1
|
Gao Y, Zheng L, Duan L, Bi J. Separable Metal-Organic Framework-Based Materials for the Adsorption of Emerging Contaminants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39024504 DOI: 10.1021/acs.langmuir.4c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Thousands of chemicals have been released into the environment in recent decades. The presence of emerging contaminants (ECs) in water has emerged as a pressing concern. Adsorption is a viable solution for the removal of ECs. Metal-organic frameworks (MOFs) have shown great potential as efficient adsorbents, but their dispersed powder form limits their practical applications. Recently, researchers have developed various separable MOF-based adsorbents to improve their recyclability. The purpose of this review is to summarize the latest developments in the construction of separable MOF-based adsorbents and their applications in adsorbing ECs. The construction strategies for separable MOFs are classified into four categories: magnetic MOFs, MOF-fiber composites, MOF gels, and binder-assisted shaping. Typical emerging contaminants include pesticides, pharmaceuticals and personal care products, and endocrine-disrupting compounds. The adsorption performance of different materials is evaluated based on the results of static and dynamic adsorption experiments. Additionally, the regeneration methods of MOF-based adsorbents are discussed in detail to facilitate effective recycling and reuse. Finally, challenges and potential future research opportunities are proposed, including reducing performance losses during the shaping process, developing assessment systems based on dynamic purification and real polluted water, optimizing regeneration methods, designing multifunctional MOFs, and low-cost, large-scale synthesis of MOFs.
Collapse
Affiliation(s)
- Yanxin Gao
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Lisi Zheng
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Longying Duan
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Minhou, Fujian 350108, P. R. China
| |
Collapse
|
2
|
Wang C, Sun Q, Yang Q, Wei H, Yang Y. Removal of hypertoxic Cr(VI) from water by polyaniline-coated ZIF-67-derived nitrogen-doped magnetic carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46038-46051. [PMID: 38981963 DOI: 10.1007/s11356-024-34209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Heavy metals are highly toxic and nonbiodegradable, posing a serious threat to the water environment and human beings. Therefore, it is crucial to develop a highly efficient adsorbent that is easy to recover and separate for the removal of heavy metals. In this paper, nitrogen-doped magnetic carbon (NC-67) was prepared by carbonization and hydrochloric acid treatment using cobalt-containing MOF (ZIF-67) as precursor. Then, polyaniline (PANI) was grown directly on NC-67 with high specific surface area by in situ polymerization to prepare polyaniline-coated nitrogen-doped magnetic carbon (NC-67@PANI), which was characterized by XRD, SEM, TEM and VSM, etc. and used for the removal of Cr(VI)from wastewater. The experimental results showed that the adsorption process of Cr(VI) by NC-67@PANI was spontaneous and endothermic, which conformed to the pseudo-second-order model and Freundlich adsorption isotherm model. Due to the synergistic effect of adsorption and reduction, the experimental adsorption capacity of NC-67@PANI for Cr(VI) was 410.2 mg/g. NC-67@PANI maintained a removal efficiency of 65.8% for Cr(VI) after five cycles. In addition, NC-67@PANI had good magnetism and was easy to separate under external magnetic field. The excellent adsorption capacity and easy separation characteristics of NC-67@PANI indicate that it is a promising adsorbent for Cr(VI) removal from wastewater.
Collapse
Affiliation(s)
- Changlong Wang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Sun
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qing Yang
- Monitoring Center for Estuary Ecological Environment of Dongying City Ecological Environment Bureau, Shandong Province, Dongying, 257200, P. R. China
| | - Huiying Wei
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yanzhao Yang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| |
Collapse
|
3
|
Huang W, Wang L, Zhu J, Dong L, Hu H, Yao H, Wang L, Lin Z. Application of machine learning in prediction of Pb 2+ adsorption of biochar prepared by tube furnace and fluidized bed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27286-27303. [PMID: 38507168 DOI: 10.1007/s11356-024-32951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Data mining by machine learning (ML) has recently come into application in heavy metals purification from wastewater, especially in exploring lead removal by biochar that prepared using tube furnace (TF-C) and fluidized bed (FB-C) pyrolysis methods. In this study, six ML models including Random Forest Regression (RFR), Gradient Boosting Regression (GBR), Support Vector Regression (SVR), Kernel Ridge Regression (KRR), Extreme Gradient Boosting (XGB), and Light Gradient Boosting Machine (LGBM) were employed to predict lead adsorption based on a dataset of 1012 adsorption experiments, comprising 422 TF-C groups from our experiments and 590 FB-C groups from literatures. The XGB model showed superior accuracy and predictive performance for adsorption, achieving R2 values for TF-C (0.992) and FB-C (0.981), respectively. Contrasting inferior results were observed in other models, including RF (0.962 and 0.961), GBR (0.987 and 0.975), SVR (0.839 and 0.763), KRR (0.817 and 0.881), and LGBM (0.975 and 0.868). Additionally, a hybrid dataset combining both biochars in Pb adsorption also indicated high accuracy (0.972) as obtained from XGB model. The investigation revealed that the influence of char characteristics and adsorption conditions on Pb adsorption differs between the two biochar. Specific char characteristics, particularly nitrogen content, significantly influence lead adsorption in both biochar. Interestingly, the influence of pyrolysis temperature (PT) on lead adsorption is found to be greater for TF-C than for FB-C. Consequently, careful consideration of PT is crucial when preparing TF-C biochar. These findings offer practical guidance for optimizing biochar preparation conditions during heavy metal removal from wastewater.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Faculty of Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Liang Wang
- China Power Hua Chuang (Suzhou) Electricity Technology Research Company Co., Ltd., Suzhou, 215125, China
| | - JingJing Zhu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lu Dong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Research Institute, Huazhong University of Science and Technology in Shenzhen, Wuhan, 430074, China.
| | - Hongyun Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Institute, Huazhong University of Science and Technology in Shenzhen, Wuhan, 430074, China
| | - Hong Yao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - LinLing Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, PR China
| |
Collapse
|
4
|
K AK, Mahesh Y, Panwar J, Gupta S. Remediation of multifarious metal ions and molecular docking assessment for pathogenic microbe disinfection in aqueous solution by waste-derived Ca-MOF. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21545-21567. [PMID: 38393560 DOI: 10.1007/s11356-024-32311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
The present study demonstrates an eco-friendly and cost-effective synthesis of calcium terephthalate metal-organic frameworks (Ca-MOF). The Ca-MOF were composed of metal ions (Ca2+) and organic ligands (terephthalic acid; TPA); the former was obtained from egg shells, and the latter was obtained from processing waste plastic bottles. Detailed characterization using standard techniques confirmed the synthesis of Ca-MOF with an average particle size of 461.9 ± 15 nm. The synthesized Ca-MOF was screened for its ability to remove multiple metal ions from an aqueous solution. Based on the maximum sorption capacity, Pb2+, Cd2+, and Cu2+ ions were selected for individual parametric batch studies. The obtained results were interpreted using standard isotherms and kinetic models. The maximum sorption capacity (qm) obtained from the Langmuir model was found to be 644.07 ± 47, 391.4 ± 26, and 260.5 ± 14 mg g-1 for Pb2+, Cd2+, and Cu2+, respectively. Moreover, Ca-MOF also showed an excellent ability to remove all three metal ions simultaneously from a mixed solution. The metal nodes and bonded TPA from Ca-MOF were dissociated by the acid dissolution method, which protonated and isolated TPA for reuse. Further, the crystal structure of Ca-MOF was prepared and docked with protein targets of selected pathogenic water-borne microbes, which showed its disinfection potential. Overall, multiple metal sorption capability, regeneration studies, and broad-spectrum antimicrobial activity confirmed the versatility of synthesized Ca-MOF for industrial wastewater treatment.
