1
|
Liu Y, Li S, Zhu J, Fan L, Wang L. Rapid preparation of injectable dual-network hydrogels for biomedical applications using UV-triggered sulfhydryl click reactions. Colloids Surf B Biointerfaces 2024; 244:114180. [PMID: 39217728 DOI: 10.1016/j.colsurfb.2024.114180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The use of hydrogels to mimic natural cartilage implantation can effectively solve the current problems of insufficient cartilage donors and low rate of injury healing. In particular, injectable hydrogels are less invasive in clinical applications and better able to fill uneven injury surfaces. Here, we prepared NorCS and CS-SH by modifying chitosan with 5-norbornene-2-carboxylic acid and N-Acetyl-L-cysteine, respectively. Dual-network hydrogels were prepared by using UV-triggered thiol-ene click reaction between NorCS and CS-SH and the metal coordination between SA and Ca2+. The prepared hydrogels can be cross-linked quickly and exhibit excellent degradability, self-healing and injectable properties. At the same time, the hydrogel also showed good cytocompatibility and could significantly restore the motor function of mice. This study provides an effective strategy for preparing injectable hydrogels capable of rapid cross-linking.
Collapse
Affiliation(s)
- Yanhao Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shubin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jiang Zhu
- Department of Orthopedics, The First Affifiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, PR China
| | - Lili Fan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
2
|
Degirmenci A, Sanyal R, Sanyal A. Metal-Free Click-Chemistry: A Powerful Tool for Fabricating Hydrogels for Biomedical Applications. Bioconjug Chem 2024; 35:433-452. [PMID: 38516745 PMCID: PMC11036366 DOI: 10.1021/acs.bioconjchem.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Increasing interest in the utilization of hydrogels in various areas of biomedical sciences ranging from biosensing and drug delivery to tissue engineering has necessitated the synthesis of these materials using efficient and benign chemical transformations. In this regard, the advent of "click" chemistry revolutionized the design of hydrogels and a range of efficient reactions was utilized to obtain hydrogels with increased control over their physicochemical properties. The ability to apply the "click" chemistry paradigm to both synthetic and natural polymers as hydrogel precursors further expanded the utility of this chemistry in network formation. In particular, the ability to integrate clickable handles at predetermined locations in polymeric components enables the formation of well-defined networks. Although, in the early years of "click" chemistry, the copper-catalyzed azide-alkyne cycloaddition was widely employed, recent years have focused on the use of metal-free "click" transformations, since residual metal impurities may interfere with or compromise the biological function of such materials. Furthermore, many of the non-metal-catalyzed "click" transformations enable the fabrication of injectable hydrogels, as well as the fabrication of microstructured gels using spatial and temporal control. This review article summarizes the recent advances in the fabrication of hydrogels using various metal-free "click" reactions and highlights the applications of thus obtained materials. One could envision that the use of these versatile metal-free "click" reactions would continue to revolutionize the design of functional hydrogels geared to address unmet needs in biomedical sciences.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| |
Collapse
|
3
|
Fonseca RG, Kuster A, Fernandes PP, Tavakoli M, Pereira P, Fernandes JR, De Bon F, Serra AC, Fonseca AC, Coelho JFJ. Facile Synthesis of Highly Stretchable, Tough, and Photodegradable Hydrogels. Adv Healthc Mater 2023; 12:e2300918. [PMID: 37133868 DOI: 10.1002/adhm.202300918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Indexed: 05/04/2023]
Abstract
Recently, highly stretchable and tough hydrogels that are photodegradable on-demand have been reported. Unfortunately, the preparation procedure is complex due to the hydrophobic nature of the photocrosslinkers. Herein, a simple method is reported to prepare photodegradable double-network (DN) hydrogels that exhibit high stretchability, toughness, and biocompatibility. Hydrophilic ortho-nitrobenzyl (ONB) crosslinkers incorporating different poly(ethylene glycol) (PEG) backbones (600, 1000, and 2000 g mol-1 ) are synthesized. These photodegradable DN hydrogels are prepared by the irreversible crosslinking of chains by using such ONB crosslinkers, and the reversible ionic crosslinking between sodium alginate and divalent cations (Ca2+ ). Remarkable mechanical properties are obtained by combining ionic and covalent crosslinking and their synergistic effect, and by reducing the length of the PEG backbone. The rapid on-demand degradation of these hydrogels is also demonstrated by using cytocompatible light wavelength (λ = 365 nm) that degrades the photosensitive ONB units. The authors have successfully used these hydrogels as skin-worn sensors for monitoring human respiration and physical activities. A combination of excellent mechanical properties, facile fabrication, and on-demand degradation holds promise for their application as the next generation of substrates or active sensors eco-friendly for bioelectronics, biosensors, wearable computing, and stretchable electronics.
Collapse
Affiliation(s)
- Rita G Fonseca
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Aline Kuster
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Pedro P Fernandes
- Soft and Printed Microelectronics Lab, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-194, Portugal
| | - Mahmoud Tavakoli
- Soft and Printed Microelectronics Lab, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-194, Portugal
| | - Patrícia Pereira
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, Coimbra, 3030-790, Portugal
- IPN - Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - José R Fernandes
- Chemical Centre - Vila Real (CQVR), Physics Department, School of Science and Technology, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
| | - Francesco De Bon
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Arménio C Serra
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Ana C Fonseca
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Jorge F J Coelho
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, Coimbra, 3030-790, Portugal
| |
Collapse
|
4
|
Gokaltun AA, Fan L, Mazzaferro L, Byrne D, Yarmush ML, Dai T, Asatekin A, Usta OB. Supramolecular hybrid hydrogels as rapidly on-demand dissoluble, self-healing, and biocompatible burn dressings. Bioact Mater 2023; 25:415-429. [PMID: 37056249 PMCID: PMC10087110 DOI: 10.1016/j.bioactmat.2022.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022] Open
Abstract
Despite decades of efforts, state-of-the-art synthetic burn dressings to treat partial-thickness burns are still far from ideal. Current dressings adhere to the wound and necessitate debridement. This work describes the first "supramolecular hybrid hydrogel (SHH)" burn dressing that is biocompatible, self-healable, and on-demand dissoluble for easy and trauma-free removal, prepared by a simple, fast, and scalable method. These SHHs leverage the interactions of a custom-designed cationic copolymer via host-guest chemistry with cucurbit[7]uril and electrostatic interactions with clay nanosheets coated with an anionic polymer to achieve enhanced mechanical properties and fast on-demand dissolution. The SHHs show high mechanical strength (>50 kPa), self-heal rapidly in ∼1 min, and dissolve quickly (4-6 min) using an amantadine hydrochloride (AH) solution that breaks the supramolecular interactions in the SHHs. Neither the SHHs nor the AH solution has any adverse effects on human dermal fibroblasts or epidermal keratinocytes in vitro. The SHHs also do not elicit any significant cytokine response in vitro. Furthermore, in vivo murine experiments show no immune or inflammatory cell infiltration in the subcutaneous tissue and no change in circulatory cytokines compared to sham controls. Thus, these SHHs present excellent burn dressing candidates to reduce the time of pain and time associated with dressing changes.
Collapse
Affiliation(s)
- A. Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02474, USA
- Department of Chemical Engineering, Hacettepe University, 06532, Beytepe, Ankara, Turkey
| | - Letao Fan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
| | - Luca Mazzaferro
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02474, USA
| | - Delaney Byrne
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02474, USA
| | - O. Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
| |
Collapse
|
5
|
Bomb K, LeValley PJ, Woodward I, Cassel SE, Sutherland BP, Bhattacharjee A, Yun Z, Steen J, Kurdzo E, McCoskey J, Burris D, Levine K, Carbrello C, Lenhoff AM, Fromen CA, Kloxin AM. Cell therapy biomanufacturing: integrating biomaterial and flow-based membrane technologies for production of engineered T-cells. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201155. [PMID: 37600966 PMCID: PMC10437131 DOI: 10.1002/admt.202201155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 08/22/2023]
Abstract
Adoptive T-cell therapies (ATCTs) are increasingly important for the treatment of cancer, where patient immune cells are engineered to target and eradicate diseased cells. The biomanufacturing of ATCTs involves a series of time-intensive, lab-scale steps, including isolation, activation, genetic modification, and expansion of a patient's T-cells prior to achieving a final product. Innovative modular technologies are needed to produce cell therapies at improved scale and enhanced efficacy. In this work, well-defined, bioinspired soft materials were integrated within flow-based membrane devices for improving the activation and transduction of T cells. Hydrogel coated membranes (HCM) functionalized with cell-activating antibodies were produced as a tunable biomaterial for the activation of primary human T-cells. T-cell activation utilizing HCMs led to highly proliferative T-cells that expressed a memory phenotype. Further, transduction efficiency was improved by several fold over static conditions by using a tangential flow filtration (TFF) flow-cell, commonly used in the production of protein therapeutics, to transduce T-cells under flow. The combination of HCMs and TFF technology led to increased cell activation, proliferation, and transduction compared to current industrial biomanufacturing processes. The combined power of biomaterials with scalable flow-through transduction techniques provides future opportunities for improving the biomanufacturing of ATCTs.
