1
|
Dai Z, Yu Y, Chen R, Zhu H, Fong H, Kuang J, Jiang Y, Chen Y, Niu Y, Chen T, Shi L. Selenium promotes neural development through the regulation of GPX4 and SEPP1 in an iPSC-derived neuronal model. Biomaterials 2025; 316:123011. [PMID: 39708777 DOI: 10.1016/j.biomaterials.2024.123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Selenium (Se) is incorporated into selenoproteins in the form of selenocysteine, which has biological functions associated with neural development. Unfortunately, the specific roles and mechanisms of selenoproteins at different stages of neuronal development are still unclear. Therefore, in this study, we successfully established a neuronal model derived from induced pluripotent stem cells (iPSC-iNeuron) and used Se nanoparticles (SeNPs@LNT) with high bioavailability to intervene at different stages of neural development in iPSC-iNeuron model. Interestingly, our results showed that SeNPs@LNT could not only accelerate the proliferation of neural progenitor cells (NPCs) by upregulating glutathione peroxidase 4 (GPX4) during the NPC stage, but also can promote neuronal differentiation by increasing selenoprotein P (SEPP1) during the neuronal stage, resulting in efficient and rapid neural development. In addition, further mechanistic studies showed that SeNPs@LNT can regulate selenoproteins by activating the PI3K/Akt/Nrf2 signaling pathway, thereby affecting neuronal development. Notably, Further analysis of ASD patients in National Center for Biotechnology Information single-cell RNA-seq datasets also revealed significantly lower GPX4 expression within NRGN-expressing neurons in ASD patients, and GO enrichment analysis of genes in NRGN-expressing neurons from ASD patients showed that the downregulation of selenoproteins due to aberrant selenoprotein synthesis may be closely associated with decreased ATP synthesis resulting from abnormal mitochondrial and respiratory chain signaling pathways. Taken together, this study provides evidence that SeNPs@LNT exerts a beneficial effect on early neural development through the regulation of selenoproteins.
Collapse
Affiliation(s)
- Zhenzhu Dai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yanzi Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ruhai Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Hongyao Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Hin Fong
- Faculty of Medicine, International School, Jinan University, Guangzhou, 510632, China
| | - Junxin Kuang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Yunbo Jiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yalan Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yimei Niu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China; Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Lingling Shi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China; Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China; Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570100, China.
| |
Collapse
|
2
|
Liu H, Zhang W, Wang S, Zhou Q, Xu N, Zhang W, Ren H, Yang M, Lu H, Zheng X, Tian J. Selenocysteine-Activatable Near-Infrared Fluorescent Probe for Screening of Anti-inflammatory Components in Herbs. Anal Chem 2025. [PMID: 39754546 DOI: 10.1021/acs.analchem.4c02157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Inflammation, a central process in numerous diseases, plays a crucial role in hepatic disorders, arthritis, cardiac conditions, and neurodegenerative ailments. Given the lack of effective anti-inflammatory drugs, it is imperative to assess inflammation severity and explore novel therapeutics. Selenocysteine (Sec), a key mediator of selenium's biological function, is closely involved in anti-inflammatory responses. We have synthesized a novel near-infrared fluorescent probe, Sec-BDP, which can image Sec dynamics in vivo with high selectivity and sensitivity. Sec-BDP detects Sec at concentrations as low as 0.085 μM. Utilizing this probe, we visualized Sec levels in cell, zebrafish, and mouse inflammation models, enabling a clear assessment of inflammation severity. To screen for drug candidates, Sec-BDP was integrated with ultrahigh performance liquid chromatography quadrupole time-of-flight mass spectrometry to identify potent anti-inflammatory compounds in Astragalus membranaceus, such as 5-O-methylvisammioside. Imaging of Sec with Sec-BDP provides insights into Sec-related diseases and aids in discovering new treatments. This probe advances selenium biology and promises more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Hao Liu
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wangning Zhang
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Sisi Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Qilin Zhou
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Na Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenze Zhang
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haojiang Ren
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Min Yang
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xianchuang Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Jiangwei Tian
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Yang F, Shu R, Dai W, Li B, Liu C, Yang H, Johnson HM, Yu S, Bai D, Yang W, Deng Y. H 2Se-evolving bio-heterojunctions promote cutaneous regeneration in infected wounds by inhibiting excessive cellular senescence. Biomaterials 2024; 311:122659. [PMID: 38861831 DOI: 10.1016/j.biomaterials.2024.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Pathogenic infection leads to excessive senescent cell accumulation and stagnation of wound healing. To address these issues, we devise and develop a hydrogen selenide (H2Se)-evolving bio-heterojunction (bio-HJ) composed of graphene oxide (GO) and FeSe2 to deracinate bacterial infection, suppress cellular senescence and remedy recalcitrant infected wounds. Excited by near-infrared (NIR) laser, the bio-HJ exerts desired photothermal and photodynamic effects, resulting in rapid disinfection. The crafted bio-HJ could also evolve gaseous H2Se to inhibit cellular senescence and dampen inflammation. Mechanism studies reveal the anti-senescence effects of H2Se-evolving bio-HJ are mediated by selenium pathway and glutathione peroxidase 1 (GPX1). More critically, in vivo experiments authenticate that the H2Se-evolving bio-HJ could inhibit cellular senescence and potentiate wound regeneration in rats. As envisioned, our work not only furnishes the novel gasotransmitter-delivering bio-HJ for chronic infected wounds, but also gets insight into the development of anti-senescence biomaterials.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenyu Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuang Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hang Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Washington, USA
| | - Sheng Yu
- Department of Chemistry, Washington State University, Washington, USA
| | - Ding Bai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weizhong Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China.
| | - Yi Deng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Li X, Li J, Lu K, Li X, Song K, Wang L, Zhang C. Effect of dietary supplementation of selenium-L-methionine on growth, antioxidant capacity and resistance to nitrite stress of spotted seabass ( Lateolabrax maculatus) under two rearing water temperatures. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:166-179. [PMID: 39635417 PMCID: PMC11615926 DOI: 10.1016/j.aninu.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/07/2024]
Abstract
A 10-week feeding trial, followed by 24-h nitrite stress, was performed to evaluate the effects of dietary selenium-L-methionine (Se-Met) on growth, Se accumulation, antioxidant capacity, transcripts of selenoproteins and histological changes of muscle as well as resistance to nitrite stress in spotted seabass (Lateolabrax maculatus) reared at optimal (27 °C) and high (33 °C) temperatures. Five experimental diets were formulated to contain 0, 0.9, 1.8, 3.5, and 7.0 mg Se-Met/kg. Each diet was fed to fish (2.60 ± 0.2 g) in two parallel treatments at 27 or 33 °C. The results showed that elevated temperature (33 °C) induced thermal stress in fish, and fish under thermal stress exhibited lower weight gain and hepatosomatic index but a higher condition factor compared to those reared at 27 °C. However, the growth and feed utilisation were promoted in L. maculatus with 0.9 to 3.5 mg/kg Se-Met treatments. The protein and lipid content in the muscle increased with the dietary Se-Met level, and the total Se level in the whole body and muscle showed a linear increase with dietary Se-Met supplementation. Thermal stress changed the histology of the muscle, leading to raised levels of malondialdehyde (MDA), reduced antioxidant parameters in the serum and liver, and a decrease in the transcripts of selenoprotein genes in the muscle. Meanwhile, increased antioxidant capacity of serum and liver and up-regulated transcripts of selenoprotein of muscle were observed in L. maculatus reaching a maximum with 3.5 mg Se-Met/kg treatment. After 24 h of nitrite stress, thermal stress exacerbated oxidative damage caused by nitrite stress in L. maculatus. In contrast, dietary Se-Met enhanced the resistance to nitrite stress of L. maculatus fed with Se-Met enriched diets containing 0.9 to 1.8 mg Se-Met/kg. Based on the effects of dietary Se-Met on the growth, antioxidant capacity and resistance to nitrite stress of L. maculatus, this study suggests that the optimal range of Se-Met supplementation in L. maculatus diets is 1.80 to 2.39 mg Se-Met/kg of diet at 27 °C and 1.80 to 4.46 mg Se-Met/kg of diet at 33 °C.
Collapse
Affiliation(s)
- Xiao Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jing Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xueshan Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ling Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Chunxiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
5
|
Sarkar UD, Rana M, Chakrapani H. Phenacylselenoesters allow facile selenium transfer and hydrogen selenide generation. Chem Sci 2024; 15:19315-19321. [PMID: 39568918 PMCID: PMC11575540 DOI: 10.1039/d4sc05788k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024] Open
Abstract
Hydrogen selenide (H2Se) is a precursor to several selenium-containing biomolecules and is emerging as an important redox-active species in biology, with yet to be completely characterized roles. Tools that reliably generate H2Se are key to achieving a better understanding of selenium biology. Here, we report the design, synthesis and evaluation of phenacylselenoesters as sources of H2Se. These compounds are prepared in two steps from commercial compounds, some are crystalline solids, and all are stable during storage. In the presence of esterase and a thiol in pH 7.4 buffer, these compounds produce H2Se, with half-lives of 5-20 min. We developed a colorimetric assay for the detection of gaseous H2Se by trapping it as zinc selenide (ZnSe), which is then converted to lead selenide (PbSe), which serves as a convenient visual indicator for this gas. The major organic products that are formed in nearly quantitative yields are relatively benign ketones and carboxylic acids. We provide evidence for these donors producing a thioselenide, a key intermediate in biological selenium metabolism. Finally, we compared sulfur and selenium transfer, both critical processes in cells. Phenacylthiol is relatively stable to cleavage by a thiol, and requires a sulfurtransferase enzyme to produce a persulfide and H2S. By contrast, the selenium analogue reacted with a thiol in the absence of this enzyme to produce H2Se. This result underscores the greater lability of the C-Se bond as compared with a C-S bond, and may have implications in biological selenium transfer. Together, phenacylselenoesters are easy to prepare, stable and generate H2Se under mild and biocompatible conditions. We anticipate that these will be valuable additions to the growing selenium redox toolbox.
