1
|
Sandström E, Huysmans P, Giskes F, Laeven P, Van Nuffel S, Heeren RMA, Anthony IGM. Improvements in Fast Mass Microscopy for Large-Area Samples. Anal Chem 2024. [PMID: 39467711 DOI: 10.1021/acs.analchem.4c03480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Mass spectrometry imaging (MSI) is a technique that analyzes the chemical information and spatial distribution of surface analytes. Most MSI studies are conducted in microprobe mode, in which a mass spectrum is collected for each pixel to create a mass image. Thus, the spatial resolution, sample imaging area, and imaging speed are linked. In this mode, halving the pixel size quadruples the analytical time, which presents a practical limit on the high spatial resolution MSI throughput. Fast mass microscopy (FMM) is, in contrast, a microscope-mode MSI technique that decouples spatial resolution and imaging speed. FMM circumvents the linear-quadratic relationship of pixel size and analytical time, which enables increased imaging size area and the analytical speed achievable. In this study, we implement instrument modifications to the FMM system, including the addition of linear encoders that enable roughly 8.5× faster imaging than was previously achieved, allowing a 42.5 × 26 mm2 sample area to be imaged at a 1 μm pixel size in <4.5 min. Linear encoders also enable the alignment of multipass images that increase image homogeneity and signal intensity. The applicability of FMM to large area samples has made it important to define the tolerance to height variations of the technique, which was determined to be at least 218 ± 0.03 (n = 3) μm.
Collapse
Affiliation(s)
- Edith Sandström
- The Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Pascal Huysmans
- Instrument Development, Engineering & Evaluation (IDEE), Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Frans Giskes
- The Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Paul Laeven
- Instrument Development, Engineering & Evaluation (IDEE), Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Sebastiaan Van Nuffel
- The Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Ian G M Anthony
- The Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht 6229 ER, The Netherlands
| |
Collapse
|
2
|
Vats M, Cillero-Pastor B, Cuypers E, Heeren RMA. Mass spectrometry imaging in plants, microbes, and food: a review. Analyst 2024; 149:4553-4582. [PMID: 39196541 DOI: 10.1039/d4an00644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Plant health, which affects the nutritional quality and safety of derivative food products, is influenced by symbiotic interactions with microorganisms. These interactions influence the local molecular profile at the tissue level. Therefore, studying the distribution of molecules within plants, microbes, and plant-based food is crucial to assess plant health, ensure the safety and quality of the agricultural products that become part of our food supply, and plan agricultural management practices. Within this framework, the molecular distribution within plant-based samples can be visualized with mass spectrometry imaging (MSI). This review describes key MSI methodologies, highlighting the role they play in unraveling the localization of metabolites, lipids, proteins, pigments, and elemental components across plants, microbes, and food products. Furthermore, investigations that involve multimodal molecular imaging approaches combining MSI with other imaging techniques are described. The advantages and limitations of the different MSI techniques that influence their applicability in diverse agro-food studies are described to enable informed choices for tailored analyses. For example, some MSI technologies involve meticulous sample preparation while others compromise spatial resolution to gain throughput. Key parameters such as sensitivity, ionization bias and fragmentation, reference database and compound class specificity are described and discussed in this review. With the ongoing refinements in instrumentation, data analysis, and integration of complementary techniques, MSI deepens our insight into the molecular biology of the agricultural ecosystem. This in turn empowers the quest for sustainable and productive agricultural practices.
