1
|
Connolly EL, Liu AH, Radavelli-Bagatini S, Shafaei A, Boyce MC, Wood LG, McCahon L, Koch H, Sim M, Hill CR, Parmenter BH, Bondonno NP, Devine A, Croft KD, Mithen R, Gan SK, Schultz CJ, Woodman RJ, Bondonno CP, Lewis JR, Hodgson JM, Blekkenhorst LC. Cruciferous vegetables lower blood pressure in adults with mildly elevated blood pressure in a randomized, controlled, crossover trial: the VEgetableS for vaScular hEaLth (VESSEL) study. BMC Med 2024; 22:353. [PMID: 39218859 PMCID: PMC11367748 DOI: 10.1186/s12916-024-03577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Higher cruciferous vegetable intake is associated with lower cardiovascular disease risk in observational studies. The pathways involved remain uncertain. We aimed to determine whether cruciferous vegetable intake (active) lowers 24-h brachial systolic blood pressure (SBP; primary outcome) compared to root and squash vegetables (control) in Australian adults with mildly elevated BP (SBP 120-160 mmHg inclusive). METHODS In this randomized, controlled, crossover trial, participants completed two 2-week dietary interventions separated by a 2-week washout. Cruciferous vegetables were compared to root and squash vegetables (~ 300 g/day) consumed with lunch and dinner meals. Participants were blinded to which interventions were the active and control. Adherence was assessed using food diaries and biomarkers (S-methyl cysteine sulfoxide (SMCSO, active) and carotenoids (control)). Twenty-four-hour brachial ambulatory SBP and secondary outcomes were assessed pre- and post each intervention. Differences were tested using linear mixed effects regression. RESULTS Eighteen participants were recruited (median (IQR) age: 68 (66-70); female: n = 16/18; mean ± SD clinic SBP: 135.9 ± 10.0 mmHg). For both interventions, 72% participants had 100% adherence (IQR: 96.4-100%). SMCSO and carotenoids were significantly different between interventions (mean difference active vs. control SMCSO: 22.93 mg/mL, 95%CI 15.62, 30.23, P < 0.0001; carotenoids: - 0.974 mg/mL, 95%CI - 1.525, - 0.423, P = 0.001). Twenty-four-hour brachial SBP was significantly reduced following the active vs. control (mean difference - 2.5 mmHg, 95%CI - 4.2, - 0.9, P = 0.002; active pre: 126.8 ± 12.6 mmHg, post: 124.4 ± 11.8 mmHg; control pre: 125.5 ± 12.1 mmHg, post: 124.8 ± 13.1 mmHg, n = 17), driven by daytime SBP (mean difference - 3.6 mmHg, 95%CI - 5.4, - 1.7, P < 0.001). Serum triglycerides were significantly lower following the active vs. control (mean difference - 0.2 mmol/L, 95%CI - 0.4, - 0.0, P = 0.047). CONCLUSIONS Increased intake of cruciferous vegetables resulted in reduced SBP compared to root and squash vegetables. Future research is needed to determine whether targeted recommendations for increasing cruciferous vegetable intake benefits population health. TRIAL REGISTRATION Clinical trial registry ACTRN12619001294145. https://www.anzctr.org.au.
Collapse
Affiliation(s)
- Emma L Connolly
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
| | - Alex H Liu
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
| | - Simone Radavelli-Bagatini
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Mary C Boyce
- School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Lisa G Wood
- School of Biomedical Science and Pharmacy, New Lambton Heights, University of Newcastle, NSW, Australia
| | - Lyn McCahon
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
| | - Henrietta Koch
- School of Biomedical Sciences, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Marc Sim
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Caroline R Hill
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
| | - Benjamin H Parmenter
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
| | - Nicola P Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- The Danish Cancer Institute, Copenhagen, Denmark
| | - Amanda Devine
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Richard Mithen
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Seng Khee Gan
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Endocrinology and Diabetes, Royal Perth Hospital, Perth, WA, Australia
| | - Carl J Schultz
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, WA, Australia
| | - Richard J Woodman
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Catherine P Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Joshua R Lewis
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan M Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Lauren C Blekkenhorst
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, WA, Australia.
- Medical School, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
2
|
Hill CR, Shafaei A, Matthews VB, Ward NC, Croft KD, Lewis JR, Hodgson JM, Balmer L, Blekkenhorst LC. S-Methyl Cysteine Sulfoxide Does Not Ameliorate Weight Gain or Hyperlipidemia in Mice Fed a High-Fat Diet. Mol Nutr Food Res 2024; 68:e2400034. [PMID: 38704751 DOI: 10.1002/mnfr.202400034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Indexed: 05/07/2024]
Abstract
SCOPE Higher intake of cruciferous and allium vegetables is associated with lower cardiometabolic risk. Little research has investigated the cardiometabolic effects of S-methyl cysteine sulfoxide (SMCSO), found abundant in these vegetables. This study hypothesizes that SMCSO will blunt development of metabolic syndrome features in mice fed high-fat feed. METHODS AND RESULTS Fifty C57BL/6 male mice are randomly assigned to standard-chow, high-fat, or high-fat supplemented with low-SMCSO (43 mg kg-1 body weight [BW] day-1), medium-SMCSO (153 mg kg-1 BW day-1), or high-SMCSO (256 mg kg-1 BW day-1) for 12-weeks. High-fat with SMCSO did not prevent diet-induced obesity, glucose intolerance, or hypercholesterolemia. Mice fed high-fat with SMCSO has higher hepatic lipids than mice fed standard-chow or high-fat alone. Urinary SMCSO increases at 6- and 12-weeks in the low-SMCSO group, before reducing 46% and 28% in the medium- and high-SMCSO groups, respectively, at 12-weeks, suggesting possible tissue saturation. Interestingly, two SMCSO-fed groups consume significantly more feed, without significant weight gain. Due to limitations in measuring consumed feed, caution should be taken interpreting these results. CONCLUSION SMCSO (43-256 mg kg-1 BW day-1) does not ameliorate metabolic syndrome features in high-fat fed mice. Substantial knowledge gaps remain. Further studies should administer SMCSO separately (i.e., gavage), with metabolic studies exploring tissue levels to better understand its physiological action.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, Western Australia, 6000, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Australia, Western Australia, 6027
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Biomedical Science, Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, University of Western Australia, Perth, Western Australia, 6000, Australia
| | - Natalie C Ward
- Dobney Hypertension Centre, Medical School, Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, University of Western Australia, Perth, Western Australia, 6000, Australia
| | - Kevin D Croft
- School of Biomedical Science, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, 6000, Australia
| | - Joshua R Lewis
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, Western Australia, 6000, Australia
- Medical School, University of Western Australia, Perth, Western Australia, 6000, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Jonathan M Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, Western Australia, 6000, Australia
- Medical School, University of Western Australia, Perth, Western Australia, 6000, Australia
| | - Lois Balmer
- Centre for Diabetes Research, Harry Perkins Institute for Medical Research, Nedlands, Western Australia, 6009, Australia
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Joondalup, Western Australia, Australia, 6027
| | - Lauren C Blekkenhorst
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Royal Perth Hospital Research Foundation, Edith Cowan University, Perth, Western Australia, 6000, Australia
- Medical School, University of Western Australia, Perth, Western Australia, 6000, Australia
| |
Collapse
|
3
|
Liu Z, Qiao D, Li H, Chen L. S-methyl-L-cysteine sulfoxide as a characteristic marker for rape royal jelly: Insights from untargeted and targeted metabolomic analysis. Food Chem 2024; 437:137880. [PMID: 37950973 DOI: 10.1016/j.foodchem.2023.137880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/13/2023]
Abstract
Among the varieties of royal jelly (RJ), often referred to as "liquid gold", rape royal jelly (RRJ) is popular because of its superior nutritional value. However, existing physicochemical indicators fall short in identifying different types of RJ. Utilizing a UPLC-Q-Exactive Orbitrap-MS technique combined with metabolomics, this study was the first to identify S-methyl-L-cysteine sulfoxide (SMCSO) in RRJ, thereby it from other types of RJ. Subsequent to this observation, a method based on UPLC-QqQ-MS/MS, was developed and optimized for precise SMCSO quantification in RRJ, achieving a detection range of 77.55-112.68 mg/kg. Furthermore, an analysis of honey and bee bread harvested from the same batch of rape plants confirmed the presence of SMCSO, with the highest concentration detected in rape bee bread. In light of these findings, SMCSO emerges as a potent authenticity marker for RRJ.