Collapse
Affiliation(s)
- Utsav Dey Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Maharashtra India
| | - Mahima Rana
- Department of Chemistry, Indian Institute of Science Education and Research Pune Maharashtra India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune Maharashtra India
| |
Collapse
|
6
|
Chen X, Yue J, Xu X, Chen J, Huang X, Huang Y, Yang Y, Li F, Li T. Surface different charge ligands for modulating selenium nanoparticles formation and activating the interaction with proteins for effective anti-Herpes simplex virus l infection. NANOTECHNOLOGY 2024; 36:065101. [PMID: 39514902 DOI: 10.1088/1361-6528/ad902b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Selenium-based nanoparticles exhibit antiviral activity by directly modulating immune function. Despite recent promising developments in utilizing selenium nanoparticles (Se NPs) against viral infections, the impact of surface ligand charge on the conformation and interaction with viral proteins, as well as the effectiveness of Se NPs in anti-Herpes simplex virus 1 (HSV-1) infection remains unexplored. In this study, three types of selenium nanoparticles (CTAB-Se, PVP-Se, SDS-Se) with distinct surface charges were synthesized by modifying the surface ligands. We found that apart from differences in surface charge, the size, morphology, and crystal structure of the three types of Se NPs were similar. Notably, although the lipophilicity and cellular uptake of SDS-Se with a negative charge were lower compared to positively charged CTAB-Se and neutrally charged PVP-Se, SDS-Se exhibited the strongest protein binding force during interaction with HSV-1. Consequently, SDS-Se demonstrated the most potent anti-HSV-1 activity and safeguarded normal cells from damage. The mechanistic investigation further revealed that SDS-Se NPs effectively inhibited the proliferation and assembly of HSV-1 by powerfully suppressing the key genes and proteins of HSV-1 at various stages of viral development. Hence, this study highlights the significant role of surface ligand engineering in the antiviral activity of Se NPs, presenting a viable approach for synthesizing Se NPs with tailored antiviral properties by modulating surface charge. This method holds promise for advancing research on the antiviral capabilities of Se NPs.
Collapse
Affiliation(s)
- Xu Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Jian Yue
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Xiongjun Xu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Jiajun Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xuechan Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Yukai Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Yang Yang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, People's Republic of China
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
- Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing 526000, People's Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Bai X, Chen J, Du H, Zhao C, Li Y, Li Y, Dixneuf PH, Zhang M, Chen L. Silver-Mediated Acetoxyselenylation of Alkynes: Mild Stereoselective Access to Bifunctional Alkenes. Org Lett 2024. [PMID: 39535246 DOI: 10.1021/acs.orglett.4c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report a AgF-mediated regio- and stereoselective acetoxyselenylation of terminal/internal alkynes from iodobenzene dicarboxylate [PhI(OCOR)2] and diorganyl diselenides via multiple-site functionalization to afford β-selenyl enol esters in good yields. Alkynes derived from bioactive molecules, such as l(-)-borneol, l-menthol, and acyne oxalate, are also suitable for this transformation and afford the expected compounds.
Collapse
Affiliation(s)
- Xiaoyan Bai
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jiabin Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Hongxuan Du
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Cong Zhao
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ya Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Yibiao Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | | | - Min Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, People's Republic of China
| | - Lu Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
8
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2621-7. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
9
|
Zheng C, Man YB, Wong MH, Cheng Z. Optimizing food waste bioconversion with sodium selenite-enhanced Lucilia sericata maggots: a sustainable approach for chicken feed production and heavy metal mitigation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:508. [PMID: 39520635 DOI: 10.1007/s10653-024-02277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Recycling food waste by feeding it to insects can result in the continuous production of high-quality animal feed protein and organic fertilizer. However, the bioconversion efficiency and safety of using insects as feed protein for animal breeding are important factors limiting the development of this technology. Therefore, we aimed to optimize the efficiency of bioconversion of food waste using Lucilia sericata maggot (LSM). Sodium selenite (SS) was used to improve the quality and safety of each trophic-level organism. The results showed that an SS concentration of 15 mg kg-1 w.w. in the food waste culture substrate (SS15), the yield and quality of the obtained LSMs were optimal. The total selenium (Se) content of LSMs was 82.4 ± 1.16 mg kg-1 d.w., and non-inorganic Se accounted for 96.4% ± 2.01% of the total Se content. Additionally, the conversion efficiency of food waste was 18.7% higher than that in the control group (p < 0.05). When SS15 was used to raise maggots as a protein substitute for fish meal (commercial feed), the weight of the chickens and the crude protein content were 1.09-1.26 times and 1.09-1.13 times, respectively (p < 0.05), in comparison with the corresponding findings obtained with the use of ordinary maggots and commercial feed. In this group, glutathione peroxidase, superoxide dismutase, catalase, and immunoglobulin A and G activities were significantly higher than those obtained with the other feeds (p < 0.05). During this cyclic utilization process, the total Se content in chickens (0.31 ± 0.05 mg kg-1 w.w. in the breast, 0.19 ± 0.01 mg kg-1 w.w. in the leg, and 0.57 ± 0.01 mg kg-1 w.w. in the liver) significantly increased (p < 0.05). Meanwhile, the Cu and Zn contents in the LSMs and chickens increased, whereas cadmium, lead, chromium, and nickel absorption was inhibited (p < 0.05). Health risk assessment based on the levels of Se and heavy metals showed that Se-enriched chickens produced using this method can be safely consumed.
Collapse
Affiliation(s)
- Chao Zheng
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Yu Bon Man
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environment Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environment Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
10
|
Zhang G, Huang J, Sun Z, Guo Y, Lin G, Zhang Z, Zhao J. Effects of Trace Mineral Source on Growth Performance, Antioxidant Activity, and Meat Quality of Pigs Fed an Oxidized Soy Oil Supplemented Diet. Antioxidants (Basel) 2024; 13:1227. [PMID: 39456480 PMCID: PMC11505604 DOI: 10.3390/antiox13101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigates the effects of oil quality and trace mineral source on the growth performance, antioxidant activity, and meat quality of growing-finishing pigs. A total of 180 crossbred pigs (Duroc × Landrace × Large White [64.4 ± 1.95]) were randomly allocated five dietary treatments based on body weight (BW) and sex in a 30 d trial. Pigs were fed five diets: (i) fresh soy oil + inorganic trace minerals (ITMs) + inorganic selenium (FISI), (ii) oxidized soy oil + ITMs + inorganic selenium (OISI), (iii) fresh soy oil + ITMs + selenium yeast (FISY), (iv) oxidized soy oil + ITMs + selenium yeast (OISY), and (v) oxidized soy oil + organic trace minerals (OTMs) + selenium yeast (OOSY). Each dietary treatment included six replicates and six pigs per replicate (three barrows and three gilts). Feeding OISI resulted in lower average daily gain (ADG) and dressing percentage (p < 0.05). The OOSY group had a higher dressing percentage and activities of serum CAT and GSH-Px in growing-finishing pigs (p < 0.05). In addition, the relative abundance of Campylobacterota in the colonic digesta varied with the quality of soy oil and source of trace minerals (p < 0.05), but no significant differences in short-chain fatty acid concentrations were observed among all dietary groups. In conclusion, adding oxidized soy oil to the diet negatively impacted the ADG and dressing percentage of growing-finishing pigs, and replacing ITMs with OTMs and SY alleviated these negative impacts. A combination of OTMs and SY can support antioxidant capacity to mitigate the negative impacts of oxidized oil on the growth performance and dressing percentage of growing-finishing pigs.
Collapse
Affiliation(s)
- Ge Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| | - Jingyi Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| | - Zhiqiang Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| | - Yuhan Guo
- Beijing Alltech Biological Products (China) Co., Ltd., Beijing 100600, China; (Y.G.); (G.L.)
| | - Gang Lin
- Beijing Alltech Biological Products (China) Co., Ltd., Beijing 100600, China; (Y.G.); (G.L.)
| | - Zeyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| |
Collapse
|
11
|
Batabyal M, Chaurasia D, Panda PR, Jha RK, Kadu R, Kumar S. Benzoimidazolyl Organoseleniums: Antioxidant Activity and Catalysts for Selective Iodination of Arenes and Nitro-Michael Reaction. J Org Chem 2024; 89:14328-14340. [PMID: 39283162 DOI: 10.1021/acs.joc.4c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Here, the synthesis and catalytic activities of benzoimidazole-derived organoselenium compounds have been explored. The synthesized bis(2-benzoimidazolyl) diselenide, having increased Lewis acidity on the selenium center, outperforms simple phenyl and N-phenyl benzamide-based diselenides when compared for thiol peroxidase hydrogen peroxide decomposing antioxidant activity with a reduction rate of 18.6 ± 1.9 μM/s. The synthesized diselenide also acted as an efficient catalyst for the activation of N-iodo-succinimide toward the regioselective, monoiodination of electron-rich arenes and activation of nitro-alkene for nitro-Michael reactions for the first time.
Collapse
Affiliation(s)
- Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Deeksha Chaurasia
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Priyanka Rani Panda
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Rahul Kadu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
- MIT School of Engineering, MIT Art, Design and Technology University, Pune, Maharashtra 412201, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
12
|
Shi C, Cao H, Zeng G, Wu H, Wang Y. Mendelian randomization analyses explore the effects of micronutrients on different kidney diseases. Front Nutr 2024; 11:1440800. [PMID: 39346645 PMCID: PMC11428537 DOI: 10.3389/fnut.2024.1440800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Background The impact of micronutrients, including vitamins and minerals, on different kidney diseases has been reported in some observational studies; however, their causal relationship remains uncertain. We aimed to ascertain the causal genetic relationships between micronutrients and different kidney diseases using the Mendelian randomization (MR) method. Methods Instrumental variables (IVs) for genetically predicting calcium (Ca), iron (Ir), Zinc (Zn), selenium (Se), copper (Cu), vitamin D (Vit D), and vitamin C (Vit C) levels in humans were obtained, and a bidirectional two-sample MR was used to examine potential associations between the levels of these seven micronutrients and the risk of seven different kidney diseases including hypertensive renal disease, diabetic nephropathy, IgA nephropathy, membranous nephropathy, cystic nephropathy, chronic kidney disease (CKD), and chronic tubulo-interstitial nephritis. Five different MR analyses were conducted, with the main method being the inverse variance-weighted (IVW) method. Moreover, sensitivity analyses were performed to assess heterogeneity and potential pleiotropy. Results The IVW method revealed that Ca levels were associated with a decreased risk of hypertensive renal disease (OR = 0.61, 95% CI: 0.40-0.93, p-value = 0.022), and Se levels were associated with a decreased risk of hypertensive renal disease (OR = 0.72, 95% CI: 0.53-0.99, p-value = 0.040), diabetic nephropathy (OR = 0.83, 95% CI: 0.73-0.93, p-value = 0.002), and CKD (OR = 0.87, 95% CI: 0.77-0.99, p-value = 0.028). Conversely, Vit D levels were associated with an increased risk of polycystic kidney disease (OR = 1.76, 95% CI: 1.15-2.69, p-value = 0.0095). In addition, no potential causal relationship was found between vitamin C levels, iron levels, zinc levels, and copper levels and different kidney diseases. Meanwhile, inverse Mendelian randomization showed no potential causal relationship between different chronic kidney diseases and micronutrients. The Cochrane's Q test, MR-Egger regression, and MR-PRESSO did not suggest heterogeneity and pleiotropy, providing evidence of the validity of the MR estimates. Conclusion Our results indicate a cause-and-effect connection between micronutrients and certain kidney diseases, but additional study is required to provide more conclusive evidence. This research has the potential to assist clinicians in managing the consumption of specific micronutrients among individuals with chronic kidney diseases, as well as in promoting disease prevention among both healthy populations and those who are susceptible to chronic underlying conditions.