Collapse
Affiliation(s)
- Anil Kumar K
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Yeshwanth Mahesh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333031, India.
| |
Collapse
|
5
|
Zhang Z, Huang Z, Qin D, Liu D, Guo X, Lin H. Fluorescent starch-based hydrogel with cellulose nanofibrils and carbon dots for simultaneous adsorption and detection of Pb(II). Carbohydr Polym 2024; 323:121427. [PMID: 37940256 DOI: 10.1016/j.carbpol.2023.121427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
The adsorption removal of lead (Pb) ions has become a crucial area of research due to the potential health hazards associated with Pb contamination. Developing cost-effective adsorbents for the removal of Pb(II) ions is significantly important. Hence, a novel fluorescent starch-based hydrogel (FSH) using starch (ST), cellulose nanofibrils (CN), and carbon dots (CD) was fabricated for simultaneous adsorption and detection of Pb(II). A comprehensive characterization of FSH, including its morphological features, chemical composition, and fluorescence characteristics, was conducted. Notably, FSH exhibited a maximum theoretical adsorption capacity of 265.9 mg/g, which was 13.0 times higher than that of pure ST. Moreover, FSH was employed as a fluorescent sensor for Pb(II) determination, achieving a limit of detection (LOD) of 0.06 μg/L. An analysis was further performed to investigate the adsorption and detection mechanisms of Pb(II) utilizing FSH. This study provides valuable insights into the production of a novel cost-effective ST-based adsorbent for the removal of Pb(II) ions.
Collapse
Affiliation(s)
- Zhixu Zhang
- State Key Laboratory of Subhealth Intervention Technology, 410128 Changsha, Hunan, China; College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan, China
| | - Zhengwu Huang
- College of Food Science and Technology, Hunan Agricultural University, 410128 Changsha, Hunan, China
| | - Dan Qin
- College of Food Science and Technology, Hunan Agricultural University, 410128 Changsha, Hunan, China
| | - Dongbo Liu
- State Key Laboratory of Subhealth Intervention Technology, 410128 Changsha, Hunan, China; College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan, China
| | - Xin Guo
- College of Science, Central South University of Forestry and Technology, 410004 Changsha, Hunan, China.
| | - Haiyan Lin
- National Research Center of Engineering Technology for Utilization Ingredients from Botanicals, 410128 Changsha, Hunan, China
| |
Collapse
|
6
|
Ramu S, Kainthla I, Chandrappa L, Shivanna JM, Kumaran B, Balakrishna RG. Recent advances in metal organic frameworks-based magnetic nanomaterials for waste water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:167-190. [PMID: 38044404 DOI: 10.1007/s11356-023-31162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Magnetic nanoparticle-incorporated metal organic frameworks (MOF) are potential composites for various applications such as catalysis, water treatment, drug delivery, gas storage, chemical sensing, and heavy metal ion removal. MOFs exhibits high porosity and flexibility enabling guest species like heavy metal ions to diffuse into bulk structure. Additionally, shape and size of the pores contribute to selectivity of the guest materials. Incorporation of magnetic materials allows easy collection of adsorbent materials from solution system making the process simple and cost-effective. In view of the above advantages in the present review article, we are discussing recent advances of different magnetic material-incorporated MOF (Mg-MOF) composite for application in photocatalytic degradation of dyes and toxic chemicals, adsorption of organic compounds, adsorption of heavy metal ions, and adsorption of dyes. The review initially discusses on properties of Mg-MOF, different synthesis techniques such as mechanochemical, sonochemical (ultrasound) synthesis, slow evaporation and diffusion methods, solvo(hydro)-thermal and iono-thermal method, microwave-assisted method, microemulsion method post-synthetic modification template strategies and followed by application in waste water treatment.
Collapse
Affiliation(s)
- Shwetharani Ramu
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Itika Kainthla
- School of Physics and Material Sciences, Shoolini University, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Lavanya Chandrappa
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Jyothi Mannekote Shivanna
- Department of Chemistry, AMC Engineering College, Bannerughatta Road, Bengaluru, Karnataka, 560083, India
| | - Brijesh Kumaran
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, 208016, India
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India.
| |
Collapse
|
7
|
Li M, Liu W, Yang T, Xu Q, Mu H, Han J, Cao K, Tan X, Wang K, Yang C. Synergistic luminescence effect and high-pressure optical properties of CsPbBr 2Cl@EuMOFs nanocomposites. OPTICS EXPRESS 2023; 31:21576-21585. [PMID: 37381253 DOI: 10.1364/oe.494143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of highly porous materials that have garnered significant attention in the field of optoelectronics due to their exceptional properties. In this study, CsPbBr2Cl@EuMOFs nanocomposites were synthesized using a two-step method. The fluorescence evolution of the CsPbBr2Cl@EuMOFs was investigated under high pressure, revealing a synergistic luminescence effect between CsPbBr2Cl and Eu3+. The study found that the synergistic luminescence of CsPbBr2Cl@EuMOFs remains stable even under high pressure, and there is no energy transfer among different luminous centers. These findings provide a meaningful case for future research on nanocomposites with multiple luminescent centers. Additionally, CsPbBr2Cl@EuMOFs exhibit a sensitive color-changing mechanism under high pressure, making them a promising candidate for pressure calibration via the color change of the MOF materials.
Collapse
|
8
|
Amini MH, Beyki MH. Construction of 1, 10-phenanthroline functionalized magnetic starch as a lead (II) tagged surface imprinted biopolymer for highly selective targeting of toxic lead ions. Int J Biol Macromol 2023:124996. [PMID: 37236569 DOI: 10.1016/j.ijbiomac.2023.124996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
In this research 1, 10 - phenanthroline functionalized CaFe2O4 - starch was employed as a magnetic ion-imprinted polymer (IIP) for highly selective targeting toxic Pb2+ ions from aqueous media. VSM analysis revealed that the sorbent has magnetic saturation of 10 emu g-1 which is appropriate for magnetic separation. Moreover, TEM analysis confirmed that the adsorbent is composed of particles with a mean diameter of 10 nm. According to XPS analysis, lead coordination with phenanthroline is the main adsorption mechanism that is along with electrostatic interaction. A maximum adsorption capacity of 120 mg g-1 was obtained within 10 min at a pH of 6 and an adsorbent dosage of 20 mg. Kinetic and isotherm studies showed that lead adsorption followed the pseudo-second-order and Freundlich models, respectively. The selectivity coefficient of Pb (II) relative to Cu(II), Co(II), Ni(II), Zn(II), Mn(II), and Cd(II) was 4.7, 14, 20, 36, 13 and 25, respectively. Moreover, the IIP represents the imprinting factor of 1.32. The sorbent showed good regeneration after five cycles of the sorption/desorption process with an efficiency of >93 %. Finally represented IIP was used for lead preconcentration from various matrices i.e., water, vegetable, and fish samples.