Collapse
Affiliation(s)
- Kartik Bomb
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Paige J. LeValley
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Ian Woodward
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Samantha E. Cassel
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | | | | | - Zaining Yun
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Jonathan Steen
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - Emily Kurdzo
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - Jacob McCoskey
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - David Burris
- Mechanical Engineering, University of Delaware, Newark, DE
| | - Kara Levine
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | | | - Abraham M. Lenhoff
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | | | - April M. Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
- Material Science and Engineering, University of Delaware, Newark, DE
| |
Collapse
|
6
|
Alabi A, Aubry C, Zou L. Graphene Oxide-alginate Hydrogel for Drawing Water through an Osmotic Membrane. ACS OMEGA 2022; 7:38337-38346. [PMID: 36340139 PMCID: PMC9631913 DOI: 10.1021/acsomega.2c03138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
We report the preparation and evaluation of graphene oxide (GO)-enhanced alginate hydrogels for drawing water across an osmotic desalination membrane. GO-incorporated calcium alginate hydrogels (GO-HG) and pure calcium alginate hydrogels (P-HG) were synthesized for this study. Environmental scanning electron microscopy, water contact angle, and water uptake tests showed both samples to be strongly hydrophilic. The synthesized hydrogels demonstrated the ability to successfully and continuously draw water through a selective osmotic membrane in experiments. This was driven by the surface energy gradient-induced negative pressure between the more hydrophilic hydrogel and less hydrophilic membrane surface. The GO-HG was found to draw 21.2% more water than the P-HG, owing to the flexible GO nanosheets, which can be easily incorporated into the hydrogel framework. The GO nanosheets not only offer more hydrophilic functional sites but also enhance the connectivity within the alginate hydrogel framework so as to enhance the water production performance. The average amount of water drawn through the membrane by the GO-HG and the P-HG is 23.4 ± 0.9 g and 19.3 ± 1.8 g, respectively. It was found that no external stimuli were needed as water flows through the hydrogel due to gravitational force. The GO-enhanced alginate hydrogel, combined with the osmotic membrane, is a promising surface energy gradient-driven functional material for water purification and desalination without applying external pressure.
Collapse
Affiliation(s)
- Adetunji Alabi
- Department
of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, 127788Abu Dhabi, United Arab Emirates
| | - Cyril Aubry
- Department
of Research Laboratories Operations, Khalifa
University of Science and Technology, 127788Abu Dhabi, United Arab
Emirates
| | - Linda Zou
- Department
of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, 127788Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Berne D, Ladmiral V, Leclerc E, Caillol S. Thia-Michael Reaction: The Route to Promising Covalent Adaptable Networks. Polymers (Basel) 2022; 14:4457. [PMID: 36298037 PMCID: PMC9609322 DOI: 10.3390/polym14204457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
While the Michael addition has been employed for more than 130 years for the synthesis of a vast diversity of compounds, the reversibility of this reaction when heteronucleophiles are involved has been generally less considered. First applied to medicinal chemistry, the reversible character of the hetero-Michael reactions has recently been explored for the synthesis of Covalent Adaptable Networks (CANs), in particular the thia-Michael reaction and more recently the aza-Michael reaction. In these cross-linked networks, exchange reactions take place between two Michael adducts by successive dissociation and association steps. In order to understand and precisely control the exchange in these CANs, it is necessary to get an insight into the critical parameters influencing the Michael addition and the dissociation rates of Michael adducts by reconsidering previous studies on these matters. This review presents the progress in the understanding of the thia-Michael reaction over the years as well as the latest developments and plausible future directions to prepare CANs based on this reaction. The potential of aza-Michael reaction for CANs application is highlighted in a specific section with comparison with thia-Michael-based CANs.
Collapse
Affiliation(s)
| | | | - Eric Leclerc
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Sylvain Caillol
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| |
Collapse
|
8
|
Abed HF, Abuwatfa WH, Husseini GA. Redox-Responsive Drug Delivery Systems: A Chemical Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3183. [PMID: 36144971 PMCID: PMC9503659 DOI: 10.3390/nano12183183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
With the widespread global impact of cancer on humans and the extensive side effects associated with current cancer treatments, a novel, effective, and safe treatment is needed. Redox-responsive drug delivery systems (DDSs) have emerged as a potential cancer treatment with minimal side effects and enhanced site-specific targeted delivery. This paper explores the physiological and biochemical nature of tumors that allow for redox-responsive drug delivery systems and reviews recent advances in the chemical composition and design of such systems. The five main redox-responsive chemical entities that are the focus of this paper are disulfide bonds, diselenide bonds, succinimide-thioether linkages, tetrasulfide bonds, and platin conjugates. Moreover, as disulfide bonds are the most commonly used entities, the review explored disulfide-containing liposomes, polymeric micelles, and nanogels. While various systems have been devised, further research is needed to advance redox-responsive drug delivery systems for cancer treatment clinical applications.
Collapse
Affiliation(s)
- Heba F. Abed
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
9
|
Applications and Mechanisms of Stimuli-Responsive Hydrogels in Traumatic Brain Injury. Gels 2022; 8:gels8080482. [PMID: 36005083 PMCID: PMC9407546 DOI: 10.3390/gels8080482] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a global neurotrauma with high morbidity and mortality that seriously threatens the life quality of patients and causes heavy burdens to families, healthcare institutions, and society. Neuroinflammation and oxidative stress can further aggravate neuronal cell death, hinder functional recovery, and lead to secondary brain injury. In addition, the blood–brain barrier prevents drugs from entering the brain tissue, which is not conducive to the recovery of TBI. Due to their high water content, biodegradability, and similarity to the natural extracellular matrix (ECM), hydrogels are widely used for the delivery and release of various therapeutic agents (drugs, natural extracts, and cells, etc.) that exhibit beneficial therapeutic efficacy in tissue repair, such as TBI. Stimuli-responsive hydrogels can undergo reversible or irreversible changes in properties, structures, and functions in response to internal/external stimuli or physiological/pathological environmental stimuli, and further improve the therapeutic effects on diseases. In this paper, we reviewed the common types of stimuli-responsive hydrogels and their applications in TBI, and further analyzed the therapeutic effects of hydrogels in TBI, such as pro-neurogenesis, anti-inflammatory, anti-apoptosis, anti-oxidation, and pro-angiogenesis. Our study may provide strategies for the treatment of TBI by using stimuli-responsive hydrogels.
Collapse
|
10
|
Cornelison C, Fadel S. Clickable Biomaterials for Modulating Neuroinflammation. Int J Mol Sci 2022; 23:8496. [PMID: 35955631 PMCID: PMC9369181 DOI: 10.3390/ijms23158496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Crosstalk between the nervous and immune systems in the context of trauma or disease can lead to a state of neuroinflammation or excessive recruitment and activation of peripheral and central immune cells. Neuroinflammation is an underlying and contributing factor to myriad neuropathologies including neurodegenerative diseases like Alzheimer's disease and Parkinson's disease; autoimmune diseases like multiple sclerosis; peripheral and central nervous system infections; and ischemic and traumatic neural injuries. Therapeutic modulation of immune cell function is an emerging strategy to quell neuroinflammation and promote tissue homeostasis and/or repair. One such branch of 'immunomodulation' leverages the versatility of biomaterials to regulate immune cell phenotypes through direct cell-material interactions or targeted release of therapeutic payloads. In this regard, a growing trend in biomaterial science is the functionalization of materials using chemistries that do not interfere with biological processes, so-called 'click' or bioorthogonal reactions. Bioorthogonal chemistries such as Michael-type additions, thiol-ene reactions, and Diels-Alder reactions are highly specific and can be used in the presence of live cells for material crosslinking, decoration, protein or cell targeting, and spatiotemporal modification. Hence, click-based biomaterials can be highly bioactive and instruct a variety of cellular functions, even within the context of neuroinflammation. This manuscript will review recent advances in the application of click-based biomaterials for treating neuroinflammation and promoting neural tissue repair.