Collapse
Affiliation(s)
- Mudita Vats
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
- MERLN Institute for Technology-inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, the Netherlands
| | - Eva Cuypers
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
3
|
Joignant AN, Xi Y, Muddiman DC. Impact of wavelength and spot size on laser depth of focus: Considerations for mass spectrometry imaging of non-flat samples. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4914. [PMID: 36916474 DOI: 10.1002/jms.4914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Biospecimens with nearly flat surfaces on a flat stage are typically required for laser-based mass spectrometry imaging (MSI) techniques. However, sampling stages are rarely perfectly level, and accounting for this and the need to accommodate non-flat samples requires a deeper understanding of the laser beam depth of focus. In ablation-based MSI methods, a laser is focused on top of the sample surface, ensuring that the sample is at the focal point or remains within depth of focus. In general, the depth of focus of a given laser is related to the beam quality (M2 ) and the wavelength (λ). However, because laser is applied on a biological sample, other variables can also impact the depth of focus, which could affect the robustness of the MSI techniques for diverse sample types. When the height of a sample ranges outside of the depth of focus, ablated area and the corresponding ion abundances may vary as well, increasing the variability of results. In this tutorial, we examine the parameters and equations that describe the depth of focus of a Gaussian laser beam. Additionally, we describe several approaches that account for surface roughness exceeding the depth of focus of the laser.
Collapse
Affiliation(s)
- Alena N Joignant
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Ying Xi
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Hermann M, Metwally H, Yu J, Smith R, Tomm H, Kaufmann M, Ren KYM, Liu C, LeBlanc Y, Covey TR, Ross AC, Oleschuk RD. 3D printer platform and conductance feedback loop for automated imaging of uneven surfaces by liquid microjunction-surface sampling probe mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023:e9492. [PMID: 36756683 DOI: 10.1002/rcm.9492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
RATIONALE Molecular imaging of samples using mass spectrometric techniques, such as matrix-assisted laser desorption ionization or desorption electrospray ionization, requires the sample surface to be even/flat and sliced into thin sections (c. 10 μm). Furthermore, sample preparation steps can alter the analyte composition of the sample. The liquid microjunction-surface sampling probe (LMJ-SSP) is a robust sampling interface that enables surface profiling with minimal sample preparation. In conjunction with a conductance feedback system, the LMJ-SSP can be used to automatically sample uneven specimens. METHODS A sampling stage was built with a modified 3D printer where the LMJ-SSP is attached to the printing head. This setup can scan across flat and even surfaces in a predefined pattern ("static sampling mode"). Uneven samples are automatically probed in "conductance sampling mode" where an electric potential is applied and measured at the probe. When the probe contacts the electrically grounded sample, the potential at the probe drops, which is used as a feedback signal to determine the optimal position of the probe for sampling each location. RESULTS The applicability of the probe/sensing system was demonstrated by first examining the strawberry tissue using the "static sampling mode." Second, porcine tissue samples were profiled using the "conductance sampling mode." With minimal sample preparation, an area of 11 × 15 mm was profiled in less than 2 h. From the obtained results, adipose areas could be distinguished from non-adipose parts. The versatility of the approach was further demonstrated by directly sampling the bacteria colonies on agar and resected human kidney (intratumoral hemorrhage) specimens with thicknesses ranging from 1 to 4 mm. CONCLUSION The LMJ-SSP in conjunction with a conductive feedback system is a powerful tool that allows for fast, reproducible, and automated assessment of uneven surfaces with minimal sample preparation. This setup could be used for perioperative assessment of tissue samples, food screening, and natural product discovery, among others.
