1
|
Palà M, Lligadas G, Moreno A. Valorization of Lactate Esters and Amides into Value-Added Biobased (Meth)acrylic Polymers. Biomacromolecules 2024; 25:6338-6356. [PMID: 39258970 PMCID: PMC11480984 DOI: 10.1021/acs.biomac.4c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
(Meth)acrylic polymers are massively produced due to their inherently attractive properties. However, the vast majority of these polymers are derived from fossil resources, which is not aligned with the tendency to reduce gas emissions. In this context, (meth)acrylic polymers derived from biomass (biobased polymers) are gaining momentum, as their application in different areas can not only stand the comparison but even surpass, in some cases, the performance of petroleum-derived ones. In this review, we highlight the design and synthesis of (meth)acrylic polymers derived from lactate esters (LEs) and lactate amides (LAs), both derived from lactic acid. While biobased polymers have been widely studied and reviewed, the poly(meth)acrylates with pendant LE and LA moieties evolved slowly until recently when significant achievements have been made. Hence, constraints and opportunities arising from previous research in this area are presented, focusing on the synthesis of well-defined polymers for the preparation of advanced materials.
Collapse
Affiliation(s)
- Marc Palà
- Universitat
Rovira i Virgili, Departament de
Química Analítica i Química Orgànica,
Laboratory of Sustainable Polymers, Tarragona 43007, Spain
| | - Gerard Lligadas
- Universitat
Rovira i Virgili, Departament de
Química Analítica i Química Orgànica,
Laboratory of Sustainable Polymers, Tarragona 43007, Spain
| | - Adrian Moreno
- Universitat
Rovira i Virgili, Departament de
Química Analítica i Química Orgànica,
Laboratory of Sustainable Polymers, Tarragona 43007, Spain
| |
Collapse
|
2
|
Di Lorenzo L, Bordignon S, Chierotti MR, Alfeo IA, Antosik AK, Brunella V. Advancing Sustainability: Geraniol-Enhanced Waterborne Acrylic Pressure-Sensitive Adhesives without Chemical Modification. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4957. [PMID: 39459662 PMCID: PMC11509658 DOI: 10.3390/ma17204957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
The escalating global emphasis on sustainability, coupled with stringent regulatory frameworks, has spurred the quest for environmentally viable alternatives to petroleum-derived materials. Within this context, the adhesives industry has been actively seeking renewable options and eco-friendly synthesis pathways. This study introduces geraniol, a monoterpenoid alcohol, in its unmodified form, as a key component in the production of waterborne pressure-sensitive adhesives (PSAs) based on acrylic latex through emulsion polymerization. Multiple formulations were developed at varying reaction times. The adhesives underwent comprehensive chemical characterization employing techniques such as Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Nuclear Magnetic Resonance (NMR), Gel Permeation Chromatography (GPC), and dynamic light scattering (DLS). The viscosities of the formulations were measured between 4000 and 5000 cP. Adhesion tests showed peel strength values of 0.52 N/mm on cardboard and 0.32 N/mm on painted steel for the geraniol-based formulations. The results demonstrate the potential for geraniol-based PSAs to offer a sustainable alternative to petroleum-derived adhesives, with promising thermal and adhesive properties.
Collapse
Affiliation(s)
- Ludovica Di Lorenzo
- Department of Chemistry and NIS Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (L.D.L.); (S.B.); (M.R.C.)
| | - Simone Bordignon
- Department of Chemistry and NIS Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (L.D.L.); (S.B.); (M.R.C.)
| | - Michele R. Chierotti
- Department of Chemistry and NIS Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (L.D.L.); (S.B.); (M.R.C.)
| | | | - Adrian Krzysztof Antosik
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Pulaskiego 10, 70-322 Szczecin, Poland;
| | - Valentina Brunella
- Department of Chemistry and NIS Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (L.D.L.); (S.B.); (M.R.C.)
| |
Collapse
|
3
|
Sokolova AS, Baev DS, Mordvinova ED, Yarovaya OI, Volkova NV, Shcherbakov DN, Okhina AA, Rogachev AD, Shnaider TA, Chvileva AS, Nikitina TV, Tolstikova TG, Salakhutdinov NF. (+)-fenchol and (-)-isopinocampheol derivatives targeting the entry process of filoviruses. Eur J Med Chem 2024; 275:116596. [PMID: 38889610 DOI: 10.1016/j.ejmech.2024.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
The increasing frequency of filovirus outbreaks in African countries has led to a pressing need for the development of effective antifilovirus agents. In continuation of our previous research on the antifilovirus activity of monoterpenoid derivatives, we synthesized a series of (+)-fenchol and (-)-isopinocampheol derivatives by varying the type of heterocycle and linker length. Derivatives with an N-alkylpiperazine cycle proved to be the most potent antiviral compounds, with half-maximal inhibitory concentration (IC50) 1.4-20 μМ against Lenti-EboV-GP infection and 11.3-47 μМ against Lenti-MarV-GP infection. Mechanism-of-action experiments revealed that the compounds may exert their action by binding to surface glycoproteins (GPs). It was demonstrated that the binding of the synthesized compounds to the Marburg virus GP is less efficient as compared to the Ebola virus GP. Furthermore, it was shown that the compounds possess lysosomotropic properties. Thus, the antiviral activity may be due to dual effects. This study offers new antiviral agents that are worthy of further exploration.
Collapse
Affiliation(s)
- Anastasiya S Sokolova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation.
| | - Dmitriy S Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation; SRF SKIF, Koltsovo, Novosibirsk Oblast, 630559, Russian Federation
| | - Ekaterina D Mordvinova
- State Research Center of Virology and Biotechnology VECTOR (Rospotrebnadzor), Koltsovo, Novosibirsk Oblast, 630559, Russian Federation
| | - Olga I Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| | - Natalia V Volkova
- State Research Center of Virology and Biotechnology VECTOR (Rospotrebnadzor), Koltsovo, Novosibirsk Oblast, 630559, Russian Federation
| | - Dmitriy N Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR (Rospotrebnadzor), Koltsovo, Novosibirsk Oblast, 630559, Russian Federation
| | - Alina A Okhina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| | - Artem D Rogachev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| | - Tatiana A Shnaider
- Institute of Cytology and Genetics (ICG), SB RAS, Novosibirsk, 630090, Russian Federation
| | | | - Tatiana V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russian Federation
| | - Tatyana G Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| |
Collapse
|
4
|
Edwards M, Pratley MT, Gordon CM, Teixeira RI, Ali H, Mahmood I, Lester R, Love A, Hermens JGH, Freese T, Feringa BL, Poliakoff M, George MW. Process Intensification of the Continuous Synthesis of Bio-Derived Monomers for Sustainable Coatings Using a Taylor Vortex Flow Reactor. Org Process Res Dev 2024; 28:1917-1928. [PMID: 38783853 PMCID: PMC11110062 DOI: 10.1021/acs.oprd.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
We describe the optimization and scale-up of two consecutive reaction steps in the synthesis of bio-derived alkoxybutenolide monomers that have been reported as potential replacements for acrylate-based coatings (Sci. Adv.2020, 6, eabe0026). These monomers are synthesized by (i) oxidation of furfural with photogenerated singlet oxygen followed by (ii) thermal condensation of the desired 5-hydroxyfuranone intermediate product with an alcohol, a step which until now has involved a lengthy batch reaction. The two steps have been successfully telescoped into a single kilogram-scale process without any need to isolate the 5-hydroxyfuranone between the steps. Our process development involved FTIR reaction monitoring, FTIR data analysis via 2D visualization, and two different photoreactors: (i) a semicontinuous photoreactor based on a modified rotary evaporator, where FTIR and 2D correlation spectroscopy (2D-COS) revealed the loss of the methyl formate coproduct, and (ii) our fully continuous Taylor Vortex photoreactor, which enhanced the mass transfer and permitted the use of near-stoichiometric equivalents of O2. The use of in-line FTIR monitoring and modeling greatly accelerated process optimization in the Vortex reactor. This led to scale-up of the photo-oxidation in 85% yield with a projected productivity of 1.3 kg day-1 and a space-time yield of 0.06 mol day-1 mL-1. Higher productivities could be achieved while sacrificing yield (e.g., 4 kg day-1 at 40% yield). The use of superheated methanol at 200 °C in a pressurized thermal flow reactor accelerated the second step, the thermal condensation of 5-hydroxyfuranone, from a 20 h batch reflux reaction (0.5 L, 85 g) to a space time of <1 min in a reactor only 3 mL in volume operating with projected productivities of >700 g day-1. Proof of concept for telescoping the two steps was established with an overall two-step yield of 67%, producing a process with a projected productivity of 1.1 kg day-1 for the methoxybutenolide monomer without any purification of the 5-hydroxyfuranone intermediate.