Collapse
Affiliation(s)
- Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | | |
Collapse
|
11
|
Altinbasak I, Kocak S, Sanyal R, Sanyal A. Fast-Forming Dissolvable Redox-Responsive Hydrogels: Exploiting the Orthogonality of Thiol-Maleimide and Thiol-Disulfide Exchange Chemistry. Biomacromolecules 2022; 23:3525-3534. [PMID: 35696518 PMCID: PMC9472223 DOI: 10.1021/acs.biomac.2c00209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Fast-forming yet
easily dissolvable hydrogels (HGs) have potential
applications in wound healing, burn incidences, and delivery of therapeutic
agents. Herein, a combination of a thiol–maleimide conjugation
and thiol–disulfide exchange reaction is employed to fabricate
fast-forming HGs which rapidly dissolve upon exposure to dithiothreitol
(DTT), a nontoxic thiol-containing hydrophilic molecule. In particular,
maleimide disulfide-terminated telechelic linear poly(ethylene glycol)
(PEG) polymer and PEG-based tetrathiol macromonomers are employed
as gel precursors, which upon mixing yield HGs within a minute. The
selectivity of the thiol–maleimide conjugation in the presence
of a disulfide linkage was established through 1H NMR spectroscopy
and Ellman’s test. Rapid degradation of HGs in the presence
of thiol-containing solution was evident from the reduction in storage
modulus. HGs encapsulated with fluorescent dye-labeled dextran polymers
and bovine serum albumin were fabricated, and their cargo release
was investigated under passive and active conditions upon exposure
to DTT. One can envision that the rapid gelation and fast on-demand
dissolution under relatively benign conditions would make these polymeric
materials attractive for a range of biomedical applications.
Collapse
Affiliation(s)
- Ismail Altinbasak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Salli Kocak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.,Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.,Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| |
Collapse
|
12
|
Chambers LC, Barner-Kowollik C, Barner L, Michalek L, Frisch H. Photostationary State in Dynamic Covalent Networks. ACS Macro Lett 2022; 11:532-536. [PMID: 35575324 DOI: 10.1021/acsmacrolett.2c00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We explore a cross-linked polymer network based on a visible light photodynamic [2 + 2] cycloaddition driven by styrylpyrene chemistry. Based on a polymer backbone with pendent styrylpyrene units, the network can be formed by using λ = 450 nm irradiation. Upon irradiation with λ = 340 nm, a photostationary state is generated within the network with ∼17% of the styrylpyrene units open compared to close to 2% in the visible light cured state. The limited fraction of open [2 + 2] couples is caused by their proximity and is in sharp contrast to solution experiments on the photoreactive moiety. Thus, the polymer network retains its mechanical properties even at the photostationary point. We hypothesize that the application of an additional stimulus could serve as a second gate for inducing network disintegration by spacing the [2 + 2] units during ultraviolet irradiation.
Collapse
Affiliation(s)
- Lewis C. Chambers
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
| | - Christopher Barner-Kowollik
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Leonie Barner
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
| | - Lukas Michalek
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
| | - Hendrik Frisch
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
| |
Collapse
|
13
|
Masigol M, Radaha EL, Kannan AD, Salberg AG, Fattahi N, Parameswaran P, Hansen RR. Polymer Surface Dissection for Correlated Microscopic and Compositional Analysis of Bacterial Aggregates during Membrane Biofouling. ACS APPLIED BIO MATERIALS 2022; 5:134-145. [PMID: 35014824 DOI: 10.1021/acsabm.1c00971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multispecies biofilms are a common limitation in membrane bioreactors, causing membrane clogging, degradation, and failure. There is a poor understanding of biological fouling mechanisms in these systems due to the limited number of experimental techniques useful for probing microbial interactions at the membrane interface. Here, we develop a new experimental method, termed polymer surface dissection (PSD), to investigate multispecies assembly processes over membrane surfaces. The PSD method uses photodegradable polyethylene glycol hydrogels functionalized with bioaffinity ligands to bind and detach microscale, microbial aggregates from the membrane for microscopic observation. Subsequent exposure of the hydrogel to high resolution, patterned UV light allows for controlled release of any selected aggregate of desired size at high purity for DNA extraction. Follow-up 16S community analysis reveals aggregate composition, correlating microscopic images with the bacterial community structure. The optimized approach can isolate aggregates with microscale spatial precision and yields genomic DNA at sufficient quantity and quality for sequencing from aggregates with areas as low as 2000 μm2, without the need of culturing for sample enrichment. To demonstrate the value of the approach, PSD was used to reveal the composition of microscale aggregates of different sizes during early-stage biofouling of aerobic wastewater communities over PVDF membranes. Larger aggregates exhibited lower diversity of bacterial communities, and a shift in the community structure was found as aggregate size increased to areas between 25,000 and 45,000 μm2, below which aggregates were more enriched in Bacteroidetes and above which aggregates were more enriched with Proteobacteria. The findings demonstrate that community succession can be observed within microscale aggregates and that the PSD method is useful for identification and characterization of early colonizing bacteria that drive biofouling on membrane surfaces.
Collapse
Affiliation(s)
- Mohammadali Masigol
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Esther L Radaha
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Arvind D Kannan
- Department of Civil Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Abigail G Salberg
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Niloufar Fattahi
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Prathap Parameswaran
- Department of Civil Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Ryan R Hansen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
14
|
Mueller E, Poulin I, Bodnaryk WJ, Hoare T. Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities. Biomacromolecules 2022; 23:619-640. [PMID: 34989569 DOI: 10.1021/acs.biomac.1c01105] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of 3D bioprinting has allowed a variety of hydrogel-based "bioinks" to be printed in the presence of cells to create precisely defined cell-loaded 3D scaffolds in a single step for advancing tissue engineering and/or regenerative medicine. While existing bioinks based primarily on ionic cross-linking, photo-cross-linking, or thermogelation have significantly advanced the field, they offer technical limitations in terms of the mechanics, degradation rates, and the cell viabilities achievable with the printed scaffolds, particularly in terms of aiming to match the wide range of mechanics and cellular microenvironments. Click chemistry offers an appealing solution to this challenge given that proper selection of the chemistry can enable precise tuning of both the gelation rate and the degradation rate, both key to successful tissue regeneration; simultaneously, the often bio-orthogonal nature of click chemistry is beneficial to maintain high cell viabilities within the scaffolds. However, to date, relatively few examples of 3D-printed click chemistry hydrogels have been reported, mostly due to the technical challenges of controlling mixing during the printing process to generate high-fidelity prints without clogging the printer. This review aims to showcase existing cross-linking modalities, characterize the advantages and disadvantages of different click chemistries reported, highlight current examples of click chemistry hydrogel bioinks, and discuss the design of mixing strategies to enable effective 3D extrusion bioprinting of click hydrogels.
Collapse
Affiliation(s)
- Eva Mueller
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Isabelle Poulin
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - William James Bodnaryk
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
15
|
Nakagawa S, Yoshie N. Star polymer networks: a toolbox for cross-linked polymers with controlled structure. Polym Chem 2022. [DOI: 10.1039/d1py01547h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of precisely controlled polymer networks has been a long-cherished dream of polymer scientists. Traditional random cross-linking strategies often lead to uncontrolled networks with various kinds of defects. Recent...
Collapse
|
16
|
Shahi S, Roghani-Mamaqani H, Talebi S, Mardani H. Stimuli-responsive destructible polymeric hydrogels based on irreversible covalent bond dissociation. Polym Chem 2022. [DOI: 10.1039/d1py01066b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Covalently crosslinked stimuli-destructible hydrogels with the ability of irreversible bond dissociation have attracted great attentions due to their biodegradability, stability against hydrolysis, and controlled solubility upon insertion of desired triggers.