Collapse
Affiliation(s)
| | - Mostafa Hossein Beyki
- School of Chemistry, University College of Science, university of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Rasheed T, Anwar MT. Metal organic frameworks as self-sacrificing modalities for potential environmental catalysis and energy applications: Challenges and perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Xu L, Yang Y, Su J, He C, Shi J, Yan H, Wei H. Simultaneous removal of nitrate, lead, and tetracycline by a fixed-biofilm reactor assembled with kapok fiber and sponge iron: Comparative analysis of operating conditions and biotic community. ENVIRONMENTAL RESEARCH 2023; 219:115163. [PMID: 36580984 DOI: 10.1016/j.envres.2022.115163] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In recent years, under the condition of lack of carbon source, the presence of composite micro-pollutants make the removal of nitrate seriously damaged, and to find a suitable way to solve this problem is imminent. A fixed-biofilm carrier modified by mixing sponge iron (SI) and kapok fiber (KF) combined with strain Zoogloea sp. FY6 was constructed in this study to get a fixed-biofilm reactor with merit denitrification performance. By adjusting the operation parameters, it can be concluded that when the carbon to nitrogen (C/N) ratio was 1.5, the hydraulic retention time (HRT) was 6.0 h, and the pH was 6.0, the nitrate removal efficiency (NRE) of the fixed-biofilm reactor was up to 95.4% (2.95 mg L-1 h-1). In addition, the fixed-biofilm reactor constructed in this study can remove lead (Pb2+) and tetracycline (TC) excellently in the presence of SI and Zoogloea sp. FY6, and the denitrification performance can still maintain a high level under the influence of different concentrations of Pb2+ and TC. Furthermore, the addition of SI not only removes the compound pollutants, but also protects the toxicity of the pollutant inflow in the bioreactor, and the metabolic process of microorganisms in the bioreactor also removes some of the compound pollutants. The high-throughput data showed the abundance of strain Zoogloea sp. FY6 was still the highest value under the influence of various pollutants, and the metagenomic prediction showed that the fixed-biofilm reactor had perfect denitrification process and iron redox cycle benefits. This study provides a valuable reference for sustainable utilization of natural biological resources and reduction of material costs in wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Chong He
- School of Water Resource and Environmental Engineering, East China University of Technology, Nanchang, 330013, China; Shanghai Baoye Metallurgical Engineering Co., Ltd, Baoshan District, Shanghai, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
11
|
Zhao H, Sun J, Du Y, Zhang M, Yang Z, Su J, Peng X, Liu X, Sun G, Cui Y. In-situ immobilization of CuMOF on sodium alginate/chitosan/cellulose nanofibril composite hydrogel for fast and highly efficient removal of Pb2+ from aqueous solutions. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
12
|
Liu M, Wang H, Sun H, Zeng Y, Fan C, Wu W, Yan H. Preparation of magnetic metal-organic framework for adsorption of microcystin-RR. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Xu C, Wang H, Shang Y, Li B, Yu D, Wang Y. Highly efficient Cd(Ⅱ) removal using 3D N-doped carbon derived from MOFs: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129149. [PMID: 35594671 DOI: 10.1016/j.jhazmat.2022.129149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) removal is imperative to ensure the safety of aquatic-ecosystem, yet its effective removal technology has remained elusive by far. To address this concern, three-dimensional N-doped carbon (NC) polyhedrons affording ample porosity is fabricated based upon the thermal carbonization and KOH activation of zeolitic imidazolate framework-8 (ZIF-8) precursor. Thus-derived activated NC (a-NC) adsorbent not only overcomes the inherent instability of ZIF-8 but also harvests a maximum Cd(Ⅱ) adsorption capacity of 370.2 mg g-1, which evidently surpasses those of bare NC counterpart as well as previously reported adsorbents. Impressively, a-NC achieves ca. 100% removal of aqueous Cd(Ⅱ) in a broad working pH range (5-9), and particularly attains stable performances (81-92%) in various realistic water. Theoretical calculations in combination with experimental characterizations further offer mechanistic insight into the enhanced removal exerted by a-NC. Notably, owing to the increased specific surface area (3041 vs. 389 m2 g-1) and enhanced sp2 carbon content (91.7 vs. 68.8%) of a-NC as compared to NC, advanced Cd(Ⅱ) adsorption via a-NC can be exhibited. Our designed a-NC material harnessing favorable recycling capability would be in particular attractive in the realm of practical Cd(Ⅱ) remediation.
Collapse
Affiliation(s)
- Conglei Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yaxin Shang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Beibei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Danning Yu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yifei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
14
|
Synergistic dicarboxylate sites of natural citric acid modified MOF-808 for the deep removal of Pb2+ in water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Zn/Co-ZIFs@MIL-101(Fe) metal–organic frameworks are effective photo-Fenton catalysts for RhB removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Jiang W, Yu CX, Yu MX, Ding J, Song JG, Sun XQ, Liu LL. Efficient and selective removal of Pb 2+ from aqueous solution by using an O - functionalized metal-organic framework. Dalton Trans 2022; 51:10077-10084. [PMID: 35730584 DOI: 10.1039/d2dt01117d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lead (Pb) is one of the most widespread and highly toxic heavy metals in the environment. The design and synthesis of adsorbent materials for the selective and efficient removal of Pb2+ from aqueous solution has received much attention. Herein, the ligand 4,4'-azoxydibenzoic acid with the O- group was elaborately selected to construct a novel Pr-based MOF for Pb2+ removal. The as-prepared MOF adsorbents with high stability exhibited ultra-high selectivity for Pb2+, even in the presence of various highly concentrated competitive ions (with the ratios from 1 : 5 to 1 : 50). Also, a high uptake capacity (560.26 mg g-1) can be achieved for the MOF material, due to the availability of sufficient adsorption sites. The strong electrostatic attraction and coordination interaction between the numerous active O- sites on MOF adsorbents and Pb2+ can account for the good adsorption performance for Pb2+, which was systematically verified by zeta potential, FT-IR and XPS studies.
Collapse
Affiliation(s)
- Wen Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China.
| | - Cai-Xia Yu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China.
| | - Ming-Xuan Yu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China.
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China.
| | - Jian-Guo Song
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China.
| | - Xue-Qin Sun
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China.
| | - Lei-Lei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China.
| |
Collapse
|
17
|
Jia J, Wang C, Li Y, Wu D, Yu J, Gao T, Li F. Water-Insoluble Cyclodextrin-based nanocubes for highly efficient adsorption toward diverse organic and inorganic pollutants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Lu Y, Liu C, Mei C, Sun J, Lee J, Wu Q, Hubbe MA, Li MC. Recent advances in metal organic framework and cellulose nanomaterial composites. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214496] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Tran CC, Dong HC, Truong VTN, Bui TTM, Nguyen HN, Nguyen TAT, Dang NN, Nguyen MV. Enhancing the remarkable adsorption of Pb 2+ in a series of sulfonic-functionalized Zr-based MOFs: a combined theoretical and experimental study for elucidating the adsorption mechanism. Dalton Trans 2022; 51:7503-7516. [PMID: 35506481 DOI: 10.1039/d2dt01009g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of Zr-based metal-organic frameworks was prepared via the solvothermal route using sulfonic-rich linkers for the efficient capture of Pb2+ ions from aqueous medium. The factors affecting adsorption such as the solution pH, adsorbent dosage, contact time, adsorption isotherms, and mechanism were studied. Consequently, the maximum adsorption capacity of Pb2+ on the acidified VNU-23 was determined to be 617.3 mg g-1, which is much higher than that of previously reported adsorbents and MOF materials. Furthermore, the adsorption isotherms and kinetics of the Pb2+ ion are in good accordance with the Langmuir and pseudo-second-order kinetic model, suggesting that the uptake of Pb2+ is a chemisorption process. The reusability experiments demonstrated the facile recovery of the H+⊂VNU-23 material through immersion in an HNO3 solution (pH = 3), where its Pb2+ adsorption efficiency still remained at about 90% of the initial uptake over seven cycles. Remarkably, the adsorption mechanism was elucidated through a combined theoretical and experimental investigation. Accordingly, the Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy connected to energy-dispersive X-ray mapping (SEM-EDX-mapping), and X-ray photoelectron spectroscopy (XPS) analysis of the Pb⊂VNU-23 sample and comparison with H+⊂VNU-23 confirmed that the electrostatic interaction occurs via the interaction between the SO3- moieties in the framework and the Pb2+ ion, leading to the formation of a Pb-O bond. In addition, the density functional theory (DFT) calculations showed the effective affinity of the MOF adsorbent toward the Pb2+ ion via the strong driving force mentioned in the experimental studies. Thus, these findings illustrate that H+⊂VNU-23 can be employed as a potential adsorbent to eliminate Pb2+ ions from wastewater.
Collapse
Affiliation(s)
- Cuong C Tran
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.
| | - Hieu C Dong
- Future Materials and Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - Vy T N Truong
- Royal Melbourne Institute of Technology (RMIT) University, Ho Chi Minh City 700000, Vietnam
| | - Thinh T M Bui
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.
| | - Hung N Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.
| | - Tuyet A T Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.