Collapse
Affiliation(s)
- Matthew
D. Edwards
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Matthew T. Pratley
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Charles M. Gordon
- Scale-up
Systems Ltd., 23 Shelbourne
Road, Dublin 4, D04 PY68, Ireland
| | - Rodolfo I. Teixeira
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hamza Ali
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Irfhan Mahmood
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Reece Lester
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Ashley Love
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Johannes G. H. Hermens
- Advanced
Research Centre CBBC, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas Freese
- Advanced
Research Centre CBBC, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Advanced
Research Centre CBBC, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Martyn Poliakoff
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Michael W. George
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
5
|
Chiaradia V, Pensa E, Machado TO, Dove AP. Improving the Performance of Photoactive Terpene-Based Resin Formulations for Light-Based Additive Manufacturing. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:6904-6912. [PMID: 38725455 PMCID: PMC11077580 DOI: 10.1021/acssuschemeng.3c08191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Photocurable liquid formulations have been a key research focus for the preparation of mechanically robust and thermally stable networks. However, the development of renewable resins to replace petroleum-based commodities presents a great challenge in the field. From this perspective, we disclose the design of photoactive resins based on terpenes and itaconic acid, both potentially naturally sourced, to prepare photosets with adjustable thermomechanical properties. Biobased perillyl itaconate (PerIt) was synthesized from renewable perillyl alcohol and itaconic anhydride via a scalable solvent-free method. Photoirradiation of PerIt in the presence of a multiarm thiol and photoinitiator led to the formation of networks over a range of compositions. Addition of nonmodified terpenes (perillyl alcohol, linalool, or limonene) as reactive diluents allowed for more facile preparation of photocured networks. Photosets within a wide range of properties were accessed, and these could be adjusted by varying diluent type and thiol stoichiometry. The resins showed rapid photocuring kinetics and the ability to form either brittle or elastic materials, with Young's modulus and strain at break ranging from 3.6 to 358 MPa and 15 to 367%, respectively, depending on the chemical composition of the resin. Glass transition temperatures (Tg) were influenced by thioether content, with temperatures ranging from 5 to 43 °C, and all photosets displayed good thermal resistance with Td,5% > 190 °C. Selected formulations containing PerIt and limonene demonstrated suitability for additive manufacturing technologies and high-resolution objects were printed via digital light processing (DLP). Overall, this work presents a simple and straightforward route to prepare renewable resins for rapid prototyping applications.
Collapse
Affiliation(s)
- Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Elena Pensa
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Thiago O. Machado
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
6
|
Krumins E, Crawford LA, Rogers DM, Machado F, Taresco V, East M, Irving SH, Fowler HR, Jiang L, Starr N, Parmenter CDJ, Kortsen K, Cuzzucoli Crucitti V, Avery SV, Tuck CJ, Howdle SM. A facile one step route that introduces functionality to polymer powders for laser sintering. Nat Commun 2024; 15:3137. [PMID: 38605004 PMCID: PMC11009337 DOI: 10.1038/s41467-024-47376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Laser Sintering (LS) is a type of Additive Manufacturing (AM) exploiting laser processing of polymeric particles to produce 3D objects. Because of its ease of processability and thermo-physical properties, polyamide-12 (PA-12) represents ~95% of the polymeric materials used in LS. This constrains the functionality of the items produced, including limited available colours. Moreover, PA-12 objects tend to biofoul in wet environments. Therefore, a key challenge is to develop an inexpensive route to introduce desirable functionality to PA-12. We report a facile, clean, and scalable approach to modification of PA-12, exploiting supercritical carbon dioxide (scCO2) and free radical polymerizations to yield functionalised PA-12 materials. These can be easily printed using commercial apparatus. We demonstrate the potential by creating coloured PA-12 materials and show that the same approach can be utilized to create anti-biofouling objects. Our approach to functionalise materials could open significant new applications for AM.
Collapse
Affiliation(s)
- Eduards Krumins
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - Liam A Crawford
- Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - David M Rogers
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - Fabricio Machado
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
- Institute of Chemistry, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - Mark East
- Centre of Additive Manufacturing, Faculty of Engineering, University of Nottingham, 522 Derby Rd, Lenton, Nottingham, NG7 2GX, UK
| | - Samuel H Irving
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - Harriet R Fowler
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - Long Jiang
- School of Pharmacy, University of Nottingham, University Park Nottingham, Nottingham, NG7 2RD, UK
| | - Nichola Starr
- School of Pharmacy, University of Nottingham, University Park Nottingham, Nottingham, NG7 2RD, UK
| | - Christopher D J Parmenter
- Nottingham Nanoscale and Microscale Research Centre, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Kristoffer Kortsen
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - Valentina Cuzzucoli Crucitti
- Centre of Additive Manufacturing, Faculty of Engineering, University of Nottingham, 522 Derby Rd, Lenton, Nottingham, NG7 2GX, UK
| | - Simon V Avery
- Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - Christopher J Tuck
- Centre of Additive Manufacturing, Faculty of Engineering, University of Nottingham, 522 Derby Rd, Lenton, Nottingham, NG7 2GX, UK
| | - Steven M Howdle
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK.
| |
Collapse
|
7
|
Bekmirzaev J, Simon M, D'Aniello S, Mazzeo M, Cohen-Janes SJ, Mathers RT, Gauvin RM, Thomas CM. A New Life For Nitrile-Butadiene Rubber: Co-Harnessing Metathesis And Condensation For Reincorporation Into Bio-Based Materials. Angew Chem Int Ed Engl 2024; 63:e202319414. [PMID: 38295149 DOI: 10.1002/anie.202319414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Efficient plastic recycling processes are crucial for the production of value-added products or intermediates. Here, we present a multicatalytic route that allows the degradation of nitrile-butadiene rubber, cross-metathesis of the formed oligomers, and polymerization of the resulting dicarboxylic acids with bio-based diols, providing direct access to unsaturated polyesters. This one-pot approach combines the use of commercially available catalysts that are active and selective under mild conditions to synthesize renewable copolymers without the need to isolate intermediates.
Collapse
Affiliation(s)
- Jakhongir Bekmirzaev
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11, rue Pierre et Marie Curie, 75005, Paris, France
| | - Malaury Simon
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11, rue Pierre et Marie Curie, 75005, Paris, France
| | - Sara D'Aniello
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, via Giovanni Paolo II, 132, SA-84084, Fisciano, Italy
| | - Mina Mazzeo
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, via Giovanni Paolo II, 132, SA-84084, Fisciano, Italy
| | - Sander J Cohen-Janes
- Department of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania, 15068, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA
| | - Robert T Mathers
- Department of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania, 15068, USA
| | - Régis M Gauvin
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11, rue Pierre et Marie Curie, 75005, Paris, France
| | - Christophe M Thomas
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11, rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
8
|
Filippova OV, Maksimkin AV, Dayyoub T, Larionov DI, Telyshev DV. Sustainable Elastomers for Actuators: "Green" Synthetic Approaches and Material Properties. Polymers (Basel) 2023; 15:2755. [PMID: 37376401 DOI: 10.3390/polym15122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Elastomeric materials have great application potential in actuator design and soft robot development. The most common elastomers used for these purposes are polyurethanes, silicones, and acrylic elastomers due to their outstanding physical, mechanical, and electrical properties. Currently, these types of polymers are produced by traditional synthetic methods, which may be harmful to the environment and hazardous to human health. The development of new synthetic routes using green chemistry principles is an important step to reduce the ecological footprint and create more sustainable biocompatible materials. Another promising trend is the synthesis of other types of elastomers from renewable bioresources, such as terpenes, lignin, chitin, various bio-oils, etc. The aim of this review is to address existing approaches to the synthesis of elastomers using "green" chemistry methods, compare the properties of sustainable elastomers with the properties of materials produced by traditional methods, and analyze the feasibility of said sustainable elastomers for the development of actuators. Finally, the advantages and challenges of existing "green" methods of elastomer synthesis will be summarized, along with an estimation of future development prospects.