Collapse
Affiliation(s)
- Matthias Hermann
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Haidy Metwally
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Jian Yu
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Rachael Smith
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Hailey Tomm
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Martin Kaufmann
- Department of Surgery, Queen's University, Kingston, Ontario, Canada
| | - Kevin Y M Ren
- Department of Pathology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
5
|
Pietkiewicz D, Plewa S, Zaborowski M, Garrett TJ, Matuszewska E, Kokot ZJ, Matysiak J. Mass spectrometry imaging in gynecological cancers: the best is yet to come. Cancer Cell Int 2022; 22:414. [PMID: 36536419 PMCID: PMC9764543 DOI: 10.1186/s12935-022-02832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry imaging (MSI) enables obtaining multidimensional results simultaneously in a single run, including regiospecificity and m/z values corresponding with specific proteins, peptides, lipids, etc. The knowledge obtained in this way allows for a multifaceted analysis of the studied issue, e.g., the specificity of the neoplastic process and the search for new therapeutic targets. Despite the enormous possibilities, this relatively new technique in many aspects still requires the development or standardization of analytical protocols (from collecting biological material, through sample preparation, analysis, and data collection, to data processing). The introduction of standardized protocols for MSI studies, with its current potential to extend diagnostic and prognostic capabilities, can revolutionize clinical pathology. As far as identifying ovarian cancer subtypes can be challenging, especially in poorly differentiated tumors, developing MSI-based algorithms may enhance determining prognosis and tumor staging without the need for extensive surgery and optimize the choice of subsequent therapy. MSI might bring new solutions in predicting response to treatment in patients with endometrial cancer. Therefore, MSI may help to revolutionize the future of gynecological oncology in terms of diagnostics, treatment, and predicting the response to therapy. This review will encompass several aspects, e.g., contemporary discoveries in gynecological cancer research utilizing MSI, indicates current challenges, and future perspectives on MSI.
Collapse
Affiliation(s)
- Dagmara Pietkiewicz
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland.
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| | - Mikołaj Zaborowski
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-535, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Eliza Matuszewska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| | - Zenon J Kokot
- Faculty of Health Sciences, Calisia University, 13 Kaszubska Street, 62-800, Kalisz, Poland
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| |
Collapse
|
6
|
Nwabufo CK, Aigbogun OP. The Role of Mass Spectrometry Imaging in Pharmacokinetic Studies. Xenobiotica 2022; 52:811-827. [PMID: 36048000 DOI: 10.1080/00498254.2022.2119900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Although liquid chromatography-tandem mass spectrometry is the gold standard analytical platform for the quantification of drugs, metabolites, and biomarkers in biological samples, it cannot localize them in target tissues.The localization and quantification of drugs and/or their associated metabolites in target tissues is a more direct measure of bioavailability, biodistribution, efficacy, and regional toxicity compared to the traditional substitute studies using plasma.Therefore, combining high spatial resolution imaging functionality with the superior selectivity and sensitivity of mass spectrometry into one analytical technique will be a valuable tool for targeted localization and quantification of drugs, metabolites, and biomarkers.Mass spectrometry imaging (MSI) is a tagless analytical technique that allows for the direct localization and quantification of drugs, metabolites, and biomarkers in biological tissues, and has been used extensively in pharmaceutical research.The overall goal of this current review is to provide a detailed description of the working principle of MSI and its application in pharmacokinetic studies encompassing absorption, distribution, metabolism, excretion, and toxicity processes, followed by a discussion of the strategies for addressing the challenges associated with the functional utility of MSI in pharmacokinetic studies that support drug development.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Omozojie P Aigbogun
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.,Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
7
|
Tuck M, Grélard F, Blanc L, Desbenoit N. MALDI-MSI Towards Multimodal Imaging: Challenges and Perspectives. Front Chem 2022; 10:904688. [PMID: 35615316 PMCID: PMC9124797 DOI: 10.3389/fchem.2022.904688] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/14/2022] [Indexed: 01/22/2023] Open
Abstract
Multimodal imaging is a powerful strategy for combining information from multiple images. It involves several fields in the acquisition, processing and interpretation of images. As multimodal imaging is a vast subject area with various combinations of imaging techniques, it has been extensively reviewed. Here we focus on Matrix-assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) coupling other imaging modalities in multimodal approaches. While MALDI-MS images convey a substantial amount of chemical information, they are not readily informative about the morphological nature of the tissue. By providing a supplementary modality, MALDI-MS images can be more informative and better reflect the nature of the tissue. In this mini review, we emphasize the analytical and computational strategies to address multimodal MALDI-MSI.
