1
|
Yang K, Liu D, Feng L, Xu L, Jiang Y, Shen X, Ali A, Lu J, Guo L. Preparation of Peptoid Antifreeze Agents and Their Structure-Property Relationship. Polymers (Basel) 2024; 16:990. [PMID: 38611248 PMCID: PMC11013998 DOI: 10.3390/polym16070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The development of nontoxic and efficient antifreeze agents for organ cryopreservation is crucial. However, the research remains highly challenging. In this study, we designed and synthesized a series of peptoid oligomers using the solid-phase submonomer synthesis method by mimicking the amphiphilic structures of antifreeze proteins (AFPs). The obtained peptoid oligomers showed excellent antifreeze properties, reducing the ice crystal growth rate and inhibiting ice recrystallization. The effects of the hydrophobicity and sequence of the peptoid side chains were also studied to reveal the structure-property relationship. The prepared peptoid oligomers were detected as non-cytotoxic and considered to be useful in the biological field. We hope that the peptoid oligomers presented in this study can provide effective strategies for the design of biological cryoprotectants for organ preservation in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianwei Lu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Guo
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Hadi Z, Ahmadi E, Shams-Esfandabadi N, Davoodian N, Shirazi A, Moradian M. Polyvinyl alcohol addition to freezing extender can improve the post-thaw quality, longevity and in vitro fertility of ram epididymal spermatozoa. Cryobiology 2024; 114:104853. [PMID: 38301951 DOI: 10.1016/j.cryobiol.2024.104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Recovering and cryopreserving epididymal spermatozoa are suitable methods for preserving the genetic potential of livestock and endangered species. Regarding encouraging reports on the use of polyvinyl alcohol (PVA) in cryopreserving various cell types, we conducted this study to examine the impact of PVA on the post-thaw quality, longevity, and in vitro fertility of ram epididymal sperm. In the first experiment, ram epididymal spermatozoa were frozen in extenders containing 6 % glycerol and 0, 0.5, 1, 2, 5, 10, or 15 mg/ml of PVA. Polyvinyl alcohol at concentrations of 0.5, 1, and 2 mg/ml improved the motility and functional membrane integrity (FMI) of the sperm compared with the control group (P < 0.05). In the second experiment, we investigated whether PVA could partially substitute glycerol in the freezing extender. PVA was added at 0, 0.5, 1, and 2 mg/ml to the extenders containing 1 % or 2 % glycerol. After thawing, the sperm motility parameters of the group containing 1 mg/ml PVA and 2 % glycerol were significantly higher than those of the un-supplemented groups (P < 0.05). In the third experiment, the effect of PVA on the post-thaw sperm longevity were examined. Sperm were frozen in 3 extenders: one containing 6 % glycerol and 1 mg/ml PVA (Gly6P1), another containing 2 % glycerol and 1 mg/ml PVA (Gly2P1), and a control extender with 6 % glycerol. After thawing, the quality of the sperm was evaluated. Sperm were then diluted in human tubal fluid (HTF) and incubated at 37 °C for 3 h. Afterwards, the quality of the sperm was evaluated once more. The presence of PVA in the freezing extender improved motility parameters and FMI. Additionally, PVA-containing groups had lower proportions of capacitated and acrosome reacted sperm compared with the control group (P < 0.05). The Gly6P1 group performed better than the other two groups (P < 0.05). In the fourth experiment, sperm from the Gly6P1 and Control groups were used in the IVF process immediately after thawing (T0) and after a 3-h incubation at 37 °C in HTF (T3). Cleavage, blastocyst and hatching rates in both groups were similar at T0, but they were lower in the Control group at T3 (P < 0.05). In conclusion, PVA as an additive to the freezing extender significantly improves post-thaw motility, viability, acrosome integrity, longevity, and fertile lifespan of ram epididymal spermatozoa.
Collapse
Affiliation(s)
- Zeinab Hadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran; Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Ebrahim Ahmadi
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran.
| | - Naser Shams-Esfandabadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran; Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Najmeh Davoodian
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Abolfazl Shirazi
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran; Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Midya Moradian
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
3
|
Midya US, Bandyopadhyay S. Ice Recrystallization Unveils the Binding Mechanism Operating at a Diffused Interface. J Phys Chem B 2024; 128:1170-1178. [PMID: 38287221 DOI: 10.1021/acs.jpcb.3c05934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Recrystallization of ice is a natural phenomenon that causes adverse effects in cryopreservation, agriculture, and in frozen food industry. It has long been recognized that ice recrystallization occurs through the Ostwald ripening and accretion processes. However, neither of these processes has been explored in microscopic detail by state-of-the-art experimental techniques. We carried out atomistic molecular dynamics (MD) simulations to explore ice recrystallization through the accretion process. Attempts have been made to elucidate the binding mechanism that is operating at the diffused ice-water interface. It is demonstrated that two ice crystals spontaneously recognize each other and bind together to form a large crystal in liquid water, resulting in ice recrystallization by accretion. Interestingly, the study reveals that the binding occurs due to the freezing of the interfacial water layer present between the two ice planes, even at a temperature above the melting point of the ice crystal. The synergistically enhanced ordering effect of two ice surfaces on the interfacial water leads to such freezing occurring during the binding process. However, proper crystallographic alignment is not necessarily required for the binding of the two crystals. Simulations have also been carried out to study the binding between an ice crystal and the model ice-binding surface (IBS) of an antifreeze protein above the melting point of the ice crystal. It is found that such binding at the IBS is accompanied by freezing of the interfacial water. This establishes that the synergetic ordering-driven freezing of interfacial water is a common binding mechanism at the diffused surfaces of ice crystals. We believe that this mechanism will provide a microscopic understanding of the process of recrystallization inhibition and thus help in designing suitable materials for potent applications in recrystallization inhibition.
Collapse
Affiliation(s)
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
4
|
Diao Y, Hao T, Liu X, Yang H. Advances in single ice crystal shaping materials: From nature to synthesis and applications in cryopreservation. Acta Biomater 2024; 174:49-68. [PMID: 38040076 DOI: 10.1016/j.actbio.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Antifreeze (glyco) proteins [AF(G)Ps], which are widely present in various extreme microorganisms, can control the formation and growth of ice crystals. Given the significance of cryogenic technology in biomedicine, climate science, electronic energy, and other fields of research, scientists are quite interested in the development and synthesis high-efficiency bionic antifreeze protein materials, particularly to reproduce their dynamic ice shaping (DIS) characteristics. Single ice crystal shaping materials, a promising class of ice-controlling materials, can alter the morphology and growth rate of ice crystals at low temperatures. This review aims to highlight the development of single ice crystal shaping materials and provide a brief comparison between a series of natural and bionic synthetic materials with DIS ability, which include AF(G)Ps, polymers, salts, and nanomaterials. Additionally, we summarize their applications in cryopreservation. Finally, this paper presents the current challenges and prospects encountered in developing high-efficiency and practical single ice crystal shaping materials. STATEMENT OF SIGNIFICANCE: The formation and growth of ice crystals hold a significant importance to an incredibly broad range of fields. Therefore, the design and fabrication of the single ice crystal shaping materials have gained the increasing popularity due to its key role in dynamic ice shaping (DIS) characteristics. Especially, single ice crystal shaping materials are considered one of the most promising candidates as ice inhibitors, presenting tremendous prospects for enhancing cryopreservation. In this work, we focus on the molecular characteristics, structure-function relationships, and DIS mechanisms of typical natural and biomimetic synthetic materials. This review may provide inspiration for the design and preparation of single ice crystal shaping materials and give guidance for the development of effective cryopreservation agent.