Collapse
Affiliation(s)
- Olga V Filippova
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Aleksey V Maksimkin
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Tarek Dayyoub
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
- Department of Physical Chemistry, National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Dmitry I Larionov
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Dmitry V Telyshev
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
- Institute of Biomedical Systems, National Research University of Electronic Technology, Zelenograd, 124498 Moscow, Russia
| |
Collapse
|
9
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
10
|
Cuzzucoli Crucitti V, Ilchev A, Moore JC, Fowler HR, Dubern JF, Sanni O, Xue X, Husband BK, Dundas AA, Smith S, Wildman JL, Taresco V, Williams P, Alexander MR, Howdle SM, Wildman RD, Stockman RA, Irvine DJ. Predictive Molecular Design and Structure-Property Validation of Novel Terpene-Based, Sustainably Sourced Bacterial Biofilm-Resistant Materials. Biomacromolecules 2023; 24:576-591. [PMID: 36599074 PMCID: PMC9930090 DOI: 10.1021/acs.biomac.2c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Presented in this work is the use of a molecular descriptor, termed the α parameter, to aid in the design of a series of novel, terpene-based, and sustainable polymers that were resistant to biofilm formation by the model bacterial pathogen Pseudomonas aeruginosa. To achieve this, the potential of a range of recently reported, terpene-derived monomers to deliver biofilm resistance when polymerized was both predicted and ranked by the application of the α parameter to key features in their molecular structures. These monomers were derived from commercially available terpenes (i.e., α-pinene, β-pinene, and carvone), and the prediction of the biofilm resistance properties of the resultant novel (meth)acrylate polymers was confirmed using a combination of high-throughput polymerization screening (in a microarray format) and in vitro testing. Furthermore, monomers, which both exhibited the highest predicted biofilm anti-biofilm behavior and required less than two synthetic stages to be generated, were scaled-up and successfully printed using an inkjet "valve-based" 3D printer. Also, these materials were used to produce polymeric surfactants that were successfully used in microfluidic processing to create microparticles that possessed bio-instructive surfaces. As part of the up-scaling process, a novel rearrangement was observed in a proposed single-step synthesis of α-terpinyl methacrylate via methacryloxylation, which resulted in isolation of an isobornyl-bornyl methacrylate monomer mixture, and the resultant copolymer was also shown to be bacterial attachment-resistant. As there has been great interest in the current literature upon the adoption of these novel terpene-based polymers as green replacements for petrochemical-derived plastics, these observations have significant potential to produce new bio-resistant coatings, packaging materials, fibers, medical devices, etc.
Collapse
Affiliation(s)
- Valentina Cuzzucoli Crucitti
- Centre of Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Aleksandar Ilchev
- Centre of Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Jonathan C Moore
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Harriet R Fowler
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Jean-Frédéric Dubern
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Olutoba Sanni
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Xuan Xue
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Bethany K Husband
- Centre of Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Adam A Dundas
- Centre of Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Sean Smith
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Joni L Wildman
- Centre of Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Steven M Howdle
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Ricky D Wildman
- Centre of Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Robert A Stockman
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Derek J Irvine
- Centre of Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| |
Collapse
|
11
|
TG-FTIR-QMS analysis of more environmentally friendly poly(geranyl methacrylate)-co-poly(cyclohexyl methacrylate) copolymers. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Comparative hydrodynamic characterisation of two hydroxylated polymers based on α-pinene- or oleic acid-derived monomers for potential use as archaeological consolidants. Sci Rep 2022; 12:18411. [PMID: 36319651 PMCID: PMC9626589 DOI: 10.1038/s41598-022-21027-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
The Oseberg Viking ship burial is one of the most extensive collections of Viking wooden artefacts ever excavated in Norway. In the early twentieth century, many of these artefacts were treated with alum in order to preserve them, inadvertently leading to their current degraded state. It is therefore crucial to develop new bioinspired polymers which could be used to conserve these artefacts and prevent further disintegration. Two hydroxylated polymers were synthesised (TPA6 and TPA7), using α-pinene- and oleic acid-derived monomers functionalised with an acrylate moiety. Characterisation using biomolecular hydrodynamics (analytical ultracentrifugation and high precision viscometry) has shown that these polymers have properties which would potentially make them good wood consolidants. Conformation analyses with the viscosity increment (ν) universal hydrodynamic parameter and ELLIPS1 software showed that both polymers had extended conformations, facilitating in situ networking when applied to wood. SEDFIT-MSTAR analyses of sedimentation equilibrium data indicates a weight average molar mass Mw of (3.9 ± 0.8) kDa and (4.2 ± 0.2) kDa for TPA6 and TPA7 respectively. Analyses with SEDFIT (sedimentation velocity) and MultiSig however revealed that TPA7 had a much greater homogeneity and a lower proportion of aggregation. These studies suggest that both these polymers-particularly TPA7-have characteristics suitable for wood consolidation, such as an optimal molar mass, conformation and a hydroxylated nature, making them interesting leads for further research.
Collapse
|
13
|
Sustainable ABA triblock methacrylate copolymers incorporating both high and low Tg terpene-derived monomers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Upitak K, Thomas CM. One-Pot Catalysis: A Privileged Approach for Sustainable Polymers? Acc Chem Res 2022; 55:2168-2179. [PMID: 35881825 DOI: 10.1021/acs.accounts.2c00192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Almost all aspects of daily life involve polymers in some form or the other. However, polymer production is largely based on finite feedstocks. These limitations combined with environmental concerns force us to rethink the strategies for the synthesis of these materials. As an abundant and renewable resource, biomass is composed of a very diverse range of molecules that deserve to be valorized. The development of new methods for transforming biomass into resources suitable for polymer production remains a crucial hurdle on the road to a more sustainable chemical economy. The main challenge is to design efficient and selective transformations of abundant and inexpensive raw materials into innovative polymers. For the chemical industry to meet these challenges, process intensification must play an important role in developing cleaner and more energy-efficient technologies while aiming for safer and more sustainable processes. Catalysis is an important tool to support more sustainable plastics production by being ideally efficient, practical, and versatile. In this regard, the creation of sustainable polymers through one-pot catalysis represents an exciting frontier in materials science.In this Account, we describe some of the published advances for achieving one-pot synthesis of biobased monomers and the resulting (co)polymers. These studies demonstrate that one-pot reactions can produce sustainable materials for a wide range of applications. We show that these new multistep "one-pot" approaches are very promising from an academic and industrial point of view. These synthetic schemes have indeed allowed us to investigate the formation of new polyesters, polypeptides, and poly(meth)acrylates by different polymerization mechanisms. We discuss their efficiency by highlighting their ability to perform multiple (quantitative) synthetic transformations and bond formation steps while bypassing multiple purification procedures at the same time. While enabling the development of novel polymeric structures, we demonstrate that these one-pot procedures can also contribute to reducing the environmental footprint.In light of the growing concerns for sustainable development, these procedures may therefore allow, in the near future, one to prepare sustainable polymeric materials with advanced properties through extremely simplified routes from renewable feedstocks. Among these materials, block and alternating copolymers are unique structures that can exhibit a wide range of properties. While their multistep synthesis remains a demanding process, the one-pot synthesis of these polymers is much more scalable and can create multiblock or alternating copolymers with a wide range of potential sequences. These approaches then give access to materials whose structure and functionality can be designed to suit the need.