Collapse
Affiliation(s)
- Zhaolong Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Dong Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Fujian Agriculture and Forestry University, Fuzhou City 350002, China
| | - Hongxia Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Lanzhen Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| |
Collapse
|
4
|
Liu D, Robin S, Gloaguen E, Brenner V, Mons M, Aitken DJ. Effects of sulfoxide and sulfone sidechain-backbone hydrogen bonding on local conformations in peptide models. Chem Commun (Camb) 2024; 60:2074-2077. [PMID: 38293794 DOI: 10.1039/d3cc05933b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We examine peptide model systems designed to probe short-range N-H⋯OS sidechain-backbone hydrogen bonding involving amino acid residues with sidechain sulfoxide or sulfone functional groups and its effects on local conformations. A strong 7-membered ring hydrogen bond of this type accompanies an intra-residue N-H⋯OC interaction and stabilizes an extended backbone conformation in preference to classical folded structures.
Collapse
Affiliation(s)
- Dayi Liu
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France.
| | - Sylvie Robin
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France.
- Université Paris Cité, Faculté de Pharmacie, Paris 75006, France
| | - Eric Gloaguen
- Université Paris-Saclay, CNRS, ISMO, Orsay 91400, France
| | - Valérie Brenner
- Université Paris-Saclay, CEA, DRF, Gif-sur-Yvette 91191, France
| | - Michel Mons
- Université Paris-Saclay, CEA, LIDYL, Gif-sur-Yvette 91191, France.
| | - David J Aitken
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France.
| |
Collapse
|
5
|
Hill CR, Haoci Liu A, McCahon L, Zhong L, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Blekkenhorst LC. S-methyl cysteine sulfoxide and its potential role in human health: a scoping review. Crit Rev Food Sci Nutr 2023:1-14. [PMID: 37819533 DOI: 10.1080/10408398.2023.2267133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Higher intakes of cruciferous and allium vegetables are associated with a lower risk of cardiometabolic-related outcomes in observational studies. Whilst acknowledging the many healthy compounds within these vegetables, animal studies indicate that some of these beneficial effects may be partially mediated by S-methyl cysteine sulfoxide (SMCSO), a sulfur-rich, non-protein, amino acid found almost exclusively within cruciferous and alliums. This scoping review explores evidence for SMCSO, its potential roles in human health and possible mechanistic action. After systematically searching several databases (EMBASE, MEDLINE, SCOPUS, CINAHL Plus Full Text, Agricultural Science), we identified 21 original research articles meeting our inclusion criteria. These were limited primarily to animal and in vitro models, with 14/21 (67%) indicating favorable anti-hyperglycemic, anti-hypercholesterolemic, and antioxidant properties. Potential mechanisms included increased bile acid and sterol excretion, altered glucose- and cholesterol-related enzymes, and improved hepatic and pancreatic β-cell function. Raising antioxidant defenses may help mitigate the oxidative damage observed in these pathologies. Anticancer and antibacterial effects were also explored, along with one steroidogenic study. SMCSO is frequently overlooked as a potential mediator to the benefits of sulfur-rich vegetables. More research into the health benefits of SMCSO, especially for cardiometabolic and inflammatory-based pathology, is warranted. Human studies are especially needed.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Alex Haoci Liu
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Lyn McCahon
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Liezhou Zhong
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Joshua R Lewis
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan M Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Lauren C Blekkenhorst
- Nutrition and Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Hensen T, Fässler D, O’Mahony L, Albrich WC, Barda B, Garzoni C, Kleger GR, Pietsch U, Suh N, Hertel J, Thiele I. The Effects of Hospitalisation on the Serum Metabolome in COVID-19 Patients. Metabolites 2023; 13:951. [PMID: 37623894 PMCID: PMC10456321 DOI: 10.3390/metabo13080951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
COVID-19, a systemic multi-organ disease resulting from infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is known to result in a wide array of disease outcomes, ranging from asymptomatic to fatal. Despite persistent progress, there is a continued need for more accurate determinants of disease outcomes, including post-acute symptoms after COVID-19. In this study, we characterised the serum metabolomic changes due to hospitalisation and COVID-19 disease progression by mapping the serum metabolomic trajectories of 71 newly hospitalised moderate and severe patients in their first week after hospitalisation. These 71 patients were spread out over three hospitals in Switzerland, enabling us to meta-analyse the metabolomic trajectories and filter consistently changing metabolites. Additionally, we investigated differential metabolite-metabolite trajectories between fatal, severe, and moderate disease outcomes to find prognostic markers of disease severity. We found drastic changes in serum metabolite concentrations for 448 out of the 901 metabolites. These results included markers of hospitalisation, such as environmental exposures, dietary changes, and altered drug administration, but also possible markers of physiological functioning, including carboxyethyl-GABA and fibrinopeptides, which might be prognostic for worsening lung injury. Possible markers of disease progression included altered urea cycle metabolites and metabolites of the tricarboxylic acid (TCA) cycle, indicating a SARS-CoV-2-induced reprogramming of the host metabolism. Glycerophosphorylcholine was identified as a potential marker of disease severity. Taken together, this study describes the metabolome-wide changes due to hospitalisation and COVID-19 disease progression. Moreover, we propose a wide range of novel potential biomarkers for monitoring COVID-19 disease course, both dependent and independent of the severity.
Collapse
Affiliation(s)
- Tim Hensen
- School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
- School of Microbiology, University of Galway, H91 TK33 Galway, Ireland
- Ryan Institute, University of Galway, H91 TK33 Galway, Ireland
- APC Microbiome Ireland, T12 K8AF Cork, Ireland; (L.O.); (W.C.A.)
| | - Daniel Fässler
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Liam O’Mahony
- APC Microbiome Ireland, T12 K8AF Cork, Ireland; (L.O.); (W.C.A.)
- Department of Medicine and School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - Werner C. Albrich
- APC Microbiome Ireland, T12 K8AF Cork, Ireland; (L.O.); (W.C.A.)
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Beatrice Barda
- Fondazione Epatocentro Ticino, Via Soldino 5, 6900 Lugano, Switzerland; (B.B.); (C.G.)
| | - Christian Garzoni
- Fondazione Epatocentro Ticino, Via Soldino 5, 6900 Lugano, Switzerland; (B.B.); (C.G.)