| | - Nam N Dang
- Future Materials and Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - My V Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
20
|
Yu F, Bai X, Liang M, Ma J. HKUST-1-Derived Cu@Cu(I)@Cu(II)/Carbon adsorbents for ciprofloxacin removal with high adsorption performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Nankawa T, Sekine Y, Yamada T. Ion-selective adsorption of lead by a two-dimensional terbium oxalate framework. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takuya Nankawa
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Yurina Sekine
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Teppei Yamada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Baratta M, Mastropietro TF, Bruno R, Tursi A, Negro C, Ferrando-Soria J, Mashin AI, Nezhdanov A, Nicoletta FP, De Filpo G, Pardo E, Armentano D. Multivariate Metal-Organic Framework/Single-Walled Carbon Nanotube Buckypaper for Selective Lead Decontamination. ACS APPLIED NANO MATERIALS 2022; 5:5223-5233. [PMID: 35492436 PMCID: PMC9039961 DOI: 10.1021/acsanm.2c00280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 05/04/2023]
Abstract
The search for efficient technologies empowering the selective capture of environmentally harmful heavy metals from wastewater treatment plants, at affordable prices, attracts wide interest but constitutes an important technological challenge. We report here an eco-friendly single-walled carbon nanotube buckypaper (SWCNT-BP) enriched with a multivariate amino acid-based metal-organic framework (MTV-MOF) for the efficient and selective removal of Pb2+ in multicomponent water systems. Pristine MTV-MOF was easily immobilized within the porous network of entangled SWCNTs, thus obtaining a stable self-standing adsorbing membrane filter (MTV-MOF/SWCNT-BP). SWCNT-BP alone shows a moderately good removal performance with a maximum adsorption capacity of 180 mg·g-1 and a considerable selectivity for Pb(II) ions in highly concentrated multi-ion solutions over a wide range of lead concentration (from 200 to 10000 ppb). Remarkably, these features were outperformed with the hybrid membrane filter MTV-MOF/SWCNT-BP, exhibiting enhanced selectivity and adsorption capacity (310 mg·g-1, which is up to 42% higher than that of the neat SWCNT-BP) and consequently enabling a more efficient and selective removal of Pb2+ from aqueous media. MTV-MOF/SWCNT-BP was able to reduce [Pb2+] from the dangerous 1000 ppb level to acceptable limits for drinking water, below 10 ppb, as established by the current EPA and WHO limits. Thus, the eco-friendly composite MTV-MOF/SWCNT-BP shows the potential to be effectively used several times as a reliable adsorbent for Pb2+ removal for household drinking water or in industrial treatment plants for water and wastewater lead decontamination.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Cosenza, Italy
| | - Teresa Fina Mastropietro
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Cosenza, Italy
| | - Rosaria Bruno
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Cosenza, Italy
| | - Antonio Tursi
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Cosenza, Italy
| | - Cristina Negro
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, 46980 Paterna, Valencia, Spain
| | - Jesús Ferrando-Soria
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, 46980 Paterna, Valencia, Spain
| | - Alexander I. Mashin
- Applied
Physics & Microelectronics, Lobachevsky
State University of Nizhni Novgorod, 603022 Nizhni Novgorod, Russian Federation
| | - Aleksey Nezhdanov
- Applied
Physics & Microelectronics, Lobachevsky
State University of Nizhni Novgorod, 603022 Nizhni Novgorod, Russian Federation
| | - Fiore P. Nicoletta
- Dipartimento
di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Rende, Italy
| | - Giovanni De Filpo
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Cosenza, Italy
| | - Emilio Pardo
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, 46980 Paterna, Valencia, Spain
| | - Donatella Armentano
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Cosenza, Italy
| |
Collapse
|
23
|
Wang RD, He L, Zhu RR, Jia M, Zhou S, Tang J, Zhang WQ, Du L, Zhao QH. Highly efficient and selective capture Pb(II) through a novel metal-organic framework containing bifunctional groups. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127852. [PMID: 34838355 DOI: 10.1016/j.jhazmat.2021.127852] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 05/25/2023]
Abstract
The design and development of materials with a selective adsorption capacity for Pb(II) are very important for environmental governance and ecological safety. In this work, a novel 3D metal-organic framework ([Cd2H4L4Cl2SO4]·4H2O, Cd-MOF) is constructed using a multiple pyrazole heterocycles tetraphenylethylene-based ligand (H4L4) and CdSO4 which containing Pb(II) adsorption sites (SO42-). Studies have shown that the Cd-MOF has outstanding stability, and its maximum adsorption value of Pb(II) can be as high as 845.55 mg/g, which is higher than that of most MOFs or MOFs modified materials. It is worth emphasizing that the Cd-MOF have excellent recyclability due to the unique adsorption mechanism of the Cd-MOF. Thermodynamic studies have shown that Pb(II) adsorption of the Cd-MOF is a spontaneous endothermic process. Specific selective adsorption, exceptional stability and remarkable recyclability make the Cd-MOF a potential material for industrial capture and recovery of Pb(II) from water.
Collapse
Affiliation(s)
- Rui-Dong Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Liancheng He
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Rong-Rong Zhu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Mingxuan Jia
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Sihan Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Jinsheng Tang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Wen-Qian Zhang
- College of Pharmaceutical Engineering, Xinyang Agricultural and Forestry University, Henan 464000, People's Republic of China
| | - Lin Du
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People's Republic of China.
| | - Qi-Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|
24
|
Wang RD, He M, Li Z, Niu Z, Zhu RR, Zhang WQ, Zhang S, Du L, Zhao QH. A Novel Coordination Polymer as Adsorbent Used to Remove Hg(II) and Pb(II) from Water with Different Adsorption Mechanisms. ACS OMEGA 2022; 7:10187-10195. [PMID: 35382326 PMCID: PMC8973041 DOI: 10.1021/acsomega.1c06606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Under the hydrothermal condition, a new type of two-dimensional coordination polymer ([Cd(D-Cam)(3-bpdb)]n, Cd-CP) has been constructed. It is composed of D-(+)-Camphoric-Cd(II) (D-cam-Cd(II)) one-dimensional chain and bridging 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene (3-bpdb) ligands. Cd-CP has a good removal effect for Hg(II) and Pb(II), and the maximum adsorption capacity is 545 and 450 mg/g, respectively. Interestingly, thermodynamic studies have shown that the adsorption processes of Hg(II) and Pb(II) on Cd-CP use completely different thermodynamic mechanisms, in which the adsorption of Hg(II) is due to a strong electrostatic interaction with Cd-CP, while that of Pb(II) is through a weak coordination with Cd-CP. Moreover, Cd-CP has a higher affinity for Hg(II), and when Hg(II) and Pb(II) coexist, Cd-CP preferentially adsorbs Hg(II).
Collapse
Affiliation(s)
- Rui-Dong Wang
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Mei He
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Zhihao Li
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Zongling Niu
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Rong-Rong Zhu
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Wen-Qian Zhang
- College
of Pharmaceutical Engineering, Xinyang Agricultural
and Forestry University, Henan, 464000, People’s Republic
of China
| | - Suoshu Zhang
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Lin Du
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People’s Republic of China
| | - Qi-Hua Zhao
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People’s Republic of China
| |
Collapse
|
25
|
Adeola AO, Ore OT, Fapohunda O, Adewole AH, Akerele DD, Akingboye AS, Oloye FF. Psychotropic Drugs of Emerging Concerns in Aquatic Systems: Ecotoxicology and Remediation Approaches. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00334-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Qu G, Jia P, Zhang T, Li Z, Chen C, Zhao Y. UiO-66(Zr)-derived t-zirconia with abundant lattice defect for remarkably enhanced arsenic removal. CHEMOSPHERE 2022; 288:132594. [PMID: 34662637 DOI: 10.1016/j.chemosphere.2021.132594] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Zirconium oxide (ZrO2) exhibits great potential in the remediation of arsenic-polluted water. In this study, tetragonal zirconium oxide (t-ZrO2) with high lattice defects was facilely fabricated by regulating the Zr-metal-organic framework (MOF) (UiO-66) with sodium acetate modulator and examined to adsorb arsenic from water. Benefitting from the synergistic effects of mesopores structure and lattice defect, t-ZrO2 exhibited ultrahigh adsorption capacity and faster kinetics towards both arsenate (As(V)) and arsenite (As(III)). The Langmuir adsorption capacity for As(V) and As(III) of 147.5 mg g-1 and 352.1 mg g-1 on t-ZrO2 in exothermic process, respectively, significantly outperforming reported counterparts in literature (generally ≤100 mg g-1). The faster adsorption kinetic of both As(III) and As(V) on t-ZrO2 is defined favorably by the pseudo-second-order model over a wide pH (3-11). Furthermore, arsenic is mainly captured by t-ZrO2 via forming Zr-O-As bonds through occupying coordinatively unsaturated zirconium atoms adsorption sites revealed by the X-ray photoelectron spectroscopy (XPS) spectrum and Fourier-transformed infrared (FTIR) spectra analysis. This study offers a new strategy for designing ultrahigh performance Zr-MOF-derived adsorbents for capturing arsenic.
