1
|
Xu Y, Tong S, Li W, Chen M, Hu L, Zhang H, Wang S, Ge M. Nighttime reactions of a series of unsaturated alcohols with NO 3•: Kinetics, products and mechanisms study. J Environ Sci (China) 2025; 151:331-346. [PMID: 39481943 DOI: 10.1016/j.jes.2024.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 11/03/2024]
Abstract
Unsaturated alcohols are a class of Biogenic volatile organic compounds (BVOCs) emitted in large quantities by plants when damaged or under adverse environmental conditions, and studies on their atmospheric degradation at night are still lacking. We used chamber experiments to study the gas-phase reactions of three unsaturated alcohols, E-2-penten-1-ol, Z-2-hexen-1-ol and Z-3-hepten-1-ol, with NO3 radicals (NO3•) during the night. The rate constants of these reactions were (11.7 ± 1.76) × 10-13, (8.55 ± 1.33) × 10-13 and (6.08 ± 0.47) × 10-13 cm3/(molecule·s) at 298K and 760 Torr, respectively. In contrast, the reaction rate of similar substances with ozone was about 10-18 cm3/(molecule·s), which indicates that the reaction with NO3• is the main oxidation pathway for unsaturated alcohols at night. Small molecule aldehydes and ketones were the main gas-phase organic products of the reaction of three aldehydes and ketones with NO3•, and the total small molecule aldehydes and ketones yields can reach between 45%-60%. They mainly originate from the breakage of alkoxy radicals, and different breakage sites determine different product distributions. In addition, the SOA yields of the three unsaturated alcohols with NO3• were 7.1% ± 1.0%, 12.5% ± 1.9% and 30.0% ± 4.5%, respectively, which were much higher than those of similarly structured substances with O3 or OH radicals (•OH). The results of high-resolution mass spectrometry shows that the main components of Secondary organic aerosol (SOA) of the three unsaturated alcohols are dimeric compounds containing several nitrate groups, which are formed through the polymerization of oxyalkyl radicals.
Collapse
Affiliation(s)
- Yanyong Xu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.
| | - Weiran Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meifang Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Hu
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
| | - Hailiang Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Sufan Wang
- College of Chemistry and Material Science, Anhui Normal University, Wuhu 241000, China.
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Robertson NE, Connolly J, Shevchenko N, Mascal M, Pinkerton KE, Nicklisch SCT, Nguyen TB. Chemical Composition of Aerosols from the E-Cigarette Vaping of Natural and Synthetic Cannabinoids. Chem Res Toxicol 2024. [PMID: 39535063 DOI: 10.1021/acs.chemrestox.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vaping cannabinoids in electronic (e)-cigarette devices is rapidly increasing in popularity, particularly among adolescents, although the chemistry affecting the composition of the vape aerosol is not well understood. This work investigates the formation of aerosol mass, bioactive hydroxyquinones, and harmful or potentially harmful carbonyls from the e-cigarette vaping of natural and synthetic cannabinoids e-liquids in propylene glycol and vegetable glycerin (PG/VG) solvent at a 50 mg/mL concentration in a commercial fourth-generation vaping device. The following cannabinoids were studied: cannabidiol (CBD), 8,9-dihydrocannabidiol (H2CBD), 1,2,8,9-tetrahydrocannabidiol (H4CBD), cannabigerol (CBG), and cannabidiolic acid (CBDA). Quantification of analytes was performed using liquid chromatography coupled to accurate mass spectrometry. The addition of cannabinoids significantly increased aerosol and carbonyl formation compared with the PG/VG solvent alone. All cannabinoids in the study formed hydroxyquinones during vaping (up to ∼1% mass conversion) except for CBDA, which primarily decarboxylated to CBD. Hydroxyquinone formation increased and carbonyl formation decreased, with a decreasing number of double bonds among CBD and its synthetic analogues (H2CBD and H4CBD). During the vaping process, ∼3-6% of the cannabinoid mass can be observed as carbonyls under the study conditions. Oxidation of the terpene moiety on the cannabinoids is proposed as a major contributor to carbonyl formation. CBD produced significantly higher concentrations of formaldehyde, acetaldehyde, acrolein, diacetyl, and methylglyoxal compared with the other cannabinoid samples. CBG produced significantly higher levels of acetone, methacrolein, and methylglyoxal. Conversion of CBD to tetrahydrocannabinol (THC) was not observed under the study conditions. The chemical mechanism basis for these observations is discussed. Compared with other modalities of use for CBD and other cannabinoids, vaping has the potential to adversely impact human health by producing harmful products during the heated aerosolization process.
Collapse
Affiliation(s)
- Nicholas E Robertson
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Jack Connolly
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Nikolay Shevchenko
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Mark Mascal
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Kent E Pinkerton
- Center for Health and Environment, University of California Davis, Davis, California 95616, United States
| | - Sascha C T Nicklisch
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Tran B Nguyen
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
3
|
Li Y, Ma X, Lu K, Gao Y, Xu W, Yang X, Zhang Y. Investigation of the Cyclohexene Oxidation Mechanism Through the Direct Measurement of Organic Peroxy Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19807-19817. [PMID: 39445870 DOI: 10.1021/acs.est.4c06744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Monoterpenes, the second most abundant biogenic volatile organic compounds globally, are crucial in forming secondary organic aerosols, making their oxidation mechanisms vital for addressing climate change and air pollution. This study utilized cyclohexene as a surrogate to explore first-generation products from its ozonolysis through laboratory experiments and mechanistic modeling. We employed proton transfer reaction mass spectrometry with NH4+ ion sources (NH4+-CIMS) and a custom-built OH calibration source to quantify organic peroxy radicals (RO2) and closed-shell species. Under near-real atmospheric conditions in a Potential Aerosol Mass-Oxidation Flow Reactor, we identified 30 ozonolysis products, expanding previous data sets of low-oxygen compounds. Combined with simulations based on the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere and relevant literature, our results revealed that OH dominates over ozone in cyclohexene oxidation at typical atmospheric oxidant levels with H-abstraction contributing 30% of initial RO2 radicals. Highly oxidized molecules primarily arise from RO2 autoxidation initiated by ozone, and at least 15% of ozone oxidation products follow the overlooked nonvinyl hydroperoxides pathway. Gaps remain especially in understanding RO2 cross-reactions, and the structural complexity of monoterpenes further complicates research. As emissions decrease and afforestation increases, understanding these mechanisms becomes increasingly critical.
Collapse
Affiliation(s)
- Yang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yue Gao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weiguang Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Gweme DT, Styler SA. OH Radical Oxidation of Organosulfates in the Atmospheric Aqueous Phase. J Phys Chem A 2024; 128:9462-9475. [PMID: 39432465 DOI: 10.1021/acs.jpca.4c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Organosulfates (OS, ROSO3-), ubiquitous constituents of atmospheric particulate matter (PM), influence both the physicochemical and climatic properties of PM. Although the formation pathways of OS have been extensively researched, only a few studies have investigated the atmospheric fate of this class of compounds. Here, to better understand the reactivity and transformation of OS under cloudwater- and aerosol-relevant conditions, we investigate the hydroxyl radical (OH) oxidation bimolecular rate constants (kOS+OHII) and products of five atmospherically relevant OS as a function of pH and ionic strength: methyl sulfate (MeS), ethyl sulfate (EtS), propyl sulfate (PrS), hydroxyacetone sulfate (HaS) and phenyl sulfate (PhS). Our results show that OS are oxidized by OH with kOS+OHII between 108 - 109 M-1 s-1, which corresponds to atmospheric lifetimes of minutes in aqueous aerosol to days in cloudwater. We find that kOS+OHII increases with carbon chain length (MeS < EtS < PrS) and aromaticity (PrS < PhS), but does not depend on solution pH (2, 9). In addition, we find that whereas the OH reactivity of the aliphatic OS studied here decreases by ∼2× with increasing ionic strength (0-15 M), the reactivity of PhS decreases by ∼10×. The oxidation of EtS and PrS produced organic peroxides (ROOH) as first-generation oxidation products, which subsequently photolyzed; the oxidation of PhS resulted in hydroxylated aromatic products. These results highlight the need for inclusion of OS loss pathways in atmospheric models, and suggest caution in using ambient OS concentration measurements alone to estimate their production rates.
Collapse
Affiliation(s)
- Daniel T Gweme
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Sarah A Styler
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
5
|
Chi TX, Li XX, Ni S, Bai FY, Pan XM, Zhao Z. Theoretical study on the mechanisms, kinetics and risk assessment of OH radicals and Cl atom initiated transformation of HCFC-235fa in the atmosphere. Phys Chem Chem Phys 2024; 26:24821-24832. [PMID: 39290189 DOI: 10.1039/d4cp02323d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Hydrochlorofluorocarbons (HCFCs) are important greenhouse gases and ozone-depleting substances. Thus, a thorough understanding of their atmospheric fate is essential for preventing and controlling atmospheric pollution. Herein, the atmospheric transformation mechanism of CF3CH2CClF2 (HCFC-235fa) by the OH radical and the Cl atom was carried out at the dual-level of CCSD(T)/aug-cc-pVTZ//M06-2X/6-311+G(d,p). The reaction rate coefficients were calculated using the multistructural canonical variational transition state theory with small curvature tunneling (MS-CVT/SCT) at 200-1000 K. The kMS-CVT/SCT(CF3CH2CClF2 + OH) and kMS-CVT/SCT(CF3CH2CClF2 + Cl) values are 9.05 × 10-15 and 1.95 × 10-17 cm3 molecule-1 s-1 at 297 K, respectively. The results show that the role of OH is more important than Cl in the degradation of CF3CH2CClF2. The atmospheric lifetimes (83 days-77.93 years), ozone destruction potential (0.001-0.023), and global warming potentials (GWP100 = 21.06-5157.35) of CF3CH2CClF2 were assessed, and these results indicate that CF3CH2CClF2 is atmospherically persistent and environmentally unfriendly. The evolution mechanisms of CF3C·HCClF2, CF3C(OO˙)HCClF2, and CF3C(O˙)HCClF2 in the presence of O2, HO2˙, and NO were investigated and discussed. The resulting products of CF3CH2CClF2 are mostly highly oxidized multi-functional compounds in the forms of aldehydes, ketones, and organic nitrates. A computational assessment of acute and chronic toxicities was performed at three levels of nutrition in order to improve the understanding of the potential toxicity of CF3CH2CClF2 and its degradation products to the aquatic environment. The acidification potential of CF3CH2CClF2 was calculated to be 1.141 and presumed to contribute to the formation of acid rain. The results may contribute to describing HCFCs' atmospheric fate, persistence, and environmental risks.
Collapse
Affiliation(s)
- Tai-Xing Chi
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.
| | - Xin-Xin Li
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.
| | - Shuang Ni
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiu-Mei Pan
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China.
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, People's Republic of China
| |
Collapse
|
6
|
Golin Almeida T, Martí C, Kurtén T, Zádor J, Johansen SL. Theoretical analysis of the OH-initiated atmospheric oxidation reactions of imidazole. Phys Chem Chem Phys 2024; 26:23570-23587. [PMID: 39106054 DOI: 10.1039/d4cp02103g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Imidazoles are present in Earth's atmosphere in both the gas-phase and in aerosol particles, and have been implicated in the formation of brown carbon aerosols. The gas-phase oxidation of imidazole (C3N2H4) by hydroxyl radicals has been shown to be preferentially initiated via OH-addition to position C5, producing the 5-hydroxyimidazolyl radical adduct. However, the fate of this adduct upon reaction with O2 in the atmospheric gas-phase is currently unknown. We employed an automated approach to investigate the reaction mechanism and kinetics of imidazole's OH-initiated gas-phase oxidation, in the presence of O2 and NOx. The explored mechanism included reactions available to first-generation RO2 radicals, as well as alkoxyl radicals produced from RO2 + NO reactions. Product distributions were obtained by assembling and solving a master equation, under conditions relevant to the Earth's atmosphere. Our calculations show a complex, branched reaction mechanism, which nevertheless converges to yield two major closed-shell products: 4H-imidazol-4-ol (4H-4ol) and N,N'-diformylformamidine (FMF). At 298 K and 1 atm, we estimate the yields of 4H-4ol and FMF from imidazole oxidation initiated via OH-addition to position C5 to be 34 : 66, 12 : 85 and 2 : 95 under 10 ppt, 100 ppt and 1 ppb of NO respectively. This work also revealed O2-migration pathways between the α-N-imino peroxyl radical isomers. This reaction channel is fast for the first-generation RO2 radicals, and may be important during the atmospheric oxidation of other unsaturated organic nitrogen compounds as well.
Collapse
Affiliation(s)
- Thomas Golin Almeida
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland.
- Institute for Atmospheric and Earth System Research/Chemistry, University of Helsinki, Helsinki 00014, Finland
| | - Carles Martí
- Combustion Research Facility, Sandia National Laboratories, Livermore 94550, California, USA.
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland.