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | - Gian-Reto Kleger
- Division of Intensive Care, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland;
| | - Urs Pietsch
- Department of Anesthesia, Intensive Care, Emergency and Pain Medicine, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland;
| | - Noémie Suh
- Division of Intensive Care, Geneva University Hospitals, The Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Johannes Hertel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Ines Thiele
- School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
- School of Microbiology, University of Galway, H91 TK33 Galway, Ireland
- Ryan Institute, University of Galway, H91 TK33 Galway, Ireland
- APC Microbiome Ireland, T12 K8AF Cork, Ireland; (L.O.); (W.C.A.)
| |
Collapse
|
7
|
Steingass CB, Burkhardt J, Bäumer V, Kumar K, Mibus-Schoppe H, Zinkernagel J, Esquivel P, Jiménez VM, Schweiggert R. Characterisation of acylated anthocyanins from red cabbage, purple sweet potato, and Tradescantia pallida leaves as natural food colourants by HPLC-DAD-ESI(+)-QTOF-MS/MS and ESI(+)-MS n analysis. Food Chem 2023; 416:135601. [PMID: 36907011 DOI: 10.1016/j.foodchem.2023.135601] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 02/08/2023]
Abstract
Anthocyanins in red cabbage, sweet potato, and Tradescantia pallida leaves were characterised. A total of 18 non-, mono-, and diacylated cyanidins was identified in red cabbage by high performance liquid chromatography-diode array detection coupled to high-resolution and multi-stage mass spectrometry. Sweet potato leaves contained 16 different cyanidin- and peonidin glycosides being predominantly mono- and diacylated. In T. pallida leaves, the tetra-acylated anthocyanin tradescantin prevailed. The large proportion of acylated anthocyanins resulted in a superior thermal stability during heating of aqueous model solutions (pH 3.0) coloured with red cabbage and purple sweet potato extracts as compared to that of a commercial Hibiscus-based food dye. However, their stability was still outperformed by that of the most stable Tradescantia extract. Comparing vis spectra from pH 1-10, the latter had an additional, uncommon absorption maximum at approx. 585 nm at slightly acidic to neutral pH values, yielding intensely red to purple colours.
Collapse
Affiliation(s)
- Christof B Steingass
- Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany.
| | - Jonas Burkhardt
- Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Vicky Bäumer
- Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Keshav Kumar
- Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Heiko Mibus-Schoppe
- Department of Urban Horticulture and Plant Use, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Jana Zinkernagel
- Department of Vegetable Crops, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Patricia Esquivel
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, 11501-2060 San Pedro, Costa Rica
| | - Víctor M Jiménez
- CIGRAS/IIA, Cátedra Humboldt, Universidad de Costa Rica, 11501-2060 San Pedro, Costa Rica
| | - Ralf Schweiggert
- Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| |
Collapse
|
8
|
Baxter BA, Li KJ, Zarei I, Yao L, Rao S, Ryan EP. Nontargeted and Targeted Metabolomics Identifies Dietary Exposure Biomarkers for Navy Bean and Rice Bran Consumption in Children and Adults. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14531-14543. [PMID: 36318603 DOI: 10.1021/acs.jafc.2c02378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dietary exposure biomarkers are needed for advancing knowledge on healthy foods. This study examined biomarkers for navy beans and rice bran in children and adults. Plasma, urine, stool, and study foods from dietary intervention studies were analyzed by metabolomics. A total of 38 children and 49 adults were assessed after consuming navy beans and/or rice bran for 2-, 4-, 6-, or 12 weeks. From the 138-175 metabolites modulated by diet, 11 were targeted for quantification. Trigonelline and pipecolate concentrations increased in children and adult plasma after 4 weeks compared to baseline. Increased xanthurenate (46%) was observed in children plasma after rice bran intake for 4 weeks. Study foods with navy beans had higher S-methylcysteine compared to control and supported the increased urine S-methylcysteine sulfoxide. Nontargeted metabolomics was moderately effective to identify target molecules as candidate biomarkers. Study limitations include interindividual metabolite variations before diet intervention. Validation is warranted using cross-over designs and larger sample sizes.
Collapse
Affiliation(s)
- Bridget A Baxter
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Katherine J Li
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Iman Zarei
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Linxing Yao
- Analytical Resources Core─Bioanalysis and Omics, Fort Collins, Colorado 80523 United States
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
9
|
Ruiz H, Lacasta D, Ramos JJ, Quintas H, Ruiz de Arcaute M, Ramo MÁ, Villanueva-Saz S, Ferrer LM. Anaemia in Ruminants Caused by Plant Consumption. Animals (Basel) 2022; 12:ani12182373. [PMID: 36139233 PMCID: PMC9495094 DOI: 10.3390/ani12182373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Plant toxicology has affected animals throughout evolution. Plants have adapted themselves to the environment. This adaptation has led to the development of defensive strategies to avoid being consumed. Plants have several chemical compounds, which can cause deleterious effects on people or animals that consume them, causing a wide variety of clinical signs. Plants from various latitudes, both cultivated for human and animal feeding or decorative purpose and even wild growth plants are able to generate anaemia in ruminants. Coumarins or ptaquiloside predispose bleeding and haemorrhages, causing a haemorrhagic disease in affected animals. In this group, some important fodder plants, such sweet clover (Genus Melilotus spp.), or other weeds distributed worldwide, such as bracken fern (Pteridium aquilinum) of giant fennel (Ferula communis), are included. On the other hand, sulfur-containing chemicals (e.g., n-propyl disulfate and S-propyl cysteine sulfoxides (SMCOs)) may cause severe direct damage to the erythrocyte and their membrane, leading to their destruction and causing haemolytic anaemia in the animal. This review presents the most frequent intoxication by plants causing anaemia in ruminants. Toxic compounds, clinical signs, diagnosis and possible treatments are also presented.
Collapse
Affiliation(s)
- Héctor Ruiz
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Veterinary Faculty of Zaragoza C/Miguel Servet 177, 50013 Zaragoza, Spain
- Correspondence:
| | - Delia Lacasta
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Veterinary Faculty of Zaragoza C/Miguel Servet 177, 50013 Zaragoza, Spain
| | - Juan José Ramos
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Veterinary Faculty of Zaragoza C/Miguel Servet 177, 50013 Zaragoza, Spain
| | - Hélder Quintas
- Mountain Research Centre (CIMO), School of Agriculture, Polytechnic Institute of Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Marta Ruiz de Arcaute
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Veterinary Faculty of Zaragoza C/Miguel Servet 177, 50013 Zaragoza, Spain
| | - María Ángeles Ramo
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Veterinary Faculty of Zaragoza C/Miguel Servet 177, 50013 Zaragoza, Spain
| | - Sergio Villanueva-Saz
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Veterinary Faculty of Zaragoza C/Miguel Servet 177, 50013 Zaragoza, Spain
| | - Luis Miguel Ferrer
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Veterinary Faculty of Zaragoza C/Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
10
|
Formation of volatile sulfur compounds and S-methyl-l-cysteine sulfoxide in Brassica oleracea vegetables. Food Chem 2022; 383:132544. [PMID: 35247727 DOI: 10.1016/j.foodchem.2022.132544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022]
Abstract
Besides glucosinolates, Brassica vegetables accumulate sulfur-containing (+)-S-methyl-l-cysteine sulfoxide (SMCSO, methiin), mainly known from Allium vegetables. Such (+)-S-alk(en)yl-l-cysteine sulfoxides can degrade to volatile organosulfur compounds (VOSCs), which have been linked to health beneficial effects. In the present study, the accumulation of SMCSO and the formation of VOSCs was investigated in Brassica oleracea vegetables. SMCSO content of commercially available white and red cabbages was monitored over a three-month period and linked with the formation of VOSCs. S-Methyl methanethiosulfinate was the main VOSC released from SMCSO. Upon heating, it degraded to dimethyltrisulfide and dimethyldisulfide, which were less abundant in fresh homogenates. SMCSO made up approximately 1% of the dry matter of cabbages and the overall contents were similar in white and red cabbages (3.2-10.2 and 3.9-10.3 µmol/g fresh weight, respectively). Using proteome profiling it was shown that recovery of VOSCs correlated with abundance of two isoforms of cystine lyase.