Collapse
Affiliation(s)
- Yunhe Diao
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - Tongtong Hao
- School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - Huige Yang
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China..
| |
Collapse
|
5
|
Ren X, Zheng W, Li L, Feng S, Zhang H, Xiong Z, Wu Y, Song Z, Ai L, Xie F. Effects of tamarind seed polysaccharides on physicochemical characteristics of frozen dough: structure-function relationship. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6574-6583. [PMID: 37243337 DOI: 10.1002/jsfa.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Recently, frozen dough has become more popular because of its ability to be quickly transformed into freshly baked foods. During the storage and transport process, frozen dough can suffer some degree of damage caused by ice crystallization and recrystallization. Adding polysaccharides to frozen dough is a good way to solve this problem. Tamarind seed polysaccharide (TSP) has excellent ice crystal steady ability and has also been widely used in frozen foods. However, there is no study on the use of TSP in frozen dough. RESULTS TSP can stabilize the bound water content, inhibit the freezable water content, and increase elasticity. However, the dough with different structures of TSP added was less firm after 30 days of freezing compared to the dough without TSP, and the porosity and stomatal density of the prepared steamed bread gradually decreased. The addition of TSP reduced gluten deterioration during the freezing process, thus decreasing the collapse and uneven porosity of the steamed bread. CONCLUSIONS The results could provide new insights into the structure of TSP and its effect on the quality characteristics of frozen dough. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaolong Ren
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Weiqi Zheng
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lin Li
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuo Feng
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yan Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd, Yuxi, China
| | - Lianzhong Ai
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fan Xie
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Farag H, Peters B. Engulfment Avalanches and Thermal Hysteresis for Antifreeze Proteins on Supercooled Ice. J Phys Chem B 2023. [PMID: 37294871 DOI: 10.1021/acs.jpcb.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antifreeze proteins (AFPs) bind to the ice-water surface and prevent ice growth at temperatures below 0 °C through a Gibbs-Thomson effect. Each adsorbed AFP creates a metastable depression on the surface that locally resists ice growth, until ice engulfs the AFP. We recently predicted the susceptibility to engulfment as a function of AFP size, distance between AFPs, and supercooling [ J. Chem. Phys. 2023, 158, 094501]. For an ensemble of AFPs adsorbed on the ice surface, the most isolated AFPs are the most susceptible, and when an isolated AFP gets engulfed, its former neighbors become more isolated and more susceptible to engulfment. Thus, an initial engulfment event can trigger an avalanche of subsequent engulfment events, leading to a sudden surge of unrestrained ice growth. This work develops a model to predict the supercooling at which the first engulfment event will occur for an ensemble of randomly distributed AFP pinning sites on an ice surface. Specifically, we formulate an inhomogeneous survival probability that accounts for the AFP coverage, the distribution of AFP neighbor distances, the resulting ensemble of engulfment rates, the ice surface area, and the cooling rate. We use the model to predict thermal hysteresis trends and compare with experimental data.
Collapse
Affiliation(s)
- Hossam Farag
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Farag H, Peters B. Free energy barriers for anti-freeze protein engulfment in ice: Effects of supercooling, footprint size, and spatial separation. J Chem Phys 2023; 158:094501. [PMID: 36889941 DOI: 10.1063/5.0131983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Anti-freeze proteins (AFPs) protect organisms at freezing conditions by attaching to the ice surface and arresting its growth. Each adsorbed AFP locally pins the ice surface, resulting in a metastable dimple for which the interfacial forces counteract the driving force for growth. As supercooling increases, these metastable dimples become deeper, until metastability is lost in an engulfment event where the ice irreversibly swallows the AFP. Engulfment resembles nucleation in some respects, and this paper develops a model for the "critical profile" and free energy barrier for the engulfment process. Specifically, we variationally optimize the ice-water interface and estimate the free energy barrier as a function of the supercooling, the AFP footprint size, and the distance to neighboring AFPs on the ice surface. Finally, we use symbolic regression to derive a simple closed-form expression for the free energy barrier as a function of two physically interpretable, dimensionless parameters.
Collapse
Affiliation(s)
- Hossam Farag
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Singh P, Sharma D, Singhal S, Kumar A, Singh AK, Honparkhe M. Sodium dodecyl sulphate, N-octyl β-D glucopyranoside and 4-methoxy phenyl β-D glucopyranoside effect on post-thaw sperm motion and viability traits of Murrah buffalo (Bubalus bubalis) bulls. Cryobiology 2022; 107:1-12. [PMID: 35850230 DOI: 10.1016/j.cryobiol.2022.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
Sodium Dodecyl Sulphate (SDS), N-Octyl β-D Glucopyranoside (NOG), 4-Methoxy Phenyl β-D Glucopyranoside (4-MPG) as ice recrystallization inhibitors were added to Tris Egg Yolk Glycerol (TEYG) semen extender for cryopreservation of semen of buffalo bulls. Post-thaw sperm motion and viability traits were evaluated. Pilot study involved six semen ejaculates (2 ejaculates/bull, from three bulls); second experiment was conducted using twenty seven semen ejaculates (9 ejaculates/bull, from 3 bulls) and in third experiment three semen ejaculates (one bull) were used. Eight concentrations of SDS (2, 1, 0.5, 0.25, 0.15, 0.125, 0.0625 and 0.0312%), twelve concentrations of NOG (33, 22, 11, 5.5, 2.5, 0.75, 0.5, 0.25, 0.125, 0.0625, 0.03125 and 0.0156 mM), and, eleven concentrations of 4-MPG (220, 165, 110, 55, 50, 25, 12.5, 6.25, 3.125, 1.56 and 0.78 mM) were supplemented in TEYG semen extender to evaluate the post-thaw sperm motility and viability traits. Computer Assisted Sperm Analysis (CASA) was used to measure the kinetic and functional parameters for sperm motion traits, Hypo Osmotic Swelling Test (HOST) for sperm plasma membrane integrity, Eosin Nigrosin staining for viability and Rose Bengal staining for sperm abnormalities for all the experiments except for pilot study where only Total Motility (TM) and Rapid Progressive Motility (RP) were evaluated. Three freezing protocols; i) Normal P24 (freezing rate of -30 °C min-1 from 4 °C to -15 °C; -40 °C min-1 from -15 °C to -60 °C; and -50 °C min-1 from -60 °C to -140 °C; and then plunged in liquid Nitrogen at -196 °C); ii) Moderate P25 (freezing rate of -30 °C min-1 from 4 °C to -15 °C; -50 °C min-1 from -15 °C to -60 °C; and -50 °C min-1 from -60 °C to -140 °C; and then plunged in liquid Nitrogen at -196 °C); and iii) Rapid P26 (freezing rate of -30 °C min-1 from 4 °C to -15 °C; -60 °C min-1 from -15 °C to -60 °C; and -50 °C min-1 from -60 °C to -140 °C; and then plunged in liquid Nitrogen at -196 °C) were evaluated using SDS 0.125% in TEYG semen extender. SDS ≤0.125%, NOG ≤0.0625 mM and 4-MPG ≤ 3.125 mM in TEYG buffalo semen extender improved significantly (p < .05) the kinetic and functional parameters as compared to the other Ice Recrystallization Inhibitors (IRIs) concentrations used for cryopreservation of buffalo bull semen in the pilot study. SDS 0.125% supplementation was the best IRI among all which resulted in improved kinetic and functional parameters of bull semen in second experiment. Conclusion was drawn that buffalo bull semen cryopreservation using sodium dodecyl sulphate, 0.125% as IRI in TEYG semen extender along with freezing protocol P 25 revealed optimum kinetic and functional parameters for post-thaw spermatozoa.
Collapse
Affiliation(s)
- Prahlad Singh
- Department of Teaching Veterinary Clinical Complex, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India.
| | - Deepak Sharma
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Sumit Singhal
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Ajeet Kumar
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Ashwani Kumar Singh
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Mrigank Honparkhe
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| |
Collapse
|
9
|
Bai G, Hu J, Qin S, Qi Z, Zhuang H, Sun F, Lu Y, Jin S, Gao D, Wang J. Small-molecule fulvic acid with strong hydration ability for non-vitreous cellular cryopreservation. iScience 2022; 25:104423. [PMID: 35663038 PMCID: PMC9157229 DOI: 10.1016/j.isci.2022.104423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/12/2022] [Accepted: 05/11/2022] [Indexed: 12/11/2022] Open
Abstract
The exploitation of biocompatible ice-control materials especially the small molecules for non-vitreous cryopreservation remains challenging. Here, we report a small molecule of fulvic acid (FA) with strong hydration ability, which enables non-vitreous cellular cryopreservation by reducing ice growth during freezing and reducing ice recrystallization/promoting ice melting during thawing. Without adding any other cryoprotectants, FA can enhance the recovery of sheep red blood cells (RBCs) by three times as compared with a commercial cryoprotectant (hydroxyethyl starch) under a stringent test condition. Investigation of water mobility reveals that the ice-control properties of FA can be ascribed to its strong bondage to water molecules. Furthermore, we found that FA can be absorbed by RBCs and mainly locates on membranes, suggesting the possible contribution of FA to cell protection through stabilizing membranes. This work bespeaks a bright future for small-molecule cryoprotectants in non-vitreous cryopreservation application. FA shows strong hydration ability FA reduces ice growth/recrystallization and promotes ice melting FA can be absorbed by RBCs and mainly locates on membranes FA enables non-vitreous cellular cryopreservation
Collapse
Affiliation(s)
- Guoying Bai
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.,Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinhao Hu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Sijia Qin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zipeng Qi
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hening Zhuang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fude Sun
- Key Laboratory of Hebei Province for Molecular Biophysics Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China
| | - Youhua Lu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shenglin Jin
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Gao
- Key Laboratory of Hebei Province for Molecular Biophysics Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China
| | - Jianjun Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Preparation of Poly(vinyl Alcohol) Microparticles for Freeze Protection of Sensitive Fruit Crops. Polymers (Basel) 2022; 14:polym14122452. [PMID: 35746026 PMCID: PMC9228911 DOI: 10.3390/polym14122452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Poly(vinyl alcohol) (PVA) displays ice recrystallization inhibition (IRI) properties as many antifreeze proteins found in cold tolerant organisms. The molecular architecture and composition (molecular weight and distribution of pendant OH and acetate groups) have been studied to improve the antifreezing properties of PVA, suggesting that the molecular architecture of PVA plays an important role in IRI activity. The present work deals with the preparation of PVA microparticles using an alkaline treatment. The effect of PVA molecular weight on the morphology and antifreezeing properties of PVA microparticles was investigated. The antifreezeing property of PVA microparticles on the susceptibility of flower bud tissues to freeze damage was also evaluated. The alkaline treatment of an aqueous PVA solution produced stable polymer chain aggregates with spherical shapes. The average size of the PVA microparticles increased significantly with the increasing molecular weight of the PVA macromolecule precursor. The PVA microparticles inhibited the growth of ice crystals and blocked ice growth at concentrations as low as 0.01 % w/v. The effect of impeding ice crystal growth by preventing the joining of adjacent ice crystals is attributed to the larger size of the PVA particles adsorbed on the ice surface compared to the aggregated PVA macromolecules in saline solution. The thermal hysteresis activity of PVA macromolecules and microparticles was not detected by differential scanning calorimetry analysis. The PVA microparticles reduced the incidence of freeze injuries in flower bud tissues by 55% and their application, considering the low toxicity of PVA, has a high potential for freeze protection in fruit crops.