- Institute for Atmospheric and Earth System Research/Chemistry, University of Helsinki, Helsinki 00014, Finland
| | - Judit Zádor
- Combustion Research Facility, Sandia National Laboratories, Livermore 94550, California, USA.
| | - Sommer L Johansen
- Combustion Research Facility, Sandia National Laboratories, Livermore 94550, California, USA.
| |
Collapse
|
7
|
Sun C, Liu X, Wang N, Yang J, Shi C, Yan S, Zhou X, Sun X. Liquid phase transformation mechanism of β-caryophyllonic acid initiated by hydroxyl radicals and ozone in atmosphere. CHEMOSPHERE 2024; 364:143257. [PMID: 39241842 DOI: 10.1016/j.chemosphere.2024.143257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
β-caryophyllonic acid (BCA), as an important precursor of aqueous secondary organic aerosols (aqSOA), has adverse effects on the atmospheric environment and human health. However, the key atmospheric chemical reaction process in which BCA participates in the formation of aqueous secondary organic aerosols is still unclear. In this study, the reaction mechanism and kinetics of BCA with ·OH and O3 were investigated by quantum chemical calculations. The initiation reactions between BCA and ·OH include addition and H-abstraction reaction pathways, subsequent intermediates will also react with O2, ultimately undergo a cracking reaction to generate small molecular substances. The reaction of BCA with O3 can generate primary ozone oxides and the Criegee Intermediates oIM3, subsequent main reaction products include keto-BCA, as well as other small molecule aqSOA precursors. The entire reaction process increases the O/C ratio of aqSOA in the aqueous phase and generates products of small molecules such as 4-formylpropionic acid, which plays an important role in the formation of aqSOA. At 298K, the transformation rate constants of BCA initiated by ·OH and O3 are 1.47 × 1010 M-1 s-1 and 3.16 × 105 M-1 s-1, respectively, the atmospheric lifetimes of BCA reacting with ·OH range from 0.86 h-5.40 h, while the lifetimes of BCA reacting with O3 range from 0.44 h-10.04 years. This suggests that BCA primarily reacts with ·OH. However, under higher O3 concentrations, its ozonolysis becomes significant, promoting the formation of aqSOA. According to the risk assessment, the toxicity of most transformation products (TPs) gradually decreased, but the residual developmental toxicity could not be ignored. In this paper, the atmospheric liquid phase oxidation mechanisms of sesquiterpene unsaturated derived acid were studied from the microscopic level, which has guiding significance for the formation and transformation of aqSOA in atmosphere.
Collapse
Affiliation(s)
- Chongwen Sun
- Environment Research Institute, Shandong University, 266237, PR China.
| | - Xiaoyu Liu
- Environment Research Institute, Shandong University, 266237, PR China.
| | - Ning Wang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, PR China.
| | - Jiaoxue Yang
- School of Geography and Environment, Liaocheng University, Liaocheng, 252000, PR China.
| | - Chunyu Shi
- College of Ecology and Environment, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Shuwan Yan
- Environment Research Institute, Shandong University, 266237, PR China.
| | - Xuehua Zhou
- Environment Research Institute, Shandong University, 266237, PR China.
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, 266237, PR China.
| |
Collapse
|
8
|
Liu L, Zhang C, Xia Y, Zhang W, Wang Z, Tang X. Dimeric product formation in the self-reaction of small peroxy radicals using synchrotron radiation vacuum ultraviolet photoionization mass spectrometry. CHEMOSPHERE 2024; 363:142846. [PMID: 39025306 DOI: 10.1016/j.chemosphere.2024.142846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Peroxy radicals (RO2) are key reactive intermediates in atmospheric oxidation processes and yet their chemistry is not fully unraveled. Little is known about their structures and the structures of the dimeric products (ROOR) in the self-reaction of small RO2, which are among the most abundant RO2 in the atmosphere. The product branching ratios of ROOR and their atmospheric roles are still in controversy. Here, the self-reaction of propyl peroxy radicals (C3H7O2), a typical small RO2 radical in the atmosphere, has been studied using synchrotron radiation vacuum ultraviolet photoionization mass spectrometry. Both radical (C3H7O) and closed-shell molecular (C3H6O, C3H7OH, C3H7OOC3H7) products in the self-reaction are observed in photoionization mass spectra and their elusive isomers are definitely identified in mass-selected photoionization spectra. Three isomers of the C3H7OOC3H7 dimeric products, R1OOR1, R1OOR2, and R2OOR2 (R1 and R2 represent 1-C3H7 and 2-C3H7, respectively), as well as their complex structures have been determined for the first time. Kinetic experiments are performed and compared with chemical simulations to reveal the sources of specific products. The branching ratio of the C3H7OOC3H7 dimeric channel is measured at 10 ± 5%. This work demonstrates that the dimeric product formation in the self-reaction of small RO2 radicals is non-negligible and should provide valuable new insight into atmospheric modelling.
Collapse
Affiliation(s)
- Lingyu Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Cuihong Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Yu Xia
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China; Science Island Branch, Graduate School, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Xiaofeng Tang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
| |
Collapse
|
9
|
Pichelstorfer L, Roldin P, Rissanen M, Hyttinen N, Garmash O, Xavier C, Zhou P, Clusius P, Foreback B, Golin Almeida T, Deng C, Baykara M, Kurten T, Boy M. Towards automated inclusion of autoxidation chemistry in models: from precursors to atmospheric implications. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2024; 4:879-896. [PMID: 39130798 PMCID: PMC11307592 DOI: 10.1039/d4ea00054d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024]
Abstract
In the last few decades, atmospheric formation of secondary organic aerosols (SOA) has gained increasing attention due to their impact on air quality and climate. However, methods to predict their abundance are mainly empirical and may fail under real atmospheric conditions. In this work, a close-to-mechanistic approach allowing SOA quantification is presented, with a focus on a chain-like chemical reaction called "autoxidation". A novel framework is employed to (a) describe the gas-phase chemistry, (b) predict the products' molecular structures and (c) explore the contribution of autoxidation chemistry on SOA formation under various conditions. As a proof of concept, the method is applied to benzene, an important anthropogenic SOA precursor. Our results suggest autoxidation to explain up to 100% of the benzene-SOA formed under low-NO x laboratory conditions. Under atmospheric-like day-time conditions, the calculated benzene-aerosol mass continuously forms, as expected based on prior work. Additionally, a prompt increase, driven by the NO3 radical, is predicted by the model at dawn. This increase has not yet been explored experimentally and stresses the potential for atmospheric SOA formation via secondary oxidation of benzene by O3 and NO3.
Collapse
Affiliation(s)
- Lukas Pichelstorfer
- pi-numerics Neumarkt amW. 5202 Austria
- Chemistry and Physics of Materials, University of Salzburg A-5020 Austria
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki 00560 Helsinki Finland
| | - Pontus Roldin
- Division of Nuclear Physics, Department of Physics, Lund University P. O. Box 118 221 00 Lund Sweden
| | - Matti Rissanen
- Aerosol Physics Laboratory, Tampere University 33720 Tampere Finland
- Department of Chemistry, University of Helsinki 00014 Helsinki Finland
| | - Noora Hyttinen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä FI-40014 Jyväskylä Finland
| | - Olga Garmash
- Aerosol Physics Laboratory, Tampere University 33720 Tampere Finland
- Department of Atmospheric Sciences, University of Washington Seattle WA USA
| | - Carlton Xavier
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki 00560 Helsinki Finland
- Division of Nuclear Physics, Department of Physics, Lund University P. O. Box 118 221 00 Lund Sweden
- SMHI/Swedish Meteorological and Hydrological Institute Research Department, Unit of Meteorology/Environment and Climate SE-601 76 Norrköping Sweden
| | - Putian Zhou
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki 00560 Helsinki Finland
| | - Petri Clusius
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki 00560 Helsinki Finland
| | - Benjamin Foreback
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki 00560 Helsinki Finland
- Atmospheric Modelling Centre Lahti Niemenkatu 73, Lahti University Campus 15140 Lahti Finland
| | - Thomas Golin Almeida
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki 00560 Helsinki Finland
- Department of Chemistry, University of Helsinki 00014 Helsinki Finland
| | - Chenjuan Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University 100084 Beijing China
| | - Metin Baykara
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki 00560 Helsinki Finland
- Atmospheric Modelling Centre Lahti Niemenkatu 73, Lahti University Campus 15140 Lahti Finland
- Climate and Marine Sciences Department, Eurasia Institute of Earth Sciences, Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Theo Kurten
- Department of Chemistry, University of Helsinki 00014 Helsinki Finland
| | - Michael Boy
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki 00560 Helsinki Finland
- Atmospheric Modelling Centre Lahti Niemenkatu 73, Lahti University Campus 15140 Lahti Finland
- School of Engineering Science, Lappeenranta-Lahti University of Technology 53851 Lappeenranta Finland
| |
Collapse
|
10
|
Roy TK, Qian Y, Sojdak CA, Kozlowski MC, Klippenstein SJ, Lester MI. Infrared signature of the hydroperoxyalkyl intermediate (·QOOH) in cyclohexane oxidation: An isomer-resolved spectroscopic study. J Chem Phys 2024; 161:034302. [PMID: 39007377 DOI: 10.1063/5.0219431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Infrared (IR) action spectroscopy is utilized to characterize carbon-centered hydroperoxy-cyclohexyl radicals (·QOOH) transiently formed in cyclohexane oxidation. The oxidation pathway leads to three nearly degenerate ·QOOH isomers, β-, γ-, and δ-QOOH, which are generated in the laboratory by H-atom abstraction from the corresponding ring sites of the cyclohexyl hydroperoxide (CHHP) precursor. The IR spectral features of jet-cooled and stabilized ·QOOH radicals are observed from 3590 to 7010 cm-1 (∼10-20 kcal mol-1) at energies in the vicinity of the transition state (TS) barrier leading to OH radicals that are detected by ultraviolet laser-induced fluorescence. The experimental approach affords selective detection of β-QOOH, arising from its significantly lower TS barrier to OH products compared to γ and δ isomers, which results in rapid unimolecular decay and near unity branching to OH products. The observed IR spectrum of β-QOOH includes fundamental and overtone OH stretch transitions, overtone CH stretch transitions, and combination bands involving OH or CH stretch with lower frequency modes. The assignment of β-QOOH spectral features is guided by anharmonic frequencies and intensities computed using second-order vibrational perturbation theory. The overtone OH stretch (2νOH) of β-QOOH is shifted only a few wavenumbers from that observed for the CHHP precursor, yet they are readily distinguished by their prompt vs slow dissociation rates to OH products.
Collapse
Affiliation(s)
- Tarun Kumar Roy
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, USA
| | - Yujie Qian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, USA
| | - Christopher A Sojdak
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, USA
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, USA
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, USA
| |
Collapse
|
11
|
Shang Y, Luo SN. Insights into the role of the H-abstraction reaction kinetics of amines in understanding their degeneration fates under atmospheric and combustion conditions. Phys Chem Chem Phys 2024. [PMID: 39028293 DOI: 10.1039/d4cp02187h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Amines, a class of prototypical volatile organic compounds, have garnered considerable interest within the context of atmospheric and combustion chemistry due to their substantial contributions to the formation of hazardous pollutants in the atmosphere. In the current energy landscape, the implementation of carbon-neutral energy and strategic initiatives leads to generation of new amine sources that cannot be overlooked in terms of the emission scale. To reduce the emission level of amines from their sources and mitigate their impact on the formation of harmful substances, a comprehensive understanding of the fundamental reaction kinetics during the degeneration process of amines is imperative. This perspective article first presents an overview of both traditional amine sources and emerging amine sources within the context of carbon peaking and carbon neutrality and then highlights the importance of H-abstraction reactions in understanding the atmospheric and combustion chemistry of amines from the perspective of reaction kinetics. Subsequently, the current experimental and theoretical techniques for investigating the H-abstraction reactions of amines are introduced, and a concise summary of research endeavors made in this field over the past few decades is provided. In order to provide accurate kinetic parameters of the H-abstraction reactions of amines, advanced kinetic calculations are performed using the multi-path canonical variational theory combined with the small-curvature tunneling and specific-reaction parameter methods. By comparing with the literature data, current kinetic calculations are comprehensively evaluated, and these validated data are valuable for the development of the reaction mechanism of amines.
Collapse
Affiliation(s)
- Yanlei Shang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, P. R. China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
| | - S N Luo
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
| |
Collapse
|
12
|
Fu Z, Guo S, Yu Y, Xie HB, Li S, Lv D, Zhou P, Song K, Chen Z, Tan R, Hu K, Shen R, Yao M, Hu M. Oxidation Mechanism and Toxicity Evolution of Linalool, a Typical Indoor Volatile Chemical Product. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:486-498. [PMID: 39049896 PMCID: PMC11264274 DOI: 10.1021/envhealth.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 07/27/2024]
Abstract
Linalool, a high-reactivity volatile chemical product (VCP) commonly found in cleaning products and disinfectants, is increasingly recognized as an emerging contaminant, especially in indoor air. Understanding the gas-phase oxidation mechanism of linalool is crucial for assessing its impact on atmospheric chemistry and human health. Using quantum chemical calculations and computational toxicology simulations, we investigated the atmospheric transformation and toxicity evolution of linalool under low and high NO/HO2· levels, representing indoor and outdoor environments. Our findings reveal that linalool can undergo the novel mechanisms involving concerted peroxy (RO2·) and alkoxy radical (RO·) modulated autoxidation, particularly emphasizing the importance of cyclization reactions indoors. This expands the widely known RO2·-dominated H-shift-driven autoxidation and proposes a generalized autoxidation mechanism that leads to the formation of low-volatility secondary organic aerosol (SOA) precursors. Toxicological analysis shows that over half of transformation products (TPs) exhibited higher carcinogenicity and respiratory toxicity compared to linalool. We also propose time-dependent toxic effects of TPs to assess their long-term toxicity. Our results indicate that the strong indoor emission coupled with slow consumption rates lead to significant health risks under an indoor environment. The results highlight complex indoor air chemistry and health concerns regarding persistent toxic products during indoor cleaning, which involves the use of linalool or other VCPs.