Collapse
Affiliation(s)
- Guojuan Qu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, Shanghai, 200062, China
| | - Peng Jia
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, Shanghai, 200062, China
| | - Tao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, Shanghai, 200062, China
| | - Zongchen Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, Shanghai, 200062, China
| | - Changxun Chen
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, Shanghai, 200062, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, Shanghai, 200062, China.
| |
Collapse
|
27
|
Dinh VP, Nguyen PT, Tran MC, Luu AT, Hung NQ, Luu TT, Kiet HAT, Mai XT, Luong TB, Nguyen TL, Ho HTT, Nguyen DK, Pham DK, Hoang AQ, Le VT, Nguyen TC. HTDMA-modified bentonite clay for effective removal of Pb(II) from aqueous solution. CHEMOSPHERE 2022; 286:131766. [PMID: 34416581 DOI: 10.1016/j.chemosphere.2021.131766] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
This work studies the Pb(II) removal onto bentonite clay modified by hexadecyl trimethyl ammonium bromide (HDTMA). Characterizations of the unmodified and modified materials were performed by using XRD, SEM, TG-DSC, FT-IR, and BET surface area analyses. Factors influencing the uptake of Pb(II) from aqueous solution, such as pHsolution, ion strength, uptake time, adsorbent dosage, and initial Pb(II) concentration, were examined. The obtained results showed that bentonite clay was successfully modified by HDTMA, resulting in an increase in its surface area by about 70 %. The Pb(II) adsorption onto modified bentonite clay reached equilibrium at pH = 5.0 after 120 min. Studies within the isotherm and kinetic models demonstrated that the adsorption followed the Sips isotherm and pseudo-second-order kinetic models. The maximum monolayer adsorption capacity calculated from the Langmuir model at 30 °C was 25.8 mg/g, which is much higher than that obtained for the unmodified sample (18.9 mg/g). The FT-IR and TG-DSC analyses indicated that the formation of inner-sphere complexes plays a fundamental role in the mechanism of Pb(II) uptake onto HDTMA-bentonite clay. This mechanism of Pb(II) adsorption was further investigated, for the first time, by using the positron annihilation lifetime (PAL) and electron momentum (EMD) measurements. The PAL and EMD analyses indicated that the existence of Al and Si mono-vacancies in the HDTMA-bentonite should have essential contributions to the adsorption mechanism. In particular, we found a very interesting mechanism that the Pb(II) adsorption should occur inside the interlayer spaces of the HDTMA-bentonite.
Collapse
Affiliation(s)
- Van-Phuc Dinh
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Viet Nam.
| | - Phuong-Tung Nguyen
- Center for Interdisciplinary Research in Technology (CIRTech) - HUTECH University of Technology, 475A Dien Bien Phu, Binh Thanh Dist., Ho Chi Minh City, 700000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL 29, Dist. 12, Ho Chi Minh City, 700000, Viet Nam.
| | - Minh-Chien Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 1A TL 29, Dist. 12, Ho Chi Minh City, 700000, Viet Nam
| | - Anh-Tuyen Luu
- Center for Nuclear Technologies, 217 Nguyen Trai, Dist. 1, Ho Chi Minh City, 700000, Viet Nam; Joint Institute for Nuclear Research, 6 Joliot Curie, Dubna, 141980, Russia
| | - N Quang Hung
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Viet Nam
| | - Thi-Thuy Luu
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Viet Nam
| | - H A Tuan Kiet
- Institute of Research and Development, Duy Tan University, Da Nang City, 550000, Viet Nam; Graduate School of Education, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xuan-Truong Mai
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Viet Nam
| | - Thi-Bich Luong
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL 29, Dist. 12, Ho Chi Minh City, 700000, Viet Nam
| | - Thi-Lieu Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 1A TL 29, Dist. 12, Ho Chi Minh City, 700000, Viet Nam; Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap Dist., Ho Chi Minh City, 700000, Viet Nam
| | - Hien T T Ho
- Faculty of Technology, Van Lang University, 45 Nguyen Khac Nhu, Dist. 1, Ho Chi Minh City, 700000, Viet Nam
| | - Duy-Khoi Nguyen
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Viet Nam
| | - Duy-Khanh Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL 29, Dist. 12, Ho Chi Minh City, 700000, Viet Nam
| | - Anh-Quan Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 1A TL 29, Dist. 12, Ho Chi Minh City, 700000, Viet Nam
| | - Van-Toan Le
- Nuclear Research Institute, Vietnam Atomic Energy Institute, 1 Nguyen Tu Luc, Da Lat City, 670000, Lam Dong province, Viet Nam
| | - Thi-Chuong Nguyen
- Le Quy Don High School for the Gifted Students, Vung Tau City, 780000, Viet Nam
| |
Collapse
|
28
|
Yu Y, Han Y, Cui J, Wang C. Cobalt-based metal-organic framework electrodeposited on nickel foam as a binder-free electrode for high-performance supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01870e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-based metal-organic framework (Co-MOF) has been in-situ grown on nickel foam (NF) by cathodic electrodeposition using highly active cobalt surface modifier to enable uniform nucleation and tight growth of Co-MOF....
Collapse
|
29
|
Nguyen MV, Nguyen HN, Nguyen TAT, Nguyen KMV. Engineering of appropriate pore size combined with sulfonic functionalization in a Zr-MOF with reo topology for the ultra-high removal of cationic malachite green dye from an aqueous medium. RSC Adv 2022; 12:30201-30212. [DOI: 10.1039/d2ra05787e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
A Zr-based metal–organic framework with reo topology, denoted as Reo-MOF-1, was fabricated through a solvothermal method capable of efficiently removing the cationic MG dye from an aqueous medium.
Collapse
Affiliation(s)
- My V. Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam
| | - Hung N. Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam
| | - Tuyet A. T. Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam
| | - Khang M. V. Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
30
|
Zhang S, Wang J, Zhang Y, Ma J, Huang L, Yu S, Chen L, Song G, Qiu M, Wang X. Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118076. [PMID: 34534824 DOI: 10.1016/j.envpol.2021.118076] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 05/18/2023]
Abstract
Because the pollutants produced by human activities have destroyed the ecological balance of natural water environment, and caused severe impact on human life safety and environmental security. Hence the task of water environment restoration is imminent. Metal-organic frameworks (MOFs), structured from organic ligands and inorganic metal ions, are notable for their outstanding crystallinity, diverse structures, large surface areas, adsorption performance, and excellent component tunability. The water stability of MOFs is a key requisite for their possible actual applications in separation, catalysis, adsorption, and other water environment remediation areas because it is necessary to safeguard the integrity of the material structure during utilization. In this article, we comprehensively review state-of-the-art research progress on the promising potential of MOFs as excellent nanomaterials to remove contaminants from the water environment. Firstly, the fundamental characteristics and preparation methods of several typical water-stable MOFs include UiO, MIL, and ZIF are introduced. Then, the removal property and mechanism of heavy metal ions, radionuclide contaminants, drugs, and organic dyes by different MOFs were compared. Finally, the application prospect of MOFs in pollutant remediation prospected. In this review, the synthesis methods and application in water pollutant removal are explored, which provide ways toward the effective use of water-stable MOFs in materials design and environmental remediation.
Collapse
Affiliation(s)
- Shu Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Jiaqi Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Yue Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Junzhou Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Lintianyang Huang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Lan Chen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
31
|
Yang X, Zhu G, Liu Y, Wang Q, Guo N, Zeng Y, Han X, Yu D, Yu H. Enhanced removal of Pb(II) from contaminated water by hierarchical titanate microtube derived from titanium glycolate. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
32
|
Li D, Qiu X, Guo H, Duan D, Zhang W, Wang J, Ma J, Ding Y, Zhang Z. A simple strategy for the detection of Pb(II) and Cu(II) by an electrochemical sensor based on Zn/Ni-ZIF-8/XC-72/Nafion hybrid materials. ENVIRONMENTAL RESEARCH 2021; 202:111605. [PMID: 34197819 DOI: 10.1016/j.envres.2021.111605] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
In this study, a novel electrochemical sensor for simultaneous detection of Pb(II) and Cu(II) was constructed by using Zn/Ni-ZIF-8/XC-72/Nafion hybrid material as electrode surface modifier. XRD, FT-IR, XPS and SEM were used to study the crystal structure, functional groups, element types and morphologies of the prepared materials. The electrochemical performance of the Zn/Ni-ZIF-8/XC-72/Nafion/GCE sensor were investigated by CV, EIS and DPV. In addition, the effects of various conditions including pH, the type of buffer and the ratio of Zn/Ni-ZIF-8 to XC-72 were also explored for the determination of Pb(II) and Cu(II). Under the optimum conditions, the constructed sensor exhibited outstanding linear response of Pb(II) (0.794-39.6 ppm) and Cu(II) (0.397-19.9 ppm) with detection limits of 0.0150 and 0.0096 ppm, respectively. Finally, the fabricated sensor was further used to detect Pb(II) and Cu(II) in real samples, and the satisfactory recovery was obtained.
