1
|
Biswas S, Rajdev P, Banerjee A, Das A. Mitochondria-targeting nanostructures from enzymatically degradable fluorescent amphiphilic polyesters. NANOSCALE 2025. [PMID: 39873404 DOI: 10.1039/d4nr04696j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Water-soluble π-conjugated luminescent bioprobes have been broadly used in biomedical research but are limited by the nonbiodegradability associated with their rigid C-C backbones. In the present work, we introduced three naphthalene monoimide (NMI)-functionalized amphiphilic fluorescent polyesters (P1, P2, and P3) prepared by transesterification of functional diols with an activated diester monomer of adipic acid. These polyesters featured a side-chain NMI fluorophore, imparting the required hydrophobicity for self-assembly in water and endowing the polymeric nanoassemblies with green fluorescence. Two polymers (P1 and P2) were intrinsically cationic at physiological pH (7.4), while neutral P3 exhibited pH-triggered (pH ∼6.2) cationic features due to the protonation of the tertiary amine groups present in its backbone. These biocompatible polymers revealed around 85% cellular uptake after 1 hour of incubation. However, the initial uptake for the cationic polymers (P1 and P2) within 15 minutes was significantly greater than that of the neutral P3 because of their stronger electrostatic interactions with the negatively charged cell membranes. Notably, cationic P1 and P2 could specifically target mitochondria in cancerous HeLa cells by escaping the initial endosome/lysosome trap. In contrast, neutral P3 exhibited cell-selective mitochondria targeting in cancerous (HeLa) cells over non-cancerous (NKE) cells. This is attributed to P3's protonation-induced positive charge accumulation in the acidic environment of cancer cells, unlike in the non-acidic environment of non-cancerous cells. This possibly causes P3 nanoassemblies to behave similarly to P1 and P2 in HeLa cells despite P3 being intrinsically neutral. The insights gained from this work may be relevant for future development of cell-specific, mitochondria-targeted drug delivery systems from enzymatically degradable polyester backbones.
Collapse
Affiliation(s)
- Subhendu Biswas
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Ankita Banerjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
2
|
Segal MI, Bahnick AJ, Judge NG, Becker ML. Synthesis and Solvent Free DLP 3D Printing of Degradable Poly(Allyl Glycidyl Ether Succinate). Angew Chem Int Ed Engl 2025; 64:e202414016. [PMID: 39212480 DOI: 10.1002/anie.202414016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Digital light processing (DLP) printing forms solid constructs from fluidic resins by photochemically crosslinking polymeric resins with reactive functional groups. DLP is used widely due to its efficient, high-resolution printing, but its use and translational potential has been limited in some applications as state-of-the-art resins experience unpredictable and anisotropic part shrinkage due to the use of solvent needed to reduce resin viscosity and layer dependent crosslinking. Herein, poly(allyl glycidyl ether succinate) (PAGES), a low viscosity, degradable polyester, was synthesized by ring opening copolymerization and used in combination with degradable thiol crosslinkers to afford a solvent free resin that can be utilized in DLP printing. Varying resin formulations of PAGES polymer are shown to decrease part shrinkage from 14 % to 0.3 %. Photochemically printed parts fabricated from PAGES possess tensile moduli between 0.43 and 6.18 MPa and degradation profiles are shown to vary between 12 and 40 days under accelerated conditions based on degree of polymerization and crosslink ratio.
Collapse
Affiliation(s)
- Maddison I Segal
- Thomas Lord Department of Mechanical Engineering & Material Science, Duke University, Durham, NC, USA
| | | | - Nicola G Judge
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering & Material Science, Duke University, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Orthopedic Surgery, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
3
|
Li F, Ye J, Liu P, Jiang J, Chen X. An Overview on Bioactive Glasses for Bone Regeneration and Repair: Preparation, Reinforcement, and Applications. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 39761075 DOI: 10.1089/ten.teb.2024.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Synthetic bone transplantation has emerged in recent years as a highly promising strategy to address the major clinical challenge of bone tissue defects. In this field, bioactive glasses (BGs) have been widely recognized as a viable alternative to traditional bone substitutes due to their unique advantages, including favorable biocompatibility, pronounced bioactivity, excellent biodegradability, and superior osseointegration properties. This article begins with a comprehensive overview of the development and success of BGs in bone tissue engineering, and then focuses on their composite reinforcement systems with biodegradable metals, calcium-phosphorus (Ca-P)-based bioceramics, and biodegradable medical polymers, respectively. Moreover, the article outlines some frequently used manufacturing methods for three-dimensional BG-based bone bioscaffolds and highlights the remarkable achievements of these scaffolds in the field of bone defect repair in recent years. Lastly, based on the many potential challenges encountered in the preparation and application of BGs, a brief outlook on their future directions is presented. This review may help to provide new ideas for researchers to develop ideal BG-based bone substitutes for bone reconstruction and functional recovery.
Collapse
Affiliation(s)
- Fulong Li
- Materials Science and Engineering, School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Juelan Ye
- Biomedical Engineering, School of Health Science and Engineering, University of Shanghai for Science & Technology, Shanghai, China
| | - Ping Liu
- Materials Science and Engineering, School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Jiaqi Jiang
- Materials Science and Engineering, School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Xiaohong Chen
- Materials Science and Engineering, School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| |
Collapse
|
4
|
Shi Y, Wang Y, Yuan D, Yao Y. Synthesis of Rare Earth Metal Complexes Stabilized by Amine Bridged Bis(phenolato) Ligands and Their Performance in the Polymerization of rac-β-Butyrolactone. Chem Asian J 2024:e202400820. [PMID: 39219477 DOI: 10.1002/asia.202400820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
A series of rare earth alkoxides bearing amine-bridged bis(phenolato) ligands were synthesized through sequential reactions of RE(C5H5)3(THF) (RE = Y, Lu) or Nd[N(SiMe3)2]3 with bis(phenols) LH2 and CF3CH2OH. Complexes REL(OCH2CF3)(THF)n (1-6) bearing different aryl-substituents were obtained in good yields of 59-70 %. They were applied in the ring-opening polymerization (ROP) of rac-β-butyrolactone (rac-BBL), which showed good activity (TOF up to 27,300 h-1), resulting in syndiotactically enriched poly(3-hydroxybutyrate) (PHB) (Pr up to 0.86) with narrow polydispersities (PDI ≤ 1.27). The yttrium complex 3 bearing bulky o-1,1-diphenylethyl substituents outperformed other complexes, suggesting that the smaller ionic radii of metal centers and bulky ortho substituents of ancillary ligands play crucial roles in controlling the activity and stereoselectivity in ROP of rac-BBL. Kinetics of the polymerization of rac-BBL initiated by complex 3 was investigated, which revealed first order dependences on the monomer and initiator concentrations, respectively.
Collapse
Affiliation(s)
- Yize Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| | - Yanwei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| |
Collapse
|
5
|
Cheng-Tan MDL, Nguyen AN, Gordon CT, Wood ZA, Manjarrez Y, Fieser ME. Choline Halide-Based Deep Eutectic Solvents as Biocompatible Catalysts for the Alternating Copolymerization of Epoxides and Cyclic Anhydrides. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7246-7255. [PMID: 38757124 PMCID: PMC11094800 DOI: 10.1021/acssuschemeng.3c06766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Aliphatic polyesters have received considerable attention in recent years due to their biodegradability and biocompatible, mechanical, and thermal properties that can make them a suitable alternative to today's commercialized polymers. The ring-opening copolymerization (ROCOP) of epoxides and cyclic anhydrides is a route to synthesize a diverse array of polyesters that could be useful in many applications. However, the catalysts used rarely consider biocompatible catalysts in the case that any are left in the polymer. To the best of our knowledge, we report the first example of using deep eutectic solvents (DESs) as biocompatible catalysts for this target ROCOP with polymerization activity for at least six diverse monomer pairs. Choline halide salts are active for this polymerization, with dried salts showing polymerization slower than that of those conducted in air. Hydrogen bonding with water is hypothesized to enhance the rate-determining step of epoxide ring opening. While the presence of water improves the rate of polymerization, it also acts as a chain transfer agent, leading to smaller molar mass polymers than intended. Combining the choline halide salts with urea or ethylene glycol hydrogen bond donors in air led to DES catalysts that reacted similarly to the salts exposed to air. However, when generating these DESs in air-free conditions, they showed similar rates of polymerization without a drop in polymer molar mass. The hydrogen bonding provided by urea and ethylene glycol seems to promote the rate increase without serving as a chain transfer agent. Results reported herein display the promising potential of biocompatible catalyst systems for this ROCOP process as well as introducing the use of hydrogen bonding to enhance polymerization rates.