Collapse
Affiliation(s)
- Sina Shahi
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Saeid Talebi
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Hanieh Mardani
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| |
Collapse
|
17
|
Hauck N, Neuendorf TA, Männel MJ, Vogel L, Liu P, Stündel E, Zhang Y, Thiele J. Processing of fast-gelling hydrogel precursors in microfluidics by electrocoalescence of reactive species. SOFT MATTER 2021; 17:10312-10321. [PMID: 34664052 PMCID: PMC8612358 DOI: 10.1039/d1sm01176f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Microscopic hydrogels, also referred to as microgels, find broad application in life and materials science. A well-established technique for fabricating uniform microgels is droplet microfluidics. Here, optimal mixing of hydrogel precursor components is crucial to yield homogeneous microgels with respect to their morphology, mechanics, and distribution of functional moieties. However, when processing premixed polymer precursors that are highly reactive, fast or even instantaneous gelation inside fluid reservoirs or the microchannels of the flow cell commonly occurs, leading to an increase of fluid viscosity over time, and thus exacerbating the intrinsic control over fluid flow rates, droplet and microgel uniformity, which are key selling points of microfluidics in material design. To address these challenges, we utilize microflow cells with integrated electrodes, which enable fast addition and mixing of hydrogel precursors on demand by means of emulsion droplet coalescence. Here, two populations of surfactant-stabilized aqueous droplets - the first containing the material basis of the microgel, and the second containing another gel-forming component (e.g., a crosslinker) are formed at two consecutive microchannel junctions and merged via temporary thin-film instability. Our approach provides the ability to process such hydrogel systems that are otherwise challenging to process into uniform droplets and microgels by conventional droplet microfluidics. To demonstrate its versatility, we fabricate microgels with uniform shape and composition using fast hydrogelation via thiol-Michael addition reaction or non-covalent self-assembly. Furthermore, we elucidate the limitations of electrocoalescence of reactive hydrogel precursors by processing sodium alginate, crosslinked by calcium-induced ionic interactions. For this instantaneous type of hydrogelation, electrocoalescence of alginate and calcium ions does not result in the formation of morphologically isotropic microgels. Instead, it enables the creation of anisotropic microgel morphologies with tunable shape, which have previously only been achieved by selective crosslinking of elaborate higher-order emulsions or by aqueous two-phase systems as microgel templates.
Collapse
Affiliation(s)
- Nicolas Hauck
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Talika A Neuendorf
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Max J Männel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Lucas Vogel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Ping Liu
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Enno Stündel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| |
Collapse
|
18
|
Boyes VL, Janani R, Partridge S, Fielding LA, Breen C, Foulkes J, Le Maitre CL, Sammon C. One-pot precipitation polymerisation strategy for tuneable injectable Laponite®-pNIPAM hydrogels: Polymerisation, processability and beyond. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Chuang YF, Wei MK, Yang F, Lee S. Water-driven surface wrinkling of poly(2-hydroxyethyl methacrylate) after ultraviolet irradiation. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chem Rev 2021; 121:11149-11193. [PMID: 34189903 DOI: 10.1021/acs.chemrev.1c00071] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to their unique chemical and physical properties, hydrogels are attracting increasing attention in both basic and translational biomedical studies. Although the classical hydrogels with static networks have been widely reported for decades, a growing number of recent studies have shown that structurally dynamic hydrogels can better mimic the dynamics and functions of natural extracellular matrix (ECM) in soft tissues. These synthetic materials with defined compositions can recapitulate key chemical and biophysical properties of living tissues, providing an important means to understanding the mechanisms by which cells sense and remodel their surrounding microenvironments. This review begins with the overall expectation and design principles of dynamic hydrogels. We then highlight recent progress in the fabrication strategies of dynamic hydrogels including both degradation-dependent and degradation-independent approaches, followed by their unique properties and use in biomedical applications such as regenerative medicine, drug delivery, and 3D culture. Finally, challenges and emerging trends in the development and application of dynamic hydrogels are discussed.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Feng
- Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
21
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Wang W, Zeng Z, Xiang L, Liu C, Diaz-Dussan D, Du Z, Asha AB, Yang W, Peng YY, Pan M, Narain R, Liu J, Zeng H. Injectable Self-Healing Hydrogel via Biological Environment-Adaptive Supramolecular Assembly for Gastric Perforation Healing. ACS NANO 2021; 15:9913-9923. [PMID: 34037373 DOI: 10.1021/acsnano.1c01199] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing effective internal wound dressing materials is important for postoperative tissue regeneration while remains a challenge due to the poor biological environment-adaptability of conventional materials. Here, we report an example of injectable self-healing hydrogel based on gastric environment-adaptive supramolecular assembly, and have explored its application for gastric perforation healing. By leveraging the gastric environment-modulated supramolecular interactions, the self-assembled hydrogel network is orchestrated with sensitive thermo-responsibility, injectability, printability and rapid self-healing capability. The hydrogel dressing can effectively inhibit the attachment of microorganisms and demonstrates outstanding antibiofouling property. In vivo rat model further demonstrates the as-prepared hydrogel dressing simplifies the surgical procedures, reduces postoperative complications as well as enhances the healing process of gastric perforation compared with the conventional treatment. This work provides useful insights into the development of biological environment-adaptive functional materials for various biomedical applications.
Collapse
Affiliation(s)
- Wenda Wang
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Zicheng Zeng
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, 510700 Guangzhou, People's Republic of China
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Cong Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, 510700 Guangzhou, People's Republic of China
| | - Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, 200040 Shanghai, People's Republic of China
| | - Anika B Asha
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Wenshuai Yang
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, 510700 Guangzhou, People's Republic of China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| |
Collapse
|
23
|
Herbert KM, Dolinski ND, Boynton NR, Murphy JG, Lindberg CA, Sibener SJ, Rowan SJ. Controlling the Morphology of Dynamic Thia-Michael Networks to Target Pressure-Sensitive and Hot Melt Adhesives. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27471-27480. [PMID: 34086431 DOI: 10.1021/acsami.1c05813] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A series of multistage (pressure-sensitive/hot melt) adhesives utilizing dynamic thia-Michael bonding motifs are reported. The benzalcyanoacetate Michael acceptors used in this work undergo bond exchange under ambient conditions without external catalysis, facilitating pressure-sensitive adhesion. A key feature of this system is the dynamic reaction-induced phase separation that lends reinforcement to the otherwise weakly bonded materials, enabling weak, repeatable pressure-sensitive adhesion under ambient conditions and strong adhesion when processed as a hot melt adhesive. By using different pairs of benzalcyanoacetate cross-linking units, the phase separation characteristics of the adhesives can be directly manipulated, allowing for a tailored adhesive response.
Collapse
Affiliation(s)
- Katie M Herbert
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas R Boynton
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Julia G Murphy
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Charlie A Lindberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - S J Sibener
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Chemical Science and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60434, United States
| |
Collapse
|
24
|
Lau CML, Jahanmir G, Yu Y, Chau Y. Controllable multi-phase protein release from in-situ hydrolyzable hydrogel. J Control Release 2021; 335:75-85. [PMID: 33971140 DOI: 10.1016/j.jconrel.2021.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022]
Abstract
Using hydrogels to control the long-term release of protein remains challenging, especially for in-situ forming formulations. The uncontrollable burst release in the initial phase, the halted release in the subsequent phase, and the undesired drug dumping at the late stage are some obstacles hydrogel-based depots commonly encounter. In this study, we report hydrolyzable dextran-based hydrogels crosslinked by Michael addition to demonstrate a systematic solution to solve these problems. First, the polymer concentration was used as the critical parameter to control the proportion of releasable versus physically trapped protein molecules in the initial hydrogel meshwork. Subsequently, the dynamic change of the hydrogel meshwork was modulated by the crosslinking density and the cleavage rate of ester linkers. To this end, we designed and synthesized a series of ester linkers with hydrolytic half-life ranging from 4 h to 4 months and incorporate them into the hydrogel. Controlled release was demonstrated for model proteins varied in size, including lysozyme (14 kDa), bovine serum albumin (66 kDa), immunoglobulin G (150 kDa), and bevacizumab (149 kDa). In particular, sustained release of IgG ranging from 10 days to 8 months was achieved. Lastly, a tunable multi-phase release profile was made feasible by incorporating multiple ester linkers into one hydrogel formulation. The linker's half-life determined each phase's release duration, and the linkers' mixing ratio determined the corresponding release fraction. The reported hydrogel design engenders a versatile platform to address the needs for long-term and readily adjustable protein release for biomedical applications.