Collapse
Affiliation(s)
- Kanokon Upitak
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Christophe M Thomas
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
15
|
Zhou H, Han JT, Nöthling N, Lindner MM, Jenniches J, Kühn C, Tsuji N, Zhang L, List B. Organocatalytic Asymmetric Synthesis of Si-Stereogenic Silyl Ethers. J Am Chem Soc 2022; 144:10156-10161. [PMID: 35649270 PMCID: PMC9490845 DOI: 10.1021/jacs.2c04261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 01/15/2023]
Abstract
Functionalized enantiopure organosilanes are important building blocks with applications in various fields of chemistry; nevertheless, asymmetric synthetic methods for their preparation are rare. Here we report the first organocatalytic enantioselective synthesis of tertiary silyl ethers possessing "central chirality" on silicon. The reaction proceeds via a desymmetrizing carbon-carbon bond forming silicon-hydrogen exchange reaction of symmetrical bis(methallyl)silanes with phenols using newly developed imidodiphosphorimidate (IDPi) catalysts. A variety of enantiopure silyl ethers was obtained in high yields with good chemo- and enantioselectivities and could be readily derivatized to several useful chiral silicon compounds, leveraging the olefin functionality and the leaving group nature of the phenoxy substituent.
Collapse
Affiliation(s)
- Hui Zhou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Jung Tae Han
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Nils Nöthling
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Monika M. Lindner
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Judith Jenniches
- Innovation
Center, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Clemens Kühn
- Innovation
Center, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Nobuya Tsuji
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Li Zhang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
16
|
Save M, Hellaye ML, de Villedon V, Adoumaz I, Pillet M, Atanase L, Lahcini M, Deniau E, Khoukh A, Pellerin V, Ly I, Dulong V, Schmitt V. Biosourced Polymeric Emulsifiers for Miniemulsion Copolymerization of Myrcene and Styrene: Toward Biobased Waterborne Latex as Pickering Emulsion Stabilizer. Biomacromolecules 2022; 23:2536-2551. [PMID: 35640245 DOI: 10.1021/acs.biomac.2c00257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biobased waterborne latexes were synthesized by miniemulsion radical copolymerization of a biosourced β-myrcene (My) terpenic monomer and styrene (S). Biobased amphiphilic copolymers were designed to act as stabilizers of the initial monomer droplets and the polymer colloids dispersed in the water phase. Two types of hydrophilic polymer backbones were hydrophobically modified by terpene molecules to synthesize two series of amphiphilic copolymers with various degrees of substitution. The first series consists of poly(acrylic acid) modified with tetrahydrogeraniol moieties (PAA-g-THG) and the second series is based on the polysaccharide carboxymethylpullulan amino-functionalized with dihydromyrcenol moieties (CMP-g-(NH-DHM)). The produced waterborne latexes with diameters between 160 and 300 nm and were composed of polymers with varying glass transition temperatures (Tg, PMy = -60 °C, Tg, P(My-co-S) = -14 °C, Tg, PS = 105 °C) depending on the molar fraction of biobased β-myrcene (fMy,0 = 0, 0.43, or 1). The latexes successfully stabilized dodecane-in-water and water-in-dodecane emulsions for months at all compositions. The waterborne latexes composed of low Tg poly(β-myrcene) caused interesting different behavior during drying of the emulsions compared to polystyrene latexes.
Collapse
Affiliation(s)
- Maud Save
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France
| | - Maude Le Hellaye
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France.,CRPP, UMR 5031, Univ. Bordeaux, CNRS, 33600 Pessac, France
| | - Valentine de Villedon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France.,CRPP, UMR 5031, Univ. Bordeaux, CNRS, 33600 Pessac, France
| | - Ismail Adoumaz
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France.,IMED-Lab, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Marion Pillet
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France
| | - Léonard Atanase
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France
| | | | - Elise Deniau
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France
| | - Abdel Khoukh
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France
| | - Virginie Pellerin
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France
| | - Isabelle Ly
- CRPP, UMR 5031, Univ. Bordeaux, CNRS, 33600 Pessac, France
| | | | | |
Collapse
|
17
|
Sedrik R, Bonjour O, Laanesoo S, Liblikas I, Pehk T, Jannasch P, Vares L. Chemically Recyclable Poly(β-thioether ester)s Based on Rigid Spirocyclic Ketal Diols Derived from Citric Acid. Biomacromolecules 2022; 23:2685-2696. [PMID: 35617050 PMCID: PMC9198987 DOI: 10.1021/acs.biomac.2c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Incorporating rigid
cyclic acetal and ketal units into polymer
structures is an important strategy toward recyclable high-performance
materials from renewable resources. In the present work, citric acid,
a widely used platform chemical derived from biomass, has been efficiently
converted into di- and tricyclic diketones. Ketalization with glycerol
or trimethylolpropane afforded rigid spirodiols, which were obtained
as complex mixtures of isomers. After a comprehensive NMR analysis,
the spirodiols were converted into the respective di(meth)acrylates
and utilized in thiol–ene polymerizations in combination with
different dithiols. The resulting poly(β-thioether ester ketal)s
were thermally stable up to 300 °C and showed glass-transition
temperatures in a range of −7 to 40 °C, depending on monomer
composition. The polymers were stable in aqueous acids and bases,
but in a mixture of 1 M aqueous HCl and acetone, the ketal functional
groups were cleanly hydrolyzed, opening the pathway for potential
chemical recycling of these materials. We envision that these novel
bioderived spirodiols have a great potential to become valuable and
versatile bio-based building blocks for several different kinds of
polymer materials.
Collapse
Affiliation(s)
- Rauno Sedrik
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Olivier Bonjour
- Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Siim Laanesoo
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Ilme Liblikas
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Tõnis Pehk
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia
| | - Patric Jannasch
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.,Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Lauri Vares
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
18
|
Palà M, Woods SE, Hatton FL, Lligadas G. RDRP (Meth)acrylic Homo and Block Polymers from Lignocellulosic Sugar Derivatives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marc Palà
- Laboratory of Sustainable Polymers Department of Analytical Chemistry and Organic Chemistry University Rovira i Virgili Tarragona 43007 Spain
| | - Sarah E. Woods
- Department of Materials Loughborough University Loughborough LE11 3TU UK
| | - Fiona L. Hatton
- Department of Materials Loughborough University Loughborough LE11 3TU UK
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers Department of Analytical Chemistry and Organic Chemistry University Rovira i Virgili Tarragona 43007 Spain
| |
Collapse
|
19
|
d'Almeida Gameiro M, Jacob PL, Kortsen K, Ward T, Taresco V, Stockman RA, Chebude Y, Howdle SM. Greener
extraction‐chemical modification‐polymerization
pipeline of vernolic acid from Ethiopian ironweed plant. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Thomas Ward
- School of Chemistry University of Nottingham Nottingham UK
| | | | | | - Yonas Chebude
- Chemistry Department Addis Ababa University Addis Ababa Ethiopia
| | | |
Collapse
|
20
|
Monaghan OR, Skowron ST, Moore JC, Pin-Nó M, Kortsen K, Atkinson RL, Krumins E, Lentz JC, Machado F, Onat Z, Brookfield A, Collison D, Khlobystov AN, De Focatiis D, Irvine DJ, Taresco V, Stockman RA, Howdle SM. A self-crosslinking monomer, α-pinene methacrylate: understanding and exploiting hydrogen abstraction. Polym Chem 2022. [DOI: 10.1039/d2py00878e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined computational/experimental approach has been applied to investigate the self-crosslinking of α-pinene methacrylate via chain transfer through hydrogen abstraction.