Collapse
|
11
|
Elzaabalawy A, Meguid SA. Advances in the development of superhydrophobic and icephobic surfaces. INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN 2022; 18:509-547. [PMID: 37520670 PMCID: PMC9132174 DOI: 10.1007/s10999-022-09593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/26/2022] [Indexed: 08/01/2023]
Abstract
Superhydrophobicity and icephobicity are governed by surface chemistry and surface structure. These two features signify a potential advance in surface engineering and have recently garnered significant attention from the research community. This review aims to simulate further research in the development of superhydrophobic and icephobic surfaces in order to achieve their wide-spread adoption in practical applications. The review begins by establishing the fundamentals of the wetting phenomenon and wettability parameters. This is followed by the recent advances in modeling and simulations of the response of superhydrophobic surfaces to static and dynamic droplets contact and impingement, respectively. In view of their versatility and multifunctionality, a special attention is given to the development of these surfaces using nanocomposites. Furthermore, the review considers advances in icephobicity, its comprehensive characterization and its relation to superhydrophobicity. The review also includes the importance of the use of superhydrophobic surface to combat viral and bacterial contamination that exist in fomites.
Collapse
Affiliation(s)
- Assem Elzaabalawy
- Mechanics and Aerospace Design Lab, University of Toronto, Toronto, M5S 3G8 Canada
| | - Shaker A. Meguid
- Mechanics and Aerospace Design Lab, University of Toronto, Toronto, M5S 3G8 Canada
| |
Collapse
|
12
|
Isolation of novel wheat bran antifreeze polysaccharides and the cryoprotective effect on frozen dough quality. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Bak IG, Chae CG, Lee JS. Synthetic Control of Helical Polyisocyanates by Living Anionic Polymerization toward Peptide Mimicry. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- In Gyu Bak
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Chang-Geun Chae
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jae-Suk Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
14
|
Murray A, Congdon TR, Tomás RMF, Kilbride P, Gibson MI. Red Blood Cell Cryopreservation with Minimal Post-Thaw Lysis Enabled by a Synergistic Combination of a Cryoprotecting Polyampholyte with DMSO/Trehalose. Biomacromolecules 2022; 23:467-477. [PMID: 34097399 PMCID: PMC7612374 DOI: 10.1021/acs.biomac.1c00599] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/24/2021] [Indexed: 12/16/2022]
Abstract
From trauma wards to chemotherapy, red blood cells are essential in modern medicine. Current methods to bank red blood cells typically use glycerol (40 wt %) as a cryoprotective agent. Although highly effective, the deglycerolization process, post-thaw, is time-consuming and results in some loss of red blood cells during the washing procedures. Here, we demonstrate that a polyampholyte, a macromolecular cryoprotectant, synergistically enhances ovine red blood cell cryopreservation in a mixed cryoprotectant system. Screening of DMSO and trehalose mixtures identified optimized conditions, where cytotoxicity was minimized but cryoprotective benefit maximized. Supplementation with polyampholyte allowed 97% post-thaw recovery (3% hemolysis), even under extremely challenging slow-freezing and -thawing conditions. Post-thaw washing of the cryoprotectants was tolerated by the cells, which is crucial for any application, and the optimized mixture could be applied directly to cells, causing no hemolysis after 1 h of exposure. The procedure was also scaled to use blood bags, showing utility on a scale relevant for application. Flow cytometry and adenosine triphosphate assays confirmed the integrity of the blood cells post-thaw. Microscopy confirmed intact red blood cells were recovered but with some shrinkage, suggesting that optimization of post-thaw washing could further improve this method. These results show that macromolecular cryoprotectants can provide synergistic benefit, alongside small molecule cryoprotectants, for the storage of essential cell types, as well as potential practical benefits in terms of processing/handling.
Collapse
Affiliation(s)
- Alex Murray
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Thomas R. Congdon
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Ruben M. F. Tomás
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| | - Peter Kilbride
- Asymptote, Cytiva, Chivers Way, Cambridge CB24 9BZ, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
15
|
Ghalamara S, Silva S, Brazinha C, Pintado M. Structural diversity of marine anti-freezing proteins, properties and potential applications: a review. BIORESOUR BIOPROCESS 2022; 9:5. [PMID: 38647561 PMCID: PMC10992025 DOI: 10.1186/s40643-022-00494-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/08/2022] [Indexed: 11/10/2022] Open
Abstract
Cold-adapted organisms, such as fishes, insects, plants and bacteria produce a group of proteins known as antifreeze proteins (AFPs). The specific functions of AFPs, including thermal hysteresis (TH), ice recrystallization inhibition (IRI), dynamic ice shaping (DIS) and interaction with membranes, attracted significant interest for their incorporation into commercial products. AFPs represent their effects by lowering the water freezing point as well as preventing the growth of ice crystals and recrystallization during frozen storage. The potential of AFPs to modify ice growth results in ice crystal stabilizing over a defined temperature range and inhibiting ice recrystallization, which could minimize drip loss during thawing, improve the quality and increase the shelf-life of frozen products. Most cryopreservation studies using marine-derived AFPs have shown that the addition of AFPs can increase post-thaw viability. Nevertheless, the reduced availability of bulk proteins and the need of biotechnological techniques for industrial production, limit the possible usage in foods. Despite all these drawbacks, relatively small concentrations are enough to show activity, which suggests AFPs as potential food additives in the future. The present work aims to review the results of numerous investigations on marine-derived AFPs and discuss their structure, function, physicochemical properties, purification and potential applications.
Collapse
Affiliation(s)
- Soudabeh Ghalamara
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Sara Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Carla Brazinha
- LAQV/Requimte, Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
16
|
Kamat K, Naullage PM, Molinero V, Peters B. Diffusion Attachment Model for Long Helical Antifreeze Proteins to Ice. Biomacromolecules 2021; 23:513-519. [PMID: 34928587 DOI: 10.1021/acs.biomac.1c01247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Some of the most potent antifreeze proteins (AFPs) are approximately rigid helical structures that bind with one side in contact with the ice surface at specific orientations. These AFPs take random orientations in solution; however, most orientations become sterically inaccessible as the AFP approaches the ice surface. The effect of these inaccessible orientations on the rate of adsorption of AFP to ice has never been explored. Here, we present a diffusion-controlled theory of adsorption kinetics that accounts for these orientational restrictions to predict a rate constant for adsorption (kon, in m/s) as a function of the length and width of the AFP molecules. We find that kon decreases with length and diameter of the AFP and is almost proportional to the inverse of the area of the binding surface. We demonstrate that the restricted orientations create an entropic barrier to AFP adsorption, which we compute to be approximately 7 kBT for most AFPs and up to 9 kBT for Maxi, the largest known AFP. We compare the entropic resistance 1/kon to resistances for diffusion through boundary layers and across typical distances in the extracellular matrix and find that these entropic and diffusion resistances could become comparable in the small confined spaces of biological environments.