Collapse
|
8
|
Bartels B, Svatoš A. Influence of Ion Source Geometry on the Repeatability of Topographically Guided LAESI-MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:265-272. [PMID: 35020389 PMCID: PMC8815068 DOI: 10.1021/jasms.1c00262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Spatially resolving the relative distribution of analyte molecules in biological matter holds great promise in the life sciences. Mass spectrometry imaging (MSI) is a technique that can provide such spatial resolution but remains underused in fields such as chemical ecology, as traditional MSI sample preparation is often chemically or morphologically invasive. Laser ablation electrospray ionization (LAESI)-MSI is a variation of MSI particularly well-suited for situations where chemical sample preparation is too invasive but provides new challenges related to the repeatability of measurement outcomes. We assess the repeatability of LAESI-MSI by sampling a droplet of [ring-13C6]l-phenylalanine with known concentration and expressing the resulting variability as a coefficient of variation, cv. In doing so, we entirely eliminate variability caused by surface morphology or underlying true sample gradients. We determine the limit of detection (LOD) for13C6-Phe by sampling from droplets with successively decreasing but known concentration. We assess the influence of source geometry on the LOD and repeatability by performing these experiments using four distinct variations of sources: one commercial and three custom-built ones. Finally, we extend our study to leaf and stem samples Arabidopsis thaliana and Gossypium hirsutum. We overcome the challenges of LAESI associated with three-dimensional surface morphology by relying on work previously published. Our measurements on both controlled standard and realistic samples give strong evidence that LAESI-MSI's repeatability in current implementations is insufficient for MSI in chemical ecology.
Collapse
|
9
|
Nauta S, Huysmans P, Tuijthof GM, Eijkel GB, Poeze M, Siegel TP, Heeren RMA. Automated 3D Sampling and Imaging of Uneven Sample Surfaces with LA-REIMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:111-122. [PMID: 34882413 PMCID: PMC8739836 DOI: 10.1021/jasms.1c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The analysis of samples with large height variations remains a challenge for mass spectrometry imaging (MSI), despite many technological advantages. Ambient sampling and ionization MS techniques allow for the molecular analysis of sample surfaces with height variations, but most techniques lack MSI capabilities. We developed a 3D MS scanner for the automated sampling and imaging of a 3D surface with laser-assisted rapid evaporative ionization mass spectrometry (LA-REIMS). The sample is moved automatically with a constant distance between the laser probe and sample surface in the 3D MS Scanner. The topography of the surface was scanned with a laser point distance sensor to define the MS measurement points. MS acquisition was performed with LA-REIMS using a surgical CO2 laser coupled to a qTOF instrument. The topographical scan and MS acquisition can be completed within 1 h using the 3D MS scanner for 300 measurement points on uneven samples with a spatial resolution of 2 mm in the top view, corresponding to 22.04 cm2. Comparison between the automated acquisition with the 3D MS scanner and manual acquisition by hand showed that the automation resulted in increased reproducibility between the measurement points. 3D visualizations of molecular distributions related to structural differences were shown for an apple, a marrowbone, and a human femoral head to demonstrate the imaging feasibility of the system. The developed 3D MS scanner allows for the automated sampling of surfaces with uneven topographies with LA-REIMS, which can be used for the 3D visualization of molecular distributions of these surfaces.