Collapse
Affiliation(s)
| | - Angelyn N. Nguyen
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Collette T. Gordon
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Zachary A. Wood
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Yvonne Manjarrez
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Megan E. Fieser
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Wrigley
Institute for Environment and Sustainability, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
6
|
Havlickova K, Kuzelova Kostakova E, Lisnenko M, Hauzerova S, Stuchlik M, Vrchovecka S, Vistejnova L, Molacek J, Lukas D, Prochazkova R, Horakova J, Jakubkova S, Heczkova B, Jencova V. The Impacts of the Sterilization Method and the Electrospinning Conditions of Nanofibrous Biodegradable Layers on Their Degradation and Hemocompatibility Behavior. Polymers (Basel) 2024; 16:1029. [PMID: 38674949 PMCID: PMC11053452 DOI: 10.3390/polym16081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The use of electrospun polymeric biodegradable materials for medical applications is becoming increasingly widespread. One of the most important parameters regarding the functionality of nanofiber scaffolds during implantation and the subsequent regeneration of damaged tissues concerns their stability and degradation behavior, both of which are influenced by a wide range of factors (the properties of the polymer and the polymer solution, the technological processing approach, the sterilization method, etc.). This study monitored the degradation of nanofibrous materials fabricated from degradable polyesters as a result of the sterilization method applied (ethylene oxide and gamma irradiation) and the solvent system used to prepare the spun polymer solution. Aliphatic polyesters PCL and PLCL were chosen for this study and selected with respect to the applicability and handling in the surgical setting of these nanofibrous materials for vascular bandaging. The results revealed that the choice of solvent system exerts a significant impact on degradation during sterilization, especially at higher gamma irradiation values. The subsequent enzyme-catalyzed degradation of the materials following sterilization indicated that the choice of the sterilization method influenced the degradation behavior of the materials. Whereas wave-like degradation was evident concerning ethylene oxide sterilization, no such behavior was observed following gamma-irradiation sterilization. With concern for some of the tested materials, the results also indicated the potential for influencing the development of degradation within the bulk versus degradation from the surface of the material. Both the sterilization method and the choice of the spinning solvent system were found to impact degradation, which was observed to be most accelerated in the case of PLCL (L-lactide-co-caprolactone copolymer) electrospun from organic acids and subsequently sterilized using gamma irradiation. Since we planned to use these materials in cardiovascular applications, it was decided that their hemocompatibility would also be tested. The results of these tests revealed that changes in the structures of the materials initiated by sterilization may exert thrombogenic and anticoagulant impacts. Moreover, the microscopic analysis suggested that the solvent system used in the preparation of the materials potentially affects the behavior of erythrocytes; however, no indication of the occurrence of hemolysis was detected.
Collapse
Affiliation(s)
- Kristyna Havlickova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Eva Kuzelova Kostakova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Maxim Lisnenko
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Sarka Hauzerova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Martin Stuchlik
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic; (M.S.); (S.V.)
| | - Stanislava Vrchovecka
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic; (M.S.); (S.V.)
| | - Lucie Vistejnova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; (L.V.); (J.M.)
| | - Jiri Molacek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; (L.V.); (J.M.)
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic
| | - David Lukas
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Renata Prochazkova
- Regional Hospital Liberec, Husova 357/28, 46001 Liberec, Czech Republic; (R.P.); (S.J.); (B.H.)
- Institute of Clinical Disciplines and Biomedicine, Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic
| | - Jana Horakova
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic;
| | - Sarka Jakubkova
- Regional Hospital Liberec, Husova 357/28, 46001 Liberec, Czech Republic; (R.P.); (S.J.); (B.H.)
| | - Bohdana Heczkova
- Regional Hospital Liberec, Husova 357/28, 46001 Liberec, Czech Republic; (R.P.); (S.J.); (B.H.)
| | - Vera Jencova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| |
Collapse
|
7
|
Wu J, Cortes KAF, Li C, Wang Y, Guo C, Momenzadeh K, Yeritsyan D, Hanna P, Lechtig A, Nazarian A, Lin SJ, Kaplan DL. Tuning the Biodegradation Rate of Silk Materials via Embedded Enzymes. ACS Biomater Sci Eng 2024; 10:2607-2615. [PMID: 38478959 DOI: 10.1021/acsbiomaterials.3c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Conventional thinking when designing biodegradable materials and devices is to tune the intrinsic properties and morphological features of the material to regulate their degradation rate, modulating traditional factors such as molecular weight and crystallinity. Since regenerated silk protein can be directly thermoplastically molded to generate robust dense silk plastic-like materials, this approach afforded a new tool to control silk degradation by enabling the mixing of a silk-degrading protease into bulk silk material prior to thermoplastic processing. Here we demonstrate the preparation of these silk-based devices with embedded silk-degrading protease to modulate the degradation based on the internal presence of the enzyme to support silk degradation, as opposed to the traditional surface degradation for silk materials. The degradability of these silk devices with and without embedded protease XIV was assessed both in vitro and in vivo. Ultimately, this new process approach provides direct control of the degradation lifetime of the devices, empowered through internal digestion via water-activated proteases entrained and stabilized during the thermoplastic process.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Kareen A Fajardo Cortes
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Kaveh Momenzadeh
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Diana Yeritsyan
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Philip Hanna
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Aron Lechtig
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Ara Nazarian
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Samuel J Lin
- Divisions of Plastic Surgery and Otolaryngology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
Axioti E, Dixon EG, Reynolds-Green M, Alexander ECH, Brugnoli B, Keddie DJ, Couturaud B, Suksiriworapong J, Swainson SME, Francolini I, Howdle SM, Jacob PL, Cavanagh RJ, Chauhan VM, Taresco V. Glycerol- and diglycerol-based polyesters: Evaluation of backbone alterations upon nano-formulation performance. Colloids Surf B Biointerfaces 2024; 236:113828. [PMID: 38452625 DOI: 10.1016/j.colsurfb.2024.113828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Despite the success of polyethylene glycol-based (PEGylated) polyesters in the drug delivery and biomedical fields, concerns have arisen regarding PEG's immunogenicity and limited biodegradability. In addition, inherent limitations, including limited chemical handles as well as highly hydrophobic nature, can restrict their effectiveness in physiological conditions of the polyester counterpart. To address these matters, an increasing amount of research has been focused towards identifying alternatives to PEG. One promising strategy involves the use of bio-derived polyols, such as glycerol. In particular, glycerol is a hydrophilic, non-toxic, untapped waste resource and as other polyols, can be incorporated into polyesters via enzymatic catalysis routes. In the present study, a systematic screening is conducted focusing on the incorporation of 1,6-hexanediol (Hex) (hydrophobic diol) into both poly(glycerol adipate) (PGA) and poly(diglycerol adipate) (PDGA) at different (di)glycerol:hex ratios (30:70; 50:50 and 70:30 mol/mol) and its effect on purification upon NPs formation. By varying the amphiphilicity of the backbone, we demonstrated that minor adjustments influence the NPs formation, NPs stability, drug encapsulation, and degradation of these polymers, despite the high chemical similarity. Moreover, the best performing materials have shown good biocompatibility in both in vitro and in vivo (whole organism) tests. As preliminary result, the sample containing diglycerol and Hex in a 70:30 ratio, named as PDGA-Hex 30%, has shown to be the most promising candidate in this small library analysed. It demonstrated comparable stability to the glycerol-based samples in various media but exhibited superior encapsulation efficiency of a model hydrophobic dye. This in-depth investigation provides new insights into the design and modification of biodegradable (di)glycerol-based polyesters, potentially paving the way for more effective and sustainable PEG-free drug delivery nano-systems in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Eleni Axioti
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Emily G Dixon
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | - Benedetta Brugnoli
- Dept. of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, Rome 00185, Italy
| | - Daniel J Keddie
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Benoit Couturaud
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), CNRS, University Paris Est Créteil, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | | | - Sadie M E Swainson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Iolanda Francolini
- Dept. of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, Rome 00185, Italy
| | - Steven M Howdle
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Philippa L Jacob
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Robert J Cavanagh
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Veeren M Chauhan
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Vincenzo Taresco
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
9
|
Koons GL, Kontoyiannis PD, Diaz-Gomez L, Elsarrag SZ, Scott DW, Diba M, Mikos AG. Influence of Polymeric Microparticle Size and Loading Concentration on 3D Printing Accuracy and Degradation Behavior of Composite Scaffolds. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e813-e827. [PMID: 38694834 PMCID: PMC11058418 DOI: 10.1089/3dp.2022.0208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Successful employment of 3D printing for delivery of therapeutic biomolecules requires protection of their bioactivity on exposure to potentially inactivating conditions. Although intermediary encapsulation of the biomolecules in polymeric particulate delivery vehicles is a promising strategy for this objective, the inclusion of such particles in 3D printing formulations may critically impact the accuracy or precision of 3D printed scaffolds relative to their intended designed architectures, as well as the degradation behavior of both the scaffolds and the included particles. The present work aimed to elucidate the effect of poly(d,l-lactic-co-glycolic acid) particle size and loading concentration on material accuracy, machine precision, and degradation of 3D printed poly(ɛ-caprolactone)-based scaffolds. Using a main effects analysis, the sizes and loading concentrations of particle delivery vehicles investigated were found to have neither a beneficial nor disadvantageous influence on the metrics of printing quality such as material accuracy and machine precision. Meanwhile, particle loading concentration was determined to influence degradation rate, whereas printing temperature affected the trends in composite weight-average molecular weight. Neither of the two particle-related parameters (concentration nor diameter) was found to exhibit a significant effect on intra-fiber nor inter-fiber porosity. These findings evidence the capacity for controlled loading of particulate delivery vehicles in 3D printed scaffolds while preserving construct accuracy and precision, and with predictable dictation of composite degradation behavior for potential controlled release of encapsulated biomolecules.