Collapse
Affiliation(s)
- Chengdong Shi
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Hongliang Cao
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Guoqiang Zeng
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Yuantao Wang
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Wang J, Zhao X, Wang Y, Wang Z, Zhang C, Zong L, Li W, Li T, Chen M. Electrochemically chalcogenative annulation enabled construction of functionalized saturated N-heterocycles. Chem Commun (Camb) 2024; 60:10156-10159. [PMID: 39189692 DOI: 10.1039/d4cc03432e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
An efficient chalcogenative annulation strategy for constructing functionalized saturated N-heterocycles from unactivated alkenes with dichalcogenides under electrochemical conditions has been presented. This protocol is applicable to mono-, di- or tri-substituted alkenes, providing a straightforward pathway to aziridines, azetidines, pyrrolidines, and piperidines with high regioselectivity. Moreover, the strategy is qualified to realize the oxychalcogenation of alkenes as well.
Collapse
Affiliation(s)
- Jian Wang
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Xinxin Zhao
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Yijia Wang
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Zhihui Wang
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Chunyan Zhang
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Luyi Zong
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
- Henan Tianguan Group Co., Ltd., Nanyang, China, 473061
| | - Wenguang Li
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Ting Li
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Ming Chen
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
14
|
Dong Y, Liang W, Yi L. Fast Intramolecular Thiol-Activated Arylselenoamides Provide Access to Triggered, Fluorogenic H 2Se Donors. J Am Chem Soc 2024; 146:24776-24781. [PMID: 39185866 DOI: 10.1021/jacs.4c09215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
H2Se is the precursor for the biosynthesis of selenocompounds and is a potential gasotransmitter. Chemical tools for H2Se delivery and detection are important for Se-related biology research. Key challenges in the field include developing compound platforms that are triggered to release H2Se under various stimuli and developing fluorogenic donors that allow for real-time tracking of H2Se delivery. Here we report a new general platform for triggered H2Se donors based on controllable deprotection of a thiol, which can quickly activate an intramolecular arylselenoamide (t1/2 < 1 min) to release H2Se efficiently. Furthermore, we leverage this platform to develop the first examples of fluorogenic H2Se donors, which can be used to monitor H2Se release by fluorescence in real time. We anticipate that the well-defined donation chemistries will significantly advance the development of H2Se donors and stimulate further in-depth studies of H2Se biomedicine.
Collapse
Affiliation(s)
- Yalun Dong
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenfang Liang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
16
|
Atta S, Mandal A, Majumdar A. Generation of Thiosulfate, Selenite, Dithiosulfite, Perthionitrite, Nitric Oxide, and Reactive Chalcogen Species by Binuclear Zinc(II)-Chalcogenolato/-Polychalcogenido Complexes. Inorg Chem 2024; 63:15161-15176. [PMID: 39084849 DOI: 10.1021/acs.inorgchem.4c02527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A comparative bioinspired reactivity study of new binuclear Zn(II) complexes featuring coordinated thiolate, selenolate, trisulfide and diselenide in relation with (i) the generation of reactive sulfur/selenium species (RSS/RSeS), (ii) the oxygen dependent oxidation and disproportionation of polysulfide (Sn2-) to produce sulfite (SO32-), thiosulfate (S2O32-) and sulfide (S2-) by sulfur oxygenase reductase (SOR), and (iii) the reaction of Sn2- with nitrite (NO2-) to generate thionitrite (SNO-), perthionitrite (SSNO-) and nitric oxide (NO), is presented. The binuclear Zn(II)-thiolate/selenolate complexes could react with elemental sulfur to generate RSS/RSeS while similar reactions involving elemental selenium could not generate RSeS. The dizinc(II)-S3 and the dizinc(II)-Se2 complexes could react with dioxygen (O2) to generate binuclear Zn(II) complexes featuring coordinated thiosulfate (S2O32-) and selenite (SeO32-), respectively. Finally, unlike the nonreactive nature of the dizinc(II)-Se2 complex toward NO2-, reaction of the dizinc(II)-S3 complex with NO2- produced a new binuclear Zn(II) complex featuring a coordinated dithiosulfite (S3O2-) along with the formation of perthionitrite (SSNO-), of which the latter subsequently produced nitric oxide (NO) and S42-. The present work, thus, demonstrates the comparative reactivity of a series of binuclear Zn(II)-chalcogenolato/-polychalcogenido complexes for the generation of S2O32-, SeO32-, S3O2-, SSNO-, NO and RSS/RSeS.
Collapse
Affiliation(s)
- Sayan Atta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Amit Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
17
|
Viltres-Portales M, Sánchez-Martín MJ, Boada R, Llugany M, Valiente M. Liposomes as selenium nanocarriers for foliar application to wheat plants: A biofortification strategy. Food Chem 2024; 448:139123. [PMID: 38552461 DOI: 10.1016/j.foodchem.2024.139123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
In the present work, liposomes have been used as nanocarriers in the biofortification of wheat plants with selenium (Se) through foliar application. Liposomal formulations were prepared using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and Phospholipon®90H (P90H) (average size <100 nm), loaded with different concentrations of inorganic Se (selenite and selenate) and applied twice to the plants in the stage of vegetative growth. Liposomes enhanced Se uptake by wheat plants compared to direct application. The highest Se enrichment was achieved using the phospholipid DPPC and a concentration of 1000 μmol·L-1 of Se without affecting the biomass, chlorophylls, carotenoids, and the concentration of mineral nutrients of the plants. The chemical speciation of Se in the plants was further investigated by X-ray absorption spectroscopy (XAS). The results from XAS spectra revealed that most of the inorganic Se was transformed to organic Se and that the use of liposomes influenced the proportion of C-Se-C over C-Se-Se-C species.
Collapse
Affiliation(s)
- Marcia Viltres-Portales
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institute of Materials Science and Technology, Universidad de La Habana, Zapata y G, Vedado, Plaza, 10400 La Habana, Cuba
| | - María-Jesús Sánchez-Martín
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Roberto Boada
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mercè Llugany
- Plant Physiology Group (BABVE), Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Manuel Valiente
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
18
|
Kaya B, Gholam Azad M, Suleymanoglu M, Harmer JR, Wijesinghe TP, Richardson V, Zhao X, Bernhardt PV, Dharmasivam M, Richardson DR. Isosteric Replacement of Sulfur to Selenium in a Thiosemicarbazone: Promotion of Zn(II) Complex Dissociation and Transmetalation to Augment Anticancer Efficacy. J Med Chem 2024; 67:12155-12183. [PMID: 38967641 DOI: 10.1021/acs.jmedchem.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
We implemented isosteric replacement of sulfur to selenium in a novel thiosemicarbazone (PPTP4c4mT) to create a selenosemicarbazone (PPTP4c4mSe) that demonstrates potentiated anticancer efficacy and selectivity. Their design specifically incorporated cyclohexyl and styryl moieties to sterically inhibit the approach of their Fe(III) complexes to the oxy-myoglobin heme plane. Importantly, in contrast to the Fe(III) complexes of the clinically trialed thiosemicarbazones Triapine, COTI-2, and DpC, the Fe(III) complexes of PPTP4c4mT and PPTP4c4mSe did not induce detrimental oxy-myoglobin oxidation. Furthermore, PPTP4c4mSe demonstrated more potent antiproliferative activity than the homologous thiosemicarbazone, PPTP4c4mT, with their selectivity being superior or similar, respectively, to the clinically trialed thiosemicarbazone, COTI-2. An advantageous property of the selenosemicarbazone Zn(II) complexes relative to their thiosemicarbazone analogues was their greater transmetalation to Cu(II) complexes in lysosomes. This latter effect probably promoted their antiproliferative activity. Both ligands down-regulated multiple key receptors that display inter-receptor cooperation that leads to aggressive and resistant breast cancer.
Collapse
Affiliation(s)
- Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Mediha Suleymanoglu
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Fatih, Istanbul 34093, Turkey
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Vera Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
19
|
Zhang X, Li G, Yin J, Pan W, Li Y, Li N, Tang B. Reprogramming Tumor-Associated Macrophages with a Se-Based Core-Satellite Nanoassembly to Enhance Cancer Immunotherapy. NANO LETTERS 2024; 24:9104-9114. [PMID: 39007505 DOI: 10.1021/acs.nanolett.4c02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Tumor-associated macrophages (TAMs), as the most prevalent immune cells in the tumor microenvironment, play a pivotal role in promoting tumor development through various signaling pathways. Herein, we have engineered a Se@ZIF-8 core-satellite nanoassembly to reprogram TAMs, thereby enhancing immunotherapy outcomes. When the nanoassembly reaches the tumor tissue, selenium nanoparticles and Zn2+ are released in response to the acidic tumor microenvironment, resulting in a collaborative effort to promote the production of reactive oxygen species (ROS). The generated ROS, in turn, activate the nuclear factor κB (NF-κB) signaling pathway, driving the repolarization of TAMs from M2-type to M1-type, effectively eliminating cancer cells. Moreover, the nanoassembly can induce the immunogenic death of cancer cells through excess ROS to expose calreticulin and boost macrophage phagocytosis. The Se@ZIF-8 core-satellite nanoassembly provides a potential paradigm for cancer immunotherapy by reversing the immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Guocheng Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jiaqi Yin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
20
|
Huang B, Tang X, Yuan J, Zhang M, Luo Z, Wang J, Lu C. Visible-light induced selenocyclization of 2-ethynylanilines under ambient conditions: simple FeBr 3 as a dual-functional catalyst. Org Biomol Chem 2024. [PMID: 39028029 DOI: 10.1039/d4ob01062k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
We report herein a visible-light induced, Fe-catalyzed selenocyclization of 2-ethynylanilines with diselenides under ambient conditions, employing ethyl acetate as a benign solvent with no stoichiometric additive required. The simple iron salt FeBr3 serves as both a photo-induced LMCT (Ligand-to-Metal Charge Transfer) catalyst and a Lewis acid catalyst to promote the desired transformation in a sustainable manner, enabling the facile synthesis of diverse 3-selenylindoles with extended substitution patterns. Moreover, gram-scale reactions and late-stage functionalization of bioactive molecules further highlight the synthetic practicality of this method.
Collapse
Affiliation(s)
- Binbin Huang
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Xinye Tang
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Jiawei Yuan
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Mingyu Zhang
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Zhenyu Luo
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Junlei Wang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China.
| | - Caicai Lu
- Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
21
|
Pyrzynska K, Sentkowska A. Selenium Species in Diabetes Mellitus Type 2. Biol Trace Elem Res 2024; 202:2993-3004. [PMID: 37880477 PMCID: PMC11074226 DOI: 10.1007/s12011-023-03900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
Selenium is an important trace element for humans and animals as it plays a key role in several major metabolic pathways. Several studies were conducted to better understand the role of selenium against diabetes mellitus (DM), particularly type 2 (T2DM), but the obtained conclusions are contradictory. A simple linear relationship does not exist between the risk of T2DM and selenium levels but is best represented in a dose-dependent manner, getting often the U-graph. This relation also depends on selenium chemical forms that are present in a diet or supplements. Both too low and too high selenium intakes could increase the risk of diabetes. Moreover, the baseline status of Se should be taken into consideration to avoid over-supplementation. The focus of this brief overview is to report the recent updates concerning selenium participation in diabetes mellitus.