Collapse
Affiliation(s)
- Sylvia
P. Nauta
- Maastricht
MultiModal Molecular Imaging (M4i) Institute, Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
- Department
of Orthopedic Surgery and Trauma Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Pascal Huysmans
- Research
Engineering, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Gabriëlle
J. M. Tuijthof
- Research
Engineering, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Gert B. Eijkel
- Maastricht
MultiModal Molecular Imaging (M4i) Institute, Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Martijn Poeze
- Department
of Surgery, Division of Trauma Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
- NUTRIM,
School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Tiffany Porta Siegel
- Maastricht
MultiModal Molecular Imaging (M4i) Institute, Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Ron M. A. Heeren
- Maastricht
MultiModal Molecular Imaging (M4i) Institute, Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| |
Collapse
|
10
|
Moreno-Pedraza A, Garcia-Rojas NS, Winkler R. Analyzing the Distribution of Specialized Metabolites from Plant Native Tissues with Laser Desorption Low-Temperature Plasma Mass Spectrometry Imaging. Methods Mol Biol 2022; 2469:145-154. [PMID: 35508836 DOI: 10.1007/978-1-0716-2185-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The localization of metabolites in plant tissues is often related to their biological function and biosynthesis. Mass spectrometry imaging (MSI) provides comprehensive information about the distribution of known and unknown compounds in tissues. In this protocol, we describe the use of laser desorption low-temperature plasma (LD-LTP) ionization MSI. This technology enables the direct analysis of native tissues under ambient conditions.
Collapse
Affiliation(s)
- Abigail Moreno-Pedraza
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato, Gto, Mexico
| | - Nancy Shyrley Garcia-Rojas
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato, Gto, Mexico
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato, Gto, Mexico.
| |
Collapse
|
11
|
Ding X, Liu K, Shi Z. LASER DESORPTION/ABLATION POSTIONIZATION MASS SPECTROMETRY: RECENT PROGRESS IN BIOANALYTICAL APPLICATIONS. MASS SPECTROMETRY REVIEWS 2021; 40:566-605. [PMID: 32770707 DOI: 10.1002/mas.21649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Lasers have long been used in the field of mass spectrometric analysis for characterization of condensed matter. However, emission of neutrals upon laser irradiation surpasses the number of ions. Typically, only one in about one million analytes ejected by laser desorption/ablation is ionized, which has fueled the quest for postionization methods enabling ionization of desorbed neutrals to enhance mass spectrometric detection schemes. The development of postionization techniques can be an endeavor that integrates multiple disciplines involving photon energy transfer, electrochemistry, gas discharge, etc. The combination of lasers of different parameters and diverse ion sources has made laser desorption/ablation postionization (LD/API) a growing and lively research community, including two-step laser mass spectrometry, laser ablation atmospheric pressure photoionization mass spectrometry, and those coupled to ambient mass spectrometry. These hyphenated techniques have shown potentials in bioanalytical applications, with major inroads to be made in simultaneous location and quantification of pharmaceuticals, toxins, and metabolites in complex biomatrixes. This review is intended to provide a timely comprehensive view of the broadening bioanalytical applications of disparate LD/API techniques. We also have attempted to discuss these applications according to the classifications based on the postionization methods and to encapsulate the latest achievements in the field of LD/API by highlighting some of the very best reports in the 21st century. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Xuelu Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Kun Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Zhenyan Shi
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
12
|
Rosas-Román I, Winkler R. Contrast optimization of mass spectrometry imaging (MSI) data visualization by threshold intensity quantization (TrIQ). PeerJ Comput Sci 2021; 7:e585. [PMID: 34179452 PMCID: PMC8205298 DOI: 10.7717/peerj-cs.585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Mass spectrometry imaging (MSI) enables the unbiased characterization of surfaces with respect to their chemical composition. In biological MSI, zones with differential mass profiles hint towards localized physiological processes, such as the tissue-specific accumulation of secondary metabolites, or diseases, such as cancer. Thus, the efficient discovery of 'regions of interest' (ROI) is of utmost importance in MSI. However, often the discovery of ROIs is hampered by high background noise and artifact signals. Especially in ambient ionization MSI, unmasking biologically relevant information from crude data sets is challenging. Therefore, we implemented a Threshold Intensity Quantization (TrIQ) algorithm for augmenting the contrast in MSI data visualizations. The simple algorithm reduces the impact of extreme values ('outliers') and rescales the dynamic range of mass signals. We provide an R script for post-processing MSI data in the imzML community format (https://bitbucket.org/lababi/msi.r) and implemented the TrIQ in our open-source imaging software RmsiGUI (https://bitbucket.org/lababi/rmsigui/). Applying these programs to different biological MSI data sets demonstrated the universal applicability of TrIQ for improving the contrast in the MSI data visualization. We show that TrIQ improves a subsequent detection of ROIs by sectioning. In addition, the adjustment of the dynamic signal intensity range makes MSI data sets comparable.