Collapse
Affiliation(s)
- Gerry L. Koons
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Panayiotis D. Kontoyiannis
- Department of Bioengineering, Rice University, Houston, Texas, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Luis Diaz-Gomez
- Department of Pharmacology, Pharmacy, and Pharmaceutical Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Selma Z. Elsarrag
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Quantitative and Computational Biology, Baylor College of Medicine, Houston, Texas, USA
| | - David W. Scott
- Department of Statistics, Rice University, Houston, Texas, USA
| | - Mani Diba
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | |
Collapse
|
10
|
Wang L, Li Y, Yang J, Wu Q, Liang S, Liu Z. Poly(Propylene Carbonate)-Based Biodegradable and Environment-Friendly Materials for Biomedical Applications. Int J Mol Sci 2024; 25:2938. [PMID: 38474185 DOI: 10.3390/ijms25052938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Poly(propylene carbonate) (PPC) is an emerging "carbon fixation" polymer that holds the potential to become a "biomaterial of choice" in healthcare owing to its good biocompatibility, tunable biodegradability and safe degradation products. However, the commercialization and wide application of PPC as a biomedical material are still hindered by its narrow processing temperature range, poor mechanical properties and hydrophobic nature. Over recent decades, several physical, chemical and biological modifications of PPC have been achieved by introducing biocompatible polymers, inorganic ions or small molecules, which can endow PPC with better cytocompatibility and desirable biodegradability, and thus enable various applications. Indeed, a variety of PPC-based degradable materials have been used in medical applications including medical masks, surgical gowns, drug carriers, wound dressings, implants and scaffolds. In this review, the molecular structure, catalysts for synthesis, properties and modifications of PPC are discussed. Recent biomedical applications of PPC-based biomaterials are highlighted and summarized.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Yumin Li
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jingde Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Qianqian Wu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Song Liang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
11
|
Hu C, Wang L, Liu S, Sheng X, Yin L. Recent Development of Implantable Chemical Sensors Utilizing Flexible and Biodegradable Materials for Biomedical Applications. ACS NANO 2024; 18:3969-3995. [PMID: 38271679 DOI: 10.1021/acsnano.3c11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.
Collapse
Affiliation(s)
- Chen Hu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
12
|
Patel R, Gómez-Cerezo MN, Huang H, Grøndahl L, Lu M. Degradation behaviour of porous poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) scaffolds in cell culture. Int J Biol Macromol 2024; 257:128644. [PMID: 38065444 DOI: 10.1016/j.ijbiomac.2023.128644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
Exploring the degradation behaviour of biomaterials in a complex in vitro physiological environment can assist in predicting their performance in vivo, yet this aspect remains largely unexplored. In this study, the in vitro degradation over 12 weeks of porous poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) bone scaffolds in human osteoblast (hOB) culture was investigated. The objective was to evaluate how the presence of cells influenced both the degradation behaviour and mechanical stability of these scaffolds. The molecular weight (Mw) of the scaffolds decreased with increasing incubation time and the Mw reduction rate (6.2 ± 0.4 kg mol-1 week-1) was similar to that observed when incubated in phosphate buffered saline (PBS) solution, implying that the scaffolds underwent hydrolytic degradation in hOB culture. The mass of the scaffolds increased by 0.8 ± 0.2 % in the first 4 weeks, attributed to cells attachment and extracellular matrix (ECM) deposition including biomineralisation. During the first 8 weeks, the nominal compressive modulus, E⁎, of the scaffolds remained constant. However, it increased significantly from Week 8 to 12, with increments of 55 % and 42 % in normal and lateral directions, respectively, attributed to the reinforcement effect of cells, ECM and minerals attached on the surface of the scaffold. This study has highlighted, that while the use of PBS in degradation studies is suitable for evaluating Mw changes it cannot predict changes in mechanical properties to PHBV scaffolds in the presence of cells and culture media. Furthermore, the PHBV scaffolds had mechanical stability in cell culture for 12 weeks validating their suitability for tissue engineering applications.
Collapse
Affiliation(s)
- Rushabh Patel
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Maria Natividad Gómez-Cerezo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Han Huang
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mingyuan Lu
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
13
|
Blanquer A, Kostakova EK, Filova E, Lisnenko M, Broz A, Mullerova J, Novotny V, Havlickova K, Jakubkova S, Hauzerova S, Heczkova B, Prochazkova R, Bacakova L, Jencova V. A novel bifunctional multilayered nanofibrous membrane combining polycaprolactone and poly (vinyl alcohol) enriched with platelet lysate for skin wound healing. NANOSCALE 2024; 16:1924-1941. [PMID: 38170860 DOI: 10.1039/d3nr04705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Skin wound healing is a complex physiological process that involves various cell types, growth factors, cytokines, and other bioactive compounds. In this study, a novel dual-function multilayered nanofibrous membrane is developed for chronic wound application. The membrane is composed of five alternating layers of polycaprolactone (PCL) and poly (vinyl alcohol) (PVA) nanofibers (PCL-PVA) with a dual function: the PCL nanofibrous layers allow cell adhesion and growth, and the PVA layers enriched with incorporated platelet lysate (PCL-PVA + PL) serve as a drug delivery system for continuous release of bioactive compounds from PL into an aqueous environment. The material is produced using a needleless multi-jet electrospinning approach which can lead to homogeneous large-scale production. The bioactive PCL-PVA + PL membranes are cytocompatible and hemocompatible. A spatially compartmented co-culture of three cell types involved in wound healing - keratinocytes, fibroblasts and endothelial cells - is used for cytocompatibility studies. PCL-PVA + PL membranes enhance the proliferation of all cell types and increase the migration of both fibroblasts and endothelial cells. The membranes are also hemocompatible without any deleterious effect for thrombogenicity, hemolysis and coagulation. Thus, the beneficial effect of the PCL-PVA + PL membrane is demonstrated in vitro, making it a promising scaffold for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Andreu Blanquer
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Spain.
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4-Krc, Czech Republic
| | - Eva Kuzelova Kostakova
- Technical University of Liberec, Faculty of Science, Humanities and Education, Studentska 1402/2, Liberec, 46117, Czech Republic
| | - Elena Filova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4-Krc, Czech Republic
| | - Maxim Lisnenko
- Technical University of Liberec, Faculty of Science, Humanities and Education, Studentska 1402/2, Liberec, 46117, Czech Republic
| | - Antonin Broz
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4-Krc, Czech Republic
| | - Jana Mullerova
- Technical University of Liberec, Faculty of Science, Humanities and Education, Studentska 1402/2, Liberec, 46117, Czech Republic
- The Institute for Nanomaterials, Advanced Technologies and Innovation, Bendlova 1409/7, Liberec, 460 01, Czech Republic
| | - Vit Novotny
- The Institute for Nanomaterials, Advanced Technologies and Innovation, Bendlova 1409/7, Liberec, 460 01, Czech Republic
| | - Kristyna Havlickova
- Technical University of Liberec, Faculty of Science, Humanities and Education, Studentska 1402/2, Liberec, 46117, Czech Republic
| | - Sarka Jakubkova
- Regional Hospital Liberec, Husova 357/28, Liberec, 460 01, Czech Republic
| | - Sarka Hauzerova
- Technical University of Liberec, Faculty of Science, Humanities and Education, Studentska 1402/2, Liberec, 46117, Czech Republic
| | - Bohdana Heczkova
- Regional Hospital Liberec, Husova 357/28, Liberec, 460 01, Czech Republic
| | - Renata Prochazkova
- Regional Hospital Liberec, Husova 357/28, Liberec, 460 01, Czech Republic
- Faculty of Health, Technical University of Liberec, Studentska 1402/2, Liberec, 461 17, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4-Krc, Czech Republic
| | - Vera Jencova
- Technical University of Liberec, Faculty of Science, Humanities and Education, Studentska 1402/2, Liberec, 46117, Czech Republic
| |
Collapse
|
14
|
Porello I, Bono N, Candiani G, Cellesi F. Advancing nucleic acid delivery through cationic polymer design: non-cationic building blocks from the toolbox. Polym Chem 2024; 15:2800-2826. [DOI: 10.1039/d4py00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The rational integration of non-cationic building blocks into cationic polymers can be devised to enhance the performance of the resulting gene delivery vectors, improving cell targeting behavior, uptake, endosomal escape, toxicity, and transfection efficiency.