Collapse
Affiliation(s)
- Kartik Kamat
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Pavithra M Naullage
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112, United States
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Gore M, Narvekar A, Bhagwat A, Jain R, Dandekar P. Macromolecular cryoprotectants for the preservation of mammalian cell culture: lessons from crowding, overview and perspectives. J Mater Chem B 2021; 10:143-169. [PMID: 34913462 DOI: 10.1039/d1tb01449h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cryopreservation is a process used for the storage of mammalian cells at a very low temperature, in a state of 'suspended animation.' Highly effective and safe macromolecular cryoprotectants (CPAs) have gained significant attention as they obviate the toxicity of conventional CPAs like dimethyl sulfoxide (DMSO) and reduce the risks involved in the storage of cultures at liquid nitrogen temperatures. These agents provide cryoprotection through multiple mechanisms, involving extracellular and intracellular macromolecular crowding, thereby impacting the biophysical and biochemical dynamics of the freezing medium and the cryopreserved cells. These CPAs vary in their structures and physicochemical properties, which influence their cryoprotective activities. Moreover, the introduction of polymeric crowders in the cryopreservation media enables serum-free storage at low-DMSO concentrations and high-temperature vitrification of frozen cultures (-80 °C). This review highlights the need for macromolecular CPAs and describes their mechanisms of cryopreservation, by elucidating the role of crowding effects. It also classifies the macromolecules based on their chemistry and their structure-activity relationships. Furthermore, this article provides perspectives on the factors that may influence the outcomes of the cell freezing process or may help in designing and evaluating prospective macromolecules. This manuscript also includes case studies about cellular investigations that have been conducted to demonstrate the cryoprotective potential of macromolecular CPAs. Ultimately, this review provides essential directives that will further improve the cell cryopreservation process and may encourage the use of macromolecular CPAs to fortify basic, applied, and translational research.
Collapse
Affiliation(s)
- Manish Gore
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Aditya Narvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Advait Bhagwat
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| |
Collapse
|
18
|
Kimizuka N. Impact of Suspended Solids on Coarsening of Ice. ACS OMEGA 2021; 6:26969-26975. [PMID: 34693117 PMCID: PMC8529592 DOI: 10.1021/acsomega.1c03373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Suspended solids, such as silica particles and cellulose fibers, were added to a sucrose aqueous solution, and ice crystals were coarsened at -10 °C. From the radius of the ice crystals, the coarsening rate constant was obtained using the Lifshitz-Wagner equation and the impact of the suspended solid on the coarsening of ice was evaluated. The results showed that the addition of the silica particle suppressed coarsening, but this behavior was not dependent on particle size. It was also shown that cellulose fibers suppressed coarsening more than silica particles. In order to clarify these causes, the present study investigated the correlation between L w-L mea and the coarsening rate constants obtained from different suspensions. L w is the latent heat of fusion (calculated value) corresponding to the water content of the suspension, while L mea is the latent heat of fusion (measured value) obtained by thermal analysis. A correlation was observed between L w-L mea and the logarithm of the coarsening rate constant. L w-L mea represents the volume of water that did not form ice crystals on the addition of the suspended solid (volume of unfrozen water at -10 °C), with a larger L w-L mea associated with greater inhibition of coarsening. The present findings suggest that suspended solids inhibit coarsening by promoting ice crystal melting.
Collapse
|
19
|
Georgiou P, Marton HL, Baker AN, Congdon TR, Whale TF, Gibson MI. Polymer Self-Assembly Induced Enhancement of Ice Recrystallization Inhibition. J Am Chem Soc 2021; 143:7449-7461. [PMID: 33944551 PMCID: PMC8154521 DOI: 10.1021/jacs.1c01963] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Ice binding proteins modulate ice nucleation/growth and have huge (bio)technological potential. There are few synthetic materials that reproduce their function, and rational design is challenging due to the outstanding questions about the mechanisms of ice binding, including whether ice binding is essential to reproduce all their macroscopic properties. Here we report that nanoparticles obtained by polymerization-induced self-assembly (PISA) inhibit ice recrystallization (IRI) despite their constituent polymers having no apparent activity. Poly(ethylene glycol), poly(dimethylacrylamide), and poly(vinylpyrrolidone) coronas were all IRI-active when assembled into nanoparticles. Different core-forming blocks were also screened, revealing the core chemistry had no effect. These observations show ice binding domains are not essential for macroscopic IRI activity and suggest that the size, and crowding, of polymers may increase the IRI activity of "non-active" polymers. It was also discovered that poly(vinylpyrrolidone) particles had ice crystal shaping activity, indicating this polymer can engage ice crystal surfaces, even though on its own it does not show any appreciable ice recrystallization inhibition. Larger (vesicle) nanoparticles are shown to have higher ice recrystallization inhibition activity compared to smaller (sphere) particles, whereas ice nucleation activity was not found for any material. This shows that assembly into larger structures can increase IRI activity and that increasing the "size" of an IRI does not always lead to ice nucleation. This nanoparticle approach offers a platform toward ice-controlling soft materials and insight into how IRI activity scales with molecular size of additives.
Collapse
Affiliation(s)
- Panagiotis
G. Georgiou
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
| | - Huba L. Marton
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
| | - Alexander N. Baker
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
| | - Thomas R. Congdon
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
| | - Thomas F. Whale
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
| |
Collapse
|
20
|
Bailey TL, Hernandez-Fernaud JR, Gibson MI. Proline pre-conditioning of cell monolayers increases post-thaw recovery and viability by distinct mechanisms to other osmolytes. RSC Med Chem 2021; 12:982-993. [PMID: 34223163 PMCID: PMC8221256 DOI: 10.1039/d1md00078k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell cryopreservation is an essential tool for drug toxicity/function screening and transporting cell-based therapies, and is essential in most areas of biotechnology. There is a challenge, however, associated with the cryopreservation of cells in monolayer format (attached to tissue culture substrates) which gives far lower cell yields (<20% typically) compared to suspension freezing. Here we investigate the mechanisms by which the protective osmolyte l-proline enhances cell-monolayer cryopreservation. Pre-incubating A549 cells with proline, prior to cryopreservation in monolayers, increased post-thaw cell yields two-fold, and the recovered cells grow faster compared to cells cryopreserved using DMSO alone. Further increases in yield were achieved by adding polymeric ice recrystallization inhibitors, which gave limited benefit in the absence of proline. Mechanistic studies demonstrated a biochemical, rather than biophysical (i.e. not affecting ice growth) mode of action. It was observed that incubating cells with proline (before freezing) transiently reduced the growth rate of the cells, which was not seen with other osmolytes (betaine and alanine). Removal of proline led to rapid growth recovery, suggesting that proline pre-conditions the cells for cold stress, but with no impact on downstream cell function. Whole cell proteomics did not reveal a single pathway or protein target but rather cells appeared to be primed for a stress response in multiple directions, which together prepare the cells for freezing. These results support the use of proline alongside standard conditions to improve post-thaw recovery of cell monolayers, which is currently considered impractical. It also demonstrates that a chemical biology approach to discovering small molecule biochemical modulators of cryopreservation may be possible, to be used alongside traditional (solvent) based cryoprotectants. Cell cryopreservation is an essential tool for transporting cell-based therapies, and is essential in most areas of biotechnology. Here proline pre-incubation prior to cell monolayer cryopreservation is explored, increasing post-thaw yields.![]()
Collapse
Affiliation(s)
- Trisha L Bailey
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK .,Warwick Medical School, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
21
|
Huang J, Guo J, Zhou L, Zheng G, Cao J, Li Z, Zhou Z, Lei Q, Brinker CJ, Zhu W. Advanced Nanomaterials-Assisted Cell Cryopreservation: A Mini Review. ACS APPLIED BIO MATERIALS 2021; 4:2996-3014. [PMID: 35014388 DOI: 10.1021/acsabm.1c00105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell cryopreservation is of vital significance both for transporting and storing cells before experimental/clinical use. Cryoprotectants (CPAs) are necessary additives in the preserving medium in cryopreservation, preventing cells from freeze-thaw injuries. Traditional organic solvents have been widely used in cell cryopreservation for decades. Given the obvious damage to cells due to their undesirable cytotoxicity and the burdensome post-thaw washing cycles before use, traditional CPAs are more and more likely to be replaced by modern ones with lower toxicity, less processing, and higher efficiency. As materials science thrives, nanomaterials are emerging to serve as potent vehicles for delivering nontoxic CPAs or inherent CPAs comparable to or even superior to conventional ones. This review will introduce some advanced nanomaterials (e.g., organic/inorganic nanoCPAs, nanodelivery systems) utilized for cell cryopreservation, providing broader insights into this developing field.