Collapse
Affiliation(s)
- Zihao Fu
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
International Joint Laboratory for Regional Pollution Control, Ministry
of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
International Joint Laboratory for Regional Pollution Control, Ministry
of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Collaborative
Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ying Yu
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
International Joint Laboratory for Regional Pollution Control, Ministry
of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hong-Bin Xie
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shiyu Li
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
International Joint Laboratory for Regional Pollution Control, Ministry
of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Daqi Lv
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
International Joint Laboratory for Regional Pollution Control, Ministry
of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Putian Zhou
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland
| | - Kai Song
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
International Joint Laboratory for Regional Pollution Control, Ministry
of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zheng Chen
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
International Joint Laboratory for Regional Pollution Control, Ministry
of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Rui Tan
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
International Joint Laboratory for Regional Pollution Control, Ministry
of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kun Hu
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
International Joint Laboratory for Regional Pollution Control, Ministry
of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ruizhe Shen
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
International Joint Laboratory for Regional Pollution Control, Ministry
of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
International Joint Laboratory for Regional Pollution Control, Ministry
of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
International Joint Laboratory for Regional Pollution Control, Ministry
of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Smith Lewin C, Kumar A, Herbinet O, Arnoux P, Asgher R, Barua S, Battin-Leclerc F, Farhoudian S, Garcia GA, Tran LS, Vanhove G, Nahon L, Rissanen M, Bourgalais J. 1-Hexene Ozonolysis across Atmospheric and Combustion Temperatures via Synchrotron-Based Photoelectron Spectroscopy and Chemical Ionization Mass Spectrometry. J Phys Chem A 2024; 128:5374-5385. [PMID: 38917032 DOI: 10.1021/acs.jpca.4c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This study investigates the complex interaction between ozone and the autoxidation of 1-hexene over a wide temperature range (300-800 K), overlapping atmospheric and combustion regimes. It is found that atmospheric molecular mechanisms initiate the oxidation of 1-hexene from room temperature up to combustion temperatures, leading to the formation of highly oxygenated organic molecules. As temperature rises, the highly oxygenated organic molecules contribute to radical-branching decomposition pathways inducing a high reactivity in the low-temperature combustion region, i.e., from 550 K. Above 650 K, the thermal decomposition of ozone into oxygen atoms becomes the dominant process, and a remarkable enhancement of the conversion is observed due to their diradical nature, counteracting the significant negative temperature coefficient behavior usually observed for 1-hexene. In order to better characterize the formation of heavy oxygenated organic molecules at the lowest temperatures, two analytical performance methods have been combined for the first time: synchrotron-based mass-selected photoelectron spectroscopy and orbitrap chemical ionization mass spectrometry. At the lowest studied temperatures (below 400 K), this analytical work has demonstrated the formation of the ketohydroperoxides usually found during the LTC oxidation of 1-hexene, as well as of molecules containing up to nine O atoms.
Collapse
Affiliation(s)
| | - Avinash Kumar
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | | | | | - Rabbia Asgher
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | - Shawon Barua
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | | | - Sana Farhoudian
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France
| | - Luc-Sy Tran
- PC2A, Université Lille, CNRS, F-59000 Lille, France
| | | | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France
| | - Matti Rissanen
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | | |
Collapse
|
14
|
Durif O, Piel F, Wisthaler A, Nozière B. Strong Uptake of Gas-Phase Organic Peroxy Radicals (ROO •) by Solid Surfaces Driven by Redox Reactions. JACS AU 2024; 4:1875-1882. [PMID: 38818071 PMCID: PMC11134354 DOI: 10.1021/jacsau.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/01/2024]
Abstract
Organic peroxy radicals (ROO•) are key oxidants in a wide range of chemical systems such as living organisms, chemical synthesis and polymerization systems, combustion systems, the natural environment, and the Earth's atmosphere. Although surfaces are ubiquitous in all of these systems, the interactions of organic peroxy radicals with these surfaces have not been studied until today because of a lack of adequate detection techniques. In this work, the uptake and reaction of gas-phase organic peroxy radicals (CH3OO• and i-C3H7OO•) with solid surfaces was studied by monitoring each radical specifically and in real-time with mass spectrometry. Our results show that the uptake of organic peroxy radicals varies widely with the surface material. While their uptake by borosilicate glass and perfluoroalkoxy alkanes (PFA) was negligible, it was substantial with metals and even dominated over the gas-phase reactions with stainless steel and aluminum. The results also indicate that these uptakes are controlled by redox reactions at the surfaces for which the products were analyzed. Our results show that the reactions of organic peroxy radicals with metal surfaces have to be carefully considered in all the experimental investigations of these radicals as they could directly impact the kinetic and mechanistic knowledge derived from such studies.
Collapse
Affiliation(s)
- Olivier Durif
- Department
of Chemistry, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Felix Piel
- Department
of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Armin Wisthaler
- Department
of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Barbara Nozière
- Department
of Chemistry, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| |
Collapse
|
15
|
Roy TK, Qian Y, Karlsson E, Rabayah R, Sojdak CA, Kozlowski MC, Karsili TNV, Lester MI. Vibrational spectroscopy and dissociation dynamics of cyclohexyl hydroperoxide. Chem Sci 2024; 15:6160-6167. [PMID: 38665513 PMCID: PMC11040651 DOI: 10.1039/d4sc00151f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Organic hydroperoxides (ROOH) are ubiquitous in the atmospheric oxidation of volatile organic compounds (VOCs) as well as in low-temperature oxidation of hydrocarbon fuels. The present work focuses on a prototypical cyclic hydroperoxide, cyclohexyl hydroperoxide (CHHP). The overtone OH stretch (2νOH) spectrum of jet-cooled CHHP is recorded by IR multiphoton excitation with UV laser-induced fluorescence detection of the resulting OH products. A distinctive IR feature is observed at 7012.5 cm-1. Two conformers of CHHP are predicted to have similar stabilities (within 0.2 kcal mol-1) and overtone OH stretch transitions (2νOH), yet are separated by a significant interconversion barrier. The IR power dependence indicates that absorption of three or more IR photons is required for dissociation of CHHP to cyclohexoxy (RO) and OH radical products. Accompanying high-level single- and multi-reference electronic structure calculations quantitatively support the experimental results. Calculations are extended to a range of organic hydroperoxides to examine trends in bond dissociation energies associated with RO + OH formation and compared with prior theoretical results.
Collapse
Affiliation(s)
- Tarun Kumar Roy
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Yujie Qian
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Elizabeth Karlsson
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Rawan Rabayah
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Christopher A Sojdak
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | | | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| |
Collapse
|
16
|
Qian Y, Roy TK, Jasper AW, Sojdak CA, Kozlowski MC, Klippenstein SJ, Lester MI. Isomer-resolved unimolecular dynamics of the hydroperoxyalkyl intermediate (•QOOH) in cyclohexane oxidation. Proc Natl Acad Sci U S A 2024; 121:e2401148121. [PMID: 38602914 PMCID: PMC11032462 DOI: 10.1073/pnas.2401148121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
The oxidation of cycloalkanes is important in the combustion of transportation fuels and in atmospheric secondary organic aerosol formation. A transient carbon-centered radical intermediate (•QOOH) in the oxidation of cyclohexane is identified through its infrared fingerprint and time- and energy-resolved unimolecular dissociation dynamics to hydroxyl (OH) radical and bicyclic ether products. Although the cyclohexyl ring structure leads to three nearly degenerate •QOOH isomers (β-, γ-, and δ-QOOH), their transition state (TS) barriers to OH products are predicted to differ considerably. Selective characterization of the β-QOOH isomer is achieved at excitation energies associated with the lowest TS barrier, resulting in rapid unimolecular decay to OH products that are detected. A benchmarking approach is employed for the calculation of high-accuracy stationary point energies, in particular TS barriers, for cyclohexane oxidation (C6H11O2), building on higher-level reference calculations for the smaller ethane oxidation (C2H5O2) system. The isomer-specific characterization of β-QOOH is validated by comparison of experimental OH product appearance rates with computed statistical microcanonical rates, including significant heavy-atom tunneling, at energies in the vicinity of the TS barrier. Master-equation modeling is utilized to extend the results to thermal unimolecular decay rate constants at temperatures and pressures relevant to cyclohexane combustion.
Collapse
Affiliation(s)
- Yujie Qian
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| | - Tarun Kumar Roy
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| | - Ahren W. Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | | | - Marisa C. Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| | | | - Marsha I. Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| |
Collapse
|
17
|
Liu G, Ma X, Li W, Chen J, Ji Y, An T. Pollution characteristics, source appointment and environmental effect of oxygenated volatile organic compounds in Guangdong-Hong Kong-Macao Greater Bay Area: Implication for air quality management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170836. [PMID: 38346658 DOI: 10.1016/j.scitotenv.2024.170836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Same as other bay areas, the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is also suffering atmospheric composite pollution. Even a series of atmospheric environment management policies have been conducted to win the "blue sky defense battle", the atmospheric secondary pollutants (e.g., O3) originated from oxygenated volatile organic compounds (OVOCs) still threaten the air quality in GBA. However, there lacks a systematic summary on the emission, formation, pollution and environmental effects of OVOCs in this region for further air quality management. This review focused on the researches related to OVOCs in GBA, including their pollution characteristics, detection methods, source distributions, secondary formations, and impacts on the atmosphere. Pollution profile of OVOCs in GBA revealed that the concentration percentage among total VOCs from Guangzhou and Dongguan cities exceeded 50 %, while methanol, formaldehyde, acetone, and acetaldehyde were the top four highest concentrated OVOCs. The detection technique on regional atmospheric OVOCs (e.g., oxygenated organic molecules (OOMs)) underwent an evolution of off-line derivatization method, on-line spectroscopic method and on-line mass spectrometry method. The OVOCs in GBA were mainly from primary emissions (up to 80 %), including vehicle emissions and biomass combustion. The anthropogenic alkenes and aromatics in urban area, and natural isoprene in rural area also made a significant contribution to the secondary emission (e.g., photochemical formation) of OVOCs. About 20 % in average of ROx radicals was produced from photolysis of formaldehyde in comparison with O3, nitrous acid and rest OVOCs, while the reaction between OVOCs and free radical accelerated the NOx-O3 cycle, contributing to 15 %-60 % cumulative formation of O3 in GBA. Besides, the heterogeneous reactions of dicarbonyls generated 21 %-53 % of SOA. This review also provided suggestions for future research on OVOCs in terms of regional observation, analytical method and mechanistic study to support the development of a control and management strategy on OVOCs in GBA and China.
Collapse
Affiliation(s)
- Guanyong Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Salo VT, Chen J, Runeberg N, Kjaergaard HG, Kurtén T. Multireference and Coupled-Cluster Study of Dimethyltetroxide (MeO 4Me) Formation and Decomposition. J Phys Chem A 2024; 128:1825-1836. [PMID: 38417845 PMCID: PMC11465643 DOI: 10.1021/acs.jpca.3c08043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Peroxyl radicals (RO2) are important intermediates in the atmospheric oxidation processes. The RO2 can react with other RO2 to form reactive intermediates known as tetroxides, RO4R. The reaction mechanisms of RO4R formation and its various decomposition channels have been investigated in multiple computational studies, but previous approaches have not been able to provide a unified methodology that is able to connect all relevant reactions together. An apparent difficulty in modeling the RO4R formation and its decomposition is the involvement of open-shell singlet electronic states along the reaction pathway. Modeling such electronic states requires multireference (MR) methods, which we use in the present study to investigate in detail a model reaction of MeO2 + MeO2 → MeO4Me, and its decomposition, MeO4Me → MeO + O2 + MeO, as well as the two-body product complexes MeO···O2 + MeO and MeO···MeO + O2. The used MR methods are benchmarked against relative energies of MeO2 + MeO2, MeO4Me, and MeO + MeO + O2, calculated with CCSD(T)/CBS, W2X, and W3X-L methods. We found that the calculated relative energies of the overall MeO2 + MeO2 → MeO4Me → MeO + O2 + MeO reaction are very sensitive to the chosen MR method and that the CASPT2(22e,14o)-IPEA method is able to reproduce the relative energies obtained by the various coupled-cluster methods. Furthermore, CASPT2(22e,14o)-IPEA and W3X-L results show that the MeO···O2 product complex + MeO is lower in energy than the MeO···MeO complex + O2. The formation of MeO4Me is exothermic, and its decomposition is endothermic, relative to the tetroxide. Both the formation and decomposition reactions appear to follow pathways with no saddle points. According to potential energy surface scans of the decomposition pathway, the concerted cleavage of both MeO···O bonds in MeO4Me is energetically preferred over the corresponding sequential decomposition.
Collapse
Affiliation(s)
- Vili-Taneli Salo
- Department
of Chemistry, Faculty of Science, University
of Helsinki, Helsinki FI-00014, Finland
| | - Jing Chen
- Department
of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| | - Nino Runeberg
- Department
of Chemistry, Faculty of Science, University
of Helsinki, Helsinki FI-00014, Finland
| | | | - Theo Kurtén
- Department
of Chemistry, Faculty of Science, University
of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
19
|
Zhang W, Issa K, Tang T, Zhang H. Role of Hydroperoxyl Radicals in Heterogeneous Oxidation of Oxygenated Organic Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4727-4736. [PMID: 38411392 DOI: 10.1021/acs.est.3c09024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Heterogeneous oxidative aging of organic aerosols (OA) occurs ubiquitously in the atmosphere, initiated by oxidants, such as the hydroxyl radicals (•OH). Hydroperoxyl radicals (HO2•) are also an important oxidant in the troposphere, and its gas-phase chemistry has been well studied. However, the role of HO2• in heterogeneous OA oxidation remains elusive. Here, we carry out •OH-initiated heterogeneous oxidation of several OA model systems under different HO2• conditions in a flow tube reactor and characterize the molecular oxidation products using a suite of mass spectrometry instrumentation. By using hydrogen-deuterium exchange (HDX) with thermal desorption iodide-adduct chemical ionization mass spectrometry, we provide direct observation of organic hydroperoxide (ROOH) formation from heterogeneous HO2• and peroxy radicals (RO2•) reactions for the first time. The ROOH may contribute substantially to the oxidation products, varied with the parent OA chemical structure. Furthermore, by regulating RO2• reaction pathways, HO2• also greatly influence the overall composition of the oxidized OA. Last, we suggest that the RO2• + HO2• reactions readily occur at the OA particle interface rather than in the particle bulk. These findings provide new mechanistic insights into the heterogeneous OA oxidation chemistry and help fill the critical knowledge gap in understanding atmospheric OA oxidative aging.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Kassem Issa
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92507, United States
| | - Tiffany Tang
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California 92507, United States
| |
Collapse
|
20
|
Fang Y, Ao CK, Jiang Y, Sun Y, Chen L, Soh S. Static charge is an ionic molecular fragment. Nat Commun 2024; 15:1986. [PMID: 38443343 PMCID: PMC10914821 DOI: 10.1038/s41467-024-46200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
What is static charge? Despite the long history of research, the identity of static charge and mechanism by which static is generated by contact electrification are still unknown. Investigations are challenging due to the complexity of surfaces. This study involves the molecular-scale analysis of contact electrification using highly well-defined surfaces functionalized with a self-assembled monolayer of alkylsilanes. Analyses show the elementary molecular steps of contact electrification: the exact location of heterolytic cleavage of covalent bonds (i.e., Si-C bond), exact charged species generated (i.e., alkyl carbocation), and transfer of molecular fragments. The strong correlation between charge generation and molecular fragments due to their signature odd-even effects further shows that contact electrification is based on cleavage of covalent bonds and transfer of ionic molecular fragments. Static charge is thus an alkyl carbocation; in general, it is an ionic molecular fragment. This mechanism based on cleavage of covalent bonds is applicable to general types of insulating materials, such as covalently bonded polymers. The odd-even effect of charging caused by the difference of only one atom explains the highly sensitive nature of contact electrification.