Collapse
Affiliation(s)
- Olivia R. Monaghan
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, Nottingham, UK
| | - Stephen T. Skowron
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, Nottingham, UK
| | - Jonathan C. Moore
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, Nottingham, UK
| | - María Pin-Nó
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, Nottingham, UK
| | - Kristoffer Kortsen
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, Nottingham, UK
| | - Rachel L. Atkinson
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, Nottingham, UK
| | - Eduards Krumins
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, Nottingham, UK
| | - Joachim C. Lentz
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, Nottingham, UK
| | - Fabricio Machado
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, Nottingham, UK
- Institute of Chemistry, University of Brasília, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
| | - Zeynep Onat
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, Nottingham, UK
| | - Adam Brookfield
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| | - David Collison
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| | - Andrei N. Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, Nottingham, UK
| | - Davide De Focatiis
- Faculty of Engineering, University Park, Nottingham NG7 2RD, Nottingham, UK
| | - Derek J. Irvine
- Faculty of Engineering, University Park, Nottingham NG7 2RD, Nottingham, UK
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, Nottingham, UK
| | - Robert A. Stockman
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, Nottingham, UK
| | - Steven M. Howdle
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, Nottingham, UK
| |
Collapse
|
21
|
Fouilloux H, Qiang W, Robert C, Placet V, Thomas CM. Multicatalytic Transformation of (Meth)acrylic Acids: a One‐Pot Approach to Biobased Poly(meth)acrylates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hugo Fouilloux
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris 75005 Paris France
| | - Wei Qiang
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris 75005 Paris France
| | - Carine Robert
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris 75005 Paris France
| | - Vincent Placet
- FEMTO-ST Institute CNRS/UFC/ENSMM/UTBM Department of Applied Mechanics Université de Bourgogne Franche-Comté Besançon France
| | - Christophe M. Thomas
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris 75005 Paris France
| |
Collapse
|
22
|
Bennett TM, Portal J, Jeanne-Rose V, Taupin S, Ilchev A, Irvine DJ, Howdle SM. Synthesis of model terpene-derived copolymers in supercritical carbon dioxide for cosmetic applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Fouilloux H, Qiang W, Robert C, Placet V, Thomas CM. Multicatalytic Transformation of (Meth)acrylic Acids: a One-Pot Approach to Biobased Poly(meth)acrylates. Angew Chem Int Ed Engl 2021; 60:19374-19382. [PMID: 34152679 DOI: 10.1002/anie.202106640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/02/2021] [Indexed: 12/21/2022]
Abstract
Shifting from petrochemical feedstocks to renewable resources can address some of the environmental issues associated with petrochemical extraction and make plastics production sustainable. Therefore, there is a growing interest in selective methods for transforming abundant renewable feedstocks into monomers suitable for polymer production. Reported herein are one-pot catalytic systems, that are active, productive, and selective under mild conditions for the synthesis of copolymers from renewable materials. Each system allows for anhydride formation, alcohol acylation and/or acid esterification, as well as polymerization of the formed (meth)acrylates, providing direct access to a new library of unique poly(meth)acrylates.
Collapse
Affiliation(s)
- Hugo Fouilloux
- PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - Wei Qiang
- PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - Carine Robert
- PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - Vincent Placet
- FEMTO-ST Institute, CNRS/UFC/ENSMM/UTBM, Department of Applied Mechanics, Université de Bourgogne Franche-Comté, Besançon, France
| | - Christophe M Thomas
- PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| |
Collapse
|
24
|
Montanari C, Ogawa Y, Olsén P, Berglund LA. High Performance, Fully Bio-Based, and Optically Transparent Wood Biocomposites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100559. [PMID: 34194952 PMCID: PMC8224414 DOI: 10.1002/advs.202100559] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Indexed: 05/05/2023]
Abstract
The sustainable development of engineering biocomposites has been limited due to a lack of bio-based monomers combining favorable processing with high performance. Here, the authors report a novel and fully bio-based transparent wood biocomposite based on green synthesis of a new limonene acrylate monomer from renewable resources. The monomer is impregnated and readily polymerized in a delignified, succinylated wood substrate to form optically transparent biocomposites. The chemical structure of the limonene acrylate enables diffusion into the cell wall, and the polymer phase is both refractive index-matched and covalently linked to the wood substrate. This results in nanostructured biocomposites combining an excellent optical transmittance of 90% at 1.2 mm thickness and a remarkably low haze of 30%, with a high mechanical performance (strength 174 MPa, Young's modulus 17 GPa). Bio-based transparent wood holds great potential towards the development of sustainable wood nanotechnologies for structural applications, where transparency and mechanical performance are combined.
Collapse
Affiliation(s)
- Céline Montanari
- Department of Fibre and Polymer TechnologyWallenberg Wood Science CenterKTH Royal Institute of TechnologyTeknikringen 56Stockholm10044Sweden
| | - Yu Ogawa
- Université Grenoble AlpesCNRSCERMAVGrenoble38000France
| | - Peter Olsén
- Department of Fibre and Polymer TechnologyWallenberg Wood Science CenterKTH Royal Institute of TechnologyTeknikringen 56Stockholm10044Sweden
| | - Lars A. Berglund
- Department of Fibre and Polymer TechnologyWallenberg Wood Science CenterKTH Royal Institute of TechnologyTeknikringen 56Stockholm10044Sweden
| |
Collapse
|
25
|
Droesbeke MA, Aksakal R, Simula A, Asua JM, Du Prez FE. Biobased acrylic pressure-sensitive adhesives. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Terpene polyacrylate TPA5 shows favorable molecular hydrodynamic properties as a potential bioinspired archaeological wood consolidant. Sci Rep 2021; 11:7343. [PMID: 33795726 PMCID: PMC8016987 DOI: 10.1038/s41598-021-86543-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/25/2021] [Indexed: 02/01/2023] Open
Abstract
There is currently a pressing need for the development of novel bioinspired consolidants for waterlogged, archaeological wood. Bioinspired materials possess many advantages, such as biocompatibility and sustainability, which makes them ideal to use in this capacity. Based on this, a polyhydroxylated monomer was synthesised from α-pinene, a sustainable terpene feedstock derived from pine trees, and used to prepare a low molar mass polymer TPA5 through free radical polymerisation. This polymer was extensively characterised by NMR spectroscopy (chemical composition) and molecular hydrodynamics, primarily using analytical ultracentrifugation reinforced by gel filtration chromatography and viscometry, in order to investigate whether it would be suitable for wood consolidation purposes. Sedimentation equilibrium indicated a weight average molar mass Mw of (4.3 ± 0.2) kDa, with minimal concentration dependence. Further analysis with MULTISIG revealed a broad distribution of molar masses and this heterogeneity was further confirmed by sedimentation velocity. Conformation analyses with the Perrin P and viscosity increment ν universal hydrodynamic parameters indicated that the polymer had an elongated shape, with both factors giving consistent results and a consensus axial ratio of ~ 4.5. These collective properties-hydrogen bonding potential enhanced by an elongated shape, together with a small injectable molar mass-suggest this polymer is worthy of further consideration as a potential consolidant.
Collapse
|
27
|
Xu Y, Li N, Wang G, Wang C, Chu F. Synthesis of Lignin-Based MMA- co-BA Hybrid Resins from Cornstalk Residue via RAFT Miniemulsion Polymerization and Their Characteristics. Polymers (Basel) 2021; 13:968. [PMID: 33809938 PMCID: PMC8004192 DOI: 10.3390/polym13060968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
The conversion of cornstalk lignin derived from the co-product of bio-refinery into value-added products such as polymeric material has remarkable environmental and economic potential. A novel bio-based methyl methacrylate copolymerized with butyl acrylate (MMA-co-BA) hybrid resin in our research was prepared by the reversible addition-fragmentation chain transfer method using lignin-graft-polyacrylamide (lignin-g-PAM) as a bio-derived macromolecular chain transfer agent. The molecular architecture of lignin-g-PAM and the lignin-based MMA-co-BA hybrid resin was elucidated using 1H nuclear magnetic resonance and attenuated total reflectance-Fourier transform infrared. The thermal behavior and mechanical performance of the resultant lignin-based MMA-co-BA hybrid resins were also investigated through thermogravimetric analysis, differential scanning calorimetry, and a stress-strain test, respectively. The lignin-based acrylate resins system exhibited structure-related thermal and mechanical properties. Compared with pure MMA-co-BA resin, the incorporation of lignin into various lignin-based MMA-co-BA graft copolymers resulted in an improved tensile strength and a higher Young's modulus. This research could provide not only a new avenue to utilize waste biomass for high-value applications, but also a reference for designing new materials for coatings or adhesives.
Collapse
Affiliation(s)
- Yuzhi Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (N.L.); (G.W.)
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Ning Li
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (N.L.); (G.W.)
| | - Guangbin Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (N.L.); (G.W.)
| | - Chunpeng Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (N.L.); (G.W.)
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (N.L.); (G.W.)