Collapse
Affiliation(s)
- Dongdong Li
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China; School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xianhua Qiu
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Huiqin Guo
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Dawei Duan
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China; Faculty of Food Technology, Sumy National Agrarian University, Sumy, 40021, Ukraine
| | - Wanqing Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Jichao Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jingjing Ma
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yuan Ding
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Zhongyin Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| |
Collapse
|
33
|
Li J, Li S, Chen J, Cheng R, Chen F, Li X, Zhang X, Zeng T, Hou H. A new strategy for efficient removal of Cd(II) and Pb(II) by porous and high-capacity N-doped carbon aerogels microspheres. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Mal J, Sinharoy A, Lens PNL. Simultaneous removal of lead and selenium through biomineralization as lead selenide by anaerobic granular sludge. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126663. [PMID: 34329094 DOI: 10.1016/j.jhazmat.2021.126663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
This study demonstrated the simultaneous removal of lead (Pb) and selenium (Se) as lead selenide biomineralization using anaerobic granular sludge. The microbial community of the granular sludge was first enriched for 140 days in the presence of Pb(II) only, selenate and selenite only, Pb(II)+selenate, and Pb(II)+selenite. In the absence of Se, removal of Pb(II) mainly occurred via biosorption and deposited on the biomass as lead oxide and lead carbonate. The Pb removal efficiency (94% of initial 50 mg L-1) was reduced to 90% and 86% in the presence of selenate and selenite, respectively, due to biosorption. Addition of Pb(II) didn't exert any toxic effect on the Se-reducing microbial community, on the contrary: Pb(II) addition improved the Se removal efficiency for selenate from 85% to 90%, but did not affect selenite removal after 14 d of incubation. The bioreduction of the Se-oxyanions produced elemental Se (Se(0)) and selenide, which later interacted with Pb(II) to produce lead selenide (PbSe). Adsorption of Pb(II) onto the Se(0) nanoparticles and precipitation as the Se(0)-Pb complex might also have contributed to the simultaneous removal of Pb and Se. XPS and XRD analysis further confirmed the immobilization of Pb as PbSe, PbO and PbCO3 in the biomass.
Collapse
Affiliation(s)
- Joyabrata Mal
- National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; Department of Biotechnology, MNNIT Allahabad, Prayagraj 211004, India.
| | - Arindam Sinharoy
- National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland
| | - Piet N L Lens
- National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland
| |
Collapse
|
35
|
Zheng H, Zhou X, Bao L, Guo J, Wang W, Huang L, Fu X. Effect of the mass ratio of dopamine to salicylaldoxime on the adsorption performance of polydopamine/salicylaldoxime functionalized magnetic graphene oxide. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
36
|
Kan MY, Lyu Q, Chu YH, Hsu CC, Lu KL, Lin LC, Kang DY. Suppressing Defect Formation in Metal-Organic Framework Membranes via Plasma-Assisted Synthesis for Gas Separations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41904-41915. [PMID: 34448575 DOI: 10.1021/acsami.1c13134] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) are considered as promising materials for membrane gas separations. Structural defects within a pure MOF membrane can considerably reduce its selectivity and possibly result in a nonselective separation. This work proposes a solution-phase synthesis with dielectric barrier discharge (DBD) plasma to suppress the formation of defects in the pure MOF membrane of CPO-8-BPY. Through comprehensive solid-state characterization with XRD, SEM, XPS, solid-state NMR, and XAFS, DBD plasma is demonstrated to facilitate deprotonation in the H2aip linker, which leads to a smaller and more uniform particle size of CPO-8-BPY. The narrow grain size distribution effectively reduces the pinhole-type defects in the pure CPO-8-BPY membrane and endows it with good ideal selectivity for H2/CH4 (αH2/CH4 = 28.2) and N2/CH4 (αN2/CH4 = 5.4). The selectivity for H2/CH4 of this membrane from a mixed-gas permeation test is found to be 15.4. Molecular simulations are also performed to gain insights into the gas transport properties of this MOF. The results suggest that ligand rotation plays an important role in CPO-8-BPY when being applied to the membrane separation of N2/CH4.
Collapse
Affiliation(s)
- Ming-Yang Kan
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Qiang Lyu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
- School of Materials Science and Engineering, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Yu-Hong Chu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Cheng-Che Hsu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University, No. 510, Zhongzheng Road, New Taipei 24205, Taiwan
| | - Li-Chiang Lin
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
37
|
Yu J, Tang T, Cheng F, Huang D, Martin JL, Brewer CE, Grimm RL, Zhou M, Luo H. Waste-to-wealth application of wastewater treatment algae-derived hydrochar for Pb(II) adsorption. MethodsX 2021; 8:101263. [PMID: 34434785 PMCID: PMC8374291 DOI: 10.1016/j.mex.2021.101263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/02/2021] [Indexed: 11/29/2022] Open
Abstract
Hydrochar, as an energy-lean solid waste, is generated from an advanced biofuel conversion technique hydrothermal liquefaction (HTL) and always leads to environmental pollution without appropriate disposal. In this study, HTL-derived hydrochar is recycled and prepared as adsorbent used for Pb(Ⅱ) removal from wastewater. As the original porous structure of hydrochar is masked by oily volatiles remained after HTL, two types of oil-removal pretreatment (Soxhlet extraction and CO2 activation) are explored. The result shows that CO2 activation significantly enhances the adsorption capacity of Pb(Ⅱ), and the maximum adsorption capacity is 12.88 mg g−1, as evaluated using Langmuir adsorption model. Further, apart from oily volatiles, most inorganic compounds derived from wastewater-grown algae is enriched in hydrochar, causing a smaller surface area of hydrochar. An ash-removal alkali treatment following CO2 activation is introduced to dramatically increase the adsorption capacity to 25.00 mg g−1 with an extremely low Pb(II) equilibrium concentration of 5.1×10-4 mg L−1, which is much lower than the maximum level of Pb concentration in drinking water (set by World Health Organization). This work introduces an approach to reuse HTL-hydrochar as an inexpensive adsorbent in Pb-contaminated water treatment, which not only provides another possible renewable adsorbent candidate applied in the field of lead adsorption, but also finds an alternative route to reduce solid waste effluent from HTL process.
Collapse
Affiliation(s)
- Jiuling Yu
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Tianbai Tang
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Feng Cheng
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Di Huang
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Julia L Martin
- Department of Chemistry and Biochemistry, Life Science and Bioengineering Center, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, USA
| | - Catherine E Brewer
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ronald L Grimm
- Department of Chemistry and Biochemistry, Life Science and Bioengineering Center, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, USA
| | - Meng Zhou
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Hongmei Luo
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
38
|
Marsh C, Shearer GC, Knight BT, Paul-Taylor J, Burrows AD. Supramolecular aspects of biomolecule interactions in metal–organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Huo JB, Yu G, Xu L, Fu ML. Porous walnut-like La 2O 2CO 3 derived from metal-organic frameworks for arsenate removal: A study of kinetics, isotherms, and mechanism. CHEMOSPHERE 2021; 271:129528. [PMID: 33434820 DOI: 10.1016/j.chemosphere.2020.129528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Exploration of renewable materials for efficient elimination of arsenic from water is highly imperative. Herein, one kind of novel porous walnut-like La2O2CO3 composite is reported for the first time, fabricated via direct pyrolysis of La-MOFs at 550 °C under the air atmosphere. The as-synthesized material predominantly consists of La2O2CO3, featuring micrometer-scale walnut-like morphology and an abundant mesoporous structure. Adsorption experiments demonstrated that a pseudo-second-order model with a high correlation coefficient (0.9976-0.9988) can depict this adsorption process in a good manner and indicates chemical adsorption. Analysis of the isotherms further revealed that this adsorption is a monolayer and homogeneous process, with an excellent adsorption capacity (210.1 As mg/g), as calculated from the Langmuir model. Thermodynamic parameters indicated this adsorption process to be a spontaneous and endothermic, with a positive change in entropy. By characterization results, it can be deduced that the anion-exchange interaction (i.e. carbonate is prone to being replaced by arsenate) and inner-sphere complexation were both responsible for arsenate removal. A broad working pH range (3.0-9.0) and a good cyclic performance (removal rate is above 90% for the fourth cycle) as well as an excellent adsorption capacity make this adsorbent a promising arsenic scavenger.