Collapse
Affiliation(s)
- Krystyna Pyrzynska
- Faculty of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093, Warsaw, Poland.
| | | |
Collapse
|
22
|
Whitcomb A, Li X, Lawson J, Christensen M. Response surface methodology optimizes selenium inhibition of prostate cancer PC-3 cell viability. J Trace Elem Med Biol 2024; 84:127414. [PMID: 38489924 DOI: 10.1016/j.jtemb.2024.127414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The rising incidence of prostate cancer in the U.S. necessitates innovative therapeutic approaches to this disease. Though extensive research has studied Selenium as an anticarcinogen against prostate cancer, results have varied due to overlooked experimental confounds. Recent studies have identified differential effects of various selenium compounds on prostate cancer cells. This study leverages Mixture Design Response Surface Methodology to characterize the ideal combination of select Se forms against the PC-3 prostate cancer cell line. METHODS The PC-3 cell line was chosen as a model for its representation of advanced-stage malignancy. Three Se compounds-sodium selenite, methylseleninic acid, and nano-selenium-were selected for their promising antineoplastic potential. Nano-Se particles were synthesized and subsequently characterized by transmission electron microscopy. Cells were cultured, treated with Se compounds, and assessed for viability using an Alamar Blue Assay. IC50 values of individual Se compounds were determined, and treatment combinations evaluated. In collaboration with statical modeling experts, MDRSM was utilized to optimize Se compound combinations. RESULTS Absolute IC50 values were identified for methylseleninic acid (5.01 μmol/L), sodium selenite (13.8 μmol/L), and nano-selenium (14.6 μmol/L). Combining methylseleninic acid and sodium selenite resulted in only 5% PC-3 cell viability, whereas individual treatments reduced viability by approximately 45%. Among the tested mixtures, the 50:50 combination of MSA and sodium selenite most effectively decreased PC-3 cell viability. Regression analysis indicated the special cubic model had a strong fit (multiple r² = 0.9853), predicting maximum cell viability reduction from the methylseleninic acid and selenite mixture. CONCLUSION The specific form of Selenium plays a pivotal role in determining its physiological effects and therapeutic potential against prostate cancer. All three selenium compounds showed variable antineoplastic effects, with a 50:50 mixture of methylseleninic acid and selenite exhibiting optimal results. Nano-selenium, when combined with selenite, showed no additive effect, implying a shared mechanism of action. Our research underscores the critical need to consider Se compound forms as distinct entities in prostate cancer treatment and encourages further exploration of Se compounds against prostate cancer.
Collapse
Affiliation(s)
- Andrew Whitcomb
- Department of Nutrition, Dietetics, and Food Science, Simmons Center for Cancer Research, Brigham Young University, E-181 BNSN, Provo, UT 84602, United States.
| | - Xiuqi Li
- Harvard Medical School, Cambridge, MA 02138, United States
| | - John Lawson
- Statistics Department at Brigham Young University, United States
| | - Merrill Christensen
- Department of Nutrition, Dietetics, and Food Science, Simmons Center for Cancer Research, Brigham Young University, E-181 BNSN, Provo, UT 84602, United States
| |
Collapse
|
23
|
Gandhi VV, Pal MK, Singh BG, Das RP, Wadawale AP, Dey S, Kunwar A. Deuterium labeling improves the therapeutic index of 3,3'-diselenodipropionic acid as an anticancer agent: insights from redox reactions. RSC Med Chem 2024; 15:2165-2178. [PMID: 38911162 PMCID: PMC11187547 DOI: 10.1039/d4md00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/02/2024] [Indexed: 06/25/2024] Open
Abstract
3,3'-Diselenodipropionic acid (DSePA), a selenocystine derivative, has been previously reported as an oral supplement for anticancer/radio-modulation activities. The present study is focused on devising a strategy to synthesize and characterize the deuterated derivative of DSePA and on understanding the effect of deuteration on its therapeutic index by comparing its cytotoxicity in cancerous versus non-cancerous cell types. In this context, the synthesis of 3,3'-diselenodipropionic acid-D8 (D-DSePA) was accomplished in ∼42% yield. Further, the results clearly established that the deuteration of DSePA significantly reduced its cytotoxicity in non-cancerous cell types while retaining its cytotoxicity in cancerous cell lines. Together, D-DSePA displayed a ∼5-fold higher therapeutic index than the non-deuterated derivative for anticancer activity. The biochemical and NMR studies confirmed that the better biocompatibility of D-DSePA than its non-deuterated derivative in non-cancerous cells was due to its ability to undergo slower redox reactions and to cause lesser inhibition of intracellular redox enzymes.
Collapse
Affiliation(s)
- V V Gandhi
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| | - M K Pal
- Chemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25592589
| | - B G Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| | - R P Das
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25592589
| | - S Dey
- Chemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25592589
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| | - A Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| |
Collapse
|
24
|
Hossain K, Atta S, Chakraborty AB, Karmakar S, Majumdar A. Nonheme binuclear transition metal complexes with hydrosulfide and polychalcogenides. Chem Commun (Camb) 2024; 60:4979-4998. [PMID: 38654604 DOI: 10.1039/d4cc00929k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The intriguing chemistry of chalcogen (S, Se)-containing ligands and their capability to bridge multiple metal centres have resulted in a plethora of reports on transition metal complexes featuring hydrosulfide (HS-) and polychalcogenides (En2-, E = S, Se). While a large number of such molecules are strictly organometallic complexes, examples of non-organometallic complexes featuring HS- and En2- with N-/O-donor ligands are relatively rare. The general synthetic procedure for the transition metal-hydrosulfido complexes involves the reaction of the corresponding metal salts with HS-/H2S and this is prone to generate sulfido bridged oligomers in the absence of sterically demanding ligands. On the other hand, the synthetic methods for the preparation of transition metal-polychalcogenido complexes include the reaction of the corresponding metal salts with En2- or the two electron oxidation of low-valent metals with elemental chalcogen, often at an elevated temperature and/or for a long time. Recently, we have developed new synthetic methods for the preparation of two new classes of binuclear transition metal complexes featuring either HS-, or Sn2- and Sen2- ligands. The new method for the synthesis of transition metal-hydrosulfido complexes involved transition metal-mediated hydrolysis of thiolates at room temperature (RT), while the method for the synthesis of transition metal-polychalcogenido complexes involved redox reaction of coordinated thiolates and exogenous elemental chalcogens at RT. An overview of the synthetic aspects, structural properties and intriguing reactivity of these two new classes of transition metal complexes is presented.
Collapse
Affiliation(s)
- Kamal Hossain
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Sayan Atta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Anuj Baran Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
25
|
Grman M, Balis P, Berenyiova A, Svajdlenkova H, Tomasova L, Cacanyiova S, Rostakova Z, Waczulikova I, Chovanec M, Domínguez-Álvarez E, Ondrias K, Misak A. Products of Selenite/Thiols Interaction Have Reducing Properties, Cleave Plasmid DNA and Decrease Rat Blood Pressure and Tension of Rat Mesenteric Artery. Biol Trace Elem Res 2024:10.1007/s12011-024-04196-3. [PMID: 38676879 DOI: 10.1007/s12011-024-04196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Selenium compounds exert their antioxidant activity mostly when the selenium atom is incorporated into selenoproteins. In our work, we tested the possibility that selenite itself interacts with thiols to form active species that have reducing properties. Therefore, we studied the reduction of 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazol-1-yloxy-3-oxide radical (•cPTIO), damage of plasmid DNA (pDNA), modulation of rat hemodynamic parameters and tension of isolated arteries induced by products of interaction of selenite with thiols. We found that the products of selenite interaction with thiols had significant reducing properties that could be attributed mainly to the selenide and that selenite had catalytic properties in the access of thiols. The potency of thiols to reduce •cPTIO in the interaction with selenite was cysteine > homocysteine > glutathione reduced > N-acetylcysteine. Thiol/selenite products cleaved pDNA, with superoxide dismutase enhancing these effects suggesting a positive involvement of superoxide anion in the process. The observed •cPTIO reduction and pDNA cleavage were significantly lower when selenomethionine was used instead of selenite. The products of glutathione/selenite interaction affected several hemodynamic parameters including rat blood pressure decrease. Notably, the products relaxed isolated mesenteric artery, which may explain the observed decrease in rat blood pressure. In conclusion, we found that the thiol/selenite interaction products exhibited significant reducing properties which can be used in further studies of the treatment of pathological conditions caused by oxidative stress. The results of decreased rat blood pressure and the tension of mesenteric artery may be perspective in studies focused on cardiovascular disease and their prevention.
Collapse
Affiliation(s)
- Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | - Peter Balis
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovak Republic
| | - Andrea Berenyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovak Republic
| | - Helena Svajdlenkova
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 41, Bratislava, Slovak Republic
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15, Bratislava, Slovak Republic
| | - Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | - Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovak Republic
| | - Zuzana Rostakova
- Institute of Measurement Science, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04, Bratislava, Slovak Republic
| | - Iveta Waczulikova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina F1, 842 48, Bratislava, Slovak Republic
| | - Miroslav Chovanec
- Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | | | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | - Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic.