Collapse
|
13
|
Dreisbach D, Petschenka G, Spengler B, Bhandari DR. 3D-surface MALDI mass spectrometry imaging for visualising plant defensive cardiac glycosides in Asclepias curassavica. Anal Bioanal Chem 2021; 413:2125-2134. [PMID: 33544161 PMCID: PMC7943518 DOI: 10.1007/s00216-021-03177-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/22/2022]
Abstract
Mass spectrometry-based imaging (MSI) has emerged as a promising method for spatial metabolomics in plant science. Several ionisation techniques have shown great potential for the spatially resolved analysis of metabolites in plant tissue. However, limitations in technology and methodology limited the molecular information for irregular 3D surfaces with resolutions on the micrometre scale. Here, we used atmospheric-pressure 3D-surface matrix-assisted laser desorption/ionisation mass spectrometry imaging (3D-surface MALDI MSI) to investigate plant chemical defence at the topographic molecular level for the model system Asclepias curassavica. Upon mechanical damage (simulating herbivore attacks) of native A. curassavica leaves, the surface of the leaves varies up to 700 μm, and cardiac glycosides (cardenolides) and other defence metabolites were exclusively detected in damaged leaf tissue but not in different regions of the same leaf. Our results indicated an increased latex flow rate towards the point of damage leading to an accumulation of defence substances in the affected area. While the concentration of cardiac glycosides showed no differences between 10 and 300 min after wounding, cardiac glycosides decreased after 24 h. The employed autofocusing AP-SMALDI MSI system provides a significant technological advancement for the visualisation of individual molecule species on irregular 3D surfaces such as native plant leaves. Our study demonstrates the enormous potential of this method in the field of plant science including primary metabolism and molecular mechanisms of plant responses to abiotic and biotic stress and symbiotic relationships.
Collapse
Affiliation(s)
- Domenic Dreisbach
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Georg Petschenka
- Institute of Phytomedicine, University of Hohenheim, Otto-Sander-Straße 5, 70599, Stuttgart, Germany
| | - Bernhard Spengler
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Dhaka R Bhandari
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.
| |
Collapse
|
14
|
Veličković D, Chu RK, Myers GL, Ahkami AH, Anderton CR. An approach for visualizing the spatial metabolome of an entire plant root system inspired by the Swiss-rolling technique. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4363. [PMID: 31018010 DOI: 10.1002/jms.4363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 05/11/2023]
Abstract
The spatial configuration and morphology of roots are commonly monitored for a better understanding of plant health and development. However, this approach provides minimal details about the biochemistry regulating the observable traits. Therefore, the ability to metabolically map the entire root structure would be of major value. Here, we developed a sample preparation approach that enables imaging of the entire root within a restricted space (width of microscope slide), which was influenced by the Swiss-rolling technique. We were able to image and confidently identify molecules along the entire root structure from rolled-root tissue sections using multiple spatially resolved mass spectrometry approaches.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Gabriel L Myers
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
15
|
|
16
|
Li Y, Cao Y, Guo Y. Recent Advances in Atmospheric Ionization Mass Spectrometry: Developments and Applications. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuling Li
- State Key Laboratory of Organometallic Chemistry, National Center for Organic Mass Spectrometry in ShanghaiShanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Yuqi Cao
- State Key Laboratory of Organometallic Chemistry, National Center for Organic Mass Spectrometry in ShanghaiShanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, National Center for Organic Mass Spectrometry in ShanghaiShanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
17
|
Gilmore IS, Heiles S, Pieterse CL. Metabolic Imaging at the Single-Cell Scale: Recent Advances in Mass Spectrometry Imaging. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:201-224. [PMID: 30848927 DOI: 10.1146/annurev-anchem-061318-115516] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
There is an increasing appreciation that every cell, even of the same type, is different. This complexity, when additionally combined with the variety of different cell types in tissue, is driving the need for spatially resolved omics at the single-cell scale. Rapid advances are being made in genomics and transcriptomics, but progress in metabolomics lags. This is partly because amplification and tagging strategies are not suited to dynamically created metabolite molecules. Mass spectrometry imaging has excellent potential for metabolic imaging. This review summarizes the recent advances in two of these techniques: matrix-assisted laser desorption ionization (MALDI) and secondary ion mass spectrometry (SIMS) and their convergence in subcellular spatial resolution and molecular information. The barriers that have held back progress such as lack of sensitivity and the breakthroughs that have been made including laser-postionization are highlighted as well as the future challenges and opportunities for metabolic imaging at the single-cell scale.