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
28
|
Atkinson RL, Monaghan OR, Elsmore MT, Topham PD, Toolan DTW, Derry MJ, Taresco V, Stockman RA, De Focatiis DSA, Irvine DJ, Howdle SM. RAFT polymerisation of renewable terpene (meth)acrylates and the convergent synthesis of methacrylate–acrylate–methacrylate triblock copolymers. Polym Chem 2021. [DOI: 10.1039/d1py00326g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We now report the synthesis of well-defined terpene-based polymers and precise di- and multiblock copolymer architectures by use of RAFT, wide range of Tg and promising adhesive properties are observed.
Collapse
Affiliation(s)
| | | | | | - Paul D. Topham
- Aston Institute of Materials Research
- Aston University
- Birmingham
- UK
| | - Daniel T. W. Toolan
- Department of Chemistry
- The University of Sheffield
- Dainton Building
- The University of Sheffield
- Sheffield S3 7HF
| | - Matthew J. Derry
- Aston Institute of Materials Research
- Aston University
- Birmingham
- UK
| | | | | | | | | | | |
Collapse
|
29
|
Catalán M, Castro-Castillo V, Gajardo-de la Fuente J, Aguilera J, Ferreira J, Ramires-Fernandez R, Olmedo I, Molina-Berríos A, Palominos C, Valencia M, Domínguez M, Souto JA, Jara JA. Continuous flow synthesis of lipophilic cations derived from benzoic acid as new cytotoxic chemical entities in human head and neck carcinoma cell lines. RSC Med Chem 2020; 11:1210-1225. [PMID: 33479625 DOI: 10.1039/d0md00153h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/30/2020] [Indexed: 01/17/2023] Open
Abstract
Continuous flow chemistry was used for the synthesis of a series of delocalized lipophilic triphenylphosphonium cations (DLCs) linked by means of an ester functional group to several hydroxylated benzoic acid derivatives and evaluated in terms of both reaction time and selectivity. The synthesized compounds showed cytotoxic activity and selectivity in head and neck tumor cell lines. The mechanism of action of the molecules involved a mitochondrial uncoupling effect and a decrease in both intracellular ATP production and apoptosis induction.
Collapse
Affiliation(s)
- Mabel Catalán
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | - Vicente Castro-Castillo
- Department of Organic and Physical Chemistry , Faculty of Chemical and Pharmaceutical Sciences , Universidad de Chile , Santos Dumont 964 , Santiago 8380494 , Chile
| | - Javier Gajardo-de la Fuente
- Department of Organic and Physical Chemistry , Faculty of Chemical and Pharmaceutical Sciences , Universidad de Chile , Santos Dumont 964 , Santiago 8380494 , Chile
| | - Jocelyn Aguilera
- Institute for Research in Dental Sciences (ICOD) , Faculty of Dentistry , Universidad de Chile , Santiago , 8380492 , Chile . ; Tel: +56 2 29781730
| | - Jorge Ferreira
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | | | - Ivonne Olmedo
- Physiopathology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago 8380453 , Chile
| | - Alfredo Molina-Berríos
- Institute for Research in Dental Sciences (ICOD) , Faculty of Dentistry , Universidad de Chile , Santiago , 8380492 , Chile . ; Tel: +56 2 29781730
| | - Charlotte Palominos
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | - Marcelo Valencia
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | - Marta Domínguez
- Departamento de Química Orgánica , Facultad de Química , CINBIO and IIS Galicia Sur , Universidade de Vigo , E-36310 , Vigo , Spain .
| | - José A Souto
- Departamento de Química Orgánica , Facultad de Química , CINBIO and IIS Galicia Sur , Universidade de Vigo , E-36310 , Vigo , Spain .
| | - José A Jara
- Institute for Research in Dental Sciences (ICOD) , Faculty of Dentistry , Universidad de Chile , Santiago , 8380492 , Chile . ; Tel: +56 2 29781730
| |
Collapse
|
30
|
Montanari U, Taresco V, Liguori A, Gualandi C, Howdle SM. Synthesis of novel carvone (meth)acrylate monomers for the production of hydrophilic polymers with high terpene content. POLYM INT 2020. [DOI: 10.1002/pi.6096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ulisse Montanari
- School of Chemistry University of Nottingham, University Park Nottingham UK
| | - Vincenzo Taresco
- School of Chemistry University of Nottingham, University Park Nottingham UK
| | - Anna Liguori
- Department of Chemistry ‘Giacomo Ciamician’ and INSTM UdR of Bologna University of Bologna Bologna Italy
| | - Chiara Gualandi
- Department of Chemistry ‘Giacomo Ciamician’ and INSTM UdR of Bologna University of Bologna Bologna Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI‐MAM University of Bologna Bologna Italy
| | - Steven M Howdle
- School of Chemistry University of Nottingham, University Park Nottingham UK
| |
Collapse
|
31
|
Nishida T, Satoh K, Nagano S, Seki T, Tamura M, Li Y, Tomishige K, Kamigaito M. Biobased Cycloolefin Polymers: Carvone-Derived Cyclic Conjugated Diene with Reactive exo-Methylene Group for Regioselective and Stereospecific Living Cationic Polymerization. ACS Macro Lett 2020; 9:1178-1183. [PMID: 35653209 DOI: 10.1021/acsmacrolett.0c00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Carvone, a naturally abundant chiral cyclic α,β-unsaturated carbonyl compound, was chemically transformed into cyclic exo-methylene conjugated dienes. The exo-methylene group had high reactivity in cationic polymerization and was efficiently polymerized in a controlled manner via regioselective 1,4-conjugated additions using initiating systems effective for living cationic polymerization of vinyl ethers. The obtained polymers with 1,3-cyclohexenyl units and tetra-substituted olefins in the main chain showed high glass transition temperatures over 110 °C. The chiral monomer underwent stereospecific polymerization to result in polymers with low solubility and weak packing of the rigid main chain in the lamellar layers. The racemic mixture resulted in soluble amorphous polymers, which were subsequently hydrogenated into cycloolefin polymers with enhanced thermal properties.
Collapse
Affiliation(s)
- Takenori Nishida
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shusaku Nagano
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Takahiro Seki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masazumi Tamura
- Research Center for Artificial Photosynthesis, Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yingai Li
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
32
|
Castagnet T, Ballard N, Billon L, Asua JM. Microwave-Assisted Ultrafast RAFT Miniemulsion Polymerization of Biobased Terpenoid Acrylates. Biomacromolecules 2020; 21:4559-4568. [DOI: 10.1021/acs.biomac.0c00662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Thibault Castagnet
- Université de Pau & des Pays de l’Adour, E2S UPPA, CNRS, IPREM-UMR 5254, 64000 Pau, France
- Bio-Inspired Materials Group: Functionalities and Self-Assembly, Université de Pau & des Pays de l’Adour, E2S UPPA, 64000 Pau, France
- POLYMAT, University of the Basque Country UPV/EHU, Kimika Aplikatua Saila, Kimika Zientzien Fakultatea, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastián, Spain
| | - Nicholas Ballard
- POLYMAT, University of the Basque Country UPV/EHU, Kimika Aplikatua Saila, Kimika Zientzien Fakultatea, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Laurent Billon
- Université de Pau & des Pays de l’Adour, E2S UPPA, CNRS, IPREM-UMR 5254, 64000 Pau, France
- Bio-Inspired Materials Group: Functionalities and Self-Assembly, Université de Pau & des Pays de l’Adour, E2S UPPA, 64000 Pau, France
| | - José M. Asua
- POLYMAT, University of the Basque Country UPV/EHU, Kimika Aplikatua Saila, Kimika Zientzien Fakultatea, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
33
|
Beydoun K, Klankermayer J. Efficient Plastic Waste Recycling to Value-Added Products by Integrated Biomass Processing. CHEMSUSCHEM 2020; 13:488-492. [PMID: 31912617 PMCID: PMC7027741 DOI: 10.1002/cssc.201902880] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 05/28/2023]
Abstract
The industrial production of polymeric materials is continuously increasing, but sustainable concepts directing towards a circular economy remain rather elusive. The present investigation focuses on the recycling of polyoxymethylene polymers, facilitated through combined catalytic processing of polymer waste and biomass-derived diols. The integrated concept enables the production of value-added cyclic acetals, which can flexibly function as solvents, fuel additives, pharmaceutical intermediates, and even monomeric materials for polymerization reactions. Based on this approach, an open-loop recycling of these waste materials can be envisaged in which the carbon content of the polymer waste is efficiently utilized as a C1 building block, paving the way to unprecedented possibilities within a circular economy of polyoxymethylene polymers.