Collapse
Affiliation(s)
- Yan Fang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30# Puzhu South Road, Nanjing, 211816, China
| | - Chi Kit Ao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yan Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yajuan Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Linfeng Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
21
|
Wu X, Yao X, Xie B, Wang P, Huo W, Zhu Y, Hou Q, Wu M, Wu Y, Zhang F. Unraveling the atmospheric oxidation mechanism and kinetics of naphthalene: Insights from theoretical exploration. CHEMOSPHERE 2024; 352:141356. [PMID: 38309603 DOI: 10.1016/j.chemosphere.2024.141356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Naphthalene, the most abundant polycyclic aromatic hydrocarbon in the atmosphere, significantly influences OH consumption and secondary organic aerosol (SOA) formation. Naphthoquinone (NQ) is a significant contributor to ring-retaining SOA from naphthalene degradation, impacting the redox properties and toxicity of ambient particles. However, inconsistencies persist regarding concentrations of its isomers, 1,2-NQ and 1,4-NQ. In present work, our theoretical investigation into naphthalene's reaction with OH and subsequent oxygenation unveils their role in SOA formation. The reaction kinetics of initial OH and subsequent O2 oxidation was extensively studied using high-level quantum chemical methods (DLPNO-CCSD(T)/aug-ccpVQZ//M052x-D3/6-311++G(d,p)) combined with RRKM/master equation simulations. The reactions mainly proceed through electrophilic addition and abstraction from the aromatic ring. The total rate coefficient of naphthalene + OH at 300 K and 1 atm from our calculation (7.2 × 10-12 cm3 molecule-1 s-1) agrees well with previous measurements (∼1 × 10-11 cm3 molecule-1 s-1). The computed branching ratios facilitate accurate product yield determination. The largest yield of 1-hydroxynaphthalen-1-yl radical (add1) producing the major precursor of RO2 is computed to be 93.8 % in the ambient environment. Our calculated total rate coefficient (5.2 × 10-16 cm3 molecule-1 s-1) for add1 + O2 closely matches that of limited experimental data (8.0 × 10-16 cm3 molecule-1 s-1). Peroxy radicals (RO2) generated from add1 + O2 include 4-cis/trans-(1-hydroxynaphthalen-1-yl)-peroxy radical (add1-4OOadd-cis/trans, 66.0 %/17.5 %), 2-cis/trans-(1-hydroxynaphthalen-1-yl)-peroxy radical (add1-2OOadd-cis/trans, 10.3 %/6.3 %). Regarding the debated predominance of 1,4-NQ (corresponding to the parent RO2, i.e., add1-4OOadd-cis/trans) and 1,2-NQ (corresponding to the parent RO2, i.e., add1-2OOadd-cis/trans) in the atmosphere, our findings substantiate the dominance of 1,4-NQ. This study also indicates potential weakening of 1,4-NQ's dominance due to competition from decomposition reactions of add1-4OOadd-cis/trans and add1-2OOadd-cis/trans. Precise reaction kinetics data are essential for characterizing SOA transformation derived from naphthalene and assessing their climatic impacts within modeling frameworks.
Collapse
Affiliation(s)
- Xiaoqing Wu
- College of Information Engineering, China Jiliang University, Hangzhou, 310018, PR China; Science and Technology on Plasma Dymamics Lab, Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xian, 710038, PR China.
| | - Xiaoxia Yao
- Science and Technology on Plasma Dymamics Lab, Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xian, 710038, PR China.
| | - Binbin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, 311231, PR China.
| | - Pengfei Wang
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, 310051, PR China.
| | - Wanli Huo
- College of Information Engineering, China Jiliang University, Hangzhou, 310018, PR China.
| | - Yifei Zhu
- Institute of Aero-engine, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, PR China.
| | - Qifeng Hou
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, 310051, PR China.
| | - Mengqi Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, PR China.
| | - Yun Wu
- Science and Technology on Plasma Dymamics Lab, Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xian, 710038, PR China.
| | - Feng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, PR China.
| |
Collapse
|
22
|
Wang X, Wang W, Wingen LM, Perraud V, Finlayson-Pitts BJ. Top-down versus bottom-up oxidation of a neonicotinoid pesticide by OH radicals. Proc Natl Acad Sci U S A 2024; 121:e2312930121. [PMID: 38315860 PMCID: PMC10873643 DOI: 10.1073/pnas.2312930121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/17/2023] [Indexed: 02/07/2024] Open
Abstract
Emerging contaminants (EC) distributed on surfaces in the environment can be oxidized by gas phase species (top-down) or by oxidants generated by the underlying substrate (bottom-up). One class of EC is the neonicotinoid (NN) pesticides that are widely distributed in air, water, and on plant and soil surfaces as well as on airborne dust and building materials. This study investigates the OH oxidation of the systemic NN pesticide acetamiprid (ACM) at room temperature. ACM on particles and as thin films on solid substrates were oxidized by OH radicals either from the gas phase or from an underlying TiO2 or NaNO2 substrate, and for comparison, in the aqueous phase. The site of OH attack is both the secondary >CH2 group as well as the primary -CH3 group attached to the tertiary amine nitrogen, with the latter dominating. In the case of top-down oxidation of ACM by gas phase OH radicals, addition to the -CN group also occurs. Major products are carbonyls and alcohols, but in the presence of sufficient water, their hydrolyzed products dominate. Kinetics measurements show ACM is more reactive toward gas phase OH radicals than other NN nitroguanidines, with an atmospheric lifetime of a few days. Bottom-up oxidation of ACM on TiO2 exposed to sunlight outdoors (temperatures were above 30 °C) was also shown to occur and is likely to be competitive with top-down oxidation. These findings highlight the different potential oxidation processes for EC and provide key data for assessing their environmental fates and toxicologies.
Collapse
Affiliation(s)
- Xinke Wang
- Department of Chemistry, University of California, Irvine, CA92697-2025
| | - Weihong Wang
- Department of Chemistry, University of California, Irvine, CA92697-2025
| | - Lisa M. Wingen
- Department of Chemistry, University of California, Irvine, CA92697-2025
| | - Véronique Perraud
- Department of Chemistry, University of California, Irvine, CA92697-2025
| | | |
Collapse
|
23
|
Färber M, Vereecken L, Fuchs H, Gkatzelis GI, Rohrer F, Wedel S, Wahner A, Novelli A. Impact of temperature-dependent non-PAN peroxynitrate formation, RO 2NO 2, on nighttime atmospheric chemistry. Phys Chem Chem Phys 2024; 26:5183-5194. [PMID: 38261377 DOI: 10.1039/d3cp04163h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The formation of peroxynitrates (RO2NO2) from the reaction of peroxy radicals (RO2) and nitrogen dioxide (NO2) and their subsequent redissociation are typically not included in chemical mechanisms. This is often done to save computational time as the assumption is that the equilibrium is strongly towards the RO2 + NO2 reaction for most conditions. Exceptions are the reactions of the methyl peroxy radical due to its abundance in the atmosphere and of acyl-RO2 radicals due to the long lifetime of peroxyacyl nitrates RO2NO2 (PANs). In this study, the nighttime oxidation of cis-2-butene and trans-2-hexene in the presence of NO2 is investigated in the atmospheric simulation chamber SAPHIR, Forschungszentrum Jülich, Germany, at atmospherically-relevant conditions at different temperatures (≈276 K, ≈293 K, ≈305 K). Measured concentrations of peroxy and hydroperoxy radicals as well as other trace gases (ozone, NO2, volatile organic compounds) are compared to state-of-the-art zero-dimensional box model calculations. Good model-measurement agreement can only be achieved when reversible RO2 + NO2 reactions are included for all RO2 species using literature values available from the latest SAR by [Jenkin et al., Atmos. Chem. Phys., 2019, 19, 7691]. The good agreement observed gives confidence that the SAR, derived originally for aliphatic RO2, can be applied to a large range of substituted RO2 radicals, simplifying generalised implementation in chemical models. RO2NO2 concentrations from non-acyl RO2 radicals of up to 2 × 10 cm-3 are predicted at 276 K, impacting effectively the kinetics of RO2 radicals. Under these conditions, peroxy radicals are slowly regenerated downwind of the pollution source and may be lost in the atmosphere through deposition of RO2NO2. Based on this study, 60% of RO2 radicals would be stored as RO2NO2 at a temperature of 10 °C and in the presence of a few ppbv of NO2. The fraction increases further at colder temperatures and/or higher NO2 mixing ratios. This does not only affect the expected concentrations of RO2 radicals but, as the peroxynitrates can react with OH radicals or photolyse, they could comprise a net sink for RO2 radicals as well as increase the production of NOx (= NO + NO2) in different locations depending on their lifetime. Omitting this chemistry from the kinetic model can lead to misinterpreted product formation and may prevent reconciling observations and model predictions.
Collapse
Affiliation(s)
- Michelle Färber
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Luc Vereecken
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Hendrik Fuchs
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
- Department of Physics, University of Cologne, 50932 Cologne, Germany
| | - Georgios I Gkatzelis
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Franz Rohrer
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Sergej Wedel
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Andreas Wahner
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Anna Novelli
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| |
Collapse
|
24
|
Shiroudi A, Czub J, Altarawneh M. Chemical Investigation on the Mechanism and Kinetics of the Atmospheric Degradation Reaction of Trichlorofluoroethene by OH⋅ and Its Subsequent Fate in the Presence of O 2 /NOx. Chemphyschem 2024; 25:e202300665. [PMID: 37983906 DOI: 10.1002/cphc.202300665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
The M06-2X/6-311++G(d,p) level of theory was used to examine the degradation of Trichlorofluoroethene (TCFE) initiated by OH⋅ radicals. Additionally, the coupled-cluster single-double with triple perturbative [CCSD(T)] method was employed to refine the single-point energies using the complete basis set extrapolation approach. The results indicated that OH-addition is the dominant pathway. OH⋅ adds to both the C1 and C2 carbons, resulting in the formation of the C(OH)Cl2 -⋅CClF and ⋅CCl2 -C(OH)ClF species. The associated barrier heights were determined to be 1.11 and -0.99 kcal mol-1 , respectively. Furthermore, the energetic and thermodynamic parameters show that pathway 1 exhibits greater exothermicity and exergonicity compared to pathway 2, with differences of 8.11 and 8.21 kcal mol-1 , correspondingly. The primary pathway involves OH addition to the C2 position, with a rate constant of 6.2×10-13 cm3 molecule-1 sec-1 at 298 K. This analysis served to estimate the atmospheric lifetime, along with the photochemical ozone creation potential (POCP) and ozone depletion potential (ODP). It yielded an atmospheric lifetime of 8.49 days, an ODP of 4.8×10-4 , and a POCP value of 2.99, respectively. Radiative forcing efficiencies were also estimated at the M06-2X/6-311++G(d,p) level. Global warming potentials (GWPs) were calculated for 20, 100, and 500 years, resulting in values of 9.61, 2.61, and 0.74, respectively. TCFE is not expected to make a significant contribution to the radiative forcing of climate change. The results obtained from the time-dependent density functional theory (TDDFT) indicated that TCFE and its energized adducts are unable to photolysis under sunlight in the UV and visible spectrum. Secondary reactions involve the [TCFE-OH-O2 ]⋅ peroxy radical, leading subsequently to the [TCFE-OH-O]⋅ alkoxy radical. It was found that the alkoxy radical resulting from the peroxy radical can lead to the formation of phosgene (COCl2 ) and carbonyl chloride fluoride (CClFO), with phosgene being the primary product.