| |
Collapse
|
26
|
Hou W, Zhang Y, Huang F, Chen W, Gu Y, Wang Y, Pang J, Dong H, Pan K, Zhang S, Ma P, Xu H. Bioinspired Selenium-Nitrogen Exchange (SeNEx) Click Chemistry Suitable for Nanomole-Scale Medicinal Chemistry and Bioconjugation. Angew Chem Int Ed Engl 2024; 63:e202318534. [PMID: 38343199 DOI: 10.1002/anie.202318534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Click chemistry is a powerful molecular assembly strategy for rapid functional discovery. The development of click reactions with new connecting linkage is of great importance for expanding the click chemistry toolbox. We report the first selenium-nitrogen exchange (SeNEx) click reaction between benzoselenazolones and terminal alkynes (Se-N to Se-C), which is inspired by the biochemical SeNEx between Ebselen and cysteine (Cys) residue (Se-N to Se-S). The formed selenoalkyne connection is readily elaborated, thus endowing this chemistry with multidimensional molecular diversity. Besides, this reaction is modular, predictable, and high-yielding, features fast kinetics (k2≥14.43 M-1 s-1), excellent functional group compatibility, and works well at miniaturization (nanomole-scale), opening up many interesting opportunities for organo-Se synthesis and bioconjugation, as exemplified by sequential click chemistry (coupled with ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) and sulfur-fluoride exchange (SuFEx)), selenomacrocycle synthesis, nanomole-scale synthesis of Se-containing natural product library and DNA-encoded library (DEL), late-stage peptide modification and ligation, and multiple functionalization of proteins. These results indicated that SeNEx is a useful strategy for new click chemistry developments, and the established SeNEx chemistry will serve as a transformative platform in multidisciplinary fields such as synthetic chemistry, material science, chemical biology, medical chemistry, and drug discovery.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Fuchao Huang
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wanting Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Jiacheng Pang
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hewei Dong
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kangyin Pan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 201210, Shanghai, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 201210, Shanghai, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
27
|
Zhu C, Liu Q, Wang Y, Wang X, Ma Y, Yang F, Dong W, Ji H. A screening for optimal selenium enrichment additives for selenium-enriched fish production: Application of a HPLC-ICP-MS method. Food Chem X 2024; 21:101088. [PMID: 38226325 PMCID: PMC10788228 DOI: 10.1016/j.fochx.2023.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
The production of selenium-enriched fish contributes to alleviating selenium deficiency for humans. In this study, selenium nanoparticles (SeNPs) comparable in bioavailability to selenomethionine (SeMet), increased SeMet content in O. macrolepis (Onychostoma macrolepis) muscle. Additionally, dietary SeNPs significantly enhanced selenocysteine (SeCys2) and methylselenocysteine (MeSeCys) levels in O. macrolepis muscle. The effect of SeNPs on selenium speciation in grass carp muscle was consistent with O. macrolepis results. SeCys2 and MeSeCys showed antioxidant capacity in HEK293T cells, indicating enhanced health benefits of Se-enriched fish produced using SeNPs. Furthermore, the addition of 0.3 mg/kg SeNPs significantly improved the flesh quality of O. macrolepis by reducing the content of crude fat and heavy metals, as well as increasing the levels of crude protein, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and the ratio of n-3/n-6 polyunsaturated fatty acids (PUFAs). Therefore, selenium-enriched fish produced from SeNPs is a good source for improving human dietary selenium intake.
Collapse
Affiliation(s)
- Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxuan Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
28
|
Fu G, Bai S. Preoperative serum selenium predicts acute kidney injury after adult cardiac surgery. BMC Cardiovasc Disord 2024; 24:159. [PMID: 38486133 PMCID: PMC10941384 DOI: 10.1186/s12872-024-03825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The relationship between serum selenium (Se) and acute kidney injury after adult cardiac surgery (CSA-AKI) remains controversial. This study aimed to investigate the association of preoperative Se level with incident CSA-AKI. METHOD AND RESULTS A retrospective cohort study was conducted on patients who underwent cardiac surgery. The primary outcome was incident CSA-AKI. Multivariable logistic regression models and natural cubic splines were used to estimate the association of Se levels and primary outcome. A total of 453 patient with a mean age of 62.97 years were included. Among all patients, 159 (35.1%) incident cases of CSA-AKI were identified. The level of preoperative Se concentration in patients with CSA-AKI was significant lower than that in patients without CSA-AKI. The higher preoperative Se level was significantly associated with decreased risk of CSA-AKI (adjusted OR 0.91, 95% CI: 0.87-0.99). Dose-response relationship curve revealed a nearly L-shape correlation between serum Se selenium levels and incident CSA-AKI. CONCLUSION Our study suggested that a higher level of serum Se was significantly associated with lower risk of CSA-AKI. Further prospective studies are needed to clarify the causal relationship between serum Se level and incident CSA-AKI.
Collapse
Affiliation(s)
- Guowei Fu
- Department of Anesthesiology, Changzhou Second People's Hospital, No.29, Xinglong Lane, Changzhou, 213003, China
| | - Shuying Bai
- Department of Anesthesiology, Changzhou Second People's Hospital, No.29, Xinglong Lane, Changzhou, 213003, China.
| |
Collapse
|
29
|
Hu Y, Wang ZG, Fu H, Zhou C, Cai W, Shao X, Liu SL, Pang DW. In-situ synthesis of quantum dots in the nucleus of live cells. Natl Sci Rev 2024; 11:nwae021. [PMID: 38410827 PMCID: PMC10896589 DOI: 10.1093/nsr/nwae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 02/28/2024] Open
Abstract
The cell nucleus is the main site for the storage and replication of genetic material, and the synthesis of substances in the nucleus is rhythmic, regular and strictly regulated by physiological processes. However, whether exogenous substances, such as nanoparticles, can be synthesized in situ in the nucleus of live cells has not been reported. Here, we have achieved in-situ synthesis of CdSxSe1-x quantum dots (QDs) in the nucleus by regulation of the glutathione (GSH) metabolic pathway. High enrichment of GSH in the nucleus can be accomplished by the addition of GSH with the help of the Bcl-2 protein. Then, high-valence Se is reduced to low-valence Se by glutathione-reductase-catalyzed GSH, and interacts with the Cd precursor formed through Cd and thiol-rich proteins, eventually generating QDs in the nucleus. Our work contributes to a new understanding of the syntheses of substances in the cell nucleus and will pave the way for the development of advanced 'supercells'.
Collapse
Affiliation(s)
- Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haohao Fu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Chuanzheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
| | - Wensheng Cai
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
30
|
Zhu C, Wu Z, Liu Q, Wang X, Zheng L, He S, Yang F, Ji H, Dong W. Selenium nanoparticles in aquaculture: Unique advantages in the production of Se-enriched grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:189-201. [PMID: 38357572 PMCID: PMC10864761 DOI: 10.1016/j.aninu.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 02/16/2024]
Abstract
The production of selenium-enriched fish can contribute to alleviating selenium deficiency in human diets. However, it is still unclear which selenium source, as an additive, can efficiently and cost-effectively produce high-quality selenium-enriched fish. This study evaluated the effects of selenium nanoparticles (SeNP), selenite, and selenomethionine (SeMet) on the growth, antioxidant capacity, selenium content, selenium speciation, and meat quality of grass carp. Ten diets were prepared, including a basal diet (BD) and three concentrations (0.1, 0.3, and 0.9 mg/kg) of SeNP, selenite, and SeMet. A total of 600 fish (250.79 ± 1.57 g) were randomly assigned to 30 tanks (3 tanks/group). Fish were fed the experimental diet three times daily for 60 d. In this study, SeNP most significantly promoted the growth and antioxidant capacity of grass carp, with 0.3 mg/kg SeNP identified as the optimal additive concentration. Additionally, SeNP demonstrated equally excellent bioavailability as SeMet and significantly increased the content of SeMet in grass carp (Ctenopharyngodon idella) muscle. Furthermore, compared to SeMet and selenite, dietary SeNP could more significantly enhance the content of selenocysteine (SeCys2) and methylselenocysteine (MeSeCys) in grass carp muscle tissue. In addition, we have demonstrated that SeCys2 and MeSeCys promote apoptosis of cancer cells (HeLa) through the mitochondrial apoptotic pathway (involving Bax and Bcl-2). Furthermore, as an additive, 0.3 mg/kg SeNP significantly improved the flesh quality of grass carp by reducing crude fat and heavy metal content, as well as increasing the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the ratio of n-3/n-6 polyunsaturated fatty acid (PUFA). In summary, SeNP is the most suitable additive for producing selenium-enriched fish.
Collapse
Affiliation(s)
- Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaolin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lijuan Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuyang He
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
31
|
Laskowska A, Pacuła-Miszewska AJ, Obieziurska-Fabisiak M, Jastrzębska A, Długosz-Pokorska A, Gach-Janczak K, Ścianowski J. Synthesis of New Chiral β-Carbonyl Selenides with Antioxidant and Anticancer Activity Evaluation-Part I. MATERIALS (BASEL, SWITZERLAND) 2024; 17:899. [PMID: 38399148 PMCID: PMC10890689 DOI: 10.3390/ma17040899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
A series of unsymmetrical phenyl β-carbonyl selenides with o-amido function substituted on the nitrogen atom with chiral alkyl groups was obtained. The compounds form a series of enantiomeric and diastereomeric pairs and present the first examples of this type of chiral Se derivatives. All obtained selenides were further evaluated as antioxidants and anticancer agents to define the influence of the particular stereochemistry of the attached functional groups on the bioactivity of the molecules. The highest H2O2 reduction potential was observed for N-(cis-2-hydroxy-1-indanyl)-2-((2-oxopropyl)selanyl)benzamide, and the best radical scavenging properties for N-(-1-hydroxy-2-butanyl)-2-((2-oxopropyl)selanyl)benzamide. Also, both enantiomers of the N-(1-hydroxy-2-butanyl) selenide expressed the highest cytotoxic potential towards human promyelocytic leukemia HL-60 cell line with similar IC50 values 14.4 ± 0.5 and 16.2 ± 1.1 µM, respectively. On the other hand, breast cancer cell line MCF-7 was most sensitive to N-((R)-(-)-1-hydroxy-2-butanyl)- 2-((2-oxopropyl)selanyl)benzamide (IC50 of 35.7 ± 0.6 µM). The structure-activity dependence of the obtained Se derivatives was discussed, and the most potent compounds were selected.
Collapse
Affiliation(s)
- Anna Laskowska
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| | - Agata J. Pacuła-Miszewska
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| | - Magdalena Obieziurska-Fabisiak
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| | - Aneta Jastrzębska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland;
| | - Angelika Długosz-Pokorska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (A.D.-P.); (K.G.-J.)
| | - Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (A.D.-P.); (K.G.-J.)
| | - Jacek Ścianowski
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| |
Collapse
|
32
|
Urbano T, Filippini T, Malavolti M, Fustinoni S, Michalke B, Wise LA, Vinceti M. Adherence to the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet and exposure to selenium species: A cross-sectional study. Nutr Res 2024; 122:44-54. [PMID: 38150803 DOI: 10.1016/j.nutres.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
Selenium is a trace element found in many chemical forms. Selenium and its species have nutritional and toxicologic properties, some of which may play a role in the etiology of neurological disease. We hypothesized that adherence to the Mediterranean-Dietary Approach to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) diet could influence intake and endogenous concentrations of selenium and selenium species, thus contributing to the beneficial effects of this dietary pattern. We carried out a cross-sectional study of 137 non-smoking blood donors (75 females and 62 males) from the Reggio Emilia province, Northern Italy. We assessed MIND diet adherence using a semiquantitative food frequency questionnaire. We assessed selenium exposure through dietary intake and measurement of urinary and serum concentrations, including speciation of selenium compound in serum. We fitted non-linear spline-based regression models to investigate the association between MIND diet adherence and selenium exposure concentrations. Adherence to the MIND diet was positively associated with dietary selenium intake and urinary selenium excretion, whereas it was inversely associated with serum concentrations of overall selenium and organic selenium, including serum selenoprotein P-bound selenium, the most abundant circulating chemical form of the metalloid. MIND diet adherence also showed an inverted U-shaped relation with inorganic selenium and particularly with its hexavalent form, selenate. Our results suggest that greater adherence to the MIND diet is non-linearly associated with lower circulating concentrations of selenium and of 2 potentially neurotoxic species of this element, selenoprotein P and selenate. This may explain why adherence to the MIND dietary pattern may reduce cognitive decline.