Collapse
Affiliation(s)
- Ilaria Porello
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Nina Bono
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
15
|
Rolińska K, Bakhshi H, Balk M, Blocki A, Panwar A, Puchalski M, Wojasiński M, Mazurek-Budzyńska M. Electrospun Poly(carbonate-urea-urethane)s Nonwovens with Shape-Memory Properties as a Potential Biomaterial. ACS Biomater Sci Eng 2023; 9:6683-6697. [PMID: 38032398 PMCID: PMC10716822 DOI: 10.1021/acsbiomaterials.3c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Poly(carbonate-urea-urethane) (PCUU)-based scaffolds exhibit various desirable properties for tissue engineering applications. This study thus aimed to investigate the suitability of PCUU as polymers for the manufacturing of nonwoven mats by electrospinning, able to closely mimic the fibrous structure of the extracellular matrix. PCUU nonwovens of fiber diameters ranging from 0.28 ± 0.07 to 0.82 ± 0.12 μm were obtained with an average surface porosity of around 50-60%. Depending on the collector type and solution concentration, a broad range of tensile strengths (in the range of 0.3-9.6 MPa), elongation at break (90-290%), and Young's modulus (5.7-26.7 MPa) at room temperature of the nonwovens could be obtained. Furthermore, samples collected on the plate collector showed a shape-memory effect with a shape-recovery ratio (Rr) of around 99% and a shape-fixity ratio (Rf) of around 96%. Biological evaluation validated the inertness, stability, and lack of cytotoxicity of PCUU nonwovens obtained on the plate collector. The ability of mesenchymal stem cells (MSCs) and endothelial cells (HUVECs) to attach, elongate, and grow on the surface of the nonwovens suggests that the manufactured nonwovens are suitable scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Karolina Rolińska
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Hadi Bakhshi
- Department
of Life Science and Bioprocesses, Fraunhofer
Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Maria Balk
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Anna Blocki
- Institute
for Tissue Engineering and Regenerative Medicine, The Chinese University
of Hong Kong, Shatin, New Territories 999077, Hong Kong
- School of
Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong
- Center
for Neuromusculoskeletal Restorative Medicine, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong
| | - Amit Panwar
- Institute
for Tissue Engineering and Regenerative Medicine, The Chinese University
of Hong Kong, Shatin, New Territories 999077, Hong Kong
- School of
Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong
- Center
for Neuromusculoskeletal Restorative Medicine, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong
| | - Michał Puchalski
- Institute
of Material Science of Textiles and Polymer Composites, Faculty of
Material Technologies and Textile Design, Lodz University of Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland
| | - Michał Wojasiński
- Faculty
of Chemical and Process Engineering, Department of Biotechnology and
Bioprocess Engineering, Laboratory of Biomedical Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | | |
Collapse
|
16
|
Katebifar S, Arul M, Abdulmalik S, Yu X, Alderete JF, Kumbar SG. NOVEL HIGH-STRENGTH POLYESTER COMPOSITE SCAFFOLDS FOR BONE REGENERATION. POLYM ADVAN TECHNOL 2023; 34:3770-3791. [PMID: 38312483 PMCID: PMC10836609 DOI: 10.1002/pat.6178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/14/2023] [Indexed: 02/06/2024]
Abstract
Repair of critical sized bone defects, particularly in load-bearing areas, is a major clinical problem that requires surgical intervention and implantation of biological or engineered grafts. For load-bearing sites, it is essential to use engineered grafts that have both sufficient mechanical strength and appropriate pore properties to support bone repair and tissue regeneration. Unfortunately, the mechanical properties of such grafts are often compromised due to the creation of pores required to facilitate tissue ingrowth following implantation. To overcome the limitations associated with porous scaffolds and their reduced mechanical strength, we have developed a methodology for creating a solid structure that retains its bulk mechanical properties while also evolving into a porous structure in a biological environment through degradation and erosion. In this study, we utilized polyesters that have been approved by the FDA, including poly (lactic acid) (PLA), poly(glycolic acid) (PGA), their copolymer PLGA (PLGA, with a ratio of 85:15 and 50:50 of PLA:PGA), and poly(caprolactone) (PCL). These polymers and their ceramic composites with tricalcium phosphate (TCP) were compression molded into solid forms, which exhibited mechanical properties with compressive modulus as high as 2745 ± 364 MPa within the range of human trabecular bone and in the lower range of human cortical bone. The use of fast-degrading PLGA (50:50) and PGA as porogens allowed the formation of pores within the solid structures due to their degradation, and the TCP acts as a buffering agent to neutralize their acidic degradation byproducts. These scaffolds facilitated the growth of new blood vessels and tissue ingrowth in a subcutaneous implantation model. In addition, in a rat critical-sized mandibular bone defects these scaffolds supported bone growth with 70% of new bone volume fraction. Furthermore, the extent of bone regeneration was found to be higher for the scaffolds with bone morphogenic proteins (BMP2), indicating their suitability for bone repair and regeneration.
Collapse
Affiliation(s)
- Sara Katebifar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Michael Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Xiaojun Yu
- Department of Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Joseph F. Alderete
- Departments of Orthopedic Surgery, Brooke Army Medical Center, Joint Base San Antonio, Texas
| | - Sangamesh G. Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
17
|
S S, R G AP, Bajaj G, John AE, Chandran S, Kumar VV, Ramakrishna S. A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:62. [PMID: 37982917 PMCID: PMC10661719 DOI: 10.1007/s10856-023-06765-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023]
Abstract
3D printing technology is an emerging method that gained extensive attention from researchers worldwide, especially in the health and medical fields. Biopolymers are an emerging class of materials offering excellent properties and flexibility for additive manufacturing. Biopolymers are widely used in biomedical applications in biosensing, immunotherapy, drug delivery, tissue engineering and regeneration, implants, and medical devices. Various biodegradable and non-biodegradable polymeric materials are considered as bio-ink for 3d printing. Here, we offer an extensive literature review on the current applications of synthetic biopolymers in the field of 3D printing. A trend in the publication of biopolymers in the last 10 years are focused on the review by analyzing more than 100 publications. Their application and classification based on biodegradability are discussed. The various studies, along with their practical applications, are elaborated in the subsequent sections for polyethylene, polypropylene, polycaprolactone, polylactide, etc. for biomedical applications. The disadvantages of various biopolymers are discussed, and future perspectives like combating biocompatibility problems using 3D printed biomaterials to build compatible prosthetics are also discussed and the potential application of using resin with the combination of biopolymers to build customized implants, personalized drug delivery systems and organ on a chip technologies are expected to open a new set of chances for the development of healthcare and regenerative medicine in the future.
Collapse
Affiliation(s)
- Shiva S
- School of BioSciences and Technology, Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
| | - Asuwin Prabu R G
- School of BioSciences and Technology, Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gauri Bajaj
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Amy Elsa John
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sharan Chandran
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Vishnu Vijay Kumar
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
- Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
- Department of Mechanical and Industrial Engineering, Gadjah Mada University, Yogyakarta, 55281, Indonesia
- Department of Aerospace Engineering, Jain deemed to be University, Bangalore, India
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
18
|
Chytrosz-Wrobel P, Golda-Cepa M, Drozdz K, Rysz J, Kubisiak P, Kulig W, Brzychczy-Wloch M, Cwiklik L, Kotarba A. In Vitro and In Silico Studies of Functionalized Polyurethane Surfaces toward Understanding Biologically Relevant Interactions. ACS Biomater Sci Eng 2023; 9:6112-6122. [PMID: 37909715 PMCID: PMC10646850 DOI: 10.1021/acsbiomaterials.3c01367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
The solid-aqueous boundary formed upon biomaterial implantation provides a playground for most biochemical reactions and physiological processes involved in implant-host interactions. Therefore, for biomaterial development, optimization, and application, it is essential to understand the biomaterial-water interface in depth. In this study, oxygen plasma-functionalized polyurethane surfaces that can be successfully utilized in contact with the tissue of the respiratory system were prepared and investigated. Through experiments, the influence of plasma treatment on the physicochemical properties of polyurethane was investigated by atomic force microscopy, attenuated total reflection infrared spectroscopy, differential thermal analysis, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and contact angle measurements, supplemented with biological tests using the A549 cell line and two bacteria strains (Staphylococcus aureus and Pseudomonas aeruginosa). The molecular interpretation of the experimental findings was achieved by molecular dynamics simulations employing newly developed, fully atomistic models of unmodified and plasma-functionalized polyurethane materials to characterize the polyurethane-water interfaces at the nanoscale in detail. The experimentally obtained polar and dispersive surface free energies were consistent with the calculated free energies, verifying the adequacy of the developed models. A 20% substitution of the polymeric chain termini by their oxidized variants was observed in the experimentally obtained plasma-modified polyurethane surface, indicating the surface saturation with oxygen-containing functional groups.
Collapse
Affiliation(s)
- Paulina Chytrosz-Wrobel
- Faculty
of Chemistry, Jagiellonian University in
Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Monika Golda-Cepa
- Faculty
of Chemistry, Jagiellonian University in
Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kamil Drozdz
- Department
of Molecular Medical Microbiology, Chair of Microbiology, Faculty
of Medicine, Jagiellonian University Medical
College, Czysta 18, 31-121 Krakow, Poland
| | - Jakub Rysz
- Faculty
of Physics Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
| | - Piotr Kubisiak
- Faculty
of Chemistry, Jagiellonian University in
Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Waldemar Kulig
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Monika Brzychczy-Wloch
- Department
of Molecular Medical Microbiology, Chair of Microbiology, Faculty
of Medicine, Jagiellonian University Medical
College, Czysta 18, 31-121 Krakow, Poland
| | - Lukasz Cwiklik
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Andrzej Kotarba
- Faculty
of Chemistry, Jagiellonian University in
Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
19
|
Lamparelli DH, Villar-Yanez A, Dittrich L, Rintjema J, Bravo F, Bo C, Kleij AW. Bicyclic Guanidine Promoted Mechanistically Divergent Depolymerization and Recycling of a Biobased Polycarbonate. Angew Chem Int Ed Engl 2023:e202314659. [PMID: 37934031 DOI: 10.1002/anie.202314659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
We here report the organocatalytic and temperature-controlled depolymerization of biobased poly(limonene carbonate) providing access to its trans-configured cyclic carbonate as the major product. The base TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene) offers a unique opportunity to break down polycarbonates via end-group activation or main chain scission pathways as supported by various controls and computational analysis. These energetically competitive processes represent an unprecedented divergent approach to polycarbonate recycling. The trans limonene carbonate can be converted back to its polycarbonate via ring-opening polymerization using the same organocatalyst in the presence of an alcohol initiator, offering thus a potential circular and practical route for polycarbonate recycling.