Collapse
Affiliation(s)
- Jiang-Bo Huo
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guoce Yu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Lei Xu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ming-Lai Fu
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
40
|
Wu P, He Y, Lu S, Wang S, Yi J, He Y, Zhang J, Xiang S, Ding P, Kai T, Pan H. A regenerable ion-imprinted magnetic biocomposite for selective adsorption and detection of Pb 2+ in aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124410. [PMID: 33187799 DOI: 10.1016/j.jhazmat.2020.124410] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/19/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
A regenerable ion-imprinted magnetic biocomposite (IIMB) was successfully synthesized for simultaneous removal of Pb2+ using Serratia marcescens and carboxymethyl chitosan (CMC) as functional carriers, Pb2+ was utilized as the imprinted ion, while Fe3O4 served as the magnetic component. The structure and properties of IIMB were characterized by various techniques. The adsorption kinetics, isotherms and thermodynamics were applied to interpret the Pb2+ adsorption process on IIMB. The results showed the IIMB possessed prominent uptake ability toward Pb2+. The pseudo-second-order kinetic (R2 = 0.9989) and Langmuir models (R2 = 0.9555) fitted the data well. Adsorption thermodynamics revealed that the adsorption was a spontaneous endothermic reaction. The possible adsorption mechanisms involved physical adsorption, electrostatic attraction and complexing. Moreover, because Pb2+ can be specifically and strongly adsorbed on IIMB, a simple method for detection of Pb2+ was established by coupling IIMB with flame atomic absorption spectrometry (IIMB-FAAS). The developed IIMB-FAAS assay can sensitively detect Pb2+ with a linear range from 5.0 to 500.0 μg/L. The detection limit (LOD) of 0.95 μg/L as well as a quantification limit (LOQ) of 3.20 μg/L were obtained. This work proved that the IIMB could selective and efficient adsorb Pb2+, which provided some insights into wastewater treatment, water quality inspection and environmental remediation.
Collapse
Affiliation(s)
- Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Yayuan He
- Hunan Testing Institute of Product and Commodity Supervision, Changsha, Hunan, 410007, China
| | - Siyu Lu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Shanlin Wang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Jiecan Yi
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Yafei He
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Shan Xiang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China.
| | - Tianhan Kai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Pudong, Shanghai 201318, China.
| |
Collapse
|
41
|
Huang Y, Hu C, An Y, Xiong Z, Hu X, Zhang G, Zheng H. Magnetic phosphorylated chitosan composite as a novel adsorbent for highly effective and selective capture of lead from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124195. [PMID: 33535359 DOI: 10.1016/j.jhazmat.2020.124195] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 05/22/2023]
Abstract
Separating and recovering lead from heavy metal contaminated wastewater is crucial for the environment remediation and reutilization of lead resources. Herein, a novel adsorbent, the phosphorylated chitosan-coated magnetic silica nanoparticles (Fe3O4@SiO2@CS-P), was successfully fabricated and applied to highly selective adsorption of lead. Competitive experiments were conducted in a multi-ion solution (7 metal ions coexist) at pH 6.0, Fe3O4@SiO2@CS-P exhibited an excellent selectively for capturing lead with the distribution coefficient (0.75 L g-1) more ten times than other metal, while Fe3O4@SiO2@CS demonstrated a highly selective adsorption of silver. These implied that phosphorylation of adsorbent not only improves the sorption performance of lead, but also changes the selective adsorption of metal types. Acidity experiments can draw conclusions that Fe3O4@SiO2@CS-P exhibited better acid resistance (with barely any iron leaching) than silica-uncoated adsorbent (Fe3O4@CS-P) at pH 1.0. Furthermore, the FTIR and XPS spectra after adsorption suggested that the high adsorption performance and selective capture lead were predominantly controlled by the coordination of the phosphate groups on the surface of the adsorbent. This work shows a broad prospect of developing a series of novel, acid-resistant, good reusable and rapidly separable magnetic materials that can be used to efficiently and selectively capture lead from aqueous solutions.
Collapse
Affiliation(s)
- Yaoyao Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Chao Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Yanyan An
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Zikang Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Xuebin Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Guizhi Zhang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
42
|
Li G, Liu Y, Shen Y, Fang Q, Liu F. Bimetallic Coordination in Two-Dimensional Metal–Organic Framework Nanosheets Enables Highly Efficient Removal of Heavy Metal Lead (II). FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.636439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two-dimensional (2D) metal–organic frameworks (MOFs) have emerged as intriguing 2D materials because of their specific features of 2D morphology and designable skeletons, which have elicited great interest in environment remediation. In this work, 2D MOF nanosheets are fabricated via a mixed-solvent solvothermal method, and a regulation strategy of metal inorganic clusters on MOFs is used to construct two different 2D MOFs with monometallic and bimetallic coordination, that is, Ni-MOF and Ni/Cd-MOF. Binary metal coordination renders more crystal defects and vacancies in the framework; thus, compared to monometallic Ni-MOF, bimetallic Ni/Cd-MOF exhibits fewer layers (4∼5 layers), higher specific surface area, larger pore size, and higher surface electronegativity, which leads to its excellent adsorption removal for Pb2+, with higher adsorption rate and affinity, and superior adsorption capacity (950.61 mg/g, almost twice as high as that of monometallic Ni-MOF). Besides, the adsorption mechanism further confirmed that the carboxyl groups (−COO−) from organic linker on 2D MOFs serve as the main binding sites for Pb2+ coordination, and bimetallic Ni/Cd-MOF has more active −COO− sites for Pb2+ capture. Thus, the bimetallic Ni/Cd-MOF regulated by heterogeneous metal atoms shows promising application for highly efficient adsorption of heavy metal ions.
Collapse
|
43
|
Choong CE, Wong KT, Jang SB, Saravanan P, Park C, Kim SH, Jeon BH, Choi J, Yoon Y, Jang M. Granular Mg-Fe layered double hydroxide prepared using dual polymers: Insights into synergistic removal of As(III) and As(V). JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123883. [PMID: 33264952 DOI: 10.1016/j.jhazmat.2020.123883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Controlling the particle size and aggregation of nanosheet layers in layered double hydroxides (LDHs) is critical for their application. Herein, we report the preparation of Mg-Fe LDH through a co-precipitation method. The LDH was embedded using polyacrylamide (PAM) and polyvinyl alcohol (PVA; the LDH was designated as PAM/PVA-LDH) for As(III) and As(V) removal. We found that doping with 0.3 mL PVA (2 g L-1) and 0.4 mL (20 g L-1) PAM solution delaminated the nanosheet layers of 1 g of the LDH (PAM40/PVA30-LDH) and restructured the crystal phase from monoclinic to orthorhombic. This increased the surface area and pore volume. Furthermore, PAM40/PVA30-LDH exhibited higher affinity for As(III) and As(V) removal with maximum adsorption capacities of 14.1 and 22.8 mg g-1, respectively, compared to LDH alone with adsorption capacities of 7.1 and 7.9 mg g-1, respectively. It was found that the highest adsorption capacities of As(III) and As(V) using PAM40/PVA30-LDH occurred at pH ∼7 and pH 2.5, respectively. X-ray photoelectron spectroscopy analysis revealed that the removal of As(III) and As(V) on PAM40/PVA30-LDH was mainly attributable to ion exchange with intercalated SO42-, hydrogen bonding, and complexation mechanisms. These findings illustrate that PAM40/PVA30-LDH would be an excellent adsorbent for the remediation of arsenic-polluted wastewater.