Collapse
Affiliation(s)
- Chi Ming Laurence Lau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China
| | - Ghodsiehsadat Jahanmir
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yu Yu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Pleryon Therapeutics Ltd., Shenzhen, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
25
|
Palmese LL, Fan M, Scott RA, Tan H, Kiick KL. Multi-stimuli-responsive, liposome-crosslinked poly(ethylene glycol) hydrogels for drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:635-656. [PMID: 33231137 PMCID: PMC8659393 DOI: 10.1080/09205063.2020.1855392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
The development of hybrid hydrogels has been of great interest over recent decades, especially in the field of biomaterials. Such hydrogels provide various opportunities in tissue engineering, drug delivery, and regenerative medicine due to their ability to mimic cellular environments, sequester and release therapeutic agents, and respond to stimuli. Herein we report the synthesis and characterization of an injectable poly(ethylene glycol) hydrogel crosslinked via thiol-maleimide reactions and containing both chemically crosslinked temperature-sensitive liposomes (TSLs) and matrix metalloproteinase-sensitive peptide crosslinks. Rheological studies demonstrate that the hydrogel is mechanically stable and can be synthesized to achieve a range of physically applicable moduli. Experiments characterizing the in situ drug delivery and degradation of these materials indicate that the TSL gel responds to both thermal and enzymatic stimuli in a local environment. Doxorubicin, a widely used anticancer drug, was loaded in the TSLs with a high encapsulation efficiency and the subsequent release was temperature dependent. Finally, TSLs did not compromise viability and proliferation of human and murine fibroblasts, supporting the use of these hydrogel-linked liposomes as a thermo-responsive drug carrier for controlled release.
Collapse
Affiliation(s)
- Luisa L Palmese
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Ming Fan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Rebecca A Scott
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Huaping Tan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| |
Collapse
|
26
|
Scott RA, Kiick KL, Akins RE. Substrate stiffness directs the phenotype and polarization state of cord blood derived macrophages. Acta Biomater 2021; 122:220-235. [PMID: 33359292 DOI: 10.1016/j.actbio.2020.12.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023]
Abstract
Cord blood (CB) mononuclear cell populations have demonstrated significant promise in biomaterials-based regenerative therapies; however, the contributions of monocyte and macrophage subpopulations towards proper tissue healing and regeneration are not well understood, and the phenotypic responses of macrophage to microenvironmental cues have not been well-studied. In this work, we evaluated the effects of cytokine stimulation and altered substrate stiffness. Macrophage derived from CB CD14+ monocytes adopted distinct inflammatory (M1) and anti-inflammatory (M2a and M2c) phenotypes in response to cytokine stimulation (M1: lipopolysaccharide (LPS) and interferon (IFN-γ); M2a: interleukin (IL)-4 and IL-13; M2c: IL-10) as determined through expression of relevant cell surface markers and growth factors. Cytokine-induced macrophage readily altered their phenotypes upon sequential administration of different cytokine cocktails. The impact of substrate stiffness on macrophage phenotype was evaluated by seeding CB-derived macrophage on 3wt%, 6wt%, and 14wt% poly(ethylene glycol)-based hydrogels, which exhibited swollen shear moduli of 0.1, 3.4, and 10.3 kPa, respectively. Surface marker expression and cytokine production varied depending on modulus, with anti-inflammatory phenotypes increasing with elevated substrate stiffness. Integration of specific hydrogel moduli and cytokine cocktail treatments resulted in the differential regulation of macrophage phenotypic biomarkers. These data suggest that CB-derived macrophages exhibit predictable behaviors that can be directed and finely tuned by combinatorial modulation of substrate physical properties and cytokine profiles.
Collapse
|
27
|
Yang H, Song L, Zou Y, Sun D, Wang L, Yu Z, Guo J. Role of Hyaluronic Acids and Potential as Regenerative Biomaterials in Wound Healing. ACS APPLIED BIO MATERIALS 2021; 4:311-324. [PMID: 35014286 DOI: 10.1021/acsabm.0c01364] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The skin can protect the body from external harm, sense environmental changes, and maintain physiological homeostasis. Cutaneous repair and regeneration associated with surgical wounds, acute traumas, and chronic diseases are a central concern of healthcare. Patients may experience the failure of current treatments due to the complexity of the healing process; therefore, emerging strategies are needed. Hyaluronic acids (HAs, also known as hyaluronan), a glycosaminoglycan (GAG) of the extracellular matrix (ECM), play key roles in cell differentiation, proliferation, and migration throughout tissue development and regeneration. Recently, HA derivatives have been developed as regenerative biomaterials for treating skin damage and injury. In this review, the healing process, namely, hemostasis, inflammation, proliferation, and maturation, is described and the role of HAs in the healing process is discussed. This review also provides recent examples in the development of HA derivatives for wound healing.
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Limei Wang
- Department of Pharmacy, The General Hospital of FAW, Changchun 130011, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
28
|
Xiong Y, Zhang X, Ma X, Wang W, Yan F, Zhao X, Chu X, Xu W, Sun C. A review of the properties and applications of bioadhesive hydrogels. Polym Chem 2021. [DOI: 10.1039/d1py00282a] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to their outstanding properties, bioadhesive hydrogels have been extensively studied by researchers in recent years.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoran Zhang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xintao Ma
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenqi Wang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Feiyan Yan
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaohan Zhao
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoxiao Chu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenlong Xu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Changmei Sun
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| |
Collapse
|
29
|
Rizzo F, Kehr NS. Recent Advances in Injectable Hydrogels for Controlled and Local Drug Delivery. Adv Healthc Mater 2021; 10:e2001341. [PMID: 33073515 DOI: 10.1002/adhm.202001341] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Injectable hydrogels have received considerable interest in the biomedical field due to their potential applications in minimally invasive local drug delivery, more precise implantation, and site-specific drug delivery into poorly reachable tissue sites and into interface tissues, where wound healing takes a long time. Injectable hydrogels, such as in situ forming and/or shear-thinning hydrogels, can be generated using chemically and/or physically crosslinked hydrogels. Yet, for controlled and local drug delivery applications, the ideal injectable hydrogel should be able to provide controlled and sustained release of drug molecules to the target site when needed and should limit nonspecific drug molecule distribution in healthy tissues. Thus, such hydrogels should sense the environmental changes that arise in disease states and be able to release the optimal amount of drug over the necessary time period to the target region. To address this, researchers have designed stimuli-responsive injectable hydrogels. Stimuli-responsive hydrogels change their shape or volume when they sense environmental stimuli, e.g., pH, temperature, light, electrical signals, or enzymatic changes, and deliver an optimal concentration of drugs to the target site without affecting healthy tissues.
Collapse
Affiliation(s)
- Fabio Rizzo
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC) Consiglio Nazionale delle Ricerche (CNR) via Fantoli 16/15 Milan 20138 Italy
- Organic Chemistry Institute Westfälische Wilhelms‐Universität Münster Corrensstr. 36 Münster 48149 Germany
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Str. 10 Münster 48149 Germany
| | - Nermin Seda Kehr
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Str. 10 Münster 48149 Germany
- Physikalisches Institut Westfälische Wilhelms‐Universität Münster Wilhelm‐Klemm‐Str. 10 Münster 48149 Germany
| |
Collapse
|
30
|
LeValley PJ, Sutherland BP, Jaje J, Gibbs S, Jones M, Gala R, Kloxin CJ, Kiick KL, Kloxin AM. On-demand and tunable dual wavelength release of antibody using light-responsive hydrogels. ACS APPLIED BIO MATERIALS 2020; 3:6944-6958. [PMID: 34327309 PMCID: PMC8315695 DOI: 10.1021/acsabm.0c00823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There has been an increased interest in the use of protein therapeutics, especially antibodies, for the treatment of a variety of diseases due to their high specificity to tissues and biological pathways of interest. However, the use of antibodies can be hindered by physical aggregation, degradation, and diffusion when injected in vivo leading to the need for antibody-releasing depots for the controlled and localized delivery within tissues of interest. Here, we investigated photolabile hydrogel chemistries for creating on-demand and tunable antibody release profiles. Innovative, scalable synthetic procedures were established and applied for fabricating hydrogels with nitrobenzyl (NB) and coumarin (CMR) photolabile crosslinks that responded to clinically relevant doses of long-wavelength UV and short-wavelength visible light. This synthetic procedure includes a route to make a CMR linker possessing two functional handles at the same ring position with water-stable bonds. The photocleavage properties of NB and CMR crosslinked hydrogels were characterized, as well as their potential for translational studies by degradation through pig skin, a good human skin mimic. The mechanism of hydrogel degradation, bulk versus surface eroding, was determined to be dependent on the wavelength of light utilized and the molar absorptivity of the different photolabile linkers, providing a facile means for altering protein release upon hydrogel degradation. Further, the encapsulation and on-demand release of a model monoclonal antibody was demonstrated, highlighting the ability to control antibody release from these hydrogels through the application of light while retaining its bioactivity. In particular, the newly designed CMR hydrogels undergo surface erosion-based protein release using visible light, which is more commonly used clinically. Overall, this work establishes scalable syntheses and relevant pairings of formulation-irradiation conditions for designing on-demand and light-responsive material systems that provide controlled, tunable release of bioactive proteins toward addressing barriers to preclinical translation of light-based materials and ultimately improving therapeutic regimens.