Collapse
Affiliation(s)
- Abolfazl Shiroudi
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| |
Collapse
|
25
|
Chen Y, Wang W, Li J, Zhou L, Shi B, Fan C, Wang K, Zhang H, Li H, Ge M. Kinetic and mechanism of the reaction between Cl and several mono-methyl branched alkanes. J Environ Sci (China) 2024; 135:474-482. [PMID: 37778819 DOI: 10.1016/j.jes.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 10/03/2023]
Abstract
Branched alkanes are ubiquitous in the troposphere and play an important role in the chemical processes. In this work, the rate constants and products for the reaction of Cl atoms with 3-methylhexane and 2-methylheptane were measured at room temperature (298 ± 0.2 K) and atmospheric pressure using a conventional relative rate method. The rate constants of 3-methylhexane and 2-methylheptane in units of cm3/(mol·sec) are (3.09 ± 0.31) × 10-10 and (3.67 ± 0.40) × 10-10, respectively. Furthermore, the corresponding atmospheric lifetime of the studied branched alkanes with Cl was 6.92-89.90 hours and 5.82-75.69 hours, respectively. The estimated atmospheric lifetimes indicated that the reaction with Cl atoms could be the most important atmospheric degradation pathway for 3-methylhexane and 2-methylheptane. Primary gas-phase products of the reactions were identified and quantified, and particle-phase products were also obtained. The atmosphere oxidation mechanism of Cl atoms with 3-methylhexane and 2-methylheptane is proposed. The SOA yields of 3-methylhexane and 2-methylheptane from the reaction of Cl atoms were determined to be 7.96% ± 0.89% and 13.35% ± 1.50% respectively. Overall, the results reveal that the primary loss process of branched alkanes is the reaction with Cl atoms, which impacts its degradation on a regional scale.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junling Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Li Zhou
- National Engineering Research Center for Flue Gas Desulfurization, Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Bo Shi
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Cici Fan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Wei N, Zhao W, Yao Y, Wang H, Liu Z, Xu X, Rahman M, Zhang C, Fittschen C, Zhang W. Peroxy radical chemistry during ozone photochemical pollution season at a suburban site in the boundary of Jiangsu-Anhui-Shandong-Henan region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166355. [PMID: 37595920 DOI: 10.1016/j.scitotenv.2023.166355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Ambient peroxy radical (RO2⁎ = HO2 + RO2) concentrations were measured at a suburban site in a major prefecture-level city (Huaibei) in the boundary of Jiangsu-Anhui-Shandong-Henan region, which is the connecting belt of air pollution in the Beijing-Tianjin-Hebei region and the Yangtze River Delta. Measurements were carried out during the period of September to October 2021 to elucidate the formation mechanism of O3 pollution. The observed maximum concentration of peroxy radicals was 73.8 pptv. A zero-dimensional box model (Framework for 0-Dimensional Atmospheric Modeling, F0AM) based on Master Chemical Mechanism (MCM3.3.1) was used to predict radical concentrations for comparison with observations. The model reproduced the daily variation of peroxy radicals well, but discrepancies still appear in the morning hours. As in previous field campaigns, systematic discrepancies between modelled and measured RO2⁎ concentrations are observed in the morning for NO mixing ratios higher than 1 ppbv. Between 6:00 and 9:00 am, the model significantly underpredicts RO2⁎ by a mean factor of 7.2. This underprediction can be explained by a missing RO2⁎ source of 1.2 ppbv h-1 which originated from the photochemical conversion of an alkene-like chemical species. From the model results it shows that the main sources of ROx (= OH + HO2 + RO2) are the photolysis of oxygenated volatile organic compounds (OVOCs, 33 %), O3 and HONO (25 %), and HCHO (24 %). And the major sinks of ROx transitioned from a predominant reaction of radicals with NOx in the morning to a predominant peroxy self- and cross-reaction in the late afternoon. The introduction of an alkene-like species increased RO2 radical concentration and resulted in 14 % increase in net daily integrated ozone production, indicating the possible significance of the mechanism of alkene-like species oxidation to peroxy radicals. This study provides important information for subsequent ozone pollution control policies in Jiangsu-Anhui-Shandong-Henan region.
Collapse
Affiliation(s)
- Nana Wei
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Weixiong Zhao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| | - Yichen Yao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronics Technology, University of Science and Technology of China, Hefei 230026, China
| | - Huarong Wang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronics Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zheng Liu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronics Technology, University of Science and Technology of China, Hefei 230026, China
| | - Xuezhe Xu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Masudur Rahman
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; Department of Electrical and Electronic Engineering, Pabna University of Science and Technology, Pabna 6600, Bangladesh
| | - Cuihong Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronics Technology, University of Science and Technology of China, Hefei 230026, China; Université Lille, CNRS, UMR 8522 - PC2A -Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Christa Fittschen
- Université Lille, CNRS, UMR 8522 - PC2A -Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Weijun Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronics Technology, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
27
|
Yu H, Møller KH, Buenconsejo RS, Crounse JD, Kjaergaard HG, Wennberg PO. Atmospheric Photo-Oxidation of 2-Ethoxyethanol: Autoxidation Chemistry of Glycol Ethers. J Phys Chem A 2023; 127:9564-9579. [PMID: 37934888 DOI: 10.1021/acs.jpca.3c04456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We investigate the gas-phase photo-oxidation of 2-ethoxyethanol (2-EE) initiated by the OH radical with a focus on its autoxidation pathways. Gas-phase autoxidation─intramolecular H-shifts followed by O2 addition─has recently been recognized as a major atmospheric chemical pathway that leads to the formation of highly oxygenated organic molecules (HOMs), which are important precursors for secondary organic aerosols (SOAs). Here, we examine the gas-phase oxidation pathways of 2-EE, a model compound for glycol ethers, an important class of volatile organic compounds (VOCs) used in volatile chemical products (VCPs). Both experimental and computational techniques are applied to analyze the photochemistry of the compound. We identify oxidation products from both bimolecular and autoxidation reactions from chamber experiments at varied HO2 levels and provide estimations of rate coefficients and product branching ratios for key reaction pathways. The H-shift processes of 2-EE peroxy radicals (RO2) are found to be sufficiently fast to compete with bimolecular reactions under modest NO/HO2 conditions. More than 30% of the produced RO2 are expected to undergo at least one H-shift for conditions typical of modern summer urban atmosphere, where RO2 bimolecular lifetime is becoming >10 s, which implies the potential for glycol ether oxidation to produce considerable amounts of HOMs at reduced NOx levels and elevated temperature. Understanding the gas-phase autoxidation of glycol ethers can help fill the knowledge gap in the formation of SOA derived from oxygenated VOCs emitted from VCP sources.
Collapse
Affiliation(s)
- Hongmin Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Reina S Buenconsejo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - John D Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
- Division of Engineering and Applied Science, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| |
Collapse
|
28
|
Kjærgaard ER, Møller KH, Kjaergaard HG. Atmospheric Oxidation of Hydroperoxy Amides. J Phys Chem A 2023; 127:9311-9321. [PMID: 37877667 DOI: 10.1021/acs.jpca.3c04509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Recently, hydroperoxy amides were identified as major products of OH-initiated autoxidation of tertiary amines in the atmosphere. The formation mechanism is analogous to that found for ethers and sulfides but substantially faster. However, the atmospheric fate of the hydroperoxy amides remains unknown. Using high-level theoretical methods, we study the most likely OH-initiated oxidation pathways of the hydroperoxy and dihydroperoxy amides derived from trimethylamine autoxidation. Overall, we find that the OH-initiated oxidation of the hydroperoxy amides predominantly leads to the formation of imides under NO-dominated conditions and more highly oxidized hydroperoxy amides under HO2-dominated conditions. Unimolecular reactions are found to be surprisingly slow, likely due to the restricting, planar structure of the amide moiety.
Collapse
Affiliation(s)
- Eva R Kjærgaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
29
|
Kandpal SC, Otukile KP, Jindal S, Senthil S, Matthews C, Chakraborty S, Moskaleva LV, Ramakrishnan R. Stereo-electronic factors influencing the stability of hydroperoxyalkyl radicals: transferability of chemical trends across hydrocarbons and ab initio methods. Phys Chem Chem Phys 2023; 25:27302-27320. [PMID: 37791466 DOI: 10.1039/d3cp03598k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The hydroperoxyalkyl radicals (˙QOOH) are known to play a significant role in combustion and tropospheric processes, yet their direct spectroscopic detection remains challenging. In this study, we investigate molecular stereo-electronic effects influencing the kinetic and thermodynamic stability of a ˙QOOH along its formation path from the precursor, alkylperoxyl radical (ROO˙), and the depletion path resulting in the formation of cyclic ether + ˙OH. We focus on reactive intermediates encountered in the oxidation of acyclic hydrocarbon radicals: ethyl, isopropyl, isobutyl, tert-butyl, neopentyl, and their alicyclic counterparts: cyclohexyl, cyclohexenyl, and cyclohexadienyl. We report reaction energies and barriers calculated with the highly accurate method Weizmann-1 (W1) for the channels: ROO˙ ⇌ ˙QOOH, ROO˙ ⇌ alkene + ˙OOH, ˙QOOH ⇌ alkene + ˙OOH, and ˙QOOH ⇌ cyclic ether + ˙OH. Using W1 results as a reference, we have systematically benchmarked the accuracy of popular density functional theory (DFT), composite thermochemistry methods, and an explicitly correlated coupled-cluster method. We ascertain inductive, resonance, and steric effects on the overall stability of ˙QOOH and computationally investigate the possibility of forming more stable species. With new reactions as test cases, we probe the capacity of various ab initio methods to yield quantitative insights on the elementary steps of combustion.
Collapse
Affiliation(s)
| | - Kgalaletso P Otukile
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| | - Shweta Jindal
- Tata Institute of Fundamental Research, Hyderabad 500046, India.
| | - Salini Senthil
- Tata Institute of Fundamental Research, Hyderabad 500046, India.
| | - Cameron Matthews
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| | | | - Lyudmila V Moskaleva
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| | | |
Collapse
|
30
|
Straccia C VG, Blanco MB, Teruel MA. Hydroxy esters atmospheric degradation: OH and Cl reactivity, products distribution and fate of the alkoxy radicals formed. CHEMOSPHERE 2023; 339:139726. [PMID: 37543227 DOI: 10.1016/j.chemosphere.2023.139726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Kinetic studies of the reaction of ethyl glycolate HOCH2C(O)OCH2CH3 with OH radicals (kOH) and Cl atoms (kCl) have been conducted by the relative method using a glass atmospheric reactor by "in situ" Fourier Transform Infrared (FTIR) and Gas Chromatography equipped with flame ionization detection by Solid Phase Micro Extraction (GC-FID/SPME) at room temperature and atmospheric pressure. The following relative rate coefficients were determined using several reference compounds and two different techniques: kEG + OH-FTIR = (4.36 ± 1.21) × 10-12; kEG + OH-GC-FID= (3.90 ± 0.74) × 10-12; and kEG + Cl-GC-FID= (6.40 ± 0.72) × 10-11 all values in units of cm3.molecule-1.s-1. Complementary product studies were performed under comparable conditions to the kinetic tests, in order to identify the reaction products and to postulate their tropospheric oxidation mechanisms. The reaction of OH radicals and Cl atoms with ethyl glycolate initiates via H-atom abstraction from alkyl groups of the molecule. Formic acid was positively identified as a reaction product by FTIR. On the other hand, formaldehyde, acetaldehyde, glycolic acid; and formic acid were identified by the GC-MS technique. The Structure-Activity Relationship, (SAR) calculations were also implemented to estimate the more favorable reaction pathways and compare them with the products identified. Tropospheric lifetimes of τOH = 34 h and τCl = 5.5 days were estimated to determine how these investigated reactions might affect the air quality. In this sense, average ozone production of [O3] = 0.75 and a Photochemical Ozone Creation Potential, POCP, of 38 were calculated for the hydroxyl ester studied.
Collapse
Affiliation(s)
- Vianni G Straccia C
- (L.U.Q.C.A), Laboratorio Universitario de Química y Contaminación del Aire, Instituto de Investigaciones en Fisicoquímica de Córdoba (I.N.F.I.Q.C.), Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - María B Blanco
- (L.U.Q.C.A), Laboratorio Universitario de Química y Contaminación del Aire, Instituto de Investigaciones en Fisicoquímica de Córdoba (I.N.F.I.Q.C.), Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina; Institute for Atmospheric and Environmental Research, University of Wuppertal, DE-42097, Wuppertal, Germany
| | - Mariano A Teruel
- (L.U.Q.C.A), Laboratorio Universitario de Química y Contaminación del Aire, Instituto de Investigaciones en Fisicoquímica de Córdoba (I.N.F.I.Q.C.), Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
31
|
Qin Y, Perraud V, Finlayson-Pitts BJ, Wingen LM. Peroxides on the Surface of Organic Aerosol Particles Using Matrix-Assisted Ionization in Vacuum (MAIV) Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14260-14268. [PMID: 37695633 PMCID: PMC10537442 DOI: 10.1021/acs.est.3c02895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Organic peroxides are key intermediates in the atmosphere but are challenging to detect, especially in the particle phase, due to their instability, which has led to substantial gaps in the understanding of their environmental effects. We demonstrate that matrix-assisted ionization in vacuum (MAIV) mass spectrometry (MS), which does not require an ionization source, enables in situ characterization of peroxides and other products in the surface layers of organic particles. Hydroxyl radical oxidation of glutaric acid particles yields hydroperoxides and organic peroxides, which were detected with signals of the same order of magnitude as the major, more stable products. Product identification is supported by MS/MS analysis, peroxide standards, and offline high-resolution MS. The peroxide signals relative to the stable carbonyl and alcohol products are significantly larger using MAIV compared to those in the offline bulk analysis. This is also the case for analysis using fast, online easy ambient sonic-spray ionization mass spectrometry. These studies demonstrate the advantage of MAIV for the real-time characterization of labile peroxides in the surface layers of solid particles. The presence of peroxides on the surface may be important for surface oxidation processes as well as for the toxicity of inhaled particles.