Collapse
Affiliation(s)
- Kassem Beydoun
- Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Jürgen Klankermayer
- Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
34
|
O'Brien DM, Atkinson RL, Cavanagh R, Pacheco AA, Larder R, Kortsen K, Krumins E, Haddleton AJ, Alexander C, Stockman RA, Howdle SM, Taresco V. A ‘greener’ one-pot synthesis of monoterpene-functionalised lactide oligomers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Stockmann PN, Van Opdenbosch D, Poethig A, Pastoetter DL, Hoehenberger M, Lessig S, Raab J, Woelbing M, Falcke C, Winnacker M, Zollfrank C, Strittmatter H, Sieber V. Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis. Nat Commun 2020; 11:509. [PMID: 31980642 PMCID: PMC6981233 DOI: 10.1038/s41467-020-14361-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
The use of renewable feedstock is one of the twelve key principles of sustainable chemistry. Unfortunately, bio-based compounds often suffer from high production cost and low performance. To fully tap the potential of natural compounds it is important to utilize their functionalities that could make them superior compared to fossil-based resources. Here we show the conversion of (+)-3-carene, a by-product of the cellulose industry into ε-lactams from which polyamides. The lactams are selectively prepared in two diastereomeric configurations, leading to semi-crystalline or amorphous, transparent polymers that can compete with the thermal properties of commercial high-performance polyamides. Copolyamides with caprolactam and laurolactam exhibit an increased glass transition and amorphicity compared to the homopolyamides, potentially broadening the scope of standard polyamides. A four-step one-vessel monomer synthesis, applying chemo-enzymatic catalysis for the initial oxidation step, is established. The great potential of the polyamides is outlined.
Collapse
Affiliation(s)
- Paul N Stockmann
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Daniel Van Opdenbosch
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Alexander Poethig
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Dominik L Pastoetter
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Moritz Hoehenberger
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Sebastian Lessig
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Johannes Raab
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Marion Woelbing
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Claudia Falcke
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Malte Winnacker
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Cordt Zollfrank
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Harald Strittmatter
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Volker Sieber
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany.
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany.
- Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany.
| |
Collapse
|
36
|
Noppalit S, Simula A, Billon L, Asua JM. On the nitroxide mediated polymerization of methacrylates derived from bio-sourced terpenes in miniemulsion, a step towards sustainable products. Polym Chem 2020. [DOI: 10.1039/c9py01667h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The typical use of toxic solvents, expensive control agents and the need of intermediate purification steps hinders the introduction of bio-sourced monomers into industrially viable block copolymers. This study aims at overcoming these limitations.
Collapse
Affiliation(s)
- Sayrung Noppalit
- POLYMAT
- University of the Basque Country UPV/EHU
- Kimika Aplikatua saila
- Kimika Zientzien Fakultatea
- Joxe Mari Korta Zentroa
| | - Alexandre Simula
- POLYMAT
- University of the Basque Country UPV/EHU
- Kimika Aplikatua saila
- Kimika Zientzien Fakultatea
- Joxe Mari Korta Zentroa
| | - Laurent Billon
- CNRS
- Université de Pau et des Pays de l'Adour E2S UPPA
- IPREM
- UMR 5254
- Hélioparc Pau-Pyrénées
| | - José M. Asua
- POLYMAT
- University of the Basque Country UPV/EHU
- Kimika Aplikatua saila
- Kimika Zientzien Fakultatea
- Joxe Mari Korta Zentroa
| |
Collapse
|
37
|
De La Torre AR, Piot A, Liu B, Wilhite B, Weiss M, Porth I. Functional and morphological evolution in gymnosperms: A portrait of implicated gene families. Evol Appl 2020; 13:210-227. [PMID: 31892953 PMCID: PMC6935586 DOI: 10.1111/eva.12839] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Gymnosperms diverged from their sister plant clade of flowering plants 300 Mya. Morphological and functional divergence between the two major seed plant clades involved significant changes in their reproductive biology, water-conducting systems, secondary metabolism, stress defense mechanisms, and small RNA-mediated epigenetic silencing. The relatively recent sequencing of several gymnosperm genomes and the development of new genomic resources have enabled whole-genome comparisons within gymnosperms, and between angiosperms and gymnosperms. In this paper, we aim to understand how genes and gene families have contributed to the major functional and morphological differences in gymnosperms, and how this information can be used for applied breeding and biotechnology. In addition, we have analyzed the angiosperm versus gymnosperm evolution of the pleiotropic drug resistance (PDR) gene family with a wide range of functionalities in plants' interaction with their environment including defense mechanisms. Some of the genes reviewed here are newly studied members of gene families that hold potential for biotechnological applications related to commercial and pharmacological value. Some members of conifer gene families can also be exploited for their potential in phytoremediation applications.
Collapse
Affiliation(s)
| | - Anthony Piot
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| | - Bobin Liu
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
- College of ForestryFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | | | - Matthew Weiss
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
| | - Ilga Porth
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| |
Collapse
|
38
|
Veith C, Diot-Néant F, Miller SA, Allais F. Synthesis and polymerization of bio-based acrylates: a review. Polym Chem 2020. [DOI: 10.1039/d0py01222j] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acrylates and polyacrylates have been produced massively due to their interesting applications like Plexiglas.
Collapse
Affiliation(s)
- Clémence Veith
- URD Agro-biotechnologie Industrielles (ABI)
- CEBB
- AgroParisTech
- Pomacle
- France
| | - Florian Diot-Néant
- URD Agro-biotechnologie Industrielles (ABI)
- CEBB
- AgroParisTech
- Pomacle
- France
| | - Stephen A. Miller
- The George and Josephine Butler Laboratory for Polymer Research
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| | - Florent Allais
- URD Agro-biotechnologie Industrielles (ABI)
- CEBB
- AgroParisTech
- Pomacle
- France
| |
Collapse
|
39
|
Pommerening P, Oestreich M. Chiral Modification of the Tetrakis(pentafluorophenyl)borate Anion with Myrtanyl Groups. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Phillip Pommerening
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| | - Martin Oestreich
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| |
Collapse
|
40
|
Lai H, Zhu D, Xiao P. Yellow Triazine as an Efficient Photoinitiator for Polymerization and 3D Printing under LEDs. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haiwang Lai
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Di Zhu
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Pu Xiao
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
41
|
McGuire TM, Pérale C, Castaing R, Kociok-Köhn G, Buchard A. Divergent Catalytic Strategies for the Cis/ Trans Stereoselective Ring-Opening Polymerization of a Dual Cyclic Carbonate/Olefin Monomer. J Am Chem Soc 2019; 141:13301-13305. [PMID: 31429566 PMCID: PMC7007229 DOI: 10.1021/jacs.9b06259] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A dual seven-membered
cyclic carbonate/olefin monomer was synthesized
from CO2 and cis-1,4-butenediol and polymerized.
The properties of the polymer were controlled using divergent catalytic
strategies toward the stereochemistry of the olefin. Ring-opening
polymerization of the cyclic carbonate using an organocatalytic approach
retained the cis-stereoconfiguration of the olefin
and yielded a hard semicrystalline polymer (Tm 115 °C). Ring-opening metathesis polymerization using
Grubbs’ catalyst proceeded with high trans-stereoregularity (95%) and produced a soft amorphous polymer (Tg −22 °C). Cis to trans isomerization of the polymer was possible using Cu(I)
salts under UV light. In all polymers, the C=C double bond
remained available for postpolymerization modification and thermoset
resins were formed by cross-linking. From this single monomer, cis-trans-cis triblock
copolymers, with potential applications as thermoplastic elastomers,
were synthesized by combining both strategies using cis-1,4-butenediol as a chain transfer agent.