Collapse
|
11
|
Hill CR, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Millar AH, Blekkenhorst LC. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Crit Rev Food Sci Nutr 2022; 63:8616-8638. [PMID: 35380479 DOI: 10.1080/10408398.2022.2057915] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
12
|
Amino Acids and Lipids Associated with Long-Term and Short-Term Red Meat Consumption in the Chinese Population: An Untargeted Metabolomics Study. Nutrients 2021; 13:nu13124567. [PMID: 34960119 PMCID: PMC8709332 DOI: 10.3390/nu13124567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Red meat (RM) consumption is correlated with multiple health outcomes. This study aims to identify potential biomarkers of RM consumption in the Chinese population and evaluate their predictive ability. We selected 500 adults who participated in the 2015 China Health and Nutrition Survey and examined their overall metabolome differences by RM consumption by using elastic-net regression, then evaluate the predictivity of a combination of filtered metabolites; 1108 metabolites were detected. In the long-term RM consumption analysis 12,13-DiHOME, androstenediol (3α, 17α) monosulfate 2, and gamma-Glutamyl-2-aminobutyrate were positively associated, 2-naphthol sulfate and S-methylcysteine were negatively associated with long-term high RM consumption, the combination of metabolites prediction model evaluated by area under the receiver operating characteristic curve (AUC) was 70.4% (95% CI: 59.9–80.9%). In the short-term RM consumption analysis, asparagine, 4-hydroxyproline, and 3-hydroxyisobutyrate were positively associated, behenoyl sphingomyelin (d18:1/22:0) was negatively associated with short-term high RM consumption. Combination prediction model AUC was 75.6% (95% CI: 65.5–85.6%). We identified 10 and 11 serum metabolites that differed according to LT and ST RM consumption which mainly involved branch-chained amino acids, arginine and proline, urea cycle and polyunsaturated fatty acid metabolism. These metabolites may become a mediator of some chronic diseases among high RM consumers and provide new evidence for RM biomarkers.
Collapse
|
13
|
Frank D, Piyasiri U, Archer N, Heffernan J, Poelman AAM. In-Mouth Volatile Production from Brassica Vegetables (Cauliflower) and Associations with Liking in an Adult/Child Cohort. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11646-11655. [PMID: 34549579 DOI: 10.1021/acs.jafc.1c03889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interactions between Brassica vegetables and human saliva can affect in-mouth odor development, which in turn may be linked to individual perception and liking. S-Methyl-l-cysteine sulfoxide is a unique substrate present in Brassicas that produces odor-active sulfur volatiles due to the activity of enzymes present in plant tissue and due to bacteria, which may be present to varying extents in an individual's oral microbiome. Proton transfer reaction mass spectrometry was applied to measure individual differences in sulfur volatile production in real time when fresh human saliva was incubated ex vivo with raw cauliflower for a cohort of child-adult pairs. Large differences in the rate of sulfur volatile production were measured between individuals, but not between age groups. Significant positive relationships were found for volatile production between the adult-child pairs, suggesting a degree of commonality in saliva composition and oral microbiome activity. Furthermore, significant negative relationships were measured between the amount of in-mouth sulfur volatile production and liking for raw cauliflower in children.
Collapse
Affiliation(s)
- Damian Frank
- Commonwealth Scientific and Industry Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Udayasika Piyasiri
- Commonwealth Scientific and Industry Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Nicholas Archer
- Commonwealth Scientific and Industry Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Jessica Heffernan
- Commonwealth Scientific and Industry Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Astrid A M Poelman
- Commonwealth Scientific and Industry Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| |
Collapse
|
14
|
Mitchell SC. Nutrition and sulfur. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:123-174. [PMID: 34112351 DOI: 10.1016/bs.afnr.2021.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sulfur is unusual in that it is a mineral that may be taken into the body in both inorganic and organic combinations. It has been available within the environment throughout the development of lifeforms and as such has become integrated into virtually every aspect of biochemical function. It is essential for the nature and maintenance of structure, assists in communication within the organism, is vital as a catalytic assistant in intermediary metabolism and the mechanism of energy flow as well as being involved in internal defense against potentially damaging reactive species and invading foreign chemicals. Recent studies have suggested extended roles for sulfur-containing molecules within living systems. As such, questions have been raised as to whether or not humans are receiving sufficient sulfur within their diet. Sulfur appears to have been the "poor relation" with regards to mineral nutrition. This may be because of difficulties encountered over its multifarious functions, the many chemical guises in which it may be ingested and its complex biochemical interconversions once taken into the body. No established daily requirements have been determined, unlike many minerals, although suggestions have been proposed. Owing to its widespread distribution within dietary components its intake has almost been taken for granted. In the majority of individuals partaking of a balanced diet the supply is deemed adequate, but those opting for specialized or restrictive diets may experience occasional and low-level shortages. In these instances, the careful use of sulfur supplements may be of benefit.
Collapse
Affiliation(s)
- Stephen C Mitchell
- Faculty of Medicine, Imperial College London, London, England, United Kingdom.
| |
Collapse
|
15
|
Kellingray L, Le Gall G, Doleman JF, Narbad A, Mithen RF. Effects of in vitro metabolism of a broccoli leachate, glucosinolates and S-methylcysteine sulphoxide on the human faecal microbiome. Eur J Nutr 2020; 60:2141-2154. [PMID: 33067661 PMCID: PMC8137612 DOI: 10.1007/s00394-020-02405-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Purpose Brassica are an important food source worldwide and are characterised by the presence of compounds called glucosinolates. Studies indicate that the glucosinolate derived bioactive metabolite sulphoraphane can elicit chemoprotective benefits on human cells. Glucosinolates can be metabolised in vivo by members of the human gut microbiome, although the prevalence of this activity is unclear. Brassica and Allium plants also contain S-methylcysteine sulphoxide (SMCSO), that may provide additional health benefits but its metabolism by gut bacteria is not fully understood. Methods We examined the effects of a broccoli leachate (BL) on the composition and function of human faecal microbiomes of five different participants under in vitro conditions. Bacterial isolates from these communities were then tested for their ability to metabolise glucosinolates and SMCSO. Results Microbial communities cultured in vitro in BL media were observed to have enhanced growth of lactic acid bacteria, such as lactobacilli, with a corresponding increase in the levels of lactate and short-chain fatty acids. Members of Escherichia isolated from these faecal communities were found to bioconvert glucosinolates and SMCSO to their reduced analogues. Conclusion This study uses a broccoli leachate to investigate the bacterial-mediated bioconversion of glucosinolates and SMCSO, which may lead to further products with additional health benefits to the host. We believe that this is the first study that shows the reduction of the dietary compound S-methylcysteine sulphoxide by bacteria isolated from human faeces. Electronic supplementary material The online version of this article (10.1007/s00394-020-02405-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lee Kellingray
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Gwénaëlle Le Gall
- Analytical Sciences Unit, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Joanne F. Doleman
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Arjan Narbad
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Richard F. Mithen
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| |
Collapse
|
16
|
Sun X. Invited Review: Glucosinolates Might Result in Low Methane Emissions From Ruminants Fed Brassica Forages. Front Vet Sci 2020; 7:588051. [PMID: 33195622 PMCID: PMC7581797 DOI: 10.3389/fvets.2020.588051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Methane is formed from the microbial degradation of feeds in the digestive tract in ruminants. Methane emissions from ruminants not only result in a loss of feed energy but also contribute to global warming. Previous studies showed that brassica forages, such as forage rape, lead to less methane emitted per unit of dry matter intake than grass-based forages. Differences in rumen pH are proposed to partly explain these low emissions. Rumen microbial community differences are also observed, but the causes of these are unknown, although altered digesta flow has been proposed. This paper proposes a new mechanism underlying the lower methane emissions from sheep fed brassica forages. It is reported that feeding brassica forages to sheep can increase the concentration of free triiodothyronine (FT3) in serum, while the intramuscular injection of FT3 into sheep can reduce the mean retention time of digesta in the rumen. The short retention time of digesta is associated with low methane production. Glucosinolates (GSLs) are chemical components widely present in plants of the genus Brassica. After ruminants consume brassica forages, GSLs are broken down in the rumen. We hypothesize that GSLs or their breakdown products are absorbed into the blood and then may stimulate the secretion of thyroid hormone FT3 in ruminants, and the altered thyroid hormone concentration may change rumen physiology. As a consequence, the mean retention time of digesta in the rumen would be altered, resulting in a decrease in methane emissions. This hypothesis on mitigation mechanism is based on the manipulation of animal physiological parameters, which, if proven, will then support the expansion of this research area.
