found that a number of genes, including zinc-finger transcription factor Scr1, CaMKK-like protein kinase Ssp1, and glucose transporter Ght5, enable rapid cell division in low glucose. In this article, we examine whether cell cycle checkpoint-like control operates during the delay and after resumption of cell division in limited-glucose. Using microarray analysis and genetic screening, we identified several candidate genes that may be involved in controlling this low-glucose adaptation.
Collapse
|
43
|
Sajiki K, Pluskal T, Shimanuki M, Yanagida M. Metabolomic analysis of fission yeast at the onset of nitrogen starvation. Metabolites 2013; 3:1118-29. [PMID: 24958269 PMCID: PMC3937841 DOI: 10.3390/metabo3041118] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/03/2013] [Accepted: 12/06/2013] [Indexed: 01/08/2023] Open
Abstract
Microorganisms naturally respond to changes in nutritional conditions by adjusting their morphology and physiology. The cellular response of the fission yeast S. pombe to nitrogen starvation has been extensively studied. Here, we report time course metabolomic analysis during one hour immediately after nitrogen starvation, prior to any visible changes in cell morphology except for a tiny increase of cell length per division cycle. We semi-quantitatively measured 75 distinct metabolites, 60% of which changed their level over 2-fold. The most significant changes occurred during the first 15 min, when trehalose, 2-oxoglutarate, and succinate increased, while purine biosynthesis intermediates rapidly diminished. At 30–60 min, free amino acids decreased, although several modified amino acids—including hercynylcysteine sulfoxide, a precursor to ergothioneine—accumulated. Most high-energy metabolites such as ATP, S-adenosyl-methionine or NAD+ remained stable during the whole time course. Very rapid metabolic changes such as the shut-off of purine biosynthesis and the rise of 2-oxoglutarate and succinate can be explained by the depletion of NH4Cl. The changes in the levels of key metabolites, particularly 2-oxoglutarate, might represent an important mechanistic step to trigger subsequent cellular regulations.
Collapse
Affiliation(s)
- Kenichi Sajiki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| | - Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| | - Mizuki Shimanuki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
44
|
Shimanuki M, Uehara L, Pluskal T, Yoshida T, Kokubu A, Kawasaki Y, Yanagida M. Klf1, a C2H2 zinc finger-transcription factor, is required for cell wall maintenance during long-term quiescence in differentiated G0 phase. PLoS One 2013; 8:e78545. [PMID: 24167631 PMCID: PMC3805531 DOI: 10.1371/journal.pone.0078545] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/19/2013] [Indexed: 11/24/2022] Open
Abstract
Fission yeast, Schizoaccharomyces pombe, is a model for studying cellular quiescence. Shifting to a medium that lacks a nitrogen-source induces proliferative cells to enter long-term G0 quiescence. Klf1 is a Krüppel-like transcription factor with a 7-amino acid Cys2His2-type zinc finger motif. The deletion mutant, ∆klf1, normally divides in vegetative medium, but proliferation is not restored after long-term G0 quiescence. Cell biologic, transcriptomic, and metabolomic analyses revealed a unique phenotype of the ∆klf1 mutant in quiescence. Mutant cells had diminished transcripts related to signaling molecules for switching to differentiation; however, proliferative metabolites for cell-wall assembly and antioxidants had significantly increased. Further, the size of ∆klf1 cells increased markedly during quiescence due to the aberrant accumulation of Calcofluor-positive, chitin-like materials beneath the cell wall. After 4 weeks of quiescence, reversible proliferation ability was lost, but metabolism was maintained. Klf1 thus plays a role in G0 phase longevity by enhancing the differentiation signal and suppressing metabolism for growth. If Klf1 is lost, S. pombe fails to maintain a constant cell size and normal cell morphology during quiescence.