Collapse
Affiliation(s)
- David H Lamparelli
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Alba Villar-Yanez
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Física i Inorgànica/, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Lorenz Dittrich
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Jeroen Rintjema
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Fernando Bravo
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Física i Inorgànica/, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
20
|
Stickdorn J, Czysch C, Medina-Montano C, Stein L, Xu L, Scherger M, Schild H, Grabbe S, Nuhn L. Peptide-Decorated Degradable Polycarbonate Nanogels for Eliciting Antigen-Specific Immune Responses. Int J Mol Sci 2023; 24:15417. [PMID: 37895096 PMCID: PMC10607756 DOI: 10.3390/ijms242015417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
For successful therapeutic interventions in cancer immunotherapy, strong antigen-specific immune responses are required. To this end, immunostimulating cues must be combined with antigens to simultaneously arrive at antigen-presenting cells and initiate cellular immune responses. Recently, imidazoquinolines have shown their vast potential as small molecular Toll-like receptor 7/8 (TLR7/8) agonists for immunostimulation when delivered by nanocarriers. At the same time, peptide antigens are promising antigen candidates but require combination with immune-stimulating adjuvants to boost their immunogenicity and exploit their full potential. Consequently, we herein present biodegradable polycarbonate nanogels as versatile delivery system for adjuvants within the particles' core as well as for peptide antigens by surface decoration. For that purpose, orthogonally addressable multifunctional polycarbonate block copolymers were synthesized, enabling adjuvant conjugation through reactive ester chemistry and peptide decoration by strain-promoted alkyne-azide cycloaddition (SPAAC). In preparation for SPAAC, CD4+-specific peptide sequences of the model protein antigen ovalbumin were equipped with DBCO-moieties by site-selective modification at their N-terminal cysteine. With their azide groups exposed on their surface, the adjuvant-loaded nanogels were then efficiently decorated with DBCO-functional CD4+-peptides by SPAAC. In vitro evaluation of the adjuvant-loaded peptide-decorated gels then confirmed their strong immunostimulating properties as well as their high biocompatibility. Despite their covalent conjugation, the CD4+-peptide-decorated nanogels led to maturation of primary antigen-presenting cells and the downstream priming of CD4+-T cells. Subsequently, the peptide-decorated nanogels loaded with TLR7/8 agonist were successfully processed by antigen-presenting cells, enabling potent immune responses for future application in antigen-specific cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Carolina Medina-Montano
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Lara Stein
- Institute of Immunology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Lujuan Xu
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | | | - Hansjörg Schild
- Institute of Immunology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Chair of Macromolecular Chemistry, Institute of Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
21
|
Fakhri V, Su CH, Tavakoli Dare M, Bazmi M, Jafari A, Pirouzfar V. Harnessing the power of polyol-based polyesters for biomedical innovations: synthesis, properties, and biodegradation. J Mater Chem B 2023; 11:9597-9629. [PMID: 37740402 DOI: 10.1039/d3tb01186k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Polyesters based on polyols have emerged as promising biomaterials for various biomedical applications, such as tissue engineering, drug delivery systems, and regenerative medicine, due to their biocompatibility, biodegradability, and versatile physicochemical properties. This review article provides an overview of the synthesis methods, performance, and biodegradation mechanisms of polyol-based polyesters, highlighting their potential for use in a wide range of biomedical applications. The synthesis techniques, such as simple polycondensation and enzymatic polymerization, allow for the fine-tuning of polyester structure and molecular weight, thereby enabling the tailoring of material properties to specific application requirements. The physicochemical properties of polyol-based polyesters, such as hydrophilicity, crystallinity, and mechanical properties, can be altered by incorporating different polyols. The article highlights the influence of various factors, such as molecular weight, crosslinking density, and degradation medium, on the biodegradation behavior of these materials, and the importance of understanding these factors for controlling degradation rates. Future research directions include the development of novel polyesters with improved properties, optimization of degradation rates, and exploration of advanced processing techniques for fabricating scaffolds and drug delivery systems. Overall, polyol-based polyesters hold significant potential in the field of biomedical applications, paving the way for groundbreaking advancements and innovative solutions that could revolutionize patient care and treatment outcomes.
Collapse
Affiliation(s)
- Vafa Fakhri
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Masoud Tavakoli Dare
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Maryam Bazmi
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliakbar Jafari
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Vahid Pirouzfar
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Kang M, Lee DM, Hyun I, Rubab N, Kim SH, Kim SW. Advances in Bioresorbable Triboelectric Nanogenerators. Chem Rev 2023; 123:11559-11618. [PMID: 37756249 PMCID: PMC10571046 DOI: 10.1021/acs.chemrev.3c00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 09/29/2023]
Abstract
With the growing demand for next-generation health care, the integration of electronic components into implantable medical devices (IMDs) has become a vital factor in achieving sophisticated healthcare functionalities such as electrophysiological monitoring and electroceuticals worldwide. However, these devices confront technological challenges concerning a noninvasive power supply and biosafe device removal. Addressing these challenges is crucial to ensure continuous operation and patient comfort and minimize the physical and economic burden on the patient and the healthcare system. This Review highlights the promising capabilities of bioresorbable triboelectric nanogenerators (B-TENGs) as temporary self-clearing power sources and self-powered IMDs. First, we present an overview of and progress in bioresorbable triboelectric energy harvesting devices, focusing on their working principles, materials development, and biodegradation mechanisms. Next, we examine the current state of on-demand transient implants and their biomedical applications. Finally, we address the current challenges and future perspectives of B-TENGs, aimed at expanding their technological scope and developing innovative solutions. This Review discusses advancements in materials science, chemistry, and microfabrication that can advance the scope of energy solutions available for IMDs. These innovations can potentially change the current health paradigm, contribute to enhanced longevity, and reshape the healthcare landscape soon.
Collapse
Affiliation(s)
- Minki Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Inah Hyun
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Najaf Rubab
- Department
of Materials Science and Engineering, Gachon
University, Seongnam 13120, Republic
of Korea
| | - So-Hee Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
23
|
Zhang Y, Lee G, Li S, Hu Z, Zhao K, Rogers JA. Advances in Bioresorbable Materials and Electronics. Chem Rev 2023; 123:11722-11773. [PMID: 37729090 DOI: 10.1021/acs.chemrev.3c00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Transient electronic systems represent an emerging class of technology that is defined by an ability to fully or partially dissolve, disintegrate, or otherwise disappear at controlled rates or triggered times through engineered chemical or physical processes after a required period of operation. This review highlights recent advances in materials chemistry that serve as the foundations for a subclass of transient electronics, bioresorbable electronics, that is characterized by an ability to resorb (or, equivalently, to absorb) in a biological environment. The primary use cases are in systems designed to insert into the human body, to provide sensing and/or therapeutic functions for timeframes aligned with natural biological processes. Mechanisms of bioresorption then harmlessly eliminate the devices, and their associated load on and risk to the patient, without the need of secondary removal surgeries. The core content focuses on the chemistry of the enabling electronic materials, spanning organic and inorganic compounds to hybrids and composites, along with their mechanisms of chemical reaction in biological environments. Following discussions highlight the use of these materials in bioresorbable electronic components, sensors, power supplies, and in integrated diagnostic and therapeutic systems formed using specialized methods for fabrication and assembly. A concluding section summarizes opportunities for future research.
Collapse
Affiliation(s)
- Yamin Zhang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuo Li
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ziying Hu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaiyu Zhao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Mechanical Engineering, Biomedical Engineering, Chemistry, Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
24
|
Wu Z, Wang L, Fan Y. Effect of static tensile stress on enzymatic degradation of poly(glycerol sebacate). J Biomed Mater Res A 2023; 111:1513-1524. [PMID: 37070726 DOI: 10.1002/jbm.a.37550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Poly(glycerol sebacate) (PGS) is an excellent scaffold material in tissue engineering due to good biocompatibility and tunable mechanical properties. The degradation properties of PGS have been primarily explored in static phosphate buffer solution or enzyme solution. It is vital to understand how the tensile stress affect the degradation rate. In this study, PGS was synthetized by melt polycondensation and its properties were characterized. Then an in vitro degradation device which could provide different constant tensile stresses was carefully designed and established, and the enzymatic degradation of PGS was tested under 0-150 kPa at 37°C. It was found that holes of PGS surface arranged almost parallel to each other and perpendicular to the direction of tensile stresses at 100 kPa and 150 kPa after 2-4 days degradation. After 8 days degradation, the ultimate tensile strength (UTS) of PGS at 150 kPa was 0.28 MPa and the elastic modulus was 1.11 MPa, while the UTS of PGS was 0.44 MPa and the elastic modulus was 1.63 MPa before degradation, both of them have significant differences. Hence, the tensile stress and degradation time were proportional to the appear time and size of holes, leading to the decrease of mass loss, UTS and elastic modulus. The relationship between stress and PGS degradation rates was quantitatively described through our degradation experiments, providing guidance for suitable PGS applications in the future.
Collapse
Affiliation(s)
- Zebin Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
25
|
Ota T, Montagna V, Higuchi Y, Kato T, Tanaka M, Sardon H, Fukushima K. Organocatalyzed ring-opening reactions of γ-carbonyl-substituted ε-caprolactones. RSC Adv 2023; 13:27764-27771. [PMID: 37731833 PMCID: PMC10507672 DOI: 10.1039/d3ra01025b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
Side-chain-functionalized aliphatic polyesters are promising as functional biodegradable polymers. We have investigated ring-opening reactions of γ-carbonyl-substituted ε-caprolactones (gCCLs) to obtain poly(ε-caprolactone) (PCL) analogues. Organic catalysts and Sn(Oct)2 often used for the ring-opening polymerization (ROP) of ε-caprolactone (CL) have been explored to find the conditions for the formation of polymeric products of gCCLs. We confirmed the consumption of gCCLs in all catalyzed reactions. However, chain propagation hardly occurs, as the propagating species are preferentially transformed to α-substituted five-membered lactones when the substituents are linked by ester or not sterically hindered. Intramolecular cyclization to form thermodynamically stable five-membered lactones releases alcohols and amines, serving as nucleophiles for the subsequent ring opening of other gCCLs. Thus, apparent chain reactions are realized for continuous consumption of gCCLs. The reaction preference remains unchanged independent of the catalysts, although the reactions of the amide-linked gCCLs by acidic catalysts are slightly mitigated. Finally, copolymerization of CL and a gCCL catalyzed by diphenyl phosphate has been investigated, which enables the chain propagation reaction to yield the linear oligomers of PCL analogues containing up to 16 mol% of gCCL units. This study contributes to understanding the chemistry of ring-opening reactions of substituted lactones for designing functional degradable polymers.