Collapse
Affiliation(s)
- Junda Huang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jimin Guo
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States.,Department of Internal Medicine, Molecular Medicine, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Liang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Guansheng Zheng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zeyu Li
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zhuang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
22
|
Chen J, Qiu T, Guo L, He L, Li X. Topology Reliable LCST-Type Behavior of ABA Triblock Polymer and Influence on Water Condensation and Crystallization. Macromol Rapid Commun 2021; 42:e2100024. [PMID: 33768621 DOI: 10.1002/marc.202100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/15/2021] [Indexed: 01/26/2023]
Abstract
As a kind of smart material, thermoresponsive hydrogels are widely investigated and applied in many fields. Due to the limitation of the freezing temperature of the water, it is a challenge to further broaden their sol-gel transition temperature (Tgel ) range, especially below 0 °C. Herein, the lower critical solution temperature type of amphiphilic ABA triblock copolymers, synthesized via two-step reversible addition-fragmentation chain transfer (RAFT) polymerization is demonstrated. The hydrophilic A-block and the hydrophobic B-block are composed of poly(N,N-dimethylacrylamide) (PDMAA) and poly(diacetone acrylamide) (PDAAM), respectively. The degree of polymerization (DP) of both A-block and B-block shows a significant influence on the Tgel of triblock copolymer dispersion. By changing the length of these two blocks or physically blending these copolymers dispersions, the Tgel can be well adjusted in a temperature range from 45 to -10 °C. Moreover, When the Tgel is higher than 4 °C, the triblock copolymer coatings show a good anti-fogging property. And when the Tgel is around or lower than the freezing temperature of the water, aqueous dispersions of the triblock copolymer have an ice recrystallization inhibition activity, resulting in the decrease of average maximum grain size (MLGS) of ice crystal.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Teng Qiu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Longhai Guo
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lifan He
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyu Li
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
23
|
Fayter AE, Hasan M, Congdon TR, Kontopoulou I, Gibson MI. Ice recrystallisation inhibiting polymers prevent irreversible protein aggregation during solvent-free cryopreservation as additives and as covalent polymer-protein conjugates. Eur Polym J 2020; 140:110036. [PMID: 33311718 PMCID: PMC7709485 DOI: 10.1016/j.eurpolymj.2020.110036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023]
Abstract
Protein storage and transport is essential to deliver therapies (biologics), enzymes for biotechnological applications, and underpins fundamental structural and molecular biology. To enable proteins to be stored and transported it is often essential to freeze them, requiring cryoprotectants such as glycerol or trehalose. Here we explore the mechanisms by which poly(vinyl alcohol), PVA, a potent ice recrystallisation inhibitor protects proteins during freeze/thaw to enable solvent-free cryopreservation with a focus on comparing mixing, verses polymer-protein conjugation. A panel of poly(vinyl alcohol)s are investigated including commercial, well-defined (from RAFT), and PVA-protein conjugates, to map out PVA's efficacy. Enzymatic activity recovery of lactate dehydrogenase was found to correlate with post-thaw aggregation state (less aggregated protein had greater activity), which was modulated by PVA's ice recrystallisation inhibition activity. This macromolecular cryoprotectant matched the performance of glycerol, but at lower additive concentrations (as low as 1 mg.mL-1). It was also demonstrated that storage at -20 °C, rather than -80 °C was possible using PVA as a cryoprotectant, which is not possible with glycerol storage. A second protein, green-fluorescent protein (GFP), was used to enable screening of molecular weight effects and to obtain PVA-GFP bioconjugates. It was observed that covalent attachment of RAFT-derived PVA showed superior cryoprotectant activity compared to simple mixing of the polymer and protein. These results show that PVA is a real alternative to solvent-based protein storage with potential in biotechnology, food and therapeutics. PVA is already approved for many biomedical applications, is low cost and available on a large scale, making it an ideal cryoprotectant formulation enhancer.
Collapse
Affiliation(s)
- Alice E.R. Fayter
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Muhammad Hasan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Thomas R. Congdon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
24
|
Wu X, Zhang M, Sun Y, Bhandari B, Fan D. Effects of cryoprotectants on
Nostoc sphaeroides
superchilled at low temperature (−3.0°C) and their action mechanisms. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao‐Fei Wu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu China
- Yechun Food Production and Distribution Co., Ltd. Yangzhou Jiangsu China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu China
| | - Yanan Sun
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology Jiangnan University Wuxi Jiangsu China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences University of Queensland Brisbane Queensland Australia
| | - Dongcui Fan
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu China
| |
Collapse
|
25
|
Bianco V, Espinosa JR, Vega C. Antifreeze proteins and homogeneous nucleation: On the physical determinants impeding ice crystal growth. J Chem Phys 2020; 153:091102. [PMID: 32891082 DOI: 10.1063/5.0023211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antifreeze proteins (AFPs) are biopolymers capable of interfering with ice growth. Their antifreeze action is commonly understood considering that the AFPs, by pinning the ice surface, force the crystal-liquid interface to bend forming an ice meniscus, causing an increase in the surface free energy and resulting in a decrease in the freezing point ΔTmax. Here, we present an extensive computational study for a model protein adsorbed on a TIP4P/Ice crystal, computing ΔTmax as a function of the average distance d between AFPs, with simulations spanning over 1 µs. First, we show that the lower the d, the larger the ΔTmax. Then, we find that the water-ice-protein contact angle along the line ΔTmax(d) is always larger than 0°, and we provide a theoretical interpretation. We compute the curvature radius of the stable solid-liquid interface at a given supercooling ΔT ≤ ΔTmax, connecting it with the critical ice nucleus at ΔT. Finally, we discuss the antifreeze capability of AFPs in terms of the protein-water and protein-ice interactions. Our findings establish a unified description of the AFPs in the contest of homogeneous ice nucleation, elucidating key aspects of the antifreeze mechanisms and paving the way for the design of novel ice-controlling materials.
Collapse
Affiliation(s)
- Valentino Bianco
- Faculty of Chemistry, Chemical Physics Department, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0H3, United Kingdom
| | - Carlos Vega
- Faculty of Chemistry, Chemical Physics Department, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| |
Collapse
|
26
|
|
27
|
Matsumura K, Hatakeyama S, Naka T, Ueda H, Rajan R, Tanaka D, Hyon SH. Molecular Design of Polyampholytes for Vitrification-Induced Preservation of Three-Dimensional Cell Constructs without Using Liquid Nitrogen. Biomacromolecules 2020; 21:3017-3025. [PMID: 32659086 DOI: 10.1021/acs.biomac.0c00293] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current slow-freezing methods are too inefficient for cryopreservation of three-dimensional (3D) tissue constructs. Additionally, conventional vitrification methods use liquid nitrogen, which is inconvenient and increases the chance of cross-contamination. Herein, we have developed polyampholytes with various degrees of hydrophobicity and showed that they could successfully vitrify cell constructs including spheroids and cell monolayers without using liquid nitrogen. The polyampholytes prevented ice crystallization during both cooling and warming, demonstrating their potential to prevent freezing-induced damage. Monolayers and spheroids vitrified in the presence of polyampholytes yielded high viabilities post-thawing with monolayers vitrified with PLL-DMGA exhibiting more than 90% viability. Moreover, spheroids vitrified in the presence of polyampholytes retained their fusibilities, thus revealing the propensity of these polyampholytes to stabilize 3D cell constructs. This study is expected to open new avenues for the development of off-the-shelf tissue engineering constructs that can be prepared and preserved until needed.
Collapse
Affiliation(s)
- Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Sho Hatakeyama
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Toshiaki Naka
- Shibuya Corporation, Ko-58 Mameda-Honmachi, Kanazawa, Ishikawa, 920-8681, Japan
| | - Hiroshi Ueda
- Shibuya Corporation, Ko-58 Mameda-Honmachi, Kanazawa, Ishikawa, 920-8681, Japan
| | - Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Daisuke Tanaka
- Genetic Resources Center, National Agriculture and Food Research Organization, 212, Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Suong-Hyu Hyon
- The Joint Graduate School of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan
| |
Collapse
|
28
|
Fayter A, Huband S, Gibson MI. X-ray diffraction to probe the kinetics of ice recrystallization inhibition. Analyst 2020; 145:3666-3677. [PMID: 32266881 DOI: 10.1039/c9an02141h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the nucleation and growth of ice is crucial in fields ranging from infrastructure maintenance, to the environment, and to preserving biologics in the cold chain. Ice binding and antifreeze proteins are potent ice recrystallization inhibitors (IRI), and synthetic materials that mimic this function have emerged, which may find use in biotechnology. To evaluate IRI activity, optical microscopy tools are typically used to monitor ice grain size either by end-point measurements or as a function of time. However, these methods provide 2-dimensional information and image analysis is required to extract the data. Here we explore using wide angle X-ray scattering (WAXS/X-ray powder diffraction (XRD)) to interrogate 100's of ice crystals in 3-dimensions as a function of time. Due to the random organization of the ice crystals in the frozen sample, the number of orientations measured by XRD is proportional to the number of ice crystals, which can be measured as a function of time. This method was used to evaluate the activity for a panel of known IRI active compounds, and shows strong agreement with results obtained from cryo-microscopy, as well as being advantageous in that time-dependent ice growth is easily extracted. Diffraction analysis also confirmed, by comparing the obtained diffraction patterns of both ice binding and non-binding additives, that the observed hexagonal ice diffraction patterns obtained cannot be used to determine which crystal faces are being bound. This method may help in the discovery of new IRI active materials as well as enabling kinetic analysis of ice growth.