Collapse
Affiliation(s)
- Yiming Qin
- Department of Chemistry, University
of California, Irvine, California 92697-2025 United States
| | - Véronique Perraud
- Department of Chemistry, University
of California, Irvine, California 92697-2025 United States
| | | | - Lisa M. Wingen
- Department of Chemistry, University
of California, Irvine, California 92697-2025 United States
| |
Collapse
|
32
|
Zuraski K, Grieman FJ, Hui AO, Cowen J, Winiberg FAF, Percival CJ, Okumura M, Sander SP. Acetonyl Peroxy and Hydroperoxy Self- and Cross-Reactions: Temperature-Dependent Kinetic Parameters, Branching Fractions, and Chaperone Effects. J Phys Chem A 2023; 127:7772-7792. [PMID: 37683115 PMCID: PMC10518823 DOI: 10.1021/acs.jpca.3c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Indexed: 09/10/2023]
Abstract
The temperature-dependent kinetic parameters, branching fractions, and chaperone effects of the self- and cross-reactions between acetonyl peroxy (CH3C(O)CH2O2) and hydro peroxy (HO2) have been studied using pulsed laser photolysis coupled with infrared (IR) wavelength-modulation spectroscopy and ultraviolet absorption (UVA) spectroscopy. Two IR lasers simultaneously monitored HO2 and hydroxyl (OH), while UVA measurements monitored CH3C(O)CH2O2. For the CH3C(O)CH2O2 self-reaction (T = 270-330 K), the rate parameters were determined to be A = (1.5-0.3+0.4) × 10-13 and Ea/R = -996 ± 334 K and the branching fraction to the alkoxy channel, k2b/k2, showed an inverse temperature dependence following the expression, k2b/k2 = (2.27 ± 0.62) - [(6.35 ± 2.06) × 10-3] T(K). For the reaction between CH3C(O)CH2O2 and HO2 (T = 270-330 K), the rate parameters were determined to be A = (3.4-1.5+2.5) × 10-13 and Ea/R = -547 ± 415 K for the hydroperoxide product channel and A = (6.23-4.4+15.3) × 10-17 and Ea/R = -3100 ± 870 K for the OH product channel. The branching fraction for the OH channel, k1b /k1, follows the temperature-dependent expression, k1b/k1 = (3.27 ± 0.51) - [(9.6 ± 1.7) × 10-3] T(K). Determination of these parameters required an extensive reaction kinetics model which included a re-evaluation of the temperature dependence of the HO2 self-reaction chaperone enhancement parameters due to the methanol-hydroperoxy complex. The second-law thermodynamic parameters for KP,M for the formation of the complex were found to be ΔrH250K° = -38.6 ± 3.3 kJ mol-1 and ΔrS250K° = -110.5 ± 13.2 J mol-1 K-1, with the third-law analysis yielding ΔrH250K° = -37.5 ± 0.25 kJ mol-1. The HO2 self-reaction rate coefficient was determined to be k4 = (3.34-0.80+1.04) × 10-13 exp [(507 ± 76)/T]cm3 molecule-1 s-1 with the enhancement term k4,M″ = (2.7-1.7+4.7) × 10-36 exp [(4700 ± 255)/T]cm6 molecule-2 s-1, proportional to [CH3OH], over T = 220-280 K. The equivalent chaperone enhancement parameter for the acetone-hydroperoxy complex was also required and determined to be k4,A″ = (5.0 × 10-38 - 1.4 × 10-41) exp[(7396 ± 1172)/T] cm6 molecule-2 s-1, proportional to [CH3C(O)CH3], over T = 270-296 K. From these parameters, the rate coefficients for the reactions between HO2 and the respective complexes over the given temperature ranges can be estimated: for HO2·CH3OH, k12 = [(1.72 ± 0.050) × 10-11] exp [(314 ± 7.2)/T] cm3 molecule-1 s-1 and for HO2·CH3C(O)CH3, k15 = [(7.9 ± 0.72) × 10-17] exp [(3881 ± 25)/T] cm3 molecule-1 s-1. Lastly, an estimate of the rate coefficient for the HO2·CH3OH self-reaction was also determined to be k13 = (1.3 ± 0.45) × 10-10 cm3 molecule-1 s-1.
Collapse
Affiliation(s)
- Kristen Zuraski
- NASA
Jet Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Fred J. Grieman
- NASA
Jet Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
- Seaver
Chemistry Laboratory, Pomona College, Claremont, California 91711, United States
| | - Aileen O. Hui
- Arthur
Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Julia Cowen
- NASA
Jet Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
- Seaver
Chemistry Laboratory, Pomona College, Claremont, California 91711, United States
| | - Frank A. F. Winiberg
- NASA
Jet Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Carl J. Percival
- NASA
Jet Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Mitchio Okumura
- Arthur
Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Stanley P. Sander
- NASA
Jet Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| |
Collapse
|
33
|
Ye C, Liu Y, Yuan B, Wang Z, Lin Y, Hu W, Chen W, Li T, Song W, Wang X, Lv D, Gu D, Shao M. Low-NO-like Oxidation Pathway Makes a Significant Contribution to Secondary Organic Aerosol in Polluted Urban Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13912-13924. [PMID: 37669221 DOI: 10.1021/acs.est.3c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Anthropogenic pollutants can greatly mediate formation pathways and chemical compositions of secondary organic aerosol (SOA) in urban atmospheres. We investigated the molecular tracers for different types of SOA in PM2.5 under varying NO/NO2 conditions in Guangzhou using source analysis of particle-phase speciated organics obtained from an iodide chemical ionization mass spectrometer with a Filter Inlet for Gases and AEROsols (FIGAERO-I-CIMS). Results show that low-NO-like pathways (when NO/NO2 < 0.2) explained ∼75% of the total measured FIGAERO-OA during regional transport periods, which was enriched in more-oxidized C4-C6 non-nitrogenous compounds over ozone accumulation. Daytime high-NO chemistry played larger roles (38%) in local pollution episodes, with organic nitrates (ONs) and nitrophenols increasing with enhanced aerosol water content and nitrate fraction. Nighttime NO3-initiated oxidation, characterized by monoterpene-derived ONs, accounted for comparable percentages (10-12%) of FIGAERO-OA for both two periods. Furthermore, the presence of organosulfates (OSs) improves the understanding of the roles of aqueous-phase processes in SOA production. Carbonyl-derived OSs exhibited a preferential formation under conditions of high aerosol acidity and/or abundant sulfate, which correlated well with low-NO-like SOA. Our results demonstrate the importance of NO/NO2 ratios in controlling SOA compositions, as well as interactions between water content, aerosol acidity, and inorganic salts in gas-to-particle partitioning of condensable organics.
Collapse
Affiliation(s)
- Chenshuo Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Ying Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Zelong Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Yi Lin
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Weiwei Hu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wei Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tiange Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Daqi Lv
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Dasa Gu
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Min Shao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| |
Collapse
|
34
|
Fischer I, Hemberger P. Photoelectron Photoion Coincidence Spectroscopy of Biradicals. Chemphyschem 2023; 24:e202300334. [PMID: 37325876 DOI: 10.1002/cphc.202300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
The electronic structure of biradicals is characterized by the presence of two unpaired electrons in degenerate or near-degenerate molecular orbitals. In particular, some of the most relevant species are highly reactive, difficult to generate cleanly and can only be studied in the gas phase or in matrices. Unveiling their electronic structure is, however, of paramount interest to understand their chemistry. Photoelectron photoion coincidence (PEPICO) spectroscopy is an excellent approach to explore the electronic states of biradicals, because it enables a direct correlation between the detected ions and electrons. This permits to extract unique vibrationally resolved photoion mass-selected threshold photoelectron spectra (ms-TPES) to obtain insight in the electronic structure of both the neutral and the cation. In this review we highlight most recent advances on the spectroscopy of biradicals and biradicaloids, utilizing PEPICO spectroscopy and vacuum ultraviolet (VUV) synchrotron radiation.
Collapse
Affiliation(s)
- Ingo Fischer
- Julius-Maximilians-Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Am Hubland, D-97074, Würzburg, Germany
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut (PSI), CH-5232, Villigen, Switzerland
| |
Collapse
|
35
|
Berndt T, Hoffmann EH, Tilgner A, Stratmann F, Herrmann H. Direct sulfuric acid formation from the gas-phase oxidation of reduced-sulfur compounds. Nat Commun 2023; 14:4849. [PMID: 37563153 PMCID: PMC10415363 DOI: 10.1038/s41467-023-40586-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Sulfuric acid represents a fundamental precursor for new nanometre-sized atmospheric aerosol particles. These particles, after subsequent growth, may influence Earth´s radiative forcing directly, or indirectly through affecting the microphysical and radiative properties of clouds. Currently considered formation routes yielding sulfuric acid in the atmosphere are the gas-phase oxidation of SO2 initiated by OH radicals and by Criegee intermediates, the latter being of little relevance. Here we report the observation of immediate sulfuric acid production from the OH reaction of emitted organic reduced-sulfur compounds, which was speculated about in the literature for decades. Key intermediates are the methylsulfonyl radical, CH3SO2, and, even more interestingly, its corresponding peroxy compound, CH3SO2OO. Results of modelling for pristine marine conditions show that oxidation of reduced-sulfur compounds could be responsible for up to ∼50% of formed gas-phase sulfuric acid in these areas. Our findings provide a more complete understanding of the atmospheric reduced-sulfur oxidation.
Collapse
Affiliation(s)
- Torsten Berndt
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany.
| | - Erik H Hoffmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Frank Stratmann
- Atmospheric Microphysics Department (AMP), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| |
Collapse
|
36
|
Zhang C, Li C, Zhang W, Tang X, Pillier L, Schoemaecker C, Fittschen C. Rate constant and branching ratio of the reaction of ethyl peroxy radicals with methyl peroxy radicals. Phys Chem Chem Phys 2023. [PMID: 37377107 DOI: 10.1039/d3cp01141k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The cross-reaction of ethyl peroxy radicals (C2H5O2) with methyl peroxy radicals (CH3O2) (R1) has been studied using laser photolysis coupled to time resolved detection of the two different peroxy radicals by continuous wave cavity ring down spectroscopy (cw-CRDS) in their AÃ-X̃ electronic transition in the near-infrared region, C2H5O2 at 7602.25 cm-1, and CH3O2 at 7488.13 cm-1. This detection scheme is not completely selective for both radicals, but it is demonstrated that it has great advantages compared to the widely used, but unselective UV absorption spectroscopy. Peroxy radicals were generated from the reaction of Cl-atoms with the appropriate hydrocarbon (CH4 and C2H6) in the presence of O2, whereby Cl-atoms were generated by 351 nm photolysis of Cl2. For different reasons detailed in the manuscript, all experiments were carried out under excess of C2H5O2 over CH3O2. The experimental results were best reproduced by an appropriate chemical model with a rate constant for the cross-reaction of k = (3.8 ± 1.0) × 10-13 cm3 s-1 and a yield for the radical channel, leading to CH3O and C2H5O, of (ϕ1a = 0.40 ± 0.20).
Collapse
Affiliation(s)
- Cuihong Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, Anhui, China
- Université Lille, CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France.
| | - Chuanliang Li
- Université Lille, CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France.
- Shanxi Engineering Research Center of Precision Measurement and Online Detection Equipment and School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Xiaofeng Tang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Laure Pillier
- Université Lille, CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France.
| | - Coralie Schoemaecker
- Université Lille, CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France.
| | - Christa Fittschen
- Université Lille, CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France.
| |
Collapse
|
37
|
Nguyen TB, Bates KH, Buenconsejo RS, Charan SM, Cavanna EE, Cocker DR, Day DA, DeVault MP, Donahue NM, Finewax Z, Habib LF, Handschy AV, Hildebrandt Ruiz L, Hou CYS, Jimenez JL, Joo T, Klodt AL, Kong W, Le C, Masoud CG, Mayernik MS, Ng NL, Nienhouse EJ, Nizkorodov SA, Orlando JJ, Post JJ, Sturm PO, Thrasher BL, Tyndall GS, Seinfeld JH, Worley SJ, Zhang X, Ziemann PJ. Overview of ICARUS-A Curated, Open Access, Online Repository for Atmospheric Simulation Chamber Data. ACS EARTH & SPACE CHEMISTRY 2023; 7:1235-1246. [PMID: 37342759 PMCID: PMC10278178 DOI: 10.1021/acsearthspacechem.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/23/2023]
Abstract
Atmospheric simulation chambers continue to be indispensable tools for research in the atmospheric sciences. Insights from chamber studies are integrated into atmospheric chemical transport models, which are used for science-informed policy decisions. However, a centralized data management and access infrastructure for their scientific products had not been available in the United States and many parts of the world. ICARUS (Integrated Chamber Atmospheric data Repository for Unified Science) is an open access, searchable, web-based infrastructure for storing, sharing, discovering, and utilizing atmospheric chamber data [https://icarus.ucdavis.edu]. ICARUS has two parts: a data intake portal and a search and discovery portal. Data in ICARUS are curated, uniform, interactive, indexed on popular search engines, mirrored by other repositories, version-tracked, vocabulary-controlled, and citable. ICARUS hosts both legacy data and new data in compliance with open access data mandates. Targeted data discovery is available based on key experimental parameters, including organic reactants and mixtures that are managed using the PubChem chemical database, oxidant information, nitrogen oxide (NOx) content, alkylperoxy radical (RO2) fate, seed particle information, environmental conditions, and reaction categories. A discipline-specific repository such as ICARUS with high amounts of metadata works to support the evaluation and revision of atmospheric model mechanisms, intercomparison of data and models, and the development of new model frameworks that can have more predictive power in the current and future atmosphere. The open accessibility and interactive nature of ICARUS data may also be useful for teaching, data mining, and training machine learning models.
Collapse
Affiliation(s)
- Tran B. Nguyen
- Department
of Environmental Toxicology, University
of California Davis, Davis, California 95616, United States
| | - Kelvin H. Bates
- Department
of Environmental Toxicology, University
of California Davis, Davis, California 95616, United States
- Center
for the Environment, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Reina S. Buenconsejo
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Sophia M. Charan
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Eric E. Cavanna
- Information
and Educational Technology, University of
California Davis, Davis, California 95616, United States
| | - David R. Cocker
- Department
Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92507, United States
| | - Douglas A. Day
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Marla P. DeVault
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Neil M. Donahue
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Engineering and Public Policy, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zachary Finewax
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Luke F. Habib
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Anne V. Handschy
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lea Hildebrandt Ruiz
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
| | - Chung-Yi S. Hou
- Data Stewardship Engineering Team, National
Center for Atmospheric Research, Boulder, Colorado 80307, United States
| | - Jose L. Jimenez
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Taekyu Joo
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexandra L. Klodt
- Department of Chemistry, University of
California Irvine, Irvine, California 92697, United States
| | - Weimeng Kong
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Chen Le
- Department
Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92507, United States
| | - Catherine G. Masoud
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew S. Mayernik
- Data Stewardship Engineering Team, National
Center for Atmospheric Research, Boulder, Colorado 80307, United States
| | - Nga L. Ng
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of
Chemical and Biomolecular Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School of
Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Eric J. Nienhouse
- Data Stewardship Engineering Team, National
Center for Atmospheric Research, Boulder, Colorado 80307, United States
| | - Sergey A. Nizkorodov
- Department of Chemistry, University of
California Irvine, Irvine, California 92697, United States
| | - John J. Orlando
- Atmospheric
Chemistry Observations and Modeling, National
Center for Atmospheric Research, Boulder, Colorado 80305, United States
| | - Jeroen J. Post
- Information
and Educational Technology, University of
California Davis, Davis, California 95616, United States
| | - Patrick O. Sturm
- Air Quality Research Center, University
of California Davis, Davis, California 95616, United States
| | - Bridget L. Thrasher
- Data Stewardship Engineering Team, National
Center for Atmospheric Research, Boulder, Colorado 80307, United States
| | - Geoffrey S. Tyndall
- Atmospheric
Chemistry Observations and Modeling, National
Center for Atmospheric Research, Boulder, Colorado 80305, United States
| | - John H. Seinfeld
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Division
of Engineering and Applied Science, Calif.