Collapse
Affiliation(s)
- Takayuki Ota
- Graduate School of Science and Engineering, Yamagata University Yamagata 992-8510 Japan
| | - Valentina Montagna
- Graduate School of Organic Materials Science, Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Yuji Higuchi
- Research Institute for Information Technology, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Kazuki Fukushima
- Graduate School of Organic Materials Science, Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Japan Science and Technology Agency (JST), PRESTO 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
26
|
Fung SL, Cohen JP, Pashuck ET, Miles CE, Freeman JW, Kohn J. Rational design of poly(peptide-ester) block copolymers for enzyme-specific surface resorption. J Mater Chem B 2023; 11:6621-6633. [PMID: 37358375 PMCID: PMC10519181 DOI: 10.1039/d3tb00265a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Tissue resorption and remodeling are pivotal steps in successful healing and regeneration, and it is important to design biomaterials that are responsive to regenerative processes in native tissue. The cell types responsible for remodeling, such as macrophages in the soft tissue wound environment and osteoclasts in the bone environment, utilize a class of enzymes called proteases to degrade the organic matrix. Many hydrophobic thermoplastics used in tissue regeneration are designed to degrade and resorb passively through hydrolytic mechanisms, leaving the potential of proteolytic-guided degradation underutilized. Here, we report the design and synthesis of a tyrosol-derived peptide-polyester block copolymer where protease-mediated resorption is tuned through changing the chemistry of the base polymer backbone and protease specificity is imparted through incorporation of specific peptide sequences. Quartz crystal microbalance was used to quantify polymer surface resorption upon exposure to various enzymes. Aqueous solubility of the diacids and the thermal properties of the resulting polymer had a significant effect on enzyme-mediated polymer resorption. While peptide incorporation at 2 mol% had little effect on the final thermal and physical properties of the block copolymers, its incorporation improved polymer resorption significantly in a peptide sequence- and protease-specific manner. To our knowledge, this is the first example of a peptide-incorporated linear thermoplastic with protease-specific sensitivity reported in the literature. The product is a modular system for engineering specificity in how polyesters can resorb under physiological conditions, thus providing a potential framework for improving vascularization and integration of biomaterials used in tissue engineering.
Collapse
Affiliation(s)
- Stephanie L Fung
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Jarrod P Cohen
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - E Thomas Pashuck
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18018, USA
| | - Catherine E Miles
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
27
|
Zhang M, Zhang C, Zhang P, Liang Z. Study of Preparation and Properties of Stereoregular Poly(cyclohexenylene carbonate). Molecules 2023; 28:5235. [PMID: 37446895 DOI: 10.3390/molecules28135235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Fixing carbon dioxide as a polymer material is an effective and environmentally beneficial approach for reducing the harm of CO2 greenhouse gas. In this paper, carbon dioxide and cyclohexene oxide were used as co-monomers, and a chiral binuclear cobalt complex with a biphenyl linker was employed as the catalyst to successfully prepare a poly(cyclohexenylene carbonate) with high stereoregularity. The influence of catalyst structure, CO2 pressure, and operating temperature on the copolymerization rate and polymer structure were systematically investigated. Optimal catalyst structure and operating conditions were determined, resulting in an excellent poly(cyclohexenylene carbonate) with a stereoregularity as high as 93.5%. Performance testing revealed that the polyester had a molecular weight of approximately 20 kg/mol, a glass transition temperature of 129.7 °C, an onset decomposition temperature of 290 °C, and a tensile strength of 42.8 MPa. These results demonstrate high thermal stability and mechanical strength, indicating the potential for expanding the applications of aliphatic polycarbonate materials.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Coking Coal Resources Development and Comprehensive Utilization, Pingdingshan 467002, China
| | - Chengqian Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Pengyuan Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengyong Liang
- State Key Laboratory of Coking Coal Resources Development and Comprehensive Utilization, Pingdingshan 467002, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
28
|
G Engler L, Farias NC, S Crespo J, Gately NM, Major I, Pezzoli R, Devine DM. Designing Sustainable Polymer Blends: Tailoring Mechanical Properties and Degradation Behaviour in PHB/PLA/PCL Blends in a Seawater Environment. Polymers (Basel) 2023; 15:2874. [PMID: 37447519 DOI: 10.3390/polym15132874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Biodegradable polyesters are a popular choice for both packaging and medical device manufacture owing to their ability to break down into harmless components once they have completed their function. However, commonly used polyesters such as poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL), while readily available and have a relatively low price compared to other biodegradable polyesters, do not meet the degradation profiles required for many applications. As such, this study aimed to determine if the mechanical and degradation properties of biodegradable polymers could be tailored by blending different polymers. The seawater degradation mechanisms were evaluated, revealing surface erosion and bulk degradation in the blends. The extent of degradation was found to be dependent on the specific chemical composition of the polymer and the blend ratio, with degradation occurring via hydrolytic, enzymatic, oxidative, or physical pathways. PLA presents the highest tensile strength (67 MPa); the addition of PHB and PCL increased the flexibility of the samples; however, the tensile strength reduced to 25.5 and 18 MPa for the blends 30/50/20 and 50/25/25, respectively. Additionally, PCL presented weight loss of up to 10 wt.% and PHB of up to 6 wt.%; the seawater degradation in the blends occurs by bulk and surface erosion. The blending process facilitated the flexibility of the blends, enabling their use in diverse industrial applications such as medical devices and packaging. The proposed methodology produced biodegradable blends with tailored properties within a seawater environment. Additionally, further tests that fully track the biodegradation process should be put in place; incorporating compatibilizers might promote the miscibility of different polymers, improving their mechanical properties and biodegradability.
Collapse
Affiliation(s)
- Leonardo G Engler
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland
- Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, Francisco Getúlio Vargas Street, 1130, Caxias do Sul 95070-560, Brazil
| | - Naiara C Farias
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland
| | - Janaina S Crespo
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland
- Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, Francisco Getúlio Vargas Street, 1130, Caxias do Sul 95070-560, Brazil
| | - Noel M Gately
- Applied Polymer Technologies Gateway, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland
| | - Ian Major
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland
| | - Romina Pezzoli
- Applied Polymer Technologies Gateway, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland
| | - Declan M Devine
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland
| |
Collapse
|
29
|
Kirchhecker S, Nguyen N, Reichert S, Lützow K, Eselem Bungu PS, Jacobi von Wangelin A, Sandl S, Neffe AT. Iron(ii) carboxylates and simple carboxamides: an inexpensive and modular catalyst system for the synthesis of PLLA and PLLA-PCL block copolymers. RSC Adv 2023; 13:17102-17113. [PMID: 37293470 PMCID: PMC10244980 DOI: 10.1039/d3ra03112h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
The combination of inexpensive Fe(ii) acetate with low molecular weight aliphatic carboxamides in situ generates an effective catalyst system for the ring opening polymerisation of lactones. PLLAs were produced in melt conditions with molar masses of up to 15 kg mol-1, narrow dispersity (Đ = 1.03), and without racemisation. The catalytic system was investigated in detail with regard to Fe(ii) source, and steric and electronic effects of the amide's substituents. Furthermore, the synthesis of PLLA-PCL block copolymers of very low randomness was achieved. This commercially available, inexpensive, modular, and user-friendly catalyst mixture may be suitable for polymers with biomedical applications.
Collapse
Affiliation(s)
- Sarah Kirchhecker
- Institute of Active Polymers, Helmholtz-Zentrum Hereon Kantstr. 55 14513 Teltow Germany
| | - Ngoc Nguyen
- Institute for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 55 20146 Hamburg Germany
| | - Stefan Reichert
- Department of Chemistry, University of Hamburg Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Karola Lützow
- Institute of Active Polymers, Helmholtz-Zentrum Hereon Kantstr. 55 14513 Teltow Germany
| | - Paul S Eselem Bungu
- Institute of Active Polymers, Helmholtz-Zentrum Hereon Kantstr. 55 14513 Teltow Germany
| | | | - Sebastian Sandl
- Department of Chemistry, University of Hamburg Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Axel T Neffe
- Institute of Active Polymers, Helmholtz-Zentrum Hereon Kantstr. 55 14513 Teltow Germany
- Institute for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 55 20146 Hamburg Germany
| |
Collapse
|
30
|
Tong Z, Xie Y, Arno MC, Zhang Y, Manners I, O'Reilly RK, Dove AP. Uniform segmented platelet micelles with compositionally distinct and selectively degradable cores. Nat Chem 2023; 15:824-831. [PMID: 37081206 PMCID: PMC10239731 DOI: 10.1038/s41557-023-01177-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/08/2023] [Indexed: 04/22/2023]
Abstract
The creation of nanoparticles with controlled and uniform dimensions and spatially defined functionality is a key challenge. The recently developed living crystallization-driven self-assembly (CDSA) method has emerged as a promising route to one-dimensional (1D) and 2D core-shell micellar assemblies by seeded growth of polymeric and molecular amphiphiles. However, the general limitation of the epitaxial growth process to a single core-forming chemistry is an important obstacle to the creation of complex nanoparticles with segmented cores of spatially varied composition that can be subsequently exploited in selective transformations or responses to external stimuli. Here we report the successful use of a seeded growth approach that operates for a variety of different crystallizable polylactone homopolymer/block copolymer blend combinations to access 2D platelet micelles with compositionally distinct segmented cores. To illustrate the utility of controlling internal core chemistry, we demonstrate spatially selective hydrolytic degradation of the 2D platelets-a result that may be of interest for the design of complex stimuli-responsive particles for programmed-release and cargo-delivery applications.