Collapse
Affiliation(s)
- Teresa Urbano
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Marcella Malavolti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; IRCCS Ca' Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg, Germany
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
33
|
Pyka P, Haberek W, Więcek M, Szymanska E, Ali W, Cios A, Jastrzębska-Więsek M, Satała G, Podlewska S, Di Giacomo S, Di Sotto A, Garbo S, Karcz T, Lambona C, Marocco F, Latacz G, Sudoł-Tałaj S, Mordyl B, Głuch-Lutwin M, Siwek A, Czarnota-Łydka K, Gogola D, Olejarz-Maciej A, Wilczyńska-Zawal N, Honkisz-Orzechowska E, Starek M, Dąbrowska M, Kucwaj-Brysz K, Fioravanti R, Nasim MJ, Hittinger M, Partyka A, Wesołowska A, Battistelli C, Zwergel C, Handzlik J. First-in-Class Selenium-Containing Potent Serotonin Receptor 5-HT 6 Agents with a Beneficial Neuroprotective Profile against Alzheimer's Disease. J Med Chem 2024; 67:1580-1610. [PMID: 38190615 PMCID: PMC10823479 DOI: 10.1021/acs.jmedchem.3c02148] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Alzheimer's disease (AD) has a complex and not-fully-understood etiology. Recently, the serotonin receptor 5-HT6 emerged as a promising target for AD treatment; thus, here a new series of 5-HT6R ligands with a 1,3,5-triazine core and selenoether linkers was explored. Among them, the 2-naphthyl derivatives exhibited strong 5-HT6R affinity and selectivity over 5-HT1AR (13-15), 5-HT7R (14 and 15), and 5-HT2AR (13). Compound 15 displayed high selectivity for 5-HT6R over other central nervous system receptors and exhibited low risk of cardio-, hepato-, and nephrotoxicity and no mutagenicity, indicating its "drug-like" potential. Compound 15 also demonstrated neuroprotection against rotenone-induced neurotoxicity as well as antioxidant and glutathione peroxidase (GPx)-like activity and regulated antioxidant and pro-inflammatory genes and NRF2 nuclear translocation. In rats, 15 showed satisfying pharmacokinetics, penetrated the blood-brain barrier, reversed MK-801-induced memory impairment, and exhibited anxiolytic-like properties. 15's neuroprotective and procognitive-like effects, stronger than those of the approved drug donepezil, may pave the way for the use of selenotriazines to inhibit both causes and symptoms in AD therapy.
Collapse
Affiliation(s)
- Patryk Pyka
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Wawrzyniec Haberek
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Małgorzata Więcek
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Ewa Szymanska
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Wesam Ali
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Agnieszka Cios
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Magdalena Jastrzębska-Więsek
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Grzegorz Satała
- Department
of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Sabina Podlewska
- Department
of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Silvia Di Giacomo
- Department
of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Italian
National Institute of Health (ISS), Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonella Di Sotto
- Department
of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sabrina Garbo
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Tadeusz Karcz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Chiara Lambona
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Marocco
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Sylwia Sudoł-Tałaj
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Barbara Mordyl
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Siwek
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Kinga Czarnota-Łydka
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Dawid Gogola
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Agnieszka Olejarz-Maciej
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Natalia Wilczyńska-Zawal
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Małgorzata Starek
- Department
of Inorganic and Analytical Chemistry, Jagiellonian
University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Dąbrowska
- Department
of Inorganic and Analytical Chemistry, Jagiellonian
University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Rossella Fioravanti
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Muhammad Jawad Nasim
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Marius Hittinger
- Department
of Drug Discovery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
- Department
of Drug Delivery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Anna Partyka
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Wesołowska
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Cecilia Battistelli
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Clemens Zwergel
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department
of Drug Discovery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Jadwiga Handzlik
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
34
|
Wang R, Yu L, He W, Wu Z, Jiang JH. Chemically Inducible DNAzyme Sensor for Controllable Imaging of Metal Ions. Anal Chem 2024; 96:1268-1274. [PMID: 38193766 DOI: 10.1021/acs.analchem.3c04523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
RNA-cleaving DNAzymes have emerged as a promising tool for metal ion detection. Achieving spatiotemporal control over their catalytic activity is essential for understanding the role of metal ions in various biological processes. While photochemical and endogenous stimuli-responsive approaches have shown potential for controlled metal ion imaging using DNAzymes, limitations such as photocytotoxicity, poor tissue penetration, or off-target activation have hindered their application for safe and precise detection of metal ions in vivo. We herein report a chemically inducible DNAzyme in which the catalytic core is modified to contain chemical caging groups at the selected backbone sites through systematic screening. This inducible DNAzyme exhibits minimal leakage of catalytic activity and can be reactivated by small molecule selenocysteines, which effectively remove the caging groups and restore the activity of DNAzyme. Benefiting from these findings, we designed a fluorogenic chemically inducible DNAzyme sensor for controlled imaging of metal ions with tunable activity and high selectivity in live cells and in vivo. This chemically inducible DNAzyme design expands the toolbox for controlling DNAzyme activity and can be easily adapted to detect other metal ions in vivo by changing the DNAzyme module, offering opportunities for precise biomedical diagnosis.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lanxing Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wenhan He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
35
|
Liu M, Yang Y, Huang JW, Dai L, Zheng Y, Cheng S, He H, Chen CC, Guo RT. Structural insights into a novel nonheme iron-dependent oxygenase in selenoneine biosynthesis. Int J Biol Macromol 2024; 256:128428. [PMID: 38013086 DOI: 10.1016/j.ijbiomac.2023.128428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Selenoneine (SEN) is a natural histidine derivative with radical-scavenging activity and shows higher antioxidant potential than its sulfur-containing isolog ergothioneine (EGT). Recently, the SEN biosynthetic pathway in Variovorax paradoxus was reported. Resembling EGT biosynthesis, the committed step of SEN synthesis is catalyzed by a nonheme Fe-dependent oxygenase termed SenA. This enzyme catalyzes oxidative carbon‑selenium (C-Se) bond formation to conjugate N-α-trimethyl histidine (TMH) and selenosugar to yield selenoxide; the process parallels the EGT biosynthetic route, in which sulfoxide synthases known as EgtB members catalyze the conjugation of TMH and cysteine or γ-glutamylcysteine to afford sulfoxides. Here, we report the crystal structures of SenA and its complex with TMH and thioglucose (SGlc), an analog of selenoglucose (SeGlc) at high resolution. The overall structure of SenA adopts the archetypical fold of EgtB, which comprises a DinB-like domain and an FGE-like domain. While the TMH-binding site is highly conserved to that of EgtB, a various substrate-enzyme interaction network in the selenosugar-binding site of SenA features a number of water-mediated hydrogen bonds. The obtained structural information is beneficial for understanding the mechanism of SenA-mediated C-Se bond formation.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yingyu Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shujing Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hailin He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China; Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China; Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
36
|
Ali F, Alom S, Ali SR, Kondoli B, Sadhu P, Borah C, Kakoti BB, Ghosh SK, Shakya A, Ahmed AB, Singh UP, Bhat HR. Ebselen: A Review on its Synthesis, Derivatives, Anticancer Efficacy and Utility in Combating SARS-COV-2. Mini Rev Med Chem 2024; 24:1203-1225. [PMID: 37711004 DOI: 10.2174/1389557523666230914103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 09/16/2023]
Abstract
Ebselen is a selenoorganic chiral compound with antioxidant properties comparable to glutathione peroxidase. It is also known as 2-phenyl-1,2-benzisoselenazol-3(2H)-one. In studies examining its numerous pharmacological activities, including antioxidant, anticancer, antiviral, and anti- Alzheimer's, ebselen has demonstrated promising results. This review's primary objective was to emphasize the numerous synthesis pathways of ebselen and their efficacy in fighting cancer. The data were collected from multiple sources, including Scopus, PubMed, Google Scholar, Web of Science, and Publons. The starting reagents for the synthesis of ebselen are 2-aminobenzoic acid and N-phenyl benzamide. It was discovered that ebselen has the ability to initiate apoptosis in malignant cells and prevent the formation of new cancer cells by scavenging free radicals. In addition, ebselen increases tumor cell susceptibility to apoptosis by inhibiting TNF-α mediated NF-kB activation. Ebselen can inhibit both doxorubicin and daunorubicin-induced cardiotoxicity. Allopurinol and ebselen administered orally can be used to suppress renal ototoxicity and nephrotoxicity. Due to excessive administration, diclofenac can induce malignancy of the gastrointestinal tract, which ebselen can effectively suppress. Recent research has demonstrated ebselen to inhibit viral function by binding to cysteinecontaining catalytic domains of various viral proteases. It was discovered that ebselen could inhibit the catalytic dyad function of Mpro by forming an irreversible covalent bond between Se and Cys145, thereby altering protease function and inhibiting SARS-CoV-2. Ebselen may also inhibit the activation of endosomal NADPH oxidase of vascular endothelial cells, which is believed to be required for thrombotic complications in COVID-19. In this review, we have included various studies conducted on the anticancer effect of ebselen as well as its inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
- Farak Ali
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur Medical College and Hospital, Tezpur, Sonitpur Assam, 784501,India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur Medical College and Hospital, Tezpur, Sonitpur Assam, 784501,India
| | - Sheikh Rezzak Ali
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Biswanarayan Kondoli
- Department of Pharmacy, Tripura University, Suryamani Nagar, Agartala, Tripura 799022, India
| | - Prativa Sadhu
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Chinmoyee Borah
- Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati, Kamrup, Assam, 781017, India
| | - Bibhuti Bushan Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Abdul Baquee Ahmed
- Girijananda Chowdhury Institute of Pharmaceutical Science,Tezpur Medical College and Hospital, Tezpur, Sonitpur-784501, Assam, India
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| |
Collapse
|
37
|
Welham S, Rose P, Kirk C, Coneyworth L, Avery A. Mineral Supplements in Ageing. Subcell Biochem 2024; 107:269-306. [PMID: 39693029 DOI: 10.1007/978-3-031-66768-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
With advancing age, achievement of dietary adequacy for all nutrients is increasingly difficult and this is particularly so for minerals. Various factors impede mineral acquisition and absorption including reduced appetite, depressed gastric acid production and dysregulation across a range of signalling pathways in the intestinal mucosa. Minerals are required in sufficient levels since they are critical for the proper functioning of metabolic processes in cells and tissues, including energy metabolism, DNA and protein synthesis, immune function, mobility, and skeletal integrity. When uptake is diminished or loss exceeds absorption, alternative approaches are required to enable individuals to maintain adequate mineral levels. Currently, supplementation has been used effectively in populations for the restoration of levels of some minerals like iron, zinc, and calcium, but these may not be without inherent challenges. Therefore, in this chapter we review the current understanding around the effectiveness of mineral supplementation for the minerals most clinically relevant for the elderly.