Collapse
Affiliation(s)
- Paige J. LeValley
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Bryan P. Sutherland
- Department of Material Science and Engineering, University of Delaware, Newark, DE, United States
| | - Jennifer Jaje
- Fraunhofer USA Center for Molecular Biotechnology (CMB), Newark, DE, United States
| | - Sandra Gibbs
- Fraunhofer USA Center for Molecular Biotechnology (CMB), Newark, DE, United States
| | - Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology (CMB), Newark, DE, United States
| | - Rikhav Gala
- Fraunhofer USA Center for Molecular Biotechnology (CMB), Newark, DE, United States
| | - Christopher J. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Department of Material Science and Engineering, University of Delaware, Newark, DE, United States
| | - Kristi L. Kiick
- Department of Material Science and Engineering, University of Delaware, Newark, DE, United States
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Department of Material Science and Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
31
|
Sulerud T, Sami AB, Li G, Kloxin A, Oakey J, Gatlin J. Microtubule-dependent pushing forces contribute to long-distance aster movement and centration in Xenopus laevis egg extracts. Mol Biol Cell 2020; 31:2791-2802. [PMID: 33026931 PMCID: PMC7851858 DOI: 10.1091/mbc.e20-01-0088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During interphase of the eukaryotic cell cycle, the microtubule (MT) cytoskeleton serves as both a supportive scaffold for organelles and an arborized system of tracks for intracellular transport. At the onset of mitosis, the position of the astral MT network, specifically its center, determines the eventual location of the spindle apparatus and ultimately the cytokinetic furrow. Positioning of the MT aster often results in its movement to the center of a cell, even in large blastomeres hundreds of microns in diameter. This translocation requires positioning forces, yet how these forces are generated and then integrated within cells of various sizes and geometries remains an open question. Here we describe a method that combines microfluidics, hydrogels, and Xenopus laevis egg extract to investigate the mechanics of aster movement and centration. We determined that asters were able to find the center of artificial channels and annular cylinders, even when cytoplasmic dynein-dependent pulling mechanisms were inhibited. Characterization of aster movement away from V-shaped hydrogel barriers provided additional evidence for a MT-based pushing mechanism. Importantly, the distance over which this mechanism seemed to operate was longer than that predicted by radial aster growth models, agreeing with recent models of a more complex MT network architecture within the aster.
Collapse
Affiliation(s)
- Taylor Sulerud
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071.,Cell Organization and Division Group, Marine Biological Laboratory, Woods Hole, MA 02543
| | | | - Guihe Li
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - April Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071.,Cell Organization and Division Group, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Jesse Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071.,Cell Organization and Division Group, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
32
|
Morgan FLC, Moroni L, Baker MB. Dynamic Bioinks to Advance Bioprinting. Adv Healthc Mater 2020; 9:e1901798. [PMID: 32100963 DOI: 10.1002/adhm.201901798] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/31/2020] [Indexed: 01/06/2023]
Abstract
The development of bioinks for bioprinting of cell-laden constructs remains a challenge for tissue engineering, despite vigorous investigation. Hydrogels to be used as bioinks must fulfill a demanding list of requirements, mainly focused around printability and cell function. Recent advances in the use of supramolecular and dynamic covalent chemistry (DCvC) provide paths forward to develop bioinks. These dynamic hydrogels enable tailorability, higher printing performance, and the creation of more life-like environments for ultimate tissue maturation. This review focuses on the exploration and benefits of dynamically cross-linked bioinks for bioprinting, highlighting recent advances, benefits, and challenges in this emerging area. By incorporating internal dynamics, many benefits can be imparted to the material, providing design elements for next generation bioinks.
Collapse
Affiliation(s)
- Francis L. C. Morgan
- Department of Complex Tissue RegenerationMERLN InstituteMaastricht University 6200 MD Maastricht The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN InstituteMaastricht University 6200 MD Maastricht The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue RegenerationMERLN InstituteMaastricht University 6200 MD Maastricht The Netherlands
| |
Collapse
|
33
|
Shmidov Y, Zhu Y, Matson JB, Bitton R. Effect of Crosslinker Topology on Enzymatic Degradation of Hydrogels. Biomacromolecules 2020; 21:3279-3286. [PMID: 32702239 DOI: 10.1021/acs.biomac.0c00722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the widespread use of hydrogels in biomedical applications, little is known regarding the effect of crosslinker topology on hydrogel degradation. Dendritic and linear elastin-like peptides (ELPs) were used as crosslinkers for hyaluronic acid (HA) hydrogels, and their enzymatic degradation was studied using trypsin. Rheological studies revealed that hydrogels crosslinked with ELP dendrimers (HA_denELPs) degraded more slowly than those crosslinked with the otherwise equivalent linear ELPs (i.e., both molecules have the same number of pentamers and peripheral lysine residues). The origin of this phenomenon was evaluated using solution studies in which various dendritic and linear ELPs were treated with trypsin. Apart from the expected steric hindrances due to the dendritic topology, we identified the dual directionality of the peptide sequences (generated by a central branching lysine residue) and the likelihood of cleaving a productive crosslinking point as two additional contributors to the lesser degradability of HA_denELPs. Overall, these results highlight how the molecular design of crosslinker topology represents a novel strategy to tune the degradation rate of hydrogels.
Collapse
Affiliation(s)
- Yulia Shmidov
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yumeng Zhu
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ronit Bitton
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
34
|
He W, Reaume M, Hennenfent M, Lee BP, Rajachar R. Biomimetic hydrogels with spatial- and temporal-controlled chemical cues for tissue engineering. Biomater Sci 2020; 8:3248-3269. [PMID: 32490441 PMCID: PMC7323904 DOI: 10.1039/d0bm00263a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomimetic hydrogels have emerged as the most useful tissue engineering scaffold materials. Their versatile chemistry can recapitulate multiple physical and chemical features to integrate cells, scaffolds, and signaling molecules for tissue regeneration. Due to their highly hydrophilic nature hydrogels can recreate nutrient-rich aqueous environments for cells. Soluble regulatory molecules can be incorporated to guide cell proliferation and differentiation. Importantly, the controlled dynamic parameters and spatial distribution of chemical cues in hydrogel scaffolds are critical for cell-cell communication, cell-scaffold interaction, and morphogenesis. Herein, we review biomimetic hydrogels that provide cells with spatiotemporally controlled chemical cues as tissue engineering scaffolds. Specifically, hydrogels with temporally controlled growth factor-release abilities, spatially controlled conjugated bioactive molecules/motifs, and targeting delivery and reload properties for tissue engineering applications are discussed in detail. Examples of hydrogels that possess clinically favorable properties, such as injectability, self-healing ability, stimulus-responsiveness, and pro-remodeling features, are also covered.
Collapse
Affiliation(s)
- Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
- FM Wound Care, LLC, Hancock, MI 49930, USA
| | - Max Reaume
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Maureen Hennenfent
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Rupak Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
35
|
FitzSimons TM, Oentoro F, Shanbhag TV, Anslyn EV, Rosales AM. Preferential Control of Forward Reaction Kinetics in Hydrogels Crosslinked with Reversible Conjugate Additions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas M. FitzSimons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-1589, United States
| | - Felicia Oentoro
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-1589, United States
| | - Tej V. Shanbhag
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-1589, United States
| | - Eric V. Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Adrianne M. Rosales
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-1589, United States
| |
Collapse
|
36
|
Scott RA, Robinson KG, Kiick KL, Akins RE. Human Adventitial Fibroblast Phenotype Depends on the Progression of Changes in Substrate Stiffness. Adv Healthc Mater 2020; 9:e1901593. [PMID: 32105417 PMCID: PMC7274877 DOI: 10.1002/adhm.201901593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Indexed: 12/24/2022]
Abstract
Adventitial fibroblasts (AFs) are major contributors to vascular remodeling and maladaptive cascades associated with arterial disease, where AFs both contribute to and respond to alterations in their surrounding matrix. The relationships between matrix modulus and human aortic AF (AoAF) function are investigated using poly(ethylene glycol)-based hydrogels designed with matrix metalloproteinase (MMP)-sensitive and integrin-binding peptides. Initial equilibrium shear storage moduli for the substrates examined are 0.33, 1.42, and 2.90 kPa; after 42 days of culture, all hydrogels exhibit similar storage moduli (0.3-0.7 kPa) regardless of initial modulus, with encapsulated AoAFs spreading and proliferating. In 10 and 7.5 wt% hydrogels, modulus decreases monotonically throughout culture; however, in 5 wt% hydrogels, modulus increases after an initial 7 days of culture, accompanied by an increase in myofibroblast transdifferentiation and expression of collagen I and III through day 28. Thereafter, significant reductions in both collagens occur, with increased MMP-9 and decreased tissue inhibitor of metalloproteinase-1/-2 production. Releasing cytoskeletal tension or inhibiting cellular protein secretion in 5 wt% hydrogels block the stiffening of the polymer matrix. Results indicate that encapsulated AoAFs initiate cell-mediated matrix remodeling and demonstrate the utility of dynamic 3D systems to elucidate the complex interactions between cell behavior and substrate properties.