Collapse
Affiliation(s)
- Zaizai Tong
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, P. R. China
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Maria C Arno
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada.
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
31
|
Barber VJ, Borden MA, Alty JW, Tran LD, Koerner H, Baldwin LA, Alexanian EJ, Leibfarth FA. Modifying Poly(caprolactone) Degradation through C-H Functionalization. Macromolecules 2023; 56:3679-3686. [PMID: 39371199 PMCID: PMC11452164 DOI: 10.1021/acs.macromol.3c00125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
There is a growing need for degradable polymers for applications in sustainable plastics and medical implants. To enhance the utility of degradable polymers, both better understanding of the factors that influence their degradation and new tools to modulate degradation are needed. We report the C-H xanthylation of poly(caprolactone), a biodegradable polyester, which results in changes in materials properties even at small incorporations. Despite the functionalized materials exhibiting a decrease in crystallinity and hydrophobicity, xanthylated poly(caprolactone) degrades more slowly than its unfunctionalized counterpart. To understand this rate difference, kinetic studies with a small-molecule surrogate were performed and demonstrated that functionalization adjacent to the hydrolyzable ester functional group led to slower degradation. This study illustrates how the interplay between molecular and materials characteristics can impact degradation.
Collapse
Affiliation(s)
- Victoria J Barber
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Meredith A Borden
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jill W Alty
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ly D Tran
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Hilmar Koerner
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Luke A Baldwin
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Erik J Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frank A Leibfarth
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
32
|
Sun Q, Yang Z, Qi X. Design and Application of Hybrid Polymer-Protein Systems in Cancer Therapy. Polymers (Basel) 2023; 15:polym15092219. [PMID: 37177365 PMCID: PMC10181109 DOI: 10.3390/polym15092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Polymer-protein systems have excellent characteristics, such as non-toxic, non-irritating, good water solubility and biocompatibility, which makes them very appealing as cancer therapeutics agents. Inspiringly, they can achieve sustained release and targeted delivery of drugs, greatly improving the effect of cancer therapy and reducing side effects. However, many challenges, such as reducing the toxicity of materials, protecting the activities of proteins and controlling the release of proteins, still need to be overcome. In this review, the design of hybrid polymer-protein systems, including the selection of polymers and the bonding forms of polymer-protein systems, is presented. Meanwhile, vital considerations, including reaction conditions and the release of proteins in the design process, are addressed. Then, hybrid polymer-protein systems developed in the past decades for cancer therapy, including targeted therapy, gene therapy, phototherapy, immunotherapy and vaccine therapy, are summarized. Furthermore, challenges for the hybrid polymer-protein systems in cancer therapy are exemplified, and the perspectives of the field are covered.
Collapse
Affiliation(s)
- Qi Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
| | - Zhenzhen Yang
- Drug Clinical Trial Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Xianrong Qi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
33
|
Jackson CE, Ramos-Rodriguez DH, Farr NTH, English WR, Green NH, Claeyssens F. Development of PCL PolyHIPE Substrates for 3D Breast Cancer Cell Culture. Bioengineering (Basel) 2023; 10:bioengineering10050522. [PMID: 37237592 DOI: 10.3390/bioengineering10050522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is a becoming a huge social and economic burden on society, becoming one of the most significant barriers to life expectancy in the 21st century. In particular, breast cancer is one of the leading causes of death for women. One of the most significant difficulties to finding efficient therapies for specific cancers, such as breast cancer, is the efficiency and ease of drug development and testing. Tissue-engineered (TE) in vitro models are rapidly developing as an alternative to animal testing for pharmaceuticals. Additionally, porosity included within these structures overcomes the diffusional mass transfer limit whilst enabling cell infiltration and integration with surrounding tissue. Within this study, we investigated the use of high-molecular-weight polycaprolactone methacrylate (PCL-M) polymerised high-internal-phase emulsions (polyHIPEs) as a scaffold to support 3D breast cancer (MDA-MB-231) cell culture. We assessed the porosity, interconnectivity, and morphology of the polyHIPEs when varying mixing speed during formation of the emulsion, successfully demonstrating the tunability of these polyHIPEs. An ex ovo chick chorioallantoic membrane assay identified the scaffolds as bioinert, with biocompatible properties within a vascularised tissue. Furthermore, in vitro assessment of cell attachment and proliferation showed promising potential for the use of PCL polyHIPEs to support cell growth. Our results demonstrate that PCL polyHIPEs are a promising material to support cancer cell growth with tuneable porosity and interconnectivity for the fabrication of perfusable 3D cancer models.
Collapse
Affiliation(s)
- Caitlin E Jackson
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | | | - Nicholas T H Farr
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | - William R English
- Norwich Medical School, University of East Anglia, Norwich NR3 7TJ, UK
| | - Nicola H Green
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | - Frederik Claeyssens
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
34
|
Grimaldi I, Santulli F, Lamberti M, Mazzeo M. Chromium Complexes Supported by Salen-Type Ligands for the Synthesis of Polyesters, Polycarbonates, and Their Copolymers through Chemoselective Catalysis. Int J Mol Sci 2023; 24:ijms24087642. [PMID: 37108806 PMCID: PMC10144741 DOI: 10.3390/ijms24087642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Salen, Salan, and Salalen chromium (III) chloride complexes have been investigated as catalysts for the ring-opening copolymerization reactions of cyclohexene oxide (CHO) with CO2 and of phthalic anhydride (PA) with limonene oxide (LO) or cyclohexene oxide (CHO). In the production of polycarbonates, the more flexible skeleton of salalen and salan ancillary ligands favors high activity. Differently, in the copolymerization of phthalic anhydride with the epoxides, the salen complex showed the best performance. Diblock polycarbonate-polyester copolymers were selectively obtained by one-pot procedures from mixtures of CO2, cyclohexene oxide, and phthalic anhydride with all complexes. In addition, all chromium complexes were revealed to be very active in the chemical depolymerization of polycyclohexene carbonate producing cyclohexene oxide with high selectivity, thus offering the opportunity to close the loop on the life of these materials.
Collapse
Affiliation(s)
- Ilaria Grimaldi
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Federica Santulli
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Marina Lamberti
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Mina Mazzeo
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
35
|
Chanthaset N, Maehara A, Ajiro H. Particles and film preparation of ester-free type poly(trimethylene carbonate) derivatives bearing aromatic groups initiated with hydrophilic initiators. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
36
|
Samatya Yılmaz S, Aytac A. The highly absorbent polyurethane/polylactic acid blend electrospun tissue scaffold for dermal wound dressing. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-022-04633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Hu S, Liu L, Li H, Pahovnik D, Hadjichristidis N, Zhou X, Zhao J. Tuning the Properties of Ester-Based Degradable Polymers by Inserting Epoxides into Poly(ϵ-caprolactone). Chem Asian J 2023; 18:e202201097. [PMID: 36424185 DOI: 10.1002/asia.202201097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/08/2022] [Indexed: 11/26/2022]
Abstract
A series of ester-ether copolymers were obtained via the reaction between α,ω-dihydroxyl poly(ϵ-caprolactone) (PCL) and ethylene oxide (EO) or monosubstituted epoxides catalyzed by strong phosphazene bases. The two types of monomeric units were distributed in highly random manners due to the concurrence of epoxide ring-opening and fast transesterification reactions. The substituent of epoxide showed an interesting bidirectional effect on the enzymatic degradability of the copolymer. Compared with PCL, copolymers derived from EO exhibited enhanced hydrophilicity and decreased crystallinity which then resulted in higher degradability. For the copolymers derived from propylene oxide and 1,2-butylene oxide, the hydrophobic alkyl pendant groups also allowed lower crystallinity of the copolymers thus higher degradation rates. However, further enlarging the pendant groups by using styrene oxide or 2-ethylhexyl glycidyl ether caused a decrease in the degradation rate, which might be ascribed to the higher bulkiness hindering the contact of ester groups with lipase.
Collapse
Affiliation(s)
- Shuangyan Hu
- Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, P. R. China.,Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, P. R. China.,College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, P. R. China
| | - Lijun Liu
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Heng Li
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Saudi Arabia
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, P. R. China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| |
Collapse
|
38
|
Xu PY, Liu TY, Huang D, Zhen ZC, Lu B, Li X, Zheng WZ, Zhang ZY, Wang GX, Ji JH. Enhanced degradability of novel PBATCL copolyester: study on the performance in different environment and exploration of mechanism. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Wood ZA, Fieser ME. Understanding differences in rate versus product determining steps to enhance sequence control in epoxide/cyclic anhydride copolymers. Polym Chem 2023. [DOI: 10.1039/d3py00048f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
One-pot synthesis of random, gradient, and block polyesters via the ring opening copolymerization of epoxides and cyclic anhydrides is investigated using simple yttrium salt catalysts. Impact of rate versus product determining steps is discussed.