Collapse
Affiliation(s)
- Mizuki Shimanuki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
- * E-mail: (MY); (MS)
| | - Lisa Uehara
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Tomoko Yoshida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Aya Kokubu
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Yosuke Kawasaki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
- * E-mail: (MY); (MS)
| |
Collapse
|
45
|
Zhang AH, Sun H, Qiu S, Wang XJ. NMR-based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:549-556. [PMID: 23828598 DOI: 10.1002/mrc.3985] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
Molecular biomarkers could detect biochemical changes associated with disease processes. The key metabolites have become an important part for improving the diagnosis, prognosis, and therapy of diseases. Because of the chemical diversity and dynamic concentration range, the analysis of metabolites remains a challenge. Assessment of fluctuations on the levels of endogenous metabolites by advanced NMR spectroscopy technique combined with multivariate statistics, the so-called metabolomics approach, has proved to be exquisitely valuable in human disease diagnosis. Because of its ability to detect a large number of metabolites in intact biological samples with isotope labeling of metabolites using nuclei such as H, C, N, and P, NMR has emerged as one of the most powerful analytical techniques in metabolomics and has dramatically improved the ability to identify low concentration metabolites and trace important metabolic pathways. Multivariate statistical methods or pattern recognition programs have been developed to handle the acquired data and to search for the discriminating features from biosample sets. Furthermore, the combination of NMR with pattern recognition methods has proven highly effective at identifying unknown metabolites that correlate with changes in genotype or phenotype. The research and clinical results achieved through NMR investigations during the first 13 years of the 21st century illustrate areas where this technology can be best translated into clinical practice. In this review, we will present several special examples of a successful application of NMR for biomarker discovery, implications for disease diagnosis, prognosis, and therapy evaluation, and discuss possible future improvements.
Collapse
Affiliation(s)
- Ai-hua Zhang
- National TCM Key Lab of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | | | | | | |
Collapse
|
46
|
Nakamura T, Pluskal T, Nakaseko Y, Yanagida M. Impaired coenzyme A synthesis in fission yeast causes defective mitosis, quiescence-exit failure, histone hypoacetylation and fragile DNA. Open Biol 2013; 2:120117. [PMID: 23091701 PMCID: PMC3472395 DOI: 10.1098/rsob.120117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/22/2012] [Indexed: 12/02/2022] Open
Abstract
Biosynthesis of coenzyme A (CoA) requires a five-step process using pantothenate and cysteine in the fission yeast Schizosaccharomyces pombe. CoA contains a thiol (SH) group, which reacts with carboxylic acid to form thioesters, giving rise to acyl-activated CoAs such as acetyl-CoA. Acetyl-CoA is essential for energy metabolism and protein acetylation, and, in higher eukaryotes, for the production of neurotransmitters. We isolated a novel S. pombe temperature-sensitive strain ppc1-537 mutated in the catalytic region of phosphopantothenoylcysteine synthetase (designated Ppc1), which is essential for CoA synthesis. The mutant becomes auxotrophic to pantothenate at permissive temperature, displaying greatly decreased levels of CoA, acetyl-CoA and histone acetylation. Moreover, ppc1-537 mutant cells failed to restore proliferation from quiescence. Ppc1 is thus the product of a super-housekeeping gene. The ppc1-537 mutant showed combined synthetic lethal defects with five of six histone deacetylase mutants, whereas sir2 deletion exceptionally rescued the ppc1-537 phenotype. In synchronous cultures, ppc1-537 cells can proceed to the S phase, but lose viability during mitosis failing in sister centromere/kinetochore segregation and nuclear division. Additionally, double-strand break repair is defective in the ppc1-537 mutant, producing fragile broken DNA, probably owing to diminished histone acetylation. The CoA-supported metabolism thus controls the state of chromosome DNA.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | | | | | | |
Collapse
|
47
|
Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, Barbeta A, Rivas-Ubach A, Llusià J, Garbulsky M, Filella I, Jump AS. Evidence of current impact of climate change on life: a walk from genes to the biosphere. GLOBAL CHANGE BIOLOGY 2013; 19:2303-38. [PMID: 23505157 DOI: 10.1111/gcb.12143] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/31/2012] [Accepted: 01/14/2013] [Indexed: 05/19/2023]
Abstract
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade-offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.