Institute of Technology, Pasadena, California 91125, United States
| | - Steven J. Worley
- Data Stewardship Engineering Team, National
Center for Atmospheric Research, Boulder, Colorado 80307, United States
| | - Xuan Zhang
- Atmospheric
Chemistry Observations and Modeling, National
Center for Atmospheric Research, Boulder, Colorado 80305, United States
| | - Paul J. Ziemann
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
38
|
Srivastava D, Li W, Tong S, Shi Z, Harrison RM. Characterization of products formed from the oxidation of toluene and m-xylene with varying NO x and OH exposure. CHEMOSPHERE 2023; 334:139002. [PMID: 37220797 DOI: 10.1016/j.chemosphere.2023.139002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 05/25/2023]
Abstract
Aromatic volatile organic compounds (VOCs) are an important precursor of secondary organic aerosol (SOA) in the urban environment. SOA formed from the oxidation of anthropogenic VOCs can be substantially more abundant than biogenic SOA and has been shown to account for a significant fraction of fine particulate matter in urban areas. A potential aerosol mass (PAM) chamber was used to investigate the oxidised products from the photo-oxidation of m-xylene and toluene. The experiments were carried out with OH radical as oxidant in both high- and low-NOx conditions and the resultant aerosol samples were collected using quartz filters and analysed by GC × GC-TOFMS. Results show the oxidation products derived from both precursors included ring-retaining and -opening compounds (unsaturated aldehydes, unsaturated ketones and organic acids) with a high number of ring-opening compounds observed from toluene oxidation. Glyoxal and methyl glyoxal were the major ring-cleavage products from both oxidation systems, indicating that a bicyclic route plays an important role in their formation. SOA yields were higher for both precursors under high-NOx (toluene: 0.111; m-xylene: 0.124) than at low-NOx (toluene: 0.089; m-xylene: 0.052), likely linked to higher OH concentrations during low-NOx experiments which may lead to higher degree of fragmentation. DHOPA (2,3-dihydroxy-4-oxo-pentanoic acid), a known tracer of toluene oxidation, was observed in both oxidation systems. The mass fraction of DHOPA in SOA from toluene oxidation was about double the value reported previously, but it should not be regarded as a tracer solely for oxidation of toluene as m-xylene oxidation gave a similar relative yield.
Collapse
Affiliation(s)
- Deepchandra Srivastava
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Weiran Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Shengrui Tong
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zongbo Shi
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Roy M Harrison
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
39
|
Balsini SS, Shiroudi A, Hatamjafari F, Zahedi E, Pourshamsian K, Oliaey AR. Understanding the kinetics and atmospheric degradation mechanism of chlorotrifluoroethylene (CF 2CFCl) initiated by OH radicals. Phys Chem Chem Phys 2023; 25:13630-13644. [PMID: 37144555 DOI: 10.1039/d3cp00161j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The atmospheric degradation of chlorotrifluoroethylene (CTFE) by OH˙ was investigated using density functional theory (DFT). The potential energy surfaces were also defined in terms of single-point energies derived from the linked cluster CCSD(T) theory. With an energy barrier of -2.62 to -0.99 kcal mol-1 using the M06-2x method, the negative temperature dependence was determined. The OH˙ attack on Cα and Cβ atoms (labeled pathways R1 and R2, respectively) shows that reaction R2 is 4.22 and 4.42 kcal mol-1, respectively, more exothermic and exergonic than reaction R1. The main pathway should be the addition of OH˙ to the β-carbon, resulting in ˙CClF-CF2OH species. At 298 K, the calculated rate constant was 9.87 × 10-13 cm3 molecule-1 s-1. The TST and RRKM calculations of rate constants and branching ratios were performed at P = 1 bar and in the fall-off pressure regime over the temperature range of 250-400 K. The formation of HF and ˙CClF-CFO species via the 1,2-HF loss process is the most predominant pathway both kinetically and thermodynamically. With increasing temperature and decreasing pressure, the regioselectivity of unimolecular processes of energized adducts [CTFE-OH]˙ gradually decreases. Pressures greater than 10-4 bar are often adequate for assuring saturation of the estimated unimolecular rates when compared to the RRKM rates (in high-pressure limit). Subsequent reactions involve the addition of O2 to the [CTFE-OH]˙ adducts at the α-position of the OH group. The [CTFE-OH-O2]˙ peroxy radical primarily reacts with NO and then directly decomposes into NO2 and oxy radicals. "Carbonic chloride fluoride", "carbonyl fluoride", and "2,2-difluoro-2-hydroxyacetyl fluoride" are predicted to be stable products in an oxidative atmosphere.
Collapse
Affiliation(s)
- Saber Safari Balsini
- Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
| | - Abolfazl Shiroudi
- Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland.
| | - Farhad Hatamjafari
- Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
| | - Ehsan Zahedi
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Khalil Pourshamsian
- Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
| | - Ahmad Reza Oliaey
- Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
| |
Collapse
|
40
|
Lockhart JPA, Bodipati B, Rizvi S. Investigating the Association Reactions of HOCH 2CO and HOCHCHO with O 2: A Quantum Computational and Master Equation Study. J Phys Chem A 2023; 127:4302-4316. [PMID: 37146175 DOI: 10.1021/acs.jpca.2c08163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Glycolaldehyde, HOCH2CHO, is an important multifunctional atmospheric trace gas formed in the oxidation of ethylene and isoprene and emitted directly from burning biomass. The initial step in the atmospheric photooxidation of HOCH2CHO yields HOCH2CO and HOCHCHO radicals; both of these radicals react rapidly with O2 in the troposphere. This study presents a comprehensive theoretical investigation of the HOCH2CO + O2 and HOCHCHO + O2 reactions using high-level quantum chemical calculations and energy-grained master equation simulations. The HOCH2CO + O2 reaction results in the formation of a HOCH2C(O)O2 radical, while the HOCHCHO + O2 reaction yields (HCO)2 + HO2. Density functional theory calculations have identified two open unimolecular pathways associated with the HOCH2C(O)O2 radical that yield HCOCOOH + OH or HCHO + CO2 + OH products; the former novel bimolecular product pathway has not been previously reported in the literature. Master equation simulations based on the potential energy surface calculated here for the HOCH2CO + O2 recombination reaction support experimental product yield data from the literature and indicate that, even at total pressures of 1 atm, the HOCH2CO + O2 reaction yields ∼11% OH at 298 K.
Collapse
Affiliation(s)
- J P A Lockhart
- Department of Chemistry, Adelphi University, One South Avenue, Garden City, New York 11530, United States
| | - B Bodipati
- Department of Chemistry, Adelphi University, One South Avenue, Garden City, New York 11530, United States
| | - S Rizvi
- Department of Chemistry, Adelphi University, One South Avenue, Garden City, New York 11530, United States
| |
Collapse
|
41
|
Zhang Z, Wang C, Zhao Y, Zhao Y, Li G, Xie H, Jiang L. Autoxidation Mechanism and Kinetics of Methacrolein in the Atmosphere. J Phys Chem A 2023; 127:2819-2829. [PMID: 36939326 DOI: 10.1021/acs.jpca.3c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Elucidating the autoxidation of volatile organic compounds (VOCs) is crucial to understanding the formation mechanism of secondary organic aerosols, but it has been proven to be challenging due to the complexity of reactions under atmospheric conditions. Here, we report a comprehensive theoretical study of atmospheric autoxidation in VOCs exemplified by the atmospherically important methacrolein (MACR), a major oxidation product of isoprene. The results indicate that the Cl-adducts and H-abstraction products of MACR readily react with O2 and undergo subsequent isomerizations via H-shift and cyclization, forming a large variety of lowly and highly oxygenated organic molecules. In particular, the first- and third-generation oxidation products derived from the Cl-adducts and the methyl-H-abstraction complexes are dominated in the atmospheric autoxidation, for which the fractional yields are remarkably affected by the NO concentration. The present findings have important implications for a systematical understanding of the oxidation processes of isoprene-derived compounds in the atmospheric environments.
Collapse
Affiliation(s)
- Zhaoyan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yingqi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ya Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
42
|
Assaf E, Finewax Z, Marshall P, Veres PR, Neuman JA, Burkholder JB. Measurement of the Intramolecular Hydrogen-Shift Rate Coefficient for the CH 3SCH 2OO Radical between 314 and 433 K. J Phys Chem A 2023; 127:2336-2350. [PMID: 36862996 DOI: 10.1021/acs.jpca.2c09095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The intramolecular hydrogen-shift rate coefficient of the CH3SCH2O2 (methylthiomethylperoxy, MSP) radical, a product formed in the oxidation of dimethyl sulfide (DMS), was measured using a pulsed laser photolysis flow tube reactor coupled to a high-resolution time-of-flight chemical ionization mass spectrometer that measured the formation of the DMS degradation end product HOOCH2SCHO (hydroperoxymethyl thioformate). Measurements performed over the temperature range of 314-433 K yielded a hydrogen-shift rate coefficient of k1(T) = (2.39 ± 0.7) × 109 exp(-(7278 ± 99)/T) s-1 Arrhenius expression and a value extrapolated to 298 K of 0.06 s-1. The potential energy surface and the rate coefficient have also been theoretically investigated using density functional theory at the M06-2X/aug-cc-pVTZ level combined with approximate CCSD(T)/CBS energies yielding k1(273-433 K) = 2.4 × 1011 × exp(-8782/T) s-1 and k1(298 K) = 0.037 s-1 in fair agreement with the experimental results. Present results are compared with the previously reported values of k1(293-298 K).
Collapse
Affiliation(s)
- Emmanuel Assaf
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Zachary Finewax
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Paul Marshall
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Patrick R Veres
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States
| | - J Andrew Neuman
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States
| | - James B Burkholder
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States
| |
Collapse
|
43
|
Xu J, Deng H, Wang Y, Li P, Zeng J, Pang H, Xu X, Li X, Yang Y, Gligorovski S. Heterogeneous chemistry of ozone with floor cleaning agent: Implications of secondary VOCs in the indoor environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160867. [PMID: 36521626 DOI: 10.1016/j.scitotenv.2022.160867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Human daily activities such as cooking, and cleaning can affect the indoor air quality by releasing primary emitted volatile organic compounds (VOCs), as well as by the secondary product compounds formed through reactions with ozone (O3) and hydroxyl radicals (OH). However, our knowledge about the formation processes of the secondary VOCs is still incomplete. We performed real-time measurements of primary VOCs released by commercial floor-cleaning detergent and the secondary product compounds formed by heterogeneous reaction of O3 with the constituents of the cleaning agent by use of high-resolution mass spectrometry. We measured the uptake coefficients of O3 on the cleaning detergent at different relative humidities in dark and under different light intensities (320 nm < λ < 400 nm) relevant for the indoor environment. On the basis of the detected compounds we developed tentative reaction mechanisms describing the formation of the secondary VOCs. Intriguingly, under light irradiation the formation of valeraldehyde was observed based on the photosensitized chemistry of acetophenone which is a constituent of the cleaning agent. Finally, we modeled the observed mixing ratios of three aldehydes, glyoxal, methylglyoxal, and 4-oxopentanal with respect to real-life indoor environment. The results suggest that secondary VOCs initiated by ozone chemistry can additionally impact the indoor air pollution.
Collapse
Affiliation(s)
- Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric, Environment, Jinan University, Guangzhou 510632, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric, Environment, Jinan University, Guangzhou 510632, China
| | - Yan Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China; Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China.
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| |
Collapse
|
44
|
Yue H, Zhang C, Lin X, Wen Z, Zhang W, Mostafa S, Luo PL, Zhang Z, Hemberger P, Fittschen C, Tang X. Dimeric Product of Peroxy Radical Self-Reaction Probed with VUV Photoionization Mass Spectrometry and Theoretical Calculations: The Case of C 2H 5OOC 2H 5. Int J Mol Sci 2023; 24:ijms24043731. [PMID: 36835141 PMCID: PMC9965172 DOI: 10.3390/ijms24043731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Organic peroxy radicals (RO2) as key intermediates in tropospheric chemistry exert a controlling influence on the cycling of atmospheric reactive radicals and the production of secondary pollutants, such as ozone and secondary organic aerosols (SOA). Herein, we present a comprehensive study of the self-reaction of ethyl peroxy radicals (C2H5O2) by using advanced vacuum ultraviolet (VUV) photoionization mass spectrometry in combination with theoretical calculations. A VUV discharge lamp in Hefei and synchrotron radiation at the Swiss Light Source (SLS) are employed as the photoionization light sources, combined with a microwave discharge fast flow reactor in Hefei and a laser photolysis reactor at the SLS. The dimeric product, C2H5OOC2H5, as well as other products, CH3CHO, C2H5OH and C2H5O, formed from the self-reaction of C2H5O2 are clearly observed in the photoionization mass spectra. Two kinds of kinetic experiments have been performed in Hefei by either changing the reaction time or the initial concentration of C2H5O2 radicals to confirm the origins of the products and to validate the reaction mechanisms. Based on the fitting of the kinetic data with the theoretically calculated results and the peak area ratios in the photoionization mass spectra, a branching ratio of 10 ± 5% for the pathway leading to the dimeric product C2H5OOC2H5 is measured. In addition, the adiabatic ionization energy (AIE) of C2H5OOC2H5 is determined at 8.75 ± 0.05 eV in the photoionization spectrum with the aid of Franck-Condon calculations and its structure is revealed here for the first time. The potential energy surface of the C2H5O2 self-reaction has also been theoretically calculated with a high-level of theory to understand the reaction processes in detail. This study provides a new insight into the direct measurement of the elusive dimeric product ROOR and demonstrates its non-negligible branching ratio in the self-reaction of small RO2 radicals.