Collapse
Affiliation(s)
- Thomas M McGuire
- Department of Chemistry , University of Bath , Claverton Down BA2 7AY , Bath , U.K
| | - Cécile Pérale
- Department of Chemistry , University of Bath , Claverton Down BA2 7AY , Bath , U.K
| | - Rémi Castaing
- Material and Chemical Characterisation Facility (MC2) , University of Bath , Bath , U.K
| | - Gabriele Kociok-Köhn
- Material and Chemical Characterisation Facility (MC2) , University of Bath , Bath , U.K
| | - Antoine Buchard
- Department of Chemistry , University of Bath , Claverton Down BA2 7AY , Bath , U.K
| |
Collapse
|
42
|
Lamm ME, Li P, Hankinson S, Zhu T, Tang C. Plant oil-derived copolymers with remarkable post-polymerization induced mechanical enhancement for high performance coating applications. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Noppalit S, Simula A, Ballard N, Callies X, Asua JM, Billon L. Renewable Terpene Derivative as a Biosourced Elastomeric Building Block in the Design of Functional Acrylic Copolymers. Biomacromolecules 2019; 20:2241-2251. [PMID: 31046242 DOI: 10.1021/acs.biomac.9b00185] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In order to move away from traditional petrochemical-based polymer materials, it is imperative that new monomer systems be sought out based on renewable resources. In this work, the synthesis of a functional terpene-containing acrylate monomer (tetrahydrogeraniol acrylate, THGA) is reported. This monomer was polymerized in toluene and bulk via free-radical polymerizations, achieving high conversion and molecular weights up to 278 kg·mol-1. The synthesized poly(THGA) shows a relatively low Tg (-46 °C), making it useful as a replacement for low Tg acrylic monomers, such as the widely used n-butyl acrylate. RAFT polymerization in toluene ([M]0 = 3.6 mol·L-1) allowed for the well-controlled polymerization of THGA with degrees of polymerization (DP n) from 25 to 500, achieving narrow molecular weight distributions ( D̵ ≈ 1.2) even up to high conversions. At lower monomer concentrations ([M]0 = 1.8 mol·L-1), some evidence of intramolecular chain transfer to polymer was seen by the detection of branching (arising from propagation of midchain radicals) and terminal double bonds (arising from β-scission of midchain radicals). Poly(THGA) was subsequently utilized for the synthesis of poly(THGA)- b-poly(styrene)- b-poly(THGA) and poly(styrene)- b-poly(THGA)- b-poly(styrene) triblock copolymers, demonstrating its potential as a component of thermoplastic elastomers. The phase separation and mechanical properties of the resulting triblock copolymer were studied by atomic force microscopy and rheology.
Collapse
Affiliation(s)
- Sayrung Noppalit
- Kimika Aplikatua Saila, Kimika Zientzien Fakultatea, Joxe Mari Korta Zentroa , POLYMAT, University of the Basque Country UPV/EHU , Tolosa Hiribidea 72 , 20018 Donostia-San Sebastián , Spain.,CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, IPREM-UMR 5254, Hélioparc , 2 Avenue Président Angot , 64053 Pau Cedex 9 , France.,Bio-Inspired Materials Group: Functionality & Self-assemblies , Université de Pau et des Pays de l'Adour, Hélioparc , 2 Avenue Président Angot , 64053 Pau Cedex 9 , France
| | - Alexandre Simula
- Kimika Aplikatua Saila, Kimika Zientzien Fakultatea, Joxe Mari Korta Zentroa , POLYMAT, University of the Basque Country UPV/EHU , Tolosa Hiribidea 72 , 20018 Donostia-San Sebastián , Spain
| | - Nicholas Ballard
- Kimika Aplikatua Saila, Kimika Zientzien Fakultatea, Joxe Mari Korta Zentroa , POLYMAT, University of the Basque Country UPV/EHU , Tolosa Hiribidea 72 , 20018 Donostia-San Sebastián , Spain.,Ikerbasque, Basque Foundation for Science , E-48011 Bilbao , Spain
| | - Xavier Callies
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, IPREM-UMR 5254, Hélioparc , 2 Avenue Président Angot , 64053 Pau Cedex 9 , France
| | - José M Asua
- Kimika Aplikatua Saila, Kimika Zientzien Fakultatea, Joxe Mari Korta Zentroa , POLYMAT, University of the Basque Country UPV/EHU , Tolosa Hiribidea 72 , 20018 Donostia-San Sebastián , Spain
| | - Laurent Billon
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, IPREM-UMR 5254, Hélioparc , 2 Avenue Président Angot , 64053 Pau Cedex 9 , France.,Bio-Inspired Materials Group: Functionality & Self-assemblies , Université de Pau et des Pays de l'Adour, Hélioparc , 2 Avenue Président Angot , 64053 Pau Cedex 9 , France
| |
Collapse
|
44
|
Bensabeh N, Moreno A, Roig A, Monaghan OR, Ronda JC, Cádiz V, Galià M, Howdle SM, Lligadas G, Percec V. Polyacrylates Derived from Biobased Ethyl Lactate Solvent via SET-LRP. Biomacromolecules 2019; 20:2135-2147. [PMID: 31013072 DOI: 10.1021/acs.biomac.9b00435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The precise synthesis of polymers derived from alkyl lactate ester acrylates is reported for the first time. Kinetic experiments were conducted to demonstrate that Cu(0) wire-catalyzed single electron transfer-living radical polymerization (SET-LRP) in alcohols at 25 °C provides a green methodology for the LRP of this forgotten class of biobased monomers. The acrylic derivative of ethyl lactate (EL) solvent and homologous structures with methyl and n-butyl ester were polymerized with excellent control over molecular weight, molecular weight distribution, and chain-end functionality. Kinetics plots in conventional alcohols such as ethanol and methanol were first order in the monomer, with molecular weight increasing linearly with conversion. However, aqueous EL mixtures were found to be more suitable than pure EL to mediate the SET-LRP process. The near-quantitative monomer conversion and high bromine chain-end functionality, demonstrated by matrix-assisted laser desorption ionization time-of-flight analysis, further allowed the preparation of innovative biobased block copolymers containing rubbery poly(ethyl lactate acrylate) poly(ELA) sequences. For instance, the poly(ELA)- b-poly(glycerol acrylate) block copolymer self-assembled in water to form stable micelles with chiral lactic acid-derived block-forming micellar core as confirmed by the pyrene-probe-based fluorescence technique. Dynamic light scattering and transmission electron microscopy measurements revealed the nanosize spherical morphology for these biobased aggregates.
Collapse
Affiliation(s)
- Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Adrian Moreno
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Adrià Roig
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Olivia R Monaghan
- School of Chemistry , University of Nottingham , University Park Nottingham, NG7 2RD Nottingham , U.K
| | - Juan C Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Steven M Howdle
- School of Chemistry , University of Nottingham , University Park Nottingham, NG7 2RD Nottingham , U.K
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain.,Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
45
|
Zhou C, Wang Y, Zhao L, Liu Z, Cheng J. Regioselective ring-opening metathesis polymerization of limonene oxide-substituted cyclooctene: The highly functional ethylene/vinyl ester copolymers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Heeres A, Vanbroekhoven K, Van Hecke W. Solvent-free lipase-catalyzed production of (meth)acrylate monomers: Experimental results and kinetic modeling. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Bensabeh N, Ronda JC, Galià M, Cádiz V, Lligadas G, Percec V. SET-LRP of the Hydrophobic Biobased Menthyl Acrylate. Biomacromolecules 2018. [DOI: 10.1021/acs.biomac.8b00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Joan C. Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
48
|
|
49
|
Rational design of tetrahydrogeraniol-based hydrophobically modified poly(acrylic acid) as emulsifier of terpene-in-water transparent nanoemulsions. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Sarkar P, Bhowmick AK. Terpene based sustainable methacrylate copolymer series by emulsion polymerization: Synthesis and structure-property relationship. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28661] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Preetom Sarkar
- Rubber Technology Centre; Indian Institute of Technology Kharagpur; Kharagpur West Bengal 721302 India
| | - Anil K. Bhowmick
- Rubber Technology Centre; Indian Institute of Technology Kharagpur; Kharagpur West Bengal 721302 India
| |
Collapse
|