Collapse
Affiliation(s)
- Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, United States
| | - Karyn G. Robinson
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, United States
| | - Robert E. Akins
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
| |
Collapse
|
37
|
LeValley PJ, Neelarapu R, Sutherland BP, Dasgupta S, Kloxin CJ, Kloxin AM. Photolabile Linkers: Exploiting Labile Bond Chemistry to Control Mode and Rate of Hydrogel Degradation and Protein Release. J Am Chem Soc 2020; 142:4671-4679. [PMID: 32037819 PMCID: PMC7267699 DOI: 10.1021/jacs.9b11564] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Photolabile moieties have been utilized in applications ranging from peptide synthesis and controlled protein activation to tunable and dynamic materials. The photochromic properties of nitrobenzyl (NB) based linkers are readily tuned to respond to cytocompatible light doses and are widely utilized in cell culture and other biological applications. While widely utilized, little is known about how the microenvironment, particularly confined aqueous environments (e.g., hydrogels), affects both the mode and rate of cleavage of NB moieties, leading to unpredictable limitations in control over system properties (e.g., rapid hydrolysis or slow photolysis). To address these challenges, we synthesized and characterized the photolysis and hydrolysis of NB moieties containing different labile bonds (i.e., ester, amide, carbonate, or carbamate) that served as labile crosslinks within step-growth hydrogels. We observed that NB ester bond exhibited significant rates of both photolysis and hydrolysis, whereas, importantly, the NB carbamate bond had superior light responsiveness and resistance to hydrolysis within the hydrogel microenvironment. Exploiting this synergy and orthogonality of photolytic and hydrolytic degradation, we designed concentric cylinder hydrogels loaded with different cargoes (e.g., model protein with different fluorophores) for either combinatorial or sequential release, respectively. Overall, this work provides new facile chemical approaches for tuning the degradability of NB linkers and an innovative strategy for the construction of multimodal degradable hydrogels, which can be utilized to guide the design of not only tunable materials platforms but also controlled synthetic protocols or surface modification strategies.
Collapse
Affiliation(s)
- Paige J. LeValley
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Raghupathi Neelarapu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Bryan P. Sutherland
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Srimoyee Dasgupta
- Department of Material Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Christopher J. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
- Department of Material Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
- Department of Material Science and Engineering, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
38
|
Paez JI, Farrukh A, Valbuena-Mendoza R, Włodarczyk-Biegun MK, Del Campo A. Thiol-Methylsulfone-Based Hydrogels for 3D Cell Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8062-8072. [PMID: 31999422 DOI: 10.1021/acsami.0c00709] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thiol-maleimide and thiol-vinylsulfone cross-linked hydrogels are widely used systems in 3D culture models, in spite of presenting uncomfortable reaction kinetics for cell encapsulation: too fast (seconds for thiol-maleimide) or too slow (minutes-hours for thiol-vinylsulfone). Here, we introduce the thiol-methylsulfone reaction as alternative cross-linking chemistry for cell encapsulation, particularized for PEG-hydrogels. The thiol-methylsulfone reaction occurs at high conversion and at intermediate reaction speed (seconds-minutes) under physiological pH range. These properties allow easy mixing of hydrogel precursors and cells to render homogeneous cell-laden gels at comfortable experimental time scales. The resulting hydrogels are cytocompatible and show comparable hydrolytic stability to thiol-vinylsulfone gels. They allow direct bioconjugation of thiol-derivatized ligands and tunable degradation kinetics by cross-linking with degradable peptide sequences. 3D cell culture of two cell types, fibroblasts and human umbilical vein endothelial cells (HUVECs), is demonstrated.
Collapse
Affiliation(s)
- Julieta I Paez
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
| | - Aleeza Farrukh
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
| | - Rocío Valbuena-Mendoza
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
- Saarland University , Chemistry Department , 66123 Saarbrücken , Germany
| | | | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
- Saarland University , Chemistry Department , 66123 Saarbrücken , Germany
| |
Collapse
|
39
|
Lau CML, Jahanmir G, Chau Y. Local environment-dependent kinetics of ester hydrolysis revealed by direct 1H NMR measurement of degrading hydrogels. Acta Biomater 2020; 101:219-226. [PMID: 31669542 DOI: 10.1016/j.actbio.2019.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/05/2019] [Accepted: 10/23/2019] [Indexed: 01/14/2023]
Abstract
We have demonstrated the use of a simple 1H NMR spectrometry-based method to directly measure the pseudo first-order hydrolytic cleavage rate constant (kobs) of methacrylate-derived ester crosslinkers in hydrogels composed of PEG, dextran, carboxymethyl dextran (CM-dextran) and hyaluronic acid (HA). Using this technique, we systematically examined how the local environment in the hydrogel influenced the rate of ester hydrolysis. Within the formulations being studied, the esters in the crosslinked polymer network (gel state) degraded 1.8 times faster than esters of similar chemistry in soluble polymers (solution state). Furthermore, the value of kobs was independent of the polymer concentration or the hydrogel network structure, although these parameters affected the swelling profiles in response to the hydrolytic degradation. On the other hand, the presence of the negatively charged carboxylate groups in the polymer chains decreased kobs in gel state, while only minimally affecting kobs in solution state. Hydrogels composed of negatively charged polymers (HA and CM-dextran) had a kobs about 30% smaller than hydrogels composed of neutral polymers (dextran and PEG). The reported method provides a reliable tool to resolve conflicting views about hydrogel degradation, and to guide the rational design of degradable hydrogel. STATEMENT OF SIGNIFICANCE: Degradable hydrogels are widely used in biological applications. A common degradation mechanism of the crosslinked polymer is by hydrolytic cleavage. However, the hydrogel micro-milieu do affect the behavior of the hydrolysable bonds, for example esters. There have been several conflicting speculations on how hydrogel composition would affect the macroscopic degradation behavior. In this report, we simply, but innovatively applied ordinary 1H NMR spectrometry-based method to probe the rate of ester cleavage in the native hydrogel milieu. We tried to answer whether these parameters will have direct influence on ester cleavage, or have indirect effect on the overall network disintegration behavior. This study provides quantitative evidences to assist theoretical modeling and to guide rational formulation design.
Collapse
|
40
|
Shi Q, Cao X, Zhang Y, Duan S, Hu L, Xu Y, Lu J, Huang Z, Zhang Z, Zhu X. Easily readable palindromic sequence-defined polymers built by cascade thiol-maleimide Michael couplings. Polym Chem 2020. [DOI: 10.1039/d0py01088j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rational combination of cascade thiol-maleimide Michael couplings (CTMMC) with iterative exponential chain growth was demonstrated as an efficient way to synthesize palindromic sequence-defined polymers.
Collapse
|
41
|
Synthesis and properties of degradable gels and porous polymers including acetal group in the network structure by addition reaction of multi-functional phenols and divinyl ether compounds. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03033-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109220] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Bisht J, LeValley P, Noren B, McBride R, Kharkar P, Kloxin A, Gatlin J, Oakey J. Light-inducible activation of cell cycle progression in Xenopus egg extracts under microfluidic confinement. LAB ON A CHIP 2019; 19:3499-3511. [PMID: 31544194 PMCID: PMC7819639 DOI: 10.1039/c9lc00569b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell-free Xenopus egg extract is a widely used and biochemically tractable model system that allows recapitulation and elucidation of fundamental cellular processes. Recently, the introduction of microfluidic extract manipulation has enabled compartmentalization of bulk extract and a newfound ability to study organelles on length scales that recapitulate key features of cellular morphology. While the microfluidic confinement of extracts has produced a compelling platform for the in vitro study of cell processes at physiologically-relevant length scales, it also imposes experimental limitations by restricting dynamic control over extract properties. Here, we introduce photodegradable polyethylene glycol (PEG) hydrogels as a vehicle to passively and selectively manipulate extract composition through the release of proteins encapsulated within the hydrogel matrix. Photopatterned PEG hydrogels, passive to both extract and encapsulated proteins, serve as protein depots within microfluidic channels, which are subsequently flooded with extract. Illumination by ultraviolet light (UV) degrades the hydrogel structures and releases encapsulated protein. We show that an engineered fluorescent protein with a nuclear localization signal (GST-GFP-NLS) retains its ability to localize within nearby nuclei following UV-induced release from hydrogel structures. When diffusion is considered, the kinetics of nuclear accumulation are similar to those in experiments utilizing conventional, bulk fluid handling. Similarly, the release of recombinant cyclin B Δ90, a mutant form of the master cell cycle regulator cyclin B which lacks the canonical destruction box, was able to induce the expected cell cycle transition from interphase to mitosis. This transition was confirmed by the observation of nuclear envelope breakdown (NEBD), a phenomenological hallmark of mitosis, and the induction of mitosis-specific biochemical markers. This approach to extract manipulation presents a versatile and customizable route to regulating the spatial and temporal dynamics of cellular events in microfluidically confined cell-free extracts.