Collapse
Affiliation(s)
- Hao Yue
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Cuihong Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
- Univ. Lille, CNRS, UMR 8522-PC2A–Physicochimie des Processus de Combustion et de I’Atmosphère, F-59000 Lille, France
| | - Xiaoxiao Lin
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zuoying Wen
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Sabah Mostafa
- Univ. Lille, CNRS, UMR 8522-PC2A–Physicochimie des Processus de Combustion et de I’Atmosphère, F-59000 Lille, France
| | - Pei-Ling Luo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Zihao Zhang
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Christa Fittschen
- Univ. Lille, CNRS, UMR 8522-PC2A–Physicochimie des Processus de Combustion et de I’Atmosphère, F-59000 Lille, France
- Correspondence: (C.F.); (X.T.)
| | - Xiaofeng Tang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Correspondence: (C.F.); (X.T.)
| |
Collapse
|
45
|
Hasan G, Salo VT, Golin Almeida T, Valiev RR, Kurtén T. Computational Investigation of Substituent Effects on the Alcohol + Carbonyl Channel of Peroxy Radical Self- and Cross-Reactions. J Phys Chem A 2023; 127:1686-1696. [PMID: 36753050 PMCID: PMC9969516 DOI: 10.1021/acs.jpca.2c08927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Organic peroxy radicals (RO2) are key intermediates in atmospheric chemistry and can undergo a large variety of both uni- and bimolecular reactions. One of the least understood reaction classes of RO2 are their self- and cross-reactions: RO2 + R'O2. In our previous work, we have investigated how RO2 + R'O2 reactions can lead to the formation of ROOR' accretion products through intersystem crossings and subsequent recombination of a triplet intermediate complex 3(RO···OR'). Accretion products can potentially have very low saturation vapor pressures, and may therefore participate in the formation of aerosol particles. In this work, we investigate the competing H-shift channel, which leads to the formation of more volatile carbonyl and alcohol products. This is one of the main, and sometimes the dominant, RO2 + R'O2 reaction channels for small RO2. We investigate how substituents (R and R' groups) affect the H-shift barriers and rates for a set of 3(RO···OR') complexes. The variation in barrier heights and rates is found to be surprisingly small, and most computed H-shift rates are fast: around 108-109 s-1. We find that the barrier height is affected by three competing factors: (1) the weakening of the breaking C-H bond due to interactions with adjacent functional groups; (2) the overall binding energy of the 3(RO···OR'), which tends to increase the barrier height; and (3) the thermodynamic stability of the reaction products. We also calculated intersystem crossing rate coefficients (ISC) for the same systems and found that most of them were of the same order of magnitude as the H-shift rates. This suggests that both studied channels are competitive for small and medium-sized RO2. However, for complex enough R or R' groups, the binding energy effect may render the H-shift channel uncompetitive with intersystem crossings (and thus ROOR' formation), as the rate of the latter, while variable, seems to be largely independent of system size. This may help explain the experimental observation that accretion product formation becomes highly effective for large and multifunctional RO2.
Collapse
Affiliation(s)
- Galib Hasan
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland,
| | - Vili-Taneli Salo
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Thomas Golin Almeida
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Rashid R. Valiev
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland,
| |
Collapse
|
46
|
Graeffe F, Heikkinen L, Garmash O, Äijälä M, Allan J, Feron A, Cirtog M, Petit JE, Bonnaire N, Lambe A, Favez O, Albinet A, Williams LR, Ehn M. Detecting and Characterizing Particulate Organic Nitrates with an Aerodyne Long-ToF Aerosol Mass Spectrometer. ACS EARTH & SPACE CHEMISTRY 2023; 7:230-242. [PMID: 36704177 PMCID: PMC9869397 DOI: 10.1021/acsearthspacechem.2c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Particulate organic nitrate (pON) can be a major part of secondary organic aerosol (SOA) and is commonly quantified by indirect means from aerosol mass spectrometer (AMS) data. However, pON quantification remains challenging. Here, we set out to quantify and characterize pON in the boreal forest, through direct field observations at Station for Measuring Ecosystem Atmosphere Relationships (SMEAR) II in Hyytiälä, Finland, and targeted single-precursor laboratory studies. We utilized a long time-of-flight AMS (LToF-AMS) for aerosol chemical characterization, with a particular focus to identify C x H y O z N+ ("CHON+") fragments. We estimate that during springtime at SMEAR II, pON (including both the organic and nitrate part) accounts for ∼10% of the particle mass concentration (calculated by the NO+/NO2 + method) and originates mainly from the NO3 radical oxidation of biogenic volatile organic compounds. The majority of the background nitrate aerosol measured is organic. The CHON+ fragment analysis was largely unsuccessful at SMEAR II, mainly due to low concentrations of the few detected fragments. However, our findings may be useful at other sites as we identified 80 unique CHON+ fragments from the laboratory measurements of SOA formed from NO3 radical oxidation of three pON precursors (β-pinene, limonene, and guaiacol). Finally, we noted a significant effect on ion identification during the LToF-AMS high-resolution data processing, resulting in too many ions being fit, depending on whether tungsten ions (W+) were used in the peak width determination. Although this phenomenon may be instrument-specific, we encourage all (LTOF-) AMS users to investigate this effect on their instrument to reduce the possibility of incorrect identifications.
Collapse
Affiliation(s)
- Frans Graeffe
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
| | - Liine Heikkinen
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
- Department
of Environmental Science and Bolin Centre for Climate Research, Stockholm University, StockholmSE-10691, Sweden
| | - Olga Garmash
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
- Aerosol
Physics Laboratory, Physics Unit, Tampere
University, Tampere33014, Finland
| | - Mikko Äijälä
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
| | - James Allan
- Department
of Earth and Environmental Sciences and National Centre for Atmospheric
Science (NCAS), University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | - Anaïs Feron
- Univ
Paris Est Créteil and Université Paris Cité,
CNRS, LISA, Créteil, ParisF-94010, France
| | - Manuela Cirtog
- Univ
Paris Est Créteil and Université Paris Cité,
CNRS, LISA, Créteil, ParisF-94010, France
| | - Jean-Eudes Petit
- Laboratoire
des Sciences du Climat et de l’Environnement (LSCE), Gif-sur-Yvette91191, France
| | - Nicolas Bonnaire
- Laboratoire
des Sciences du Climat et de l’Environnement (LSCE), Gif-sur-Yvette91191, France
| | - Andrew Lambe
- Aerodyne
Research Inc., Billerica, Massachusetts01821, United States
| | - Olivier Favez
- Institut
National de l’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte60550, France
| | - Alexandre Albinet
- Institut
National de l’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte60550, France
| | - Leah R. Williams
- Aerodyne
Research Inc., Billerica, Massachusetts01821, United States
| | - Mikael Ehn
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
| |
Collapse
|
47
|
Bell DM, Pospisilova V, Lopez-Hilfiker F, Bertrand A, Xiao M, Zhou X, Huang W, Wang DS, Lee CP, Dommen J, Baltensperger U, Prevot ASH, El Haddad I, Slowik JG. Effect of OH scavengers on the chemical composition of α-pinene secondary organic aerosol. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2023; 3:115-123. [PMID: 36743126 PMCID: PMC9850668 DOI: 10.1039/d2ea00105e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
OH scavengers are extensively used in studies of secondary organic aerosol (SOA) because they create an idealized environment where only a single oxidation pathway is occurring. Here, we present a detailed molecular characterization of SOA produced from α-pinene + O3 with a variety of OH scavengers using the extractive electrospray time-of-flight mass spectrometer in our atmospheric simulation chamber, which is complemented by characterizing the gas phase composition in flow reactor experiments. Under our experimental conditions, radical chemistry largely controls the composition of SOA. Besides playing their desired role in suppressing the reaction of α-pinene with OH, OH scavengers alter the reaction pathways of radicals produced from α-pinene + O3. This involves changing the HO2 : RO2 ratio, the identity of the RO2 radicals present, and the RO2 major sinks. As a result, the use of the OH scavengers has significant effects on the composition of SOA, including inclusions of scavenger molecules in SOA, the promotion of fragmentation reactions, and depletion of dimers formed via α-pinene RO2-RO2 reactions. To date fragmentation reactions and inclusion of OH scavenger products into secondary organic aerosol have not been reported in atmospheric simulation chamber studies. Therefore, care should be considered if and when to use an OH scavenger during experiments.
Collapse
Affiliation(s)
- David M. Bell
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute5232 VilligenSwitzerland
| | - Veronika Pospisilova
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute5232 VilligenSwitzerland,Tofwerk3600 ThunSwitzerland
| | - Felipe Lopez-Hilfiker
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute5232 VilligenSwitzerland,Tofwerk3600 ThunSwitzerland
| | - Amelie Bertrand
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute5232 VilligenSwitzerland
| | - Mao Xiao
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute5232 VilligenSwitzerland
| | - Xueqin Zhou
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute5232 VilligenSwitzerland
| | - Wei Huang
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology76344 Eggenstein-LeopoldshafenGermany
| | - Dongyu S. Wang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute5232 VilligenSwitzerland
| | - Chuan Ping Lee
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute5232 VilligenSwitzerland
| | - Josef Dommen
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute5232 VilligenSwitzerland
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute5232 VilligenSwitzerland
| | - Andre S. H. Prevot
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute5232 VilligenSwitzerland
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute5232 VilligenSwitzerland
| | - Jay G. Slowik
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute5232 VilligenSwitzerland
| |
Collapse
|
48
|
Wang S, Zhao Y, Chan AWH, Yao M, Chen Z, Abbatt JPD. Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere. Chem Rev 2023; 123:1635-1679. [PMID: 36630720 DOI: 10.1021/acs.chemrev.2c00430] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organic peroxides (POs) are organic molecules with one or more peroxide (-O-O-) functional groups. POs are commonly regarded as chemically labile termination products from gas-phase radical chemistry and therefore serve as temporary reservoirs for oxidative radicals (HOx and ROx) in the atmosphere. Owing to their ubiquity, active gas-particle partitioning behavior, and reactivity, POs are key reactive intermediates in atmospheric multiphase processes determining the life cycle (formation, growth, and aging), climate, and health impacts of aerosol. However, there remain substantial gaps in the origin, molecular diversity, and fate of POs due to their complex nature and dynamic behavior. Here, we summarize the current understanding on atmospheric POs, with a focus on their identification and quantification, state-of-the-art analytical developments, molecular-level formation mechanisms, multiphase chemical transformation pathways, as well as environmental and health impacts. We find that interactions with SO2 and transition metal ions are generally the fast PO transformation pathways in atmospheric liquid water, with lifetimes estimated to be minutes to hours, while hydrolysis is particularly important for α-substituted hydroperoxides. Meanwhile, photolysis and thermolysis are likely minor sinks for POs. These multiphase PO transformation pathways are distinctly different from their gas-phase fates, such as photolysis and reaction with OH radicals, which highlights the need to understand the multiphase partitioning of POs. By summarizing the current advances and remaining challenges for the investigation of POs, we propose future research priorities regarding their origin, fate, and impacts in the atmosphere.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
- School of the Environment, University of Toronto, Toronto, OntarioM5S 3E8, Canada
| | - Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| |
Collapse
|
49
|
Manonmani G, Sandhiya L, Senthilkumar K. A Computational Perspective on the Chemical Reaction of HFO-1234zc with the OH Radical in the Gas Phase and in the Presence of Mineral Dust. J Phys Chem A 2022; 126:9564-9576. [PMID: 36534504 DOI: 10.1021/acs.jpca.2c03229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gas phase and heterogeneous reaction on mineral dust aerosols of trace gases could significantly affect the tropospheric oxidation capacity and aerosol composition of the atmosphere. In this work, the OH radical-initiated oxidation of a hydrofluoroolefin, HFO-1234zc, and subsequent reaction of favorable intermediates with other reactive species, such as O2, HO2, and NOx (x = 1-2) radicals, were studied, and the role of mineral dust in the form of silicate clusters on the reaction mechanism and rate constant was studied. In the gas phase, OH radical addition to HFO-1234zc is kinetically more favorable than the H-atom abstraction reaction. The calculated reaction energy barrier and thermochemical parameters show that both the initial reactions are more feasible on silicate clusters. Thus, silicates can act as chemical sinks for trapping of hydrofluoroolefins (HFOs). It is found that both gas-phase and heterogeneous reactions are responsible for the transformation of HFOs into fluorinated compounds in the atmosphere. Further, the results show that the ozone creation potential of HFO-1234zc is low, and few of the products are harmful to aquatic organisms. This study provides new insights on the formation of toxic pollutants from the oxidation of HFO-1234zc, which may have significant implications in the troposphere.
Collapse
Affiliation(s)
- G Manonmani
- Department of Physics, Bharathiar University, Coimbatore641 046, India
| | - L Sandhiya
- CSIR-National Institute of Science Communication and Policy Research, New Delhi110012, India
| | - K Senthilkumar
- Department of Physics, Bharathiar University, Coimbatore641 046, India
| |
Collapse
|
50
|
Arathala P, Musah RA. Theoretical Study of the Atmospheric Chemistry of Methane Sulfonamide Initiated by OH Radicals and the CH 3S(O) 2N •H + 3O 2 Reaction. J Phys Chem A 2022; 126:9447-9460. [DOI: 10.1021/acs.jpca.2c06432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Parandaman Arathala
- Department of Chemistry, University at Albany─State University of New York, 1400 Washington Avenue, Albany, New York12222, United States
| | - Rabi A. Musah
- Department of Chemistry, University at Albany─State University of New York, 1400 Washington Avenue, Albany, New York12222, United States
| |
Collapse
|