Collapse
Affiliation(s)
- Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Recent advances in metabolomics in neurological disease, and future perspectives. Anal Bioanal Chem 2013; 405:8143-50. [DOI: 10.1007/s00216-013-7061-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/04/2013] [Accepted: 05/10/2013] [Indexed: 12/14/2022]
|
49
|
Snyder NW, Khezam M, Mesaros CA, Worth A, Blair IA. Untargeted metabolomics from biological sources using ultraperformance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). J Vis Exp 2013:e50433. [PMID: 23711563 DOI: 10.3791/50433] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Here we present a workflow to analyze the metabolic profiles for biological samples of interest including; cells, serum, or tissue. The sample is first separated into polar and non-polar fractions by a liquid-liquid phase extraction, and partially purified to facilitate downstream analysis. Both aqueous (polar metabolites) and organic (non-polar metabolites) phases of the initial extraction are processed to survey a broad range of metabolites. Metabolites are separated by different liquid chromatography methods based upon their partition properties. In this method, we present microflow ultra-performance (UP)LC methods, but the protocol is scalable to higher flows and lower pressures. Introduction into the mass spectrometer can be through either general or compound optimized source conditions. Detection of a broad range of ions is carried out in full scan mode in both positive and negative mode over a broad m/z range using high resolution on a recently calibrated instrument. Label-free differential analysis is carried out on bioinformatics platforms. Applications of this approach include metabolic pathway screening, biomarker discovery, and drug development.
Collapse
Affiliation(s)
- Nathaniel W Snyder
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania
| | | | | | | | | |
Collapse
|
50
|
Matsuo Y, Nishino K, Mizuno K, Akihiro T, Toda T, Matsuo Y, Kaino T, Kawamukai M. Polypeptone induces dramatic cell lysis in ura4 deletion mutants of fission yeast. PLoS One 2013; 8:e59887. [PMID: 23555823 PMCID: PMC3605382 DOI: 10.1371/journal.pone.0059887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/19/2013] [Indexed: 12/22/2022] Open
Abstract
Polypeptone is widely excluded from Schizosaccharomyces pombe growth medium. However, the reasons why polypeptone should be avoided have not been documented. Polypeptone dramatically induced cell lysis in the ura4 deletion mutant when cells approached the stationary growth phase, and this phenotype was suppressed by supplementation of uracil. To determine the specificity of this cell lysis phenotype, we created deletion mutants of other genes involved in de novo biosynthesis of uridine monophosphate (ura1, ura2, ura3, and ura5). Cell lysis was not observed in these gene deletion mutants. In addition, concomitant disruption of ura1, ura2, ura3, or ura5 in the ura4 deletion mutant suppressed cell lysis, indicating that cell lysis induced by polypeptone is specific to the ura4 deletion mutant. Furthermore, cell lysis was also suppressed when the gene involved in coenzyme Q biosynthesis was deleted. This is likely because Ura3 requires coenzyme Q for its activity. The ura4 deletion mutant was sensitive to zymolyase, which mainly degrades (1,3)-beta-D glucan, when grown in the presence of polypeptone, and cell lysis was suppressed by the osmotic stabiliser, sorbitol. Finally, the induction of cell lysis in the ura4 deletion mutant was due to the accumulation of orotidine-5-monophosphate. Cell wall integrity was dramatically impaired in the ura4 deletion mutant when grown in the presence of polypeptone. Because ura4 is widely used as a selection marker in S. pombe, caution needs to be taken when evaluating phenotypes of ura4 mutants.
Collapse
Affiliation(s)
- Yuzy Matsuo
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
- Cell Regulation Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Kouhei Nishino
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Kouhei Mizuno
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Takashi Akihiro
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Takashi Toda
- Cell Regulation Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Yasuhiro Matsuo
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Tomohiro Kaino
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Makoto Kawamukai
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| |
Collapse
|