Collapse
Affiliation(s)
- Ian S Gilmore
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom; k
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry , Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Cornelius L Pieterse
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom; k
| |
Collapse
|
18
|
Feider CL, Krieger A, DeHoog RJ, Eberlin LS. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal Chem 2019; 91:4266-4290. [PMID: 30790515 PMCID: PMC7444024 DOI: 10.1021/acs.analchem.9b00807] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara L. Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Anna Krieger
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rachel J. DeHoog
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S. Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Kadesch P, Quack T, Gerbig S, Grevelding CG, Spengler B. Lipid Topography in Schistosoma mansoni Cryosections, Revealed by Microembedding and High-Resolution Atmospheric-Pressure Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry Imaging. Anal Chem 2019; 91:4520-4528. [DOI: 10.1021/acs.analchem.8b05440] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Patrik Kadesch
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Thomas Quack
- Institute of Parasitology, Justus Liebig University Giessen, BFS, Schubertstrasse 81, 35392 Giessen, Germany
| | - Stefanie Gerbig
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Christoph G. Grevelding
- Institute of Parasitology, Justus Liebig University Giessen, BFS, Schubertstrasse 81, 35392 Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
20
|
Moreno-Pedraza A, Rosas-Román I, Garcia-Rojas NS, Guillén-Alonso H, Ovando-Vázquez C, Díaz-Ramírez D, Cuevas-Contreras J, Vergara F, Marsch-Martínez N, Molina-Torres J, Winkler R. Elucidating the Distribution of Plant Metabolites from Native Tissues with Laser Desorption Low-Temperature Plasma Mass Spectrometry Imaging. Anal Chem 2019; 91:2734-2743. [PMID: 30636413 DOI: 10.1021/acs.analchem.8b04406] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Secondary metabolites of plants have important biological functions, which often depend on their localization in tissues. Ideally, a fresh untreated material should be directly analyzed to obtain a realistic view of the true sample chemistry. Therefore, there is a large interest for ambient mass-spectrometry-based imaging (MSI) methods. Our aim was to simplify this technology and to find an optimal combination of desorption/ionization principles for a fast ambient MSI of macroscopic plant samples. We coupled a 405 nm continuous wave (CW) ultraviolet (UV) diode laser to a three-dimensionally (3D) printed low-temperature plasma (LTP) probe. By moving the sample with a RepRap-based sampling stage, we could perform imaging of samples up to 16 × 16 cm2. We demonstrate the system performance by mapping mescaline in a San Pedro cactus ( Echinopsis pachanoi) cross section, tropane alkaloids in jimsonweed ( Datura stramonium) fruits and seeds, and nicotine in tobacco ( Nicotiana tabacum) seedlings. In all cases, the anatomical regions of enriched compound concentrations were correctly depicted. The modular design of the laser desorption (LD)-LTP MSI platform, which is mainly assembled from commercial and 3D-printed components, facilitates its adoption by other research groups. The use of the CW-UV laser for desorption enables fast imaging measurements. A complete tobacco seedling with an image size of 9.2 × 15.0 mm2 was analyzed at a pixel size of 100 × 100 μm2 (14 043 mass scans), in less than 2 h. Natural products can be measured directly from native tissues, which inspires a broad use of LD-LTP MSI in plant chemistry studies.