Collapse
Affiliation(s)
- Xuezhao Sun
- The Innovation Center of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin Agricultural Science and Technology University, Jilin City, China
- Jilin Inter-regional Cooperation Center for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin City, China
| |
Collapse
|
17
|
Du Y, Wang C, Cui G, Chu Y, Jia Q, Wang Y, Zhu W. Cytotoxic and Optically Active Pyrisulfoxins From the Endophytic Streptomyces albolongus EA12432. Front Chem 2020; 8:248. [PMID: 32435631 PMCID: PMC7218127 DOI: 10.3389/fchem.2020.00248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/16/2020] [Indexed: 12/01/2022] Open
Abstract
R-Pyrisulfoxin C (1), S-pyrisulfoxin D [(+)-2], R-pyrisulfoxin D [(–)-2], pyrisulfoxin E (13), S-pyrisulfoxin F [(+)-14], and R-pyrisulfoxin F [(–)-14], six new caerulomycin derivatives with a 2,2′-bipyridine skeleton, were obtained from the cultures of the endophytic Streptomyces albolongus EA12432 with Aconitum carmichaeli (Ranunculaceae). Additionally, the racemic pyrisulfoxins A [(±)-3] and B [(±)-4] were further purified as optically pure compounds and identified the configurations for the first time. The racemic pyrisulfoxin D [(±)-2] displayed significant cytotoxicity against a series of cancer cell lines with IC50 values ranging from 0.92 to 9.71 μM. Compounds 7, 8, and (±)-3 showed cytotoxicity against the HCT-116, HT-29, BXPC-3, P6C, and MCF-7 cell lines. Notably, compounds 7 and 8 have a strong inhibition both on the proliferation of human colon cancer cells HCT-116 and HT-29 with IC50 values ranging from 0.048 to 0.2 μM (doxorubicin, 0.21 and 0.16 μM), and compound 1 showed a selective inhibition on the proliferation of the gastric carcinoma cell lines, N87, with an IC50 value of 8.09 μM. Optically pure compounds R(–)-14 and S(+)-14 showed weak cytotoxicity against HCT-116 and MCF-7 cell lines with the IC50 values of 14.7 μM and 10.4 μM, respectively. Interestingly, compounds 1 and (±)-2 didn't show cytotoxic activity against two human normal cell lines, HEK-293F and L02, with IC50 values >100 μM.
Collapse
Affiliation(s)
- Yuqi Du
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chen Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Guodong Cui
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yiwen Chu
- Sichuan Industrial Institute of Antibiotics, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Qian Jia
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yi Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
Coode‐Bate J, Sivapalan T, Melchini A, Saha S, Needs PW, Dainty JR, Maicha J, Beasy G, Traka MH, Mills RD, Ball RY, Mithen RF. Accumulation of Dietary S-Methyl Cysteine Sulfoxide in Human Prostate Tissue. Mol Nutr Food Res 2019; 63:e1900461. [PMID: 31410992 PMCID: PMC6856681 DOI: 10.1002/mnfr.201900461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/06/2019] [Indexed: 12/22/2022]
Abstract
SCOPE Observational studies have associated consumption of cruciferous vegetables with reduced risk of prostate cancer. This effect has been associated with the degradation products of glucosinolates-thioglycosides that accumulate within crucifers. The possible role of S-methyl cysteine sulfoxide, a metabolite that also accumulates in cruciferous vegetables, and its derivatives, in cancer prevention is relatively unexplored compared to glucosinolate derivatives. The hypothesis that consuming a broccoli soup results in the accumulation of sulfate (a SMCSO derivative) and other broccoli-derived metabolites in prostate tissue is tested. METHODS AND RESULTS Eighteen men scheduled for transperineal prostate biopsy were recruited into a 4-week parallel single blinded diet supplementation study (NCT02821728). Nine men supplemented their diet with three 300 mL portions of a broccoli soup each week for four weeks prior to surgery. Analyses of prostate biopsy tissues reveal no detectable levels of glucosinolates and derivatives. In contrast, SMCSO is detected in prostate tissues of the participants, with significantly higher levels in tissue of men in the supplementation arm. SMCSO was also found in blood and urine samples from a previous intervention study with the identical broccoli soup. CONCLUSION The consequences of SMCSO accumulation in prostate tissues and its potential role in prevention of prostate cancer remains to be investigated.
Collapse
Affiliation(s)
| | | | | | - Shikha Saha
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
| | - Paul W. Needs
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
| | | | | | - Gemma Beasy
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
| | | | - Robert D. Mills
- Department of UrologyNorfolk and Norwich University Hospitals NHS Foundation TrustNorwichUK
| | - Richard Y. Ball
- Norfolk and Waveney Cellular Pathology ServiceNorfolk and Norwich University Hospitals NHS Foundation TrustNorwichUK
| | - Richard F. Mithen
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
- The Liggins InstituteUniversity of AucklandNew Zealand
| |
Collapse
|
19
|
Livingstone TL, Beasy G, Mills RD, Plumb J, Needs PW, Mithen R, Traka MH. Plant Bioactives and the Prevention of Prostate Cancer: Evidence from Human Studies. Nutrients 2019; 11:nu11092245. [PMID: 31540470 PMCID: PMC6769996 DOI: 10.3390/nu11092245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer has become the most common form of non-cutaneous (internal) malignancy in men, accounting for 26% of all new male visceral cancer cases in the UK. The aetiology and pathogenesis of prostate cancer are not understood, but given the age-adjusted geographical variations in prostate cancer incidence quoted in epidemiological studies, there is increasing interest in nutrition as a relevant factor. In particular, foods rich in phytochemicals have been proposed to reduce the risk of prostate cancer. Epidemiological studies have reported evidence that plant-based foods including cruciferous vegetables, garlic, tomatoes, pomegranate and green tea are associated with a significant reduction in the progression of prostate cancer. However, while there is well-documented mechanistic evidence at a cellular level of the manner by which individual dietary components may reduce the risk of prostate cancer or its progression, evidence from intervention studies is limited. Moreover, clinical trials investigating the link between the dietary bioactives found in these foods and prostate cancer have reported varied conclusions. Herein, we review the plant bioactives for which there is substantial evidence from epidemiological and human intervention studies. The aim of this review is to provide important insights into how particular plant bioactives (e.g., sulfur-containing compounds, carotenoids and polyphenols) present in commonly consumed food groups may influence the development and progression of prostate cancer.