Collapse
Affiliation(s)
- Simon Welham
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK.
| | - Peter Rose
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Charlotte Kirk
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Lisa Coneyworth
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Amanda Avery
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| |
Collapse
|
38
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
39
|
Yuan X, Zhou Y, Sun J, Wang S, Hu X, Li J, Huang J, Chen N. Preventing acute liver injury via hepatocyte-targeting nano-antioxidants. Cell Prolif 2023; 56:e13494. [PMID: 37139662 PMCID: PMC10693184 DOI: 10.1111/cpr.13494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023] Open
Abstract
Acute liver injury (ALI) is a severe liver disease that is characterized by sudden and massive hepatocyte necrosis and deterioration of liver functions. Oxidative stress is increasingly recognized as a key factor in the induction and progression of ALI. Scavenging excessive reactive oxygen species (ROS) with antioxidants has become a promising therapeutic option, but intrinsically hepatocyte-targeting antioxidants with excellent bioavailability and biocompatibility are yet to be developed. Herein, self-assembling nanoparticles (NPs) composed of amphiphilic polymers are introduced to encapsulate organic Selenium compound L-Se-methylselenocysteine (SeMC) and form SeMC NPs, which protect the viabilities and functions of cultured hepatocytes in drug- or chemical-induced acute hepatotoxicity models via efficient ROS removal. After further functionalization with the hepatocyte-targeting ligand glycyrrhetinic acid (GA), the resultant GA-SeMC NPs exhibit enhanced hepatocyte uptake and liver accumulation. In mouse models of ALI induced by acetaminophen (APAP) or carbon tetrachloride (CCl4 ), treatment with GA-SeMC NPs significantly decrease the levels of hepatic lipid peroxidation, tissue vacuolization and serum liver transaminases, while prominently increase that of endogenous antioxidant enzymes. Our study therefore presents a liver-targeting drug delivery strategy for the prevention and treatment of hepatic diseases.
Collapse
Affiliation(s)
- Xuejiao Yuan
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic CatalysisShanghai Normal UniversityShanghaiChina
| | - Yanfeng Zhou
- School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinli Sun
- School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shanshan Wang
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic CatalysisShanghai Normal UniversityShanghaiChina
| | - Xingjie Hu
- School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiyu Li
- School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- He'nan Xibaikang Health Industry Co., LtdJiyuanChina
| | - Jing Huang
- Department of NeurologyXuhui District Central HospitalShanghaiChina
| | - Nan Chen
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic CatalysisShanghai Normal UniversityShanghaiChina
| |
Collapse
|
40
|
Zhang M, Luo Z, Tang X, Yu L, Pei J, Wang J, Lu C, Huang B. Electrochemical selenocyclization of 2-ethynylanilines with diselenides: facile and efficient access to 3-selenylindoles. Org Biomol Chem 2023; 21:8918-8923. [PMID: 37906112 DOI: 10.1039/d3ob01502e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An efficient electrochemical selenocyclization strategy for the synthesis of 3-selenylindoles from 2-ethynylanilines and diselenides has been developed in simple tube- or beaker-type undivided cells under ambient conditions. Notably, these sustainable transformations are completed within a short time with low equivalents of charges, diselenides and electrolytes, exhibiting a broad substrate scope with excellent functional group compatibility. Moreover, a gram-scale electrosynthesis and late-stage functionalization of complex molecules further demonstrate the practical synthetic potential of this facile electrochemical system.
Collapse
Affiliation(s)
- Mingyu Zhang
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China.
| | - Zhenyu Luo
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China.
| | - Xinye Tang
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China.
| | - Linmin Yu
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China.
| | - Jinglin Pei
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China.
| | - Junlei Wang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550000, China.
| | - Caicai Lu
- Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai 519087, China
| | - Binbin Huang
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China.
- College of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
41
|
Pacuła-Miszewska AJ, Obieziurska-Fabisiak M, Jastrzębska A, Długosz-Pokorska A, Gach-Janczak K, Ścianowski J. The Influence of Long Carbon Chains on the Antioxidant and Anticancer Properties of N-Substituted Benzisoselenazolones and Corresponding Diselenides. Pharmaceuticals (Basel) 2023; 16:1560. [PMID: 38004426 PMCID: PMC10675721 DOI: 10.3390/ph16111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Organoselenium compounds are well-known for their numerous biocapacities, which result from the uniqueness of the selenium atom and the possibility of constructing heterorganic molecules that can mimic the activity of selenoenzymes, crucial for a multitude of important physiological processes. In this paper, we have synthesized a series of N-substituted benzisoselenazolones and corresponding diphenyl diselenides possessing lipophilic long carbon chains, solely or with additional polar insets: phenyl linkers and ester groups. Evaluation of their antioxidant and cytotoxic activity revealed an increased H2O2-reduction potential of diphenyl diselenides bearing N-octyl, ethyl N-(12-dodecanoate)- and N-(8-octanoate) groups, elevated radical scavenging activity of 2,2'-diselenobis(N-dodecylbenzamide) and a promising cytotoxic potential of N-(4-dodecyl)phenylbenzisoselenazol-3(2H)-one.
Collapse
Affiliation(s)
- Agata J. Pacuła-Miszewska
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (M.O.-F.); (J.Ś.)
| | - Magdalena Obieziurska-Fabisiak
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (M.O.-F.); (J.Ś.)
| | - Aneta Jastrzębska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland;
| | - Angelika Długosz-Pokorska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (A.D.-P.); (K.G.-J.)
| | - Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (A.D.-P.); (K.G.-J.)
| | - Jacek Ścianowski
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (M.O.-F.); (J.Ś.)
| |
Collapse
|
42
|
Dobrzyńska M, Kaczmarek K, Przysławski J, Drzymała-Czyż S. Selenium in Infants and Preschool Children Nutrition: A Literature Review. Nutrients 2023; 15:4668. [PMID: 37960322 PMCID: PMC10648445 DOI: 10.3390/nu15214668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Selenium (Se), an essential trace element, is fundamental to human health, playing an important role in the formation of thyroid hormones, DNA synthesis, the immune response, and fertility. There is a lack of comprehensive epidemiological research, particularly the serum Se concetration in healthy infants and preschool children compared to the estimated dietary Se intake. However, Se deficiencies and exceeding the UL have been observed in infants and preschool children. Despite the observed irregularities in Se intake, there is a lack of nutritional recommendations for infants and preschool children. Therefore, the main objective of this literature review was to summarize what is known to date about Se levels and the risk of deficiency related to regular consumption in infants and preschool children.
Collapse
Affiliation(s)
| | | | | | - Sławomira Drzymała-Czyż
- Department of Bromatology, Poznan University of Medical Science, Rokietnicka 3 Street, 60-806 Poznan, Poland; (M.D.); (K.K.); (J.P.)
| |
Collapse
|
43
|
Müller VVL, Simpson PV, Peng K, Basu U, Moreth D, Nagel C, Türck S, Oehninger L, Ott I, Schatzschneider U. Taming the Biological Activity of Pd(II) and Pt(II) Complexes with Triazolato "Protective" Groups: 1H, 77Se Nuclear Magnetic Resonance and X-ray Crystallographic Model Studies with Selenocysteine to Elucidate Differential Thioredoxin Reductase Inhibition. Inorg Chem 2023; 62:16203-16214. [PMID: 37713601 DOI: 10.1021/acs.inorgchem.3c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The biological activity of Pd(II) and Pt(II) complexes toward three different cancer cell lines as well as inhibition of selenoenzyme thioredoxin reductase (TrxR) was modulated in an unexpected way by the introduction of triazolate as a "protective group" to the inner metal coordination sphere using the iClick reaction of [M(N3)(terpy)]PF6 [M = Pd(II) or Pt(II) and terpy = 2,2':6',2″-terpyridine] with an electron-poor alkyne. In a cell proliferation assay using A549, HT-29, and MDA-MB-231 human cancer cell lines, the palladium compound was significantly more potent than the isostructural platinum analogue and exhibited submicromolar activity on the most responsive cell line. This difference was also reflected in the inhibitory efficiency toward TrxR with IC50 values of 0.1 versus 5.4 μM for the Pd(II) and Pt(II) complexes, respectively. UV/Vis kinetic studies revealed that the Pt compound binds to selenocysteine faster than to cysteine [k = (22.9 ± 0.2)·10-3 vs (7.1 ± 0.2)·10-3 s-1]. Selective triazolato ligand exchange of the title compounds with cysteine (Hcys) and selenocysteine (Hsec)─but not histidine (His) and 9-ethylguanine (9EtG)─was confirmed by 1H, 77Se, and 195Pt NMR spectroscopy. Crystal structures of three of the four ligand exchange products were obtained, including [Pt(sec)(terpy)]PF6 as the first metal complex of selenocysteine to be structurally characterized.
Collapse
Affiliation(s)
- Victoria V L Müller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Peter V Simpson
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Uttara Basu
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Christoph Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sebastian Türck
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Luciano Oehninger
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Ingo Ott
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
44
|
Jiang C, Zhou W, Yang L, Yan J, Tu S, Yuan Y, Wang D, Cheng H. Geochemical relationship and profile distribution of Selenium and Cadmium in typical Selenium-enriched areas in Enshi. CHEMOSPHERE 2023; 338:139423. [PMID: 37419147 DOI: 10.1016/j.chemosphere.2023.139423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Selenium (Se) is an essential nutrient element for humans, and Se-enriched products are gaining popularity due to their health benefits. However, Enshi, a region in China naturally rich in Se, a high background value of cadmium (Cd) is discovered, which severely impacts local Se-enriched agriculture. Therefore, it is crucial to explore the geochemical relationship between Se and Cd. In this study, we analyzed soil profiles and parent rocks of different geological ages from Enshi to investigate the accumulation and distribution of Se and Cd. The ratio of redox sensitive elements and the multivariate statistical analysis, along with XRD and XPS analysis, were utilized to investigate the correlated relationship between Se and Cd and the underlying geochemical mechanisms. The results showed that average Se and Cd contents in rocks were 1.67 and 0.32 mg/kg. Se and Cd levels reached highest at Permian in rocks of different geological ages, which may be related to the Permian Dongwu movement near the study area. The highest migration rate of Cd and Se from rock to soil was 12 and 1.5 times. The soil Se and Cd fractions were mostly in bound states, with the largest fraction of Se being organic-bound at an average of 45.9%. The reducible and the residue state accounted for the largest proportion in the Cd fractions, with an average of 40.6% and 25.6%. Redox-sensitive element ratios indicate a reducing forming environment of deep sediments in the Permian strata. Furthermore, the correlation and PCA analysis revealed highly significant positive correlations between Se, Cd, V and Cr, suggesting that the sources of Se and Cd were closely related to volcanic and biological activities. In conclusion, a strong geochemical relationship was observed between Se and Cd. And as a result, metal pollution must be closely monitored during the production of Se-enriched agriculture in Se-enriched regions.