Collapse
Affiliation(s)
- Alice Fayter
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, UK.
| | - Steven Huband
- Department of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, UK. and Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, UK
| |
Collapse
|
29
|
Naullage PM, Molinero V. Slow Propagation of Ice Binding Limits the Ice-Recrystallization Inhibition Efficiency of PVA and Other Flexible Polymers. J Am Chem Soc 2020; 142:4356-4366. [DOI: 10.1021/jacs.9b12943] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pavithra M. Naullage
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
30
|
Stubbs C, Bailey TL, Murray K, Gibson MI. Polyampholytes as Emerging Macromolecular Cryoprotectants. Biomacromolecules 2020; 21:7-17. [PMID: 31418266 PMCID: PMC6960013 DOI: 10.1021/acs.biomac.9b01053] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/15/2019] [Indexed: 11/29/2022]
Abstract
Cellular cryopreservation is a platform technology which underpins cell biology, biochemistry, biomaterials, diagnostics, and the cold chain for emerging cell-based therapies. This technique relies on effective methods for banking and shipping to avoid the need for continuous cell culture. The most common method to achieve cryopreservation is to use large volumes of organic solvent cryoprotective agents which can promote either a vitreous (ice free) phase or dehydrate and protect the cells. These methods are very successful but are not perfect: not all cell types can be cryopreserved and recovered, and the cells do not always retain their phenotype and function post-thaw. This Perspective will introduce polyampholytes as emerging macromolecular cryoprotective agents and demonstrate they have the potential to impact a range of fields from cell-based therapies to basic cell biology and may be able to improve, or replace, current solvent-based cryoprotective agents. Polyampholytes have been shown to be remarkable (mammalian cell) cryopreservation enhancers, but their mechanism of action is unclear, which may include membrane protection, solvent replacement, or a yet unknown protective mechanism, but it seems the modulation of ice growth (recrystallization) may only play a minor role in their function, unlike other macromolecular cryoprotectants. This Perspective will discuss their synthesis and summarize the state-of-the-art, including hypotheses of how they function, to introduce this exciting area of biomacromolecular science.
Collapse
Affiliation(s)
- Christopher Stubbs
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Trisha L. Bailey
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Kathryn Murray
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
31
|
|
32
|
Tomás RF, Bailey TL, Hasan M, Gibson MI. Extracellular Antifreeze Protein Significantly Enhances the Cryopreservation of Cell Monolayers. Biomacromolecules 2019; 20:3864-3872. [PMID: 31498594 PMCID: PMC6794639 DOI: 10.1021/acs.biomac.9b00951] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Indexed: 12/24/2022]
Abstract
The cryopreservation of cells underpins many areas of biotechnology, healthcare, and fundamental science by enabling the banking and distribution of cells. Cryoprotectants are essential to prevent cold-induced damage. Here, we demonstrate that extracellular localization of antifreeze proteins can significantly enhance post-thaw recovery of mammalian cell monolayers cryopreserved using dimethyl sulfoxide, whereas they show less benefit in suspension cryopreservation. A type III antifreeze protein (AFPIII) was used as the macromolecular ice recrystallization inhibitor and its intra/extracellular locations were controlled by using Pep-1, a cell-penetrating peptide. Flow cytometry and confocal microscopy confirmed successful delivery of AFPIII. The presence of extracellular AFPIII dramatically increased post-thaw recovery in a challenging 2-D cell monolayer system using just 0.8 mg·mL-1, from 25% to over 60%, whereas intracellularly delivered AFPIII showed less benefit. Interestingly, the antifreeze protein was less effective when used in suspension cryopreservation of the same cells, suggesting that the cryopreservation format is also crucial. These observations show that, in the discovery of macromolecular cryoprotectants, intracellular delivery of ice recrystallization inhibitors may not be a significant requirement under "slow freezing" conditions, which will help guide the design of new biomaterials, in particular, for cell storage.
Collapse
Affiliation(s)
- Ruben
M. F. Tomás
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Trisha L. Bailey
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Muhammad Hasan
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
33
|
Biggs CI, Stubbs C, Graham B, Fayter AER, Hasan M, Gibson MI. Mimicking the Ice Recrystallization Activity of Biological Antifreezes. When is a New Polymer "Active"? Macromol Biosci 2019; 19:e1900082. [PMID: 31087781 PMCID: PMC6828557 DOI: 10.1002/mabi.201900082] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2019] [Indexed: 01/16/2023]
Abstract
Antifreeze proteins and ice-binding proteins have been discovered in a diverse range of extremophiles and have the ability to modulate the growth and formation of ice crystals. Considering the importance of cryoscience across transport, biomedicine, and climate science, there is significant interest in developing synthetic macromolecular mimics of antifreeze proteins, in particular to reproduce their property of ice recrystallization inhibition (IRI). This activity is a continuum rather than an "on/off" property and there may be multiple molecular mechanisms which give rise to differences in this observable property; the limiting concentrations for ice growth vary by more than a thousand between an antifreeze glycoprotein and poly(vinyl alcohol), for example. The aim of this article is to provide a concise comparison of a range of natural and synthetic materials that are known to have IRI, thus providing a guide to see if a new synthetic mimic is active or not, including emerging materials which are comparatively weak compared to antifreeze proteins, but may have technological importance. The link between activity and the mechanisms involving either ice binding or amphiphilicity is discussed and known materials assigned into classes based on this.
Collapse
Affiliation(s)
- Caroline I Biggs
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Ben Graham
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Alice E R Fayter
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Muhammad Hasan
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Medical School, , University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
34
|
Bhatnagar B, Zakharov B, Fisyuk A, Wen X, Karim F, Lee K, Seryotkin Y, Mogodi M, Fitch A, Boldyreva E, Kostyuchenko A, Shalaev E. Protein/Ice Interaction: High-Resolution Synchrotron X-ray Diffraction Differentiates Pharmaceutical Proteins from Lysozyme. J Phys Chem B 2019; 123:5690-5699. [DOI: 10.1021/acs.jpcb.9b02443] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bakul Bhatnagar
- BTx PharmSci Pharmaceutical R&D, Pfizer, Inc., One Burtt Road, Andover 01810, Massachusetts, United States
| | - Boris Zakharov
- Boreskov Institute of Catalysis, Siberian Branch of the RAS, Lavrentieva Avenue, 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street, 2, Novosibirsk 630090, Russia
| | - Alexander Fisyuk
- Laboratory of Organic Synthesis, Chemistry Department, Omsk F.M. Dostoevsky State University, Prospect Mira 55a, Omsk 644053, Russian Federation
- Laboratory of New Organic Materials, Omsk State Technical University, 11 Mira Avenue, Omsk 644050, Russian Federation
| | - Xin Wen
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles 90032, California, United States
| | - Fawziya Karim
- BTx PharmSci Pharmaceutical R&D, Pfizer, Inc., One Burtt Road, Andover 01810, Massachusetts, United States
| | - Kimberly Lee
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles 90032, California, United States
| | - Yurii Seryotkin
- Novosibirsk State University, Pirogova Street, 2, Novosibirsk 630090, Russia
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, Ac.Koptyuga Avenue 3, Novosibirsk 630090, Russian Federation
| | - Mashikoane Mogodi
- The European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble 38043, France
| | - Andy Fitch
- The European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble 38043, France
| | - Elena Boldyreva
- Boreskov Institute of Catalysis, Siberian Branch of the RAS, Lavrentieva Avenue, 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street, 2, Novosibirsk 630090, Russia
| | - Anastasia Kostyuchenko
- Laboratory of New Organic Materials, Omsk State Technical University, 11 Mira Avenue, Omsk 644050, Russian Federation
| | - Evgenyi Shalaev
- Allergan Inc., Pharmaceutical Development, 2525 DuPont Dr, Irvine 92612, California, United States
| |
Collapse
|
35
|
Stubbs C, Wilkins LE, Fayter AER, Walker M, Gibson MI. Multivalent Presentation of Ice Recrystallization Inhibiting Polymers on Nanoparticles Retains Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7347-7353. [PMID: 30095267 PMCID: PMC6354916 DOI: 10.1021/acs.langmuir.8b01952] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Poly(vinyl alcohol) (PVA) has emerged as the most potent mimic of antifreeze (glyco)proteins ice recrystallization inhibition (IRI) activity, despite its lack of structural similarities and flexible, rather than rigid, backbone. The precise spacing of hydroxyl groups is hypothesized to enable PVA to recognize the prism planes of ice but not the basal plane, due to hydroxyl pattern matching of the ice surface giving rise to the macroscopic activity. Here, well-defined PVA derived from reversible addition-fragmentation chain-transfer (RAFT) polymerization is immobilized onto gold nanoparticles to enable the impact of nanoscale assembly and confinement on the observed IRI activity. Unlike previous reports using star-branched or bottle-brush PVAs, the nanoparticle-PVA retains all IRI activity compared to polymers in solution. Evidence is presented to show that this is due to the low grafting densities on the particle surface meaning the chains are free to explore the ice faces, rather than being constrained as in star-branched polymers. These results demonstrate a route to develop more functional IRI's and inclusion of metallic particle cores for imaging and associated applications in cryobiology.