Collapse
Affiliation(s)
- Tracey L. Livingstone
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; (T.L.L.); (J.P.); (P.W.N.); (R.M.)
- Urology Department, Norfolk and Norwich University Hospital, Colney Lane Norwich NR4 7UY, UK;
| | - Gemma Beasy
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; (T.L.L.); (J.P.); (P.W.N.); (R.M.)
| | - Robert D. Mills
- Urology Department, Norfolk and Norwich University Hospital, Colney Lane Norwich NR4 7UY, UK;
| | - Jenny Plumb
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; (T.L.L.); (J.P.); (P.W.N.); (R.M.)
| | - Paul W. Needs
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; (T.L.L.); (J.P.); (P.W.N.); (R.M.)
| | - Richard Mithen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; (T.L.L.); (J.P.); (P.W.N.); (R.M.)
- The Liggins Institute, University of Auckland, 84 Park Road, Grafton, Auckland 92019, New Zealand
| | - Maria H. Traka
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; (T.L.L.); (J.P.); (P.W.N.); (R.M.)
- Correspondence: ; Tel.: +4-4(0)16-032-55194
| |
Collapse
|
20
|
An LC-MS/MS Method to Measure S-Methyl-l-Cysteine and S-Methyl-l-Cysteine Sulfoxide in Human Specimens Using Isotope Labelled Internal Standards. Molecules 2019; 24:molecules24132427. [PMID: 31269651 PMCID: PMC6651111 DOI: 10.3390/molecules24132427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 01/03/2023] Open
Abstract
This is the first report describing an analytical method for quantitative analysis of two naturally occurring sulphur compounds, S-methyl-l-cysteine (SMC) and S-methyl-l-cysteine sulfoxide (SMCSO), in human body fluids using isotope-labelled internal standards and liquid chromatography-mass spectrometry (LC-MS)/MS techniques. This method was validated according to the guideline of the Royal Society of Chemistry Analytical Methods Committee. It offers significant advantages including simple and fast preparation of human biological samples. The limits of detection of SMC were 0.08 µM for urine and 0.04 µM for plasma. The limits of detection of SMCSO were 0.03 µM for urine and 0.02 µM for plasma. The calibration curves of all matrices showed linearity with correlation coefficients r2 > 0.9987. The intra and inter day precisions in three levels of known concentrations were >10% and >20%, respectively. The quantification accuracy was 98.28 ± 5.66%. The proposed method would be beneficial for the rapid and accurate determination of the SMC and SMCSO in human plasma and urine samples using by isotope labelled internal standards.
Collapse
|
21
|
Abstract
1. Consistent differences in the proportion of an orally administered dose of S-carboxymethyl-l-cysteine subsequently excreted in the urine as S-oxide metabolites were reported 40 years ago. This observation suggested the existence of inter-individual variation in the ability to undertake the enzymatic S-oxygenation of this compound. Pedigree studies and investigations employing twin pairs indicated a genetically controlled phenomenon overlaid with environmental influences. It was reproducible and not related to gender or age.2. Studies undertaken in several healthy volunteer cohorts always provided similar results that were not significantly different when statistically analysed. However, when compared to these healthy populations, a preponderance of subjects exhibiting the characteristic of poor sulfoxidation of S-carboxymethyl-l-cysteine was found within groups of patients suffering from various disease conditions. The most striking of these associations were witnessed amongst subjects diagnosed with neurodegenerative disorders; although, underlying mechanisms were unknown.3. Exhaustive investigation has identified the enzyme responsible for this S-oxygenation reaction as the tetrahydrobiopterin-dependent aromatic amino acid hydroxylase, phenylalanine 4-monooxygenase classically assigned the sole function of converting phenylalanine to tyrosine. The underlying principle is discussed that enzymes traditionally associated solely with intermediary metabolism may have as yet unrecognised alternative roles in protecting the organism from potential toxic assault.
Collapse
Affiliation(s)
- Stephen C Mitchell
- Section of Computational and Systems Medicine, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
22
|
Müller-Maatsch J, Gurtner K, Carle R, Björn Steingass C. Investigation into the removal of glucosinolates and volatiles from anthocyanin-rich extracts of red cabbage. Food Chem 2019; 278:406-414. [DOI: 10.1016/j.foodchem.2018.10.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022]
|
23
|
Iron(III)–salen ion catalyzed s-oxidation of l-cysteine and s-alkyl-l-cysteines by H2O2: Spectral, kinetic and electrochemical study. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Frank D, Piyasiri U, Archer N, Jenifer J, Appelqvist I. Influence of saliva on individual in-mouth aroma release from raw cabbage ( Brassica oleracea var. capitata f. rubra L.) and links to perception. Heliyon 2018; 4:e01045. [PMID: 30603687 PMCID: PMC6304465 DOI: 10.1016/j.heliyon.2018.e01045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Raw or minimally processed vegetables are popular for health reasons and for their unique textural and flavor attributes. While many aroma volatiles are produced in situ when plant tissues are mechanically disrupted, enzymes expressed in bacteria in oral microbiota such as cysteine-β-lyase (EC 4.4.1.13) may also contribute to aroma formation in-mouth during consumption. Interactions between raw cabbage and fresh human saliva (n = 21) were measured ex vivo by real-time monitoring of sulfur volatile production by proton transfer reaction mass spectrometry (PTR-MS). Inter-individual differences in the concentration of sulfur volatiles from the breakdown of S-methyl-L-cysteine sulfoxide (SMCSO) in fresh cabbage by saliva were characterized and a 10-fold difference in the extent of sulfur volatile production was measured across individuals. The overall intensity and garlic odor of raw cabbage was positively correlated with the concentration of sulfur volatiles after incubation with fresh human saliva. A buildup of SMSCO-derived sulfur volatiles in vivo, over twenty repeated mouthfuls was demonstrated, indicating that these reactions can affect sensory perception within the timescale of eating. These findings show the perceived odor experienced when eating cabbage differs, thus resulting in a unique flavor experience between individuals.
Collapse
Affiliation(s)
- Damian Frank
- CSIRO, 11 Julius Ave, North Ryde, NSW 2113, Australia
| | | | | | | | | |
Collapse
|
25
|
Palliyaguru DL, Salvatore SR, Schopfer FJ, Cheng X, Zhou J, Kensler TW, Wendell SG. Evaluation of 2-Thiothiazolidine-4-Carboxylic Acid, a Common Metabolite of Isothiocyanates, as a Potential Biomarker of Cruciferous Vegetable Intake. Mol Nutr Food Res 2018; 63:e1801029. [PMID: 30408325 DOI: 10.1002/mnfr.201801029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/26/2018] [Indexed: 12/17/2022]
Abstract
SCOPE Cruciferous vegetable consumption is associated with favorable health outcomes. Bioactive compounds arising in these, especially isothiocyanates, exert effects that contribute to prevention of disease, in large part through the attenuation of inflammation and oxidative stress. However, much about isothiocyanate metabolites and their role as biomarkers of crucifer intake remain unknown. METHODS AND RESULTS The utility and limitations of 2-thiothiazolidine-4-carboxylic acid (TTCA) as a urinary biomarker of broccoli beverage intake are tested in a randomized crossover clinical trial where 50 participants consumed either a glucoraphanin-rich (GRR) or sulforaphane-rich (SFR) beverage. Compared to run-in and wash-out periods, significantly higher urinary TTCA is observed after broccoli beverage consumption. Measurements also show that TTCA is present in beverage powders and in all tested cruciferous vegetables. GRR results in excretion of ≈87% of the ingested TTCA while SFR results in excretion of ≈176%. Elevated urinary TTCA is observed in rats administered 100 µmol kg-1 SFN. Unlike SFN, TTCA does not activate Nrf2-mediated cytoprotective signaling. CONCLUSION Collectively, TTCA appears to be a common isothiocyanate-derived metabolite that has the capacity to be utilized as a biomarker of cruciferous vegetables that would be beneficial for objective and quantitative tracking of intake in studies.