Collapse
Affiliation(s)
- Chengfeng Jiang
- Hubei Provincial Center for Soil Pollution Remediation Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wei Zhou
- Hubei Institute of Geosciences (Hubei Selenium-rich Industry Research Institute), Wuhan, 430070, PR China
| | - Liangzhe Yang
- Hubei Institute of Geosciences (Hubei Selenium-rich Industry Research Institute), Wuhan, 430070, PR China
| | - Jiali Yan
- Hubei Institute of Geosciences (Hubei Selenium-rich Industry Research Institute), Wuhan, 430070, PR China
| | - Shuxin Tu
- Hubei Provincial Center for Soil Pollution Remediation Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Yuan Yuan
- Hubei Provincial Center for Soil Pollution Remediation Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dan Wang
- Hubei Institute of Geosciences (Hubei Selenium-rich Industry Research Institute), Wuhan, 430070, PR China
| | - Hao Cheng
- Hubei Institute of Geosciences (Hubei Selenium-rich Industry Research Institute), Wuhan, 430070, PR China
| |
Collapse
|
45
|
Chen Z, Lu Y, Dun X, Wang X, Wang H. Research Progress of Selenium-Enriched Foods. Nutrients 2023; 15:4189. [PMID: 37836473 PMCID: PMC10574215 DOI: 10.3390/nu15194189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Selenium is an essential micronutrient that plays a crucial role in maintaining human health. Selenium deficiency is seriously associated with various diseases such as Keshan disease, Kashin-Beck disease, cataracts, and others. Conversely, selenium supplementation has been found to have multiple effects, including antioxidant, anti-inflammatory, and anticancer functions. Compared with inorganic selenium, organic selenium exhibits higher bioactivities and a wider range of safe concentrations. Consequently, there has been a significant development of selenium-enriched foods which contain large amounts of organic selenium in order to improve human health. This review summarizes the physiological role and metabolism of selenium, the development of selenium-enriched foods, the physiological functions of selenium-enriched foods, and provides an analysis of total selenium and its species in selenium-enriched foods, with a view to laying the foundation for selenium-enriched food development.
Collapse
Affiliation(s)
- Zhenna Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | | | | | | | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
46
|
Fei N, Wang Y, Gu Y, Wang Z, Zhu Y, Li Y. Silver-Mediated [2 + 2 + 1] Cyclization of ortho-Propioloylbenzonitriles with Elemental Selenium: Synthesis of 4 H-indeno[1,2- c][1,2]selenazol-4-ones. J Org Chem 2023; 88:13042-13048. [PMID: 37647572 DOI: 10.1021/acs.joc.3c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
An efficient silver-mediated [2 + 2 + 1] cyclization protocol of ortho-propioloylbenzonitriles with elemental selenium for the synthesis of 4H-indeno[1,2-c][1,2]selenazol-4-ones has been developed. One C-Se bond, one N-Se bond, and one C-C bond were rapidly constructed in one step. The reaction might proceed via the formation of a highly reactive selenoketene intermediate, followed by intramolecular cyclization.
Collapse
Affiliation(s)
- Nana Fei
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ye Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yingge Gu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zongkang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yilin Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
47
|
da Costa GP, Blödorn GB, Barcellos AM, Alves D. Recent Advances in the Use of Diorganyl Diselenides as Versatile Catalysts. Molecules 2023; 28:6614. [PMID: 37764391 PMCID: PMC10534850 DOI: 10.3390/molecules28186614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The importance of organoselenium compounds has been increasing in synthetic chemistry. These reagents are well-known as electrophiles and nucleophiles in many organic transformations, and in recent years, their functionality as catalysts has also been largely explored. The interest in organoselenium-based catalysts is due to their high efficacy, mild reaction conditions, strong functional compatibility, and great selectivity. Allied to organoselenium catalysts, the use of inorganic and organic oxidants that act by regenerating the catalytic species for the reaction pathway is common. Here, we provide a comprehensive review of the last five years of organic transformations promoted by diorganyl diselenide as a selenium-based catalyst. This report is divided into four sections: (1) cyclisation reactions, (2) addition reactions and oxidative functionalisation, (3) oxidation and reduction reactions, and (4) reactions involving phosphorus-containing starting materials.
Collapse
Affiliation(s)
- Gabriel Pereira da Costa
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas 96010-900, Brazil;
| | - Gustavo Bierhals Blödorn
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas 96010-900, Brazil;
| | - Angelita Manke Barcellos
- Escola de Química e Alimentos, Universidade Federal do Rio Grande (FURG), Rio Grande 96203-900, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas 96010-900, Brazil;
| |
Collapse
|
48
|
Cui J, Zhao S, Chen H, Fu Y, Han K, Yin S, Zhao C, Fan L, Hu H. Methylseleninic acid overcomes gefitinib resistance through asparagine-MET-TOPK signaling axis in non-small cell lung cancer cells. Biochem Pharmacol 2023; 215:115690. [PMID: 37481142 DOI: 10.1016/j.bcp.2023.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Acquired resistance compromises the efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-based therapy for non-small cell lung cancer (NSCLC), and activation of hepatocyte growth factor receptor (MET) is one of the pivotal strategies for cancer cells to acquire refractory phenotype. However, the mechanisms involved in regulating MET activity remain to be further elucidated. Using gefitinib-resistant HCC827GR cell line as a model, we unraveled that the dysregulated amino acid metabolisms reflected by elevated expression of cysteine-preferring transporter 2 (ASCT2), cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11) and asparagine synthetase (ASNS) might contribute to survival advantage of HCC827GR cells, and rendered the cells more sensitive to asparagine (ASN) deprivation compared to parental HCC827 cells. We further identified that the increased ASNS expression is a contributing factor for the activation of MET in HCC827GR cells. More importantly, we found that methylseleninic acid (MSeA), a precursor of methylselenol, effectively suppressed tumor growth in HCC827GR xenograft model, which is associated with decrease of intracellular ASN content along with inactivation of MET- T-lymphokine-activated killer cell-originated protein kinase (TOPK) signaling axis. Finally, we demonstrated that combination of MSeA and gefitinib induced a synergistic growth inhibition in HCC827GR cells. The findings of our work reveal that ASN-MET-TOPK signaling axis as a novel mechanism contributed to gefitinib-resistance and combined utilization of gefitinib and MSeA holds potential to improve the efficacy for gefitinib-resistant NSCLC.
Collapse
Affiliation(s)
- Jinling Cui
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shuang Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hui Chen
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuhan Fu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Kai Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, No.2 Yunamingyuan West Road, Haidian District, Beijing 100193, China.
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
49
|
Liu P, Li D, Wang F, Xie L, Chen H. Transfer of Se from sediments to the western mosquitofish Gambusia affinis: Tissue distribution, accumulation, and effects on the antioxidant physiology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106663. [PMID: 37598521 DOI: 10.1016/j.aquatox.2023.106663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Selenium (Se) has been shown to cause various toxicities in predatory species (i.e., fish and birds) in Se-contaminated aquatic environments. However, trophic transfer of Se from abiotic environments to freshwater fish has been relatively less addressed. In this study, 2-month-old mosquitofish (Gambusia affinis) were fed Se-enriched oligochaete (Lumbriculus variegatus, exposed to different concentrations of Se(IV) at 0.0, 3.0, 10.0, and 30.0 µg/g dry weight for 7 days) for 45 days. Tissue distribution, Se speciation, and effects on the antioxidant physiology in G. affinis were assessed. The results showed Se was rapidly accumulated in the oligochaete, with 6.30 ± 1.20, 16.20 ± 2.10, and 34.50 ± 2.40 µg/g dw of total Se levels in the worms exposed to 3.0, 10.0, and 30.0 µg/g of Se(IV), respectively. Total Se levels were increased in a dose-dependent manner in fish tissues and Se(IV) from sediments was maternally transferred to the fish embryos. Se-Met-and Se-Cys-were the predominant Se species in the worm and fish tissues, accounting for a minimum of 91.01% of the total Se. Furthermore, increased lipid peroxidation and altered the activities of antioxidant enzymes and levels of GSH were noticed in G. affinis fed the Se-enriched L. variegatus. This study has demonstrated that Se(IV) is transferred from an abiotic vector to freshwater organisms, disturbing the antioxidant physiology in G. affinis and potentially their offspring. This study highlights the importance of dietary exposure on the accumulation and toxicity of Se in aquatic organisms.
Collapse
Affiliation(s)
- Ping Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Feifan Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
50
|
Chen JR, Tsai WH, Su CK. TiO 2 nanoparticle-Coated 3D-Printed porous monoliths enabling highly sensitive speciation of inorganic Cr, As, and Se. Anal Chim Acta 2023; 1271:341489. [PMID: 37328240 DOI: 10.1016/j.aca.2023.341489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
Post-printing functionalization can enhance the functionality and applicability of analytical devices manufactured using three-dimensional printing (3DP) technologies. In this study we developed a post-printing foaming-assisted coating scheme-through respective treatments with a formic acid (30%, v/v) solution and a sodium bicarbonate (0.5%, w/v) solution incorporating titanium dioxide nanoparticles (TiO2 NPs; 1.0%, w/v)-for in situ fabrication of TiO2 NP-coated porous polyamide monoliths in 3D-printed solid phase extraction columns, thereby enhancing the extraction efficiencies of Cr(III), Cr(VI), As(III), As(V), Se(IV), and Se(VI) for speciation of inorganic Cr, As, and Se species in high-salt-content samples when using inductively coupled plasma mass spectrometry. After optimizing the experimental conditions, the 3D-printed solid phase extraction columns with the TiO2 NP-coated porous monoliths extracted these species with 5.0- to 21.9-fold enhancements, relative to those obtained with the uncoated monolith, with absolute extraction efficiencies ranging from 84.5 to 98.3% and method detection limits ranging from 0.7 to 32.3 ng L-1. We validated the reliability of this multi-elemental speciation method through determination of these species in four reference materials [CASS-4 (nearshore seawater), SLRS-5 (river water), 1643f (fresh water), and Seronorm Trace Elements Urine L-2 (human urine); relative errors between certified and measured concentrations: 5.6 to +4.0%] and spike analyses of seawater, river water, agriculture waste, and human urine samples (spike recoveries: 96-104%; relative standard deviations of these measured concentrations all below 4.3%). Our results demonstrate that post-printing functionalization has great potential for future applicability in 3DP-enabling analytical methods.
Collapse
Affiliation(s)
- Jyun-Ran Chen
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC
| | - Wen-Hsiu Tsai
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC
| | - Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC.
| |
Collapse
|