Collapse
Affiliation(s)
- Jitender Bisht
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Paige LeValley
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - Benjamin Noren
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Ralph McBride
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - Prathamesh Kharkar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - April Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - Jesse Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
44
|
Sheiko SS, Dobrynin AV. Architectural Code for Rubber Elasticity: From Supersoft to Superfirm Materials. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01127] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Andrey V. Dobrynin
- Department of Polymer Science, University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
45
|
Son YJ, Tse JW, Zhou Y, Mao W, Yim EKF, Yoo HS. Biomaterials and controlled release strategy for epithelial wound healing. Biomater Sci 2019; 7:4444-4471. [PMID: 31436261 DOI: 10.1039/c9bm00456d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The skin and cornea are tissues that provide protective functions. Trauma and other environmental threats often cause injuries, infections and damage to these tissues, where the degree of injury is directly correlated to the recovery time. For example, a superficial skin or corneal wound may recover within days; however, more severe injuries can last up to several months and may leave scarring. Thus, therapeutic strategies have been introduced to enhance the wound healing efficiency and quality. Although the skin and cornea share similar anatomic structures and wound healing process, therapeutic agents and formulations for skin and cornea wound healing differ in accordance with the tissue and wound type. In this review, we describe the anatomy and epithelial wound healing processes of the skin and cornea, and summarize the therapeutic molecules that are beneficial to the respective regeneration process. In addition, biomaterial scaffolds that inherently possess bioactive properties or modified with therapeutic molecules for topical controlled release and enhanced wound healing efficiency are also discussed.
Collapse
Affiliation(s)
- Young Ju Son
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - John W Tse
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Yiran Zhou
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea. and Institute of Bioscience and Biotechnology, Kangwon National University, Republic of Korea
| |
Collapse
|
46
|
Gawade PM, Shadish JA, Badeau BA, DeForest CA. Logic-Based Delivery of Site-Specifically Modified Proteins from Environmentally Responsive Hydrogel Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902462. [PMID: 31265196 PMCID: PMC8296976 DOI: 10.1002/adma.201902462] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/26/2019] [Indexed: 05/17/2023]
Abstract
The controlled presentation of proteins from and within materials remains of significant interest for many bioengineering applications. Though "smart" platforms offer control over protein release in response to a single external cue, no strategy has been developed to trigger delivery in response to user-specified combinations of environmental inputs, nor to independently control the release of multiple species from a homogenous material. Here, a modular semisynthetic scheme is introduced to govern the release of site-specifically modified proteins from hydrogels following Boolean logic. A sortase-mediated transpeptidation reaction is used to generate recombinant proteins C-terminally tethered to gels through environmentally sensitive degradable linkers. By varying the connectivity of multiple stimuli-labile moieties within these customizable linkers, YES/OR/AND control of protein release is exhaustively demonstrated in response to one and two-input combinations involving enzyme, reductant, and light. Tethering of multiple proteins each through a different stimuli-sensitive linker permits their independent and sequential release from a common material. It is expected that these methodologies will enable new opportunities in tissue engineering and therapeutic delivery.
Collapse
Affiliation(s)
- Prathamesh Milind Gawade
- Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane NE, Seattle, WA, 98195, USA
| | - Jared A Shadish
- Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane NE, Seattle, WA, 98195, USA
| | - Barry A Badeau
- Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane NE, Seattle, WA, 98195, USA
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane NE, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| |
Collapse
|
47
|
Cooper RC, Yang H. Hydrogel-based ocular drug delivery systems: Emerging fabrication strategies, applications, and bench-to-bedside manufacturing considerations. J Control Release 2019; 306:29-39. [PMID: 31128143 PMCID: PMC6629478 DOI: 10.1016/j.jconrel.2019.05.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022]
Abstract
The physiological barriers of the eye pose challenges to the delivery of the array of therapeutics for ocular diseases. Hydrogels have been widely explored for medical applications and introduce possible solutions to overcoming the medication challenges of the ocular environment. While the innovations in drug encapsulation and release mechanisms, biocompatibility, and treatment duration have become highly sophisticated, the challenge of widespread application of hydrogel formulations in the clinic is still apparent. This article reviews the latest hydrogel formulations and their associated chemistries for use in ocular therapies, spanning from external anterior to internal posterior regions of the eye in order to evaluate the state of recent research. This article discusses the utility of hydrogels in soft contact lens, wound dressings, intraocular lens, vitreous substitutes, vitreous drug release hydrogels, and cell-based therapies for regeneration. Additional focus is placed on the pre-formulation, formulation, and manufacturing considerations of the hydrogels based on individual components (polymer chains, linkers, and therapeutics), final hydrogel product, and required preparations for clinical/commercial applications, respectively.
Collapse
Affiliation(s)
- Remy C Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
48
|
Teasdale I, Theis S, Iturmendi A, Strobel M, Hild S, Jacak J, Mayrhofer P, Monkowius U. Dynamic Supramolecular Ruthenium-Based Gels Responsive to Visible/NIR Light and Heat. Chemistry 2019; 25:9851-9855. [PMID: 31199024 PMCID: PMC6771519 DOI: 10.1002/chem.201902088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Indexed: 11/12/2022]
Abstract
A simple supramolecular crosslinked gel is reported with a photosensitive ruthenium bipyridine complex functioning as a crosslinker and poly(4-vinylpyridine) (P4VP) as a macromolecular ligand. Irradiation of the organogels in H2 O/MeOH with visible and NIR light (in a multiphoton process) leads to cleavage of pyridine moieties from the ruthenium complex breaking the cross-links and causing degelation and hence solubilization of the P4VP chains. Real-time (RT) photorheology experiments of thin films showed a rapid degelation in several seconds, whereas larger bulk samples could also be photocleaved. Furthermore, the gels could be reformed or healed by simple heating of the system and restoration of the metal-ligand crosslinks. The relatively simple dynamic system with a high sensitivity towards light in the visible and NIR region make them interesting positive photoresists for nano/micropatterning applications, as was demonstrated by writing, erasing, and rewriting of the gels by single- and multiphoton lithography.
Collapse
Affiliation(s)
- Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Sabrina Theis
- Institute of Inorganic ChemistryJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Aitziber Iturmendi
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Moritz Strobel
- Institute of Polymer ScienceJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Sabine Hild
- Institute of Polymer ScienceJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Jaroslaw Jacak
- School of Medical Engineering and Applied Social SciencesUniversity of Applied Sciences Upper AustriaGarnisonstraße 214020LinzAustria
| | - Philipp Mayrhofer
- School of Medical Engineering and Applied Social SciencesUniversity of Applied Sciences Upper AustriaGarnisonstraße 214020LinzAustria
| | - Uwe Monkowius
- School of EducationJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| |
Collapse
|
49
|
Pal AK, Labella E, Goddard NJ, Gupta R. Photofunctionalizable Hydrogel for Fabricating Volume Optical Diffractive Sensors. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anil Kumar Pal
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | | | | | - Ruchi Gupta
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
50
|
Peles-Strahl L, Sasson R, Slor G, Edelstein-Pardo N, Dahan A, Amir RJ. Utilizing Self-Immolative ATRP Initiators To Prepare Stimuli-Responsive Polymeric Films from Nonresponsive Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Leigh Peles-Strahl
- Chemistry Department, Soreq Nuclear Research Center, Yavne 81800, Israel
| | - Revital Sasson
- Chemistry Department, Soreq Nuclear Research Center, Yavne 81800, Israel
| | | | | | - Adi Dahan
- Chemistry Department, Soreq Nuclear Research Center, Yavne 81800, Israel
| | | |
Collapse
|