Collapse
Affiliation(s)
- Dushani L Palliyaguru
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sonia R Salvatore
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Francisco J Schopfer
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xuemei Cheng
- Occupational & Environmental Department, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Jingyang Zhou
- Occupational & Environmental Department, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Thomas W Kensler
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Stacy G Wendell
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
26
|
Ourry M, Lebreton L, Chaminade V, Guillerm-Erckelboudt AY, Hervé M, Linglin J, Marnet N, Ourry A, Paty C, Poinsot D, Cortesero AM, Mougel C. Influence of Belowground Herbivory on the Dynamics of Root and Rhizosphere Microbial Communities. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00091] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Castillejo N, Martínez-Hernández GB, Lozano-Guerrero AJ, Pedreño-Molina JL, Gómez PA, Aguayo E, Artés F, Artés-Hernández F. Microwave heating modelling of a green smoothie: Effects on glucoraphanin, sulforaphane and S-methyl cysteine sulfoxide changes during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1863-1872. [PMID: 28885683 DOI: 10.1002/jsfa.8665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/30/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The heating of a green smoothie during an innovative semi-continuous microwave treatment (MW; 9 kW for 15 s) was modelled. Thermal and dielectric properties of the samples were previously determined. Furthermore, the heating effect on the main chemopreventive compounds of the smoothie and during its subsequent storage up to 30 days at 5 or 15 °C were studied. Such results were compared to conventional pasteurisation (CP; 90 °C for 45 s) while unheated fresh blended samples were used as the control. RESULTS A procedure was developed to predict the temperature distribution in samples inside the MW oven with the help of numerical tools. MW-treated samples showed the highest sulforaphane formation after 20 days, regardless of the storage temperature, while its content was two-fold reduced in CP samples. Storage of the smoothie at 5 °C is crucial for maximising the levels of the bioactive compound S-methyl cysteine sulfoxide. CONCLUSION The proposed MW treatment can be used by the food industry to obtain an excellent homogeneous heating of a green smoothie product retaining high levels of bioactive compounds during subsequent retail/domestic storage up to 1 month at 5 °C. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Noelia Castillejo
- Postharvest and Refrigeration Group, Department of Food Engineering, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| | - Ginés Benito Martínez-Hernández
- Postharvest and Refrigeration Group, Department of Food Engineering, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| | - Antonio José Lozano-Guerrero
- Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| | - Juan Luis Pedreño-Molina
- Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| | - Perla A Gómez
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Department of Food Engineering, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| | - Francisco Artés
- Postharvest and Refrigeration Group, Department of Food Engineering, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Food Engineering, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| |
Collapse
|
28
|
Selenium and Sulfur to Produce Allium Functional Crops. Molecules 2017; 22:molecules22040558. [PMID: 28358332 PMCID: PMC6154330 DOI: 10.3390/molecules22040558] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
Selenium is an element that must be considered in the nutrition of certain crops since its use allows the obtaining of biofortified crops with a positive impact on human health. The objective of this review is to present the information on the use of Se and S in the cultivation of plants of the genus Allium. The main proposal is to use Allium as specialist plants for biofortification with Se and S, considering the natural ability to accumulate both elements in different phytochemicals, which promotes the functional value of Allium. In spite of this, in the agricultural production of these species, the addition of sulfur is not realized to obtain functional foods and plants more resistant; it is only sought to cover the necessary requirements for growth. On the other hand, selenium does not appear in the agronomic management plans of most of the producers. Including S and Se fertilization as part of agronomic management can substantially improve Allium crop production. Allium species may be suitable to carry out biofortification with Se; this practice can be combined with the intensive use of S to obtain crops with higher production and sensory, nutritional, and functional quality.
Collapse
|
29
|
Deasy W, Shepherd T, Alexander CJ, Birch ANE, Evans KA. Development and Validation of a SPME-GC-MS Method for In situ Passive Sampling of Root Volatiles from Glasshouse-Grown Broccoli Plants Undergoing Below-Ground Herbivory by Larvae of Cabbage Root Fly, Delia radicum L. PHYTOCHEMICAL ANALYSIS : PCA 2016; 27:375-393. [PMID: 27687886 DOI: 10.1002/pca.2637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Research on plant root chemical ecology has benefited greatly from recent developments in analytical chemistry. Numerous reports document techniques for sampling root volatiles, although only a limited number describe in situ collection. OBJECTIVES To demonstrate a new method for non-invasive in situ passive sampling using solid phase micro extraction (SPME), from the immediate vicinity of growing roots. METHODS SPME fibres inserted into polyfluorotetrafluoroethylene (PTFE) sampling tubes located in situ which were either perforated, covered with stainless steel mesh or with microporous PTFE tubing, were used for non-invasive sub-surface sampling of root volatiles from glasshouse-grown broccoli. Sampling methods were compared with above surface headspace collection using Tenax TA. The roots were either mechanically damaged or infested with Delia radicum larvae. Principal component analysis (PCA) was used to investigate the effect of damage on the composition of volatiles released by broccoli roots. RESULTS Analyses by gas chromatography-mass spectrometry (GC-MS) with SPME and automated thermal desorption (ATD) confirmed that sulphur compounds, showing characteristic temporal emission patterns, were the principal volatiles released by roots following insect larval damage. Use of SPME with in situ perforated PTFE sampling tubes was the most robust method for out-of-lab sampling. CONCLUSION This study describes a new method for non-invasive passive sampling of volatiles in situ from intact and insect damaged roots using SPME. The method is highly suitable for remote sampling and has potential for wide application in chemical ecology/root/soil research. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- William Deasy
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Scotland's Rural College, Nicholas Kemmer Road, Edinburgh, EH9 3FH, UK
- School of Biological Sciences, The University of Edinburgh, Darwin Building, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Tom Shepherd
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Colin J Alexander
- Biomathematics and Statistics Scotland, Invergowrie, Dundee, DD2 5DA, UK
| | | | - K Andrew Evans
- Scotland's Rural College, Nicholas Kemmer Road, Edinburgh, EH9 3FH, UK
| |
Collapse
|
30
|
Frank D, Watkins P, Ball A, Krishnamurthy R, Piyasiri U, Sewell J, Ortuño J, Stark J, Warner R. Impact of Brassica and Lucerne Finishing Feeds and Intramuscular Fat on Lamb Eating Quality and Flavor. A Cross-Cultural Study Using Chinese and Non-Chinese Australian Consumers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6856-68. [PMID: 27523884 DOI: 10.1021/acs.jafc.6b02018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Use of forage brassicas (Brassica napus) and lucerne (alfalfa; Medicago sativa) as ruminant feeds has been linked to unacceptable flavors in sheepmeat. Lambs from low and high intramuscular fat sires were allocated to one of four finishing feeds-perennial ryegrass (Lolium perenne), lucerne, and two brassica forages-for a 6 week period. Grilled loins (Longissimus thoracis et lumborum) were subjected to chemical and sensory analysis by a trained panel and also evaluated by non-Chinese and Chinese background Australian consumers. Consumer liking was similar for both groups, and liking was highest for the brassica- and lucerne-finished lamb, especially from high intramuscular fat sires. No evidence of a distinctive lucerne- or brassica-induced flavor taint was measured by the trained panel or gas chromatography-mass spectrometry-olfactometry. The diets influenced the composition of lipids and branched-chain fatty acids in the subcutaneous fat, and the concentration of total branched-chain fatty acids was positively correlated with flavor and overall liking. Significantly higher levels of key aroma volatiles were measured in the higher fat samples.