Collapse
Affiliation(s)
- Christopher Stubbs
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Laura E. Wilkins
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alice E. R Fayter
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Marc Walker
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
36
|
Mitchell DE, Fayter AER, Deller RC, Hasan M, Gutierrez-Marcos J, Gibson MI. Ice-recrystallization inhibiting polymers protect proteins against freeze-stress and enable glycerol-free cryostorage. MATERIALS HORIZONS 2019; 6:364-368. [PMID: 30931129 PMCID: PMC6394881 DOI: 10.1039/c8mh00727f] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/19/2018] [Indexed: 05/19/2023]
Abstract
Proteins are ubiquitous in molecular biotechnology, biotechnology and as therapeutics, but there are significant challenges in their storage and distribution, with freezing often required. This is traditionally achieved by the addition of cryoprotective agents such as glycerol (or trehalose) or covalent modification of mutated proteins with cryoprotectants. Here, ice recrystallization inhibiting polymers, inspired by antifreeze proteins, are used synergistically with poly(ethylene glycol) as an alternative to glycerol. The primary mechanism of action appears to be preventing irreversible aggregation due to ice growth. The polymer formulation is successfully used to cryopreserve a range of important proteins including insulin, Taq DNA polymerase and an IgG antibody. The polymers do not require covalent conjugation, nor modification of the protein and are already used in a wide range of biomedical applications, which will facilitate translation to a range of biologics.
Collapse
Affiliation(s)
- Daniel E Mitchell
- Department of Chemistry , University of Warwick , Coventry , CV47AL , UK .
| | - Alice E R Fayter
- Department of Chemistry , University of Warwick , Coventry , CV47AL , UK .
| | - Robert C Deller
- Department of Chemistry , University of Warwick , Coventry , CV47AL , UK .
| | - Muhammad Hasan
- Department of Chemistry , University of Warwick , Coventry , CV47AL , UK .
| | | | - Matthew I Gibson
- Department of Chemistry , University of Warwick , Coventry , CV47AL , UK .
- Warwick Medical School , University of Warwick , CV47AL , UK
| |
Collapse
|
37
|
Stubbs C, Congdon TR, Gibson MI. Photo-polymerisation and study of the ice recrystallisation inhibition of hydrophobically modified poly(vinyl pyrrolidone) co-polymers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Vessella G, Casillo A, Fabozzi A, Traboni S, Iadonisi A, Corsaro MM, Bedini E. Synthesis of the tetrasaccharide repeating unit of the cryoprotectant capsular polysaccharide from Colwellia psychrerythraea 34H. Org Biomol Chem 2019; 17:3129-3140. [DOI: 10.1039/c9ob00104b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synthesis of the threonine-decorated tetrasaccharide repeating unit of a cryoprotectant polysaccharide with a glycosaminoglycan-like structure.
Collapse
Affiliation(s)
- Giulia Vessella
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario Monte S. Angelo
- I-80126 Napoli
- Italy
| | - Angela Casillo
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario Monte S. Angelo
- I-80126 Napoli
- Italy
| | - Antonio Fabozzi
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario Monte S. Angelo
- I-80126 Napoli
- Italy
| | - Serena Traboni
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario Monte S. Angelo
- I-80126 Napoli
- Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario Monte S. Angelo
- I-80126 Napoli
- Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario Monte S. Angelo
- I-80126 Napoli
- Italy
| | - Emiliano Bedini
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario Monte S. Angelo
- I-80126 Napoli
- Italy
| |
Collapse
|
39
|
Jamil MI, Ali A, Haq F, Zhang Q, Zhan X, Chen F. Icephobic Strategies and Materials with Superwettability: Design Principles and Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15425-15444. [PMID: 30445813 DOI: 10.1021/acs.langmuir.8b03276] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ice formation and accretion on surfaces is a serious economic issue in energy supply and transportation. Recent strategies for developing icephobic surfaces are intimately associated with superwettability. Commonly, the superwettability of icephobic materials depends on their surface roughness and chemical composition. This article critically categorizes the possible strategies to mitigate icing problems from daily life. The wettability and classical nucleation theories are used to characterize the icephobic surfaces. Thermodynamically, the advantages/disadvantages of superhydrophobic surfaces are discussed to explain icephobic behavior. The importance of elasticity, slippery liquid-infused porous surfaces (SLIPSs), amphiphilicity, antifreezing protein, organogels, and stimuli-responsive materials has been highlighted to induce icephobic performance. In addition, the design principles and mechanism to fabricate icephobic surfaces with superwettability are explored and summarized.
Collapse
Affiliation(s)
- Muhammad Imran Jamil
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Abid Ali
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Fazal Haq
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Qinghua Zhang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xiaoli Zhan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Fengqiu Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
40
|
Designing the next generation of cryoprotectants - From proteins to small molecules. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Hasan M, Fayter AER, Gibson MI. Ice Recrystallization Inhibiting Polymers Enable Glycerol-Free Cryopreservation of Microorganisms. Biomacromolecules 2018; 19:3371-3376. [PMID: 29932648 PMCID: PMC6588267 DOI: 10.1021/acs.biomac.8b00660] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/20/2018] [Indexed: 02/08/2023]
Abstract
All modern molecular biology and microbiology is underpinned by not only the tools to handle and manipulate microorganisms but also those to store, bank, and transport them. Glycerol is the current gold-standard cryoprotectant, but it is intrinsically toxic to most microorganisms: only a fraction of cells survive freezing and the presence of glycerol can impact downstream applications and assays. Extremophile organisms survive repeated freeze/thaw cycles by producing antifreeze proteins which are potent ice recrystallization inhibitors. Here we introduce a new concept for the storage/transport of microorganisms by using ice recrystallization inhibiting poly(vinyl alcohol) in tandem with poly(ethylene glycol). This cryopreserving formulation is shown to result in a 4-fold increase in E. coli yield post-thaw, compared to glycerol, utilizing lower concentrations, and successful cryopreservation shown as low as 1.1 wt % of additive. The mechanism of protection is demonstrated to be linked not only to inhibiting ice recrystallization (by comparison to a recombinant antifreeze protein) but also to the significantly lower toxicity of the polymers compared to glycerol. Optimized formulations are presented and shown to be broadly applicable to the cryopreservation of a panel of Gram-negative, Gram-positive, and mycobacteria strains. This represents a step-change in how microorganisms will be stored by the design of new macromolecular ice growth inhibitors; it should enable a transition from traditional solvent-based to macromolecular microbiology storage methods.
Collapse
Affiliation(s)
- Muhammad Hasan
- Department
of Chemistry and Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Alice E. R. Fayter
- Department
of Chemistry and Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry and Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| |
Collapse
|
42
|
Graham B, Fayter AER, Houston JE, Evans RC, Gibson MI. Facially Amphipathic Glycopolymers Inhibit Ice Recrystallization. J Am Chem Soc 2018; 140:5682-5685. [PMID: 29660982 PMCID: PMC5940321 DOI: 10.1021/jacs.8b02066] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 12/28/2022]
Abstract
Antifreeze glycoproteins (AFGPs) from polar fish are the most potent ice recrystallization (growth) inhibitors known, and synthetic mimics are required for low-temperature applications such as cell cryopreservation. Here we introduce facially amphipathic glycopolymers that mimic the three-dimensional structure of AFGPs. Glycopolymers featuring segregated hydrophilic and hydrophobic faces were prepared by ring-opening metathesis polymerization, and their rigid conformation was confirmed by small-angle neutron scattering. Ice recrystallization inhibition (IRI) activity was reduced when a hydrophilic oxo-ether was installed on the glycan-opposing face, but significant activity was restored by incorporating a hydrophobic dimethylfulvene residue. This biomimetic strategy demonstrates that segregated domains of distinct hydrophilicity/hydrophobicity are a crucial motif to introduce IRI activity, which increases our understanding of the complex ice crystal inhibition processes.
Collapse
Affiliation(s)
- Ben Graham
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Judith E. Houston
- Jülich
Centre for Neutron Science, Forschungszentrum
Jülich GmbH, Garching 85747, Germany
| | - Rachel C. Evans
- Department
of Materials Science & Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
43
|
Sproncken CCM, Surís-Valls R, Cingil HE, Detrembleur C, Voets IK. Complex Coacervate Core Micelles Containing Poly(vinyl alcohol) Inhibit Ice Recrystallization. Macromol Rapid Commun 2018; 39:e1700814. [PMID: 29635766 DOI: 10.1002/marc.201700814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/19/2018] [Indexed: 11/09/2022]
Abstract
Complex coacervate core micelles (C3Ms) form upon complexation of oppositely charged copolymers. These co-assembled structures are widely investigated as promising building blocks for encapsulation, nanoparticle synthesis, multimodal imaging, and coating technology. Here, the impact on ice growth is investigated of C3Ms containing poly(vinyl alcohol), PVA, which is well known for its high ice recrystallization inhibition (IRI) activity. The PVA-based C3Ms are prepared upon co-assembly of poly(4-vinyl-N-methyl-pyridinium iodide) and poly(vinyl alcohol)-block-poly(acrylic acid). Their formation conditions, size, and performance as ice recrystallization inhibitors are studied. It is found that the C3Ms exhibit IRI activity at PVA monomer concentrations as low as 1 × 10-3 m. The IRI efficacy of PVA-C3Ms is similar to that of linear PVA and PVA graft polymers, underlining the influence of vinyl alcohol monomer concentration rather than polymer architecture.