Collapse
Affiliation(s)
- Zachary A. Wood
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| | - Megan E. Fieser
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, USA
- Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|
40
|
Tahir N, Sharifi F, Khan TA, Khan MM, Madni A, Rehman M. Microfluidics: A versatile tool for developing, optimizing, and delivering nanomedicines. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
41
|
Meghana MC, Nandhini C, Benny L, George L, Varghese A. A road map on synthetic strategies and applications of biodegradable polymers. Polym Bull (Berl) 2022; 80:1-50. [PMID: 36530484 PMCID: PMC9735231 DOI: 10.1007/s00289-022-04565-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 12/14/2022]
Abstract
Biodegradable polymers have emerged as fascinating materials due to their non-toxicity, environmentally benign nature and good mechanical strength. The toxic effects of non-biodegradable plastics paved way for the development of sustainable and biodegradable polymers. The engineering of biodegradable polymers employing various strategies like radical ring opening polymerization, enzymatic ring opening polymerization, anionic ring opening polymerization, photo-initiated radical polymerization, chemoenzymatic method, enzymatic polymerization, ring opening polymerization and coordinative ring opening polymerization have been discussed in this review. The application of biodegradable polymeric nanoparticles in the biomedical field and cosmetic industry is considered to be an emerging field of interest. However, this review mainly highlights the applications of selected biodegradable polymers like polylactic acid, poly(ε-caprolactone), polyethylene glycol, polyhydroxyalkanoates, poly(lactide-co-glycolide) and polytrimethyl carbonate in various fields like agriculture, biomedical, biosensing, food packaging, automobiles, wastewater treatment, textile and hygiene, cosmetics and electronic devices.
Collapse
Affiliation(s)
- M. C. Meghana
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - C. Nandhini
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Libina Benny
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| |
Collapse
|
42
|
Functional polyesters via ring-opening copolymerization of α–hydroxy–γ–butyrolactone and ε-caprolactone: La[N(SiMe3)2]3 as an efficient coordination-insertion catalyst. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Ultra-toughened poly(glycolic acid)-based blends with controllable hydrolysis behavior fabricated via reactive compatibilization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Liu Y, Li X, Liang A. Current research progress of local drug delivery systems based on biodegradable polymers in treating chronic osteomyelitis. Front Bioeng Biotechnol 2022; 10:1042128. [PMID: 36507256 PMCID: PMC9729283 DOI: 10.3389/fbioe.2022.1042128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic osteomyelitis is one of the most challenging diseases in orthopedic treatment. It is usually treated with intravenous antibiotics and debridement in clinical practice, which also brings systemic drug side effects and bone defects. The local drug delivery system of antibiotics has the characteristics of targeted slow release to the lesion site, replacing systemic antibiotics and reducing the toxic and side effects of drugs. It can also increase the local drug concentration, achieve sound bacteriostatic effects, and promote bone healing and formation. Currently, PMMA beads are used in treating chronic osteomyelitis at home and abroad, but the chain beads need to be removed after a second operation, inconveniences patients. Biodegradable materials have been extensively studied as optimal options for antibiotic encapsulation and delivery, bringing new hope for treating chronic osteomyelitis. This article reviews the research progress of local drug delivery systems based on biodegradable polymers, including natural and synthetic ones, in treating chronic osteomyelitis.
Collapse
Affiliation(s)
- Yixiu Liu
- Department of Orthopaedics, The Central Hospital Affiliated to Shenyang Medical College, Shenyang, China,Shenyang Clinical Research Center for Hand and Foot, Shenyang, China
| | - Xu Li
- Department of Orthopaedics, The Central Hospital Affiliated to Shenyang Medical College, Shenyang, China,Shenyang Clinical Research Center for Hand and Foot, Shenyang, China
| | - A. Liang
- Department of Orthopaedics, The Central Hospital Affiliated to Shenyang Medical College, Shenyang, China,Shenyang Clinical Research Center for Hand and Foot, Shenyang, China,*Correspondence: A. Liang,
| |
Collapse
|
45
|
Fukushima K, Watanabe Y, Ueda T, Nakai S, Kato T. Organocatalytic depolymerization of poly(trimethylene carbonate). JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Kazuki Fukushima
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
- Japan Science and Technology Agency (JST), PRESTO Saitama Japan
| | - Yuya Watanabe
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
| | - Tetsuya Ueda
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
| | - So Nakai
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
- Research Initiative for Supra‐Materials Shinshu University Nagano Japan
| |
Collapse
|
46
|
Watanabe Y, Kato R, Fukushima K, Kato T. Degradable and Nanosegregated Elastomers with Multiblock Sequences of Biobased Aromatic Mesogens and Biofunctional Aliphatic Oligocarbonates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yuya Watanabe
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Riki Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuki Fukushima
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Japan Science and Technology Agency (JST), PRESTO, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
47
|
Liu H, You F, Hu X, Huo Y, Shi X. Rare-Earth Metal Complexes Bearing Unsymmetrical Diarylamido Ligands for Ring-Opening Polymerization of rac-Lactide. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hui Liu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| | - Fen You
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| | - Xiang Hu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| | - Yanchen Huo
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| | - Xiaochao Shi
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| |
Collapse
|
48
|
Sachi Das S, Singh SK, Verma PRP, Gahtori R, Sibuh BZ, Kesari KK, Jha NK, Dhanasekaran S, Thakur VK, Wong LS, Djearamane S, Gupta PK. Polyester nanomedicines targeting inflammatory signaling pathways for cancer therapy. Biomed Pharmacother 2022; 154:113654. [PMID: 36067568 DOI: 10.1016/j.biopha.2022.113654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/09/2022] Open
Abstract
The growth of cancerous cells and their responses towards substantial therapeutics are primarily controlled by inflammations (acute and chronic) and inflammation-associated products, which either endorse or repress tumor progression. Additionally, major signaling pathways, including NF-κB, STAT3, inflammation-causing factors (cytokines, TNF-α, chemokines), and growth-regulating factors (VEGF, TGF-β), are vital regulators responsible for the instigation and resolution of inflammations. Moreover, the conventional chemotherapeutics have exhibited diverse limitations, including poor pharmacokinetics, unfavorable chemical properties, poor targetability to the disease-specific disease leading to toxicity; thus, their applications are restricted in inflammation-mediated cancer therapy. Furthermore, nanotechnology has demonstrated potential benefits over conventional chemotherapeutics, such as it protected the incorporated drug/bioactive moiety from enzymatic degradation within the systemic circulation, improving the physicochemical properties of poorly aqueous soluble chemotherapeutic agents, and enhancing their targetability in specified carcinogenic cells rather than accumulating in the healthy cells, leading reduced cytotoxicity. Among diverse nanomaterials, polyester-based nanoparticulate delivery systems have been extensively used to target various inflammation-mediated cancers. This review summarizes the therapeutic potentials of various polyester nanomaterials (PLGA, PCL, PLA, PHA, and others)-based delivery systems targeting multiple signaling pathways related to inflammation-mediated cancer.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India; School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India.
| | - P R P Verma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Kumaun University, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Kavindra Kumar Kesari
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland; Department of Applied Physics, Aalto University, Espoo, Finland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Sugapriya Dhanasekaran
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, SRUC, Edinburgh EH9 3JG, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia.
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia.
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India.
| |
Collapse
|
49
|
Poly(Lactic Acid) Block Copolymers with Poly(Hexylene Succinate) as Microparticles for Long-Acting Injectables of Risperidone Drug. Polymers (Basel) 2022; 14:polym14194111. [PMID: 36236058 PMCID: PMC9571843 DOI: 10.3390/polym14194111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
In the present work, Risperidone microparticles from poly(lactic acid)/poly(hexylene succinate) (PLA-b-PHSu) block copolymers in different ratios, 95/05, 90/10 and 80/20 w/w, were examined as long-acting injectable formulations. Nuclear magnetic resonance (NMR) was used to verify the successful synthesis of copolymers. Enzymatic hydrolysis showed an increase in weight loss as the content of PHSu increased, while the cytotoxicity studies confirmed the biocompatibility of the copolymers. The polyesters were further used to encapsulate Risperidone by spray drying. The drug-loaded microparticles were studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). SEM microphotographs confirmed that spherically shaped microparticles were prepared with sizes about 5-12 μm, while XRD and differential scanning calorimetry (DSC) studies evidenced that Risperidone was encapsulated in amorphous form. The drug loading and the entrapment efficiency of Risperidone were studied as well as the in vitro release from the prepared microparticles. As the content of PHSu increased, a higher release of Risperidone was observed, with PLA-b-PHSu 80/20 w/w succeeding to release 100% of RIS within 12 days. According to theoretical modeling, the kinetics of RIS release from PLA-b-PHSu microparticles is complex, governed by both diffusion and polymer erosion.
Collapse
|
50
|
Zhai Z, Du X, Long Y, Zheng H. Biodegradable polymeric materials for flexible and degradable electronics. FRONTIERS IN ELECTRONICS 2022. [DOI: 10.3389/felec.2022.985681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biodegradable electronics have great potential to reduce the environmental footprint of electronic devices and to avoid secondary removal of implantable health monitors and therapeutic electronics. Benefiting from the intensive innovation on biodegradable nanomaterials, current transient electronics can realize full components’ degradability. However, design of materials with tissue-comparable flexibility, desired dielectric properties, suitable biocompatibility and programmable biodegradability will always be a challenge to explore the subtle trade-offs between these parameters. In this review, we firstly discuss the general chemical structure and degradation behavior of polymeric biodegradable materials that have been widely studied for various applications. Then, specific properties of different degradable polymer materials such as biocompatibility, biodegradability, and flexibility were compared and evaluated for real-life applications. Complex biodegradable electronics and related strategies with enhanced functionality aimed for different components including substrates, insulators, conductors and semiconductors in complex biodegradable electronics are further researched and discussed. Finally, typical applications of biodegradable electronics in sensing, therapeutic drug delivery, energy storage and integrated electronic systems are highlighted. This paper critically reviews the significant progress made in the field and highlights the future prospects.
Collapse
|