Collapse
Affiliation(s)
- Damian Frank
- Commonwealth Scientific Industrial Research Organisation (CSIRO) , 11 Julius Avenue, North Ryde, NSW 2113, Australia
| | - Peter Watkins
- Commonwealth Scientific Industrial Research Organisation (CSIRO) , 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - Alex Ball
- Meat & Livestock Australia (MLA) , Level 1, 40 Mount Street, North Sydney, NSW 2060, Australia
| | - Raju Krishnamurthy
- Commonwealth Scientific Industrial Research Organisation (CSIRO) , 11 Julius Avenue, North Ryde, NSW 2113, Australia
| | - Udayasika Piyasiri
- Commonwealth Scientific Industrial Research Organisation (CSIRO) , 11 Julius Avenue, North Ryde, NSW 2113, Australia
| | - James Sewell
- PGG Wrightson Seeds (Australia) Leigh Creek Research Station , 4 Blackswamp Road, Leigh Creek, VIC 3052, Australia
| | - Jordi Ortuño
- Commonwealth Scientific Industrial Research Organisation (CSIRO) , 11 Julius Avenue, North Ryde, NSW 2113, Australia
| | - Janet Stark
- Commonwealth Scientific Industrial Research Organisation (CSIRO) , 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Robyn Warner
- Faculty of Veterinary and Agricultural Science, The University of Melbourne , Royal Parade, Parkville, VIC 3010, Australia
| |
Collapse
|
31
|
González-Peña D, Dudzik D, Colina-Coca C, de Ancos B, García A, Barbas C, Sánchez-Moreno C. Evaluation of onion as a functional ingredient in the prevention of metabolic impairments associated to diet-induced hypercholesterolaemia using a multiplatform approach based on LC-MS, CE-MS and GC-MS. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
32
|
Perera T, Young MR, Zhang Z, Murphy G, Colburn NH, Lanza E, Hartman TJ, Cross AJ, Bobe G. Identification and monitoring of metabolite markers of dry bean consumption in parallel human and mouse studies. Mol Nutr Food Res 2015; 59:795-806. [PMID: 25641932 DOI: 10.1002/mnfr.201400847] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/22/2014] [Accepted: 12/31/2014] [Indexed: 12/14/2022]
Abstract
SCOPE Aim of the study was to identify and monitor metabolite markers of dry bean consumption in parallel human and mouse studies that each had shown chemopreventive effects of dry bean consumption on colorectal neoplasia risk. METHODS AND RESULTS Using LC/mass spectroscopy ± ESI and GC/mass spectroscopy, serum metabolites of dry beans were measured in 46 men before and after a 4-week dry bean enriched diet (250 g/day) and 12 mice that received a standardized diet containing either 0 or 10% navy bean ethanol extract for 6 weeks; we also investigated fecal metabolites in the mice. The serum metabolites identified in these controlled feeding studies were then investigated in 212 polyp-free participants from the Polyp Prevention Trial who self-reported either increased (≥+31 g/day from baseline), high dry bean intake of ≥42 g/day in year 3 or low, unchanged dry bean consumption of <8 g/day; serum was analyzed from baseline and year 3. Serum pipecolic acid and S-methyl cysteine were elevated after dry bean consumption in human and mouse studies and reflected dry bean consumption in the Polyp Prevention Trial. CONCLUSION Serum levels of pipecolic acid and S-methyl cysteine are useful biomarkers of dry bean consumption.
Collapse
Affiliation(s)
- Thushanthi Perera
- Linus Pauling Institute and Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tocmo R, Liang D, Lin Y, Huang D. Chemical and biochemical mechanisms underlying the cardioprotective roles of dietary organopolysulfides. Front Nutr 2015; 2:1. [PMID: 25988131 PMCID: PMC4428374 DOI: 10.3389/fnut.2015.00001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/05/2015] [Indexed: 12/01/2022] Open
Abstract
Foods that are rich in organosulfides are highly regarded for their broad range of functions in disease prevention and health promotion since ancient time yet modern scientific study, particularly clinical studies could not agree with traditional wisdom. One of the complexities is due to the labile nature of organosulfides, which are often transformed to different structures depending on the processing conditions. The recent evidence on polysulfides as H2S donors may open up a new avenue for establishing structure and health promotion activity relationship. To put this development into perspective, we carried out a review on the recent progress on the chemistry and biochemistry of organopolysulfides with emphasis on their cardioprotective property. First, we briefly surveyed the foods that are rich in polysulfides and their structural diversity. This is followed by in-depth discussion on the chemical transformations of polysulfides under various processing conditions. We further reviewed the potential action mechanisms of polysulfides in cardioprotection through: (a) hydrogen sulfide releasing activity; (b) radical scavenging activity; and (c) activity in enzyme inhibition and intervention of gene regulation pathways. Based on the literature trend, we can conclude that the emerging concept of organopolysulfides as naturally occurring H2S donors is intriguing and warrants further research to establish the structure and activity relationship of the organopolysulfides as H2S donors.
Collapse
Affiliation(s)
- Restituto Tocmo
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore , Singapore , Singapore
| | - Dong Liang
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore , Singapore , Singapore
| | - Yi Lin
- National University of Singapore (Suzhou) Research Institute , Jiangsu , China
| | - Dejian Huang
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore , Singapore , Singapore ; National University of Singapore (Suzhou) Research Institute , Jiangsu , China
| |
Collapse
|
34
|
Pedras MSC, Yaya EE. Plant Chemical Defenses: Are all Constitutive Antimicrobial Metabolites Phytoanticipins? Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A critical perspective on phytoanticipins, constitutive plant secondary metabolites with defensive roles against microbes is presented. This mini-review focuses on the chemical groups and structural types of defensive plant metabolites thus far not reviewed from the phytoanticipin perspective: i) fatty acid derivatives and polyketides, ii) terpenoids, iii) shikimates, phenylpropanoids and derivatives, and iv) benzylisoquinoline and pyrrolizidine alkaloids. The more traditional groups of phytoanticipins are briefly summarized, with particular focus on the latest results: i) benzoxazinoids, ii) cyanogenic glycosides, iii) glucosinolates and their metabolic products, and iv) saponins. Current evidence suggests that a better understanding of the functions of plant metabolites will drive their application to protect crops against microbial diseases.
Collapse
Affiliation(s)
- M. Soledade C. Pedras
- Department of Chemistry, 110 Science Place, University of Saskatchewan, Saskatoon, SK S7N 5C9 Canada
| | - Estifanos E. Yaya
- Department of Chemistry, 110 Science Place, University of Saskatchewan, Saskatoon, SK S7N 5C9 Canada
| |
Collapse
|