Collapse
Affiliation(s)
- Christian C M Sproncken
- Laboratory of Self-Organizing Soft Matter, Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands.,Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands
| | - Romà Surís-Valls
- Laboratory of Self-Organizing Soft Matter, Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands.,Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands
| | - Hande E Cingil
- Laboratory of Self-Organizing Soft Matter, Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands.,Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules, CESAM Research Unit, University of Liège, Sart-Tilman B6a, B-4000, Liège, Belgium
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands.,Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands.,Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands
| |
Collapse
|
44
|
Naullage PM, Qiu Y, Molinero V. What Controls the Limit of Supercooling and Superheating of Pinned Ice Surfaces? J Phys Chem Lett 2018; 9:1712-1720. [PMID: 29544050 DOI: 10.1021/acs.jpclett.8b00300] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cold-adapted organisms produce antifreeze proteins and glycoproteins to control the growth, melting and recrystallization of ice. It has been proposed that these molecules pin the crystal surface, creating a curvature that arrests the growth and melting of the crystal. Here we use thermodynamic modeling and molecular simulations to demonstrate that the curvature of the superheated or supercooled surface depends on the temperature and distances between ice-binding molecules, but not the details of their interactions with ice. We perform simulations of ice pinned with the antifreeze protein TmAFP, polyvinyl alcohol with different degrees of polymerization, and model ice-binding molecules to determine the thermal hystereses on melting and freezing, i.e. the maximum curvature that can be attained before, respectively, ice melts or grows irreversibly over the ice-binding molecules. We find that the thermal hysteresis is controlled by the bulkiness of the ice-binding molecules and their footprint at the ice surface. We elucidate the origin of the asymmetry between freezing and melting hysteresis found in experiments and propose guidelines to design synthetic antifreeze molecules with potent thermal hysteresis activity.
Collapse
Affiliation(s)
- Pavithra M Naullage
- Department of Chemistry , The University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Yuqing Qiu
- Department of Chemistry , The University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Valeria Molinero
- Department of Chemistry , The University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
45
|
Zhang Y, Liu K, Li K, Gutowski V, Yin Y, Wang J. Fabrication of Anti-Icing Surfaces by Short α-Helical Peptides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1957-1962. [PMID: 29276886 DOI: 10.1021/acsami.7b13130] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We designed 12-amino acid peptides as antifreeze protein (AFP) mimetics and tuned the antifreeze activity of the peptides by their structures. Moreover, these short peptides were first immobilized to surfaces as an anti-icing coating. We discovered that the peptides with higher antifreeze activity exhibited better anti-icing performance. It is the first time that short peptides were successfully applied to fabricate anti-icing surfaces, which is certainly advantageous in comparison to the AFP anti-icing coatings previously reported.
Collapse
Affiliation(s)
- Yifan Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Kai Liu
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Kaiyong Li
- Luoyang Institute of Science and Technology , Henan 471023, P. R. China
| | - Voytek Gutowski
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Yuan Yin
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Jianjun Wang
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
46
|
Mahatabuddin S, Tsuda S. Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:321-337. [PMID: 30288717 DOI: 10.1007/978-981-13-1244-1_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Numerous embryonic ice crystals are generated in water at the moment of freezing. These crystals grow and merge together to form an ice block that can be generally observed. Antifreeze protein (AFP) is capable of binding to the embryonic ice crystals, inhibiting such an ice block formation. Fish-derived AFP additionally binds to membrane lipid bilayers to prolong the lifetime of cells. These unique abilities of AFP have been studied extensively for the development of advanced techniques, such as ice recrystallization inhibitors, freeze-tolerant gels, cell preservation fluids, and high-porosity ceramics, for which mass-preparation method of the quality product of AFP utilizing fish muscle homogenates made a significant contribution. In this chapter, we present both fundamental and advanced information of fish AFPs that have been especially discovered from mid-latitude sea area, which will provide a hint to develop more advanced techniques applicable in both medical and industrial fields.
Collapse
Affiliation(s)
- Sheikh Mahatabuddin
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Sakae Tsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.
| |
Collapse
|
47
|
Hedir G, Stubbs C, Aston P, Dove AP, Gibson MI. Synthesis of Degradable Poly(vinyl alcohol) by Radical Ring-Opening Copolymerization and Ice Recrystallization Inhibition Activity. ACS Macro Lett 2017; 6:1404-1408. [PMID: 29399386 PMCID: PMC5792090 DOI: 10.1021/acsmacrolett.7b00905] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 11/30/2022]
Abstract
Poly(vinyl alcohol) (PVA) is the most active synthetic mimic of antifreeze proteins and has extremely high ice recrystallization inhibition (IRI) activity. Addition of PVA to cellular cryopreservation solutions increases the number of recovered viable cells due to its potent IRI, but it is intrinsically nondegradable in vivo. Here we report the synthesis, characterization, and IRI activity of PVA containing degradable ester linkages. Vinyl chloroacetate (VClAc) was copolymerized with 2-methylene-1,3-dioxepane (MDO) which undergoes radical ring-opening polymerization to install main-chain ester units. The use of the chloroacetate monomer enabled selective deacetylation with retention of esters within the polymer backbone. Quantitative IRI assays revealed that the MDO content had to be finely tuned to retain IRI activity, with higher loadings (24 mol %) resulting in complete loss of IRI activity. These degradable materials will help translate PVA, which is nontoxic and biocompatible, into a range of biomedical applications.
Collapse
Affiliation(s)
- Guillaume Hedir
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Institute
of Advanced Study, University of Warwick
Science Park, Coventry CV4 8UW, U.K.
| | | | - Phillip Aston
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Andrew P. Dove
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
48
|
Graham B, Bailey TL, Healey JRJ, Marcellini M, Deville S, Gibson MI. Polyproline as a Minimal Antifreeze Protein Mimic That Enhances the Cryopreservation of Cell Monolayers. Angew Chem Int Ed Engl 2017; 56:15941-15944. [PMID: 29044869 PMCID: PMC5722203 DOI: 10.1002/anie.201706703] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/27/2017] [Indexed: 01/01/2023]
Abstract
Tissue engineering, gene therapy, drug screening, and emerging regenerative medicine therapies are fundamentally reliant on high-quality adherent cell culture, but current methods to cryopreserve cells in this format can give low cell yields and require large volumes of solvent "antifreezes". Herein, we report polyproline as a minimum (bio)synthetic mimic of antifreeze proteins that is accessible by solution, solid-phase, and recombinant methods. We demonstrate that polyproline has ice recrystallisation inhibition activity linked to its amphipathic helix and that it enhances the DMSO cryopreservation of adherent cell lines. Polyproline may be a versatile additive in the emerging field of macromolecular cryoprotectants.
Collapse
Affiliation(s)
- Ben Graham
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV47ALUK
| | - Trisha L. Bailey
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV47ALUK
| | | | - Moreno Marcellini
- Ceramics Synthesis and Functionalization LabUMR3080 CNRS/Saint-Gobain550 Avenue Alphonse Jauffret84306CavaillonFrance
| | - Sylvain Deville
- Ceramics Synthesis and Functionalization LabUMR3080 CNRS/Saint-Gobain550 Avenue Alphonse Jauffret84306CavaillonFrance
| | - Matthew I. Gibson
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV47ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
49
|
Affiliation(s)
- Alexander G. Shtukenberg
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| | - Michael D. Ward
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| | - Bart Kahr
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| |
Collapse
|
50
|
Graham B, Bailey TL, Healey JRJ, Marcellini M, Deville S, Gibson MI. Polyproline as a Minimal Antifreeze Protein Mimic That Enhances the Cryopreservation of Cell Monolayers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ben Graham
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV47 AL UK
| | - Trisha L. Bailey
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV47 AL UK
| | | | - Moreno Marcellini
- Ceramics Synthesis and Functionalization Lab; UMR3080 CNRS/Saint-Gobain; 550 Avenue Alphonse Jauffret 84306 Cavaillon France
| | - Sylvain Deville
- Ceramics Synthesis and Functionalization Lab; UMR3080 CNRS/Saint-Gobain; 550 Avenue Alphonse Jauffret 84306 Cavaillon France
| | - Matthew I. Gibson
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV47 AL UK
- Warwick Medical School; University of Warwick; Coventry CV4 7AL UK
| |
Collapse
|