Collapse
Affiliation(s)
- Choe Earn Choong
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Kien Tiek Wong
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Seok Byum Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Pichiah Saravanan
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), India
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Sang-Hyoun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jaeyoung Choi
- Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-Gu, Seoul 02792, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| |
Collapse
|
44
|
Roy D, Neogi S, De S. Adsorptive removal of heavy metals from battery industry effluent using MOF incorporated polymeric beads: A combined experimental and modeling approach. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123624. [PMID: 33264856 DOI: 10.1016/j.jhazmat.2020.123624] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 06/12/2023]
Abstract
In this study, the metal organic framework (MOF) ZIF-8 was investigated as potential adsorbent for heavy metal ions. The MOF powder was used further to prepare mixed matrix beads (MMBs) using polysulfone as the base material. Both the MOF powder and the MMBs were characterized using Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller (BET) analyzer and zetasizer. Adsorption capacity of the MMBs were 164-220 mg/g for Pb and 92-161 mg/g for Cd. A fundamental pore diffusion-adsorption model was used to predict the batch kinetics for both single and multicomponent cases and effective pore diffusivities and mass transfer coefficients were determined. Mutual interactions among heavy metals were quantified using interaction parameters. ZIF-8, incorporated in the PSF matrix, plays the predominant role in capturing the metal ions through surface complexation with the NH and metal-OH groups. A first principle-based model involving convection, diffusion and adsorption was used to quantify the breakthrough behavior for the continuous fixed bed column using the MMBs. The column performance was tested with battery industry effluent. The saturated beads were suitably regenerated using 0.1(M) HCl solution. Finally, the model parameters were used for scaling up of the columns.
Collapse
Affiliation(s)
- Debashis Roy
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sudarsan Neogi
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sirshendu De
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
45
|
Engineering of amine-based binding chemistry on functionalized graphene oxide/alginate hybrids for simultaneous and efficient removal of trace heavy metals: Towards drinking water. J Colloid Interface Sci 2021; 589:511-524. [PMID: 33486286 DOI: 10.1016/j.jcis.2021.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 11/21/2022]
Abstract
Engineering of versatile binding chemistry on graphene oxide surface using nucleophilic substitution/amidation reactions for highly efficient adsorption of Cd (II), Cu (II) and Pb (II) is herein proposed. Graphene oxide (GO) was used as a precursor for covalent bonding of hexamethylenediamine (HMDA) molecules via the nucleophilic substitution/amidation reactions on epoxy (COC) and carboxyl (COOH) groups to yield hexamethylenediamine functionalized graphene oxide (GO-HMDA) with multiple binding chemistries such as oxygen and nitrogen. Afterwards, GO-HMDA was encapsulated in alginate hydrogel beads with different loadings 5, 10, 15 and 20 wt% to produce Alg/GO-HMDA hybrid adsorbents for the removal of trace heavy metal ions from aqueous solution. Batch adsorption studies showed remarkable adsorption rates reaching 100% for Pb (II), 98.18% for Cu (II) and 95.19 for Cd (II) (~1 mg L-1) with only 15 wt% of GO-HMDA incorporated into the alginate beads. Moreover, Alg/GO-HMDA showed high removal efficiencies of heavy metals from tap water with a removal order of (Pb > Cu > Cd) similar to that observed in single aqueous solution. In Addition, the Alg/GO-HMDA adsorbents displayed excellent regeneration ability for six consecutive adsorption-desorption cycles confirming the high performance and potential of these adsorbents, for real heavy metals remediation in environment and in drinking waters in both single and multiple systems. Finally, the adsorption mechanism of traces heavy metals resulted from several phenomena including the electrostatic interactions occurring between the COOH groups of Alginate and the GO-HMDA surface groups as well as, through chelation interactions occurring between the metal cations and amino-functionalized groups of Alg/GO-HMDA 15 hybrid adsorbent.
Collapse
|
46
|
Sun Y, Wei Y, Pei J, Nan H, Wang Y, Cao X, Liu Y. Study on adsorption of U(VI) from MOF-derived phosphorylated porous carbons. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121792] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Joharian M, Morsali A. Ultrasonic-assisted fabrication of F-MOFs: morphology and types of pillar-dependent sensing performance to phenolic NAC detection. NEW J CHEM 2021. [DOI: 10.1039/d1nj03817f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, TMU-44 and TMU-45 synthesized by the sonochemical procedure exhibited very selective response towards the detection of phenolic NACs, particularly TNP.
Collapse
Affiliation(s)
- Monika Joharian
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-4838, Tehran, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-4838, Tehran, Islamic Republic of Iran
| |
Collapse
|
48
|
Icten O, Ozer D. Magnetite doped metal–organic framework nanocomposites: an efficient adsorbent for removal of bisphenol-A pollutant. NEW J CHEM 2021. [DOI: 10.1039/d0nj05622g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The removal of bisphenol-A (BPA) from the aqueous environment is a vital issue for public health due to its toxic effect.
Collapse
Affiliation(s)
- Okan Icten
- Hacettepe University
- Faculty of Science
- Department of Chemistry
- Ankara
- Turkey
| | - Demet Ozer
- Hacettepe University
- Faculty of Science
- Department of Chemistry
- Ankara
- Turkey
| |
Collapse
|
49
|
Feng X, Pan F, Zhang P, Wang X, Zhou H, Huang Y, Li Y. Metal‐Organic Framework MIL‐125 Derived Mg
2+
‐Doped Mesoporous TiO
2
for Photocatalytic CO
2
Reduction. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuhui Feng
- J. Mike Walker'66 Department of Mechanical Engineering Texas A&M University College Station Texas 77843 USA
| | - Fuping Pan
- J. Mike Walker'66 Department of Mechanical Engineering Texas A&M University College Station Texas 77843 USA
| | - Peng Zhang
- Department of Chemistry Texas A&M University College Station Texas 77843 USA
| | - Xiao Wang
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas 77843 USA
| | - Hong‐Cai Zhou
- Department of Chemistry Texas A&M University College Station Texas 77843 USA
- Department of Materials Science and Engineering Texas A&M University College Station Texas 77843 USA
| | - Yongheng Huang
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas 77843 USA
| | - Ying Li
- J. Mike Walker'66 Department of Mechanical Engineering Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
50
|
Shan S, Wang W, Liu D, Zhao Z, Shi W, Cui F. Remarkable phosphate removal and recovery from wastewater by magnetically recyclable La 2O 2CO 3/γ-Fe 2O 3 nanocomposites. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122597. [PMID: 32416378 DOI: 10.1016/j.jhazmat.2020.122597] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/07/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Owing to the twin problems of eutrophication and global phosphorus (P) scarcity, the removal and recovery of phosphate from water and wastewater have received increasing attention. Herein, magnetically recyclable La2O2CO3/γ-Fe2O3 adsorbents were rationally designed by derivation from La/Fe binary metal organic framework (MOF) precursors via calcination treatment. Based upon preliminary screening of as-prepared La2O2CO3/γ-Fe2O3 nanocomposites with different La-to-Fe molar ratios in terms of phosphate sorption capacity and magnetic property as well as La content, La2O2CO3/γ-Fe2O3 nanocomposite with a La-to-Fe molar ratio of 2:1 was selected for further characterization and adsorption performance evaluation. Batch adsorption experiments showed that La2O2CO3/γ-Fe2O3 (2:1) adsorbent exhibited a remarkable phosphate sorption capacity of 134.82 mg P/g, a fast sorption kinetic, strong selectivity for phosphate in the presence of co-existing anions, and a wide applicable pH range of 3-9. Furthermore, La2O2CO3/γ-Fe2O3 (2:1) sorbent displayed an excellent sorption performance for low-concentration wastewater, a low dosage of 0.1 g/L was sufficiently enough for reducing P-concentration from 0.5 mg P/L to below 10 μg P/L within 20 min. In a real sewage of 2.68 mg P/L, 0.2 g/L of sorbent could reduce the concentration of phosphate to <0.01 mg P/L within 50 min. Moreover, over 83.1 % of original sorption capacity could be retained after 5 consecutive regeneration cycles, showing great regenerative performance of the adsorbent. These development is expected to be meaningful for practical water purification.
Collapse
Affiliation(s)
- Sujie Shan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiwei Zhao
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China
| | - Wenxin Shi
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China.
| | - Fuyi Cui
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China
| |
Collapse
|