Collapse
Affiliation(s)
- Abigail Moreno-Pedraza
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Ignacio Rosas-Román
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Nancy Shyrley Garcia-Rojas
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Héctor Guillén-Alonso
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Cesaré Ovando-Vázquez
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
- CONACYT Potosino Institute of Scientific and Technological Research, National Supercomputing Center , Camino a la Presa San José 2055 , Colonia Lomas 4ta Sección, 78216 San Luis Potosí , Mexico
| | - David Díaz-Ramírez
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Jessica Cuevas-Contreras
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Fredd Vergara
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig , Deutscher Platz 5e , 04103 Leipzig , Germany
| | - Nayelli Marsch-Martínez
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Jorge Molina-Torres
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Robert Winkler
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
- Mass Spectrometry Group , Max Planck Institute for Chemical Ecology , Beutenberg Campus, Hans-Knoell-Strasse 8 , 07745 Jena , Germany
| |
Collapse
|
21
|
Rae Buchberger A, DeLaney K, Johnson J, Li L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Anal Chem 2018; 90:240-265. [PMID: 29155564 PMCID: PMC5959842 DOI: 10.1021/acs.analchem.7b04733] [Citation(s) in RCA: 580] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amanda Rae Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
22
|
|
23
|
Rejšek J, Vrkoslav V, Pokorný V, Přibyl V, Cvačka J. Ion Source with Laser Triangulation for Ambient Mass Spectrometry of Nonplanar Samples. Anal Chem 2017; 89:11452-11459. [PMID: 28976183 DOI: 10.1021/acs.analchem.7b02568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The analysis of nonplanar samples in ambient mass spectrometry poses a formidable challenge. Here, an ion source equipped with laser triangulation for analyzing nonplanar surfaces was constructed. It was designed as a two-position device, where the sample height was measured using laser triangulation and the target compounds were then analyzed. Thanks to a stage movable in xyz, the ion source maintained an optimal vertical distance between the sample and the sampling capillary for each measured spot during the surface analysis. The xyz-coordinates for the movement of the sample stage were computed using the laser sensor data in such a way as to avoid direct contact of the sampling capillary and the measured surface. The ion source performance and its ability to analyze various morphologies were tested using desorption electrospray ionization with plastic objects coated by 2,5-dimethoxybenzoic acid. The experiments showed excellent performance for nonplanar samples but also revealed some limitations especially on object edges and steep slopes. The applicability of the ion source operated in desorption electrospray ionization and desorption atmospheric pressure photoionization was examined for food and pharmaceutical samples. Chemicals on the surface of nonplanar samples were probed along a line extending across the surface of the measured objects. The device provided high-quality spectra, regardless of the sample height at the measured spot. The automatic adjustments of the sample stage in xyz proved to be beneficial for analyzing nonplanar samples and for simultaneous measurement of samples with various dimensions and shapes.
Collapse
Affiliation(s)
- Jan Rejšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2, Prague 6 CZ-166 10, Czech Republic.,Department of Analytical Chemistry, Faculty of Science, Charles University in Prague , Hlavova 2030/8, Prague 2 CZ-128 43, Czech Republic
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2, Prague 6 CZ-166 10, Czech Republic
| | - Vít Pokorný
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2, Prague 6 CZ-166 10, Czech Republic
| | - Vladimír Přibyl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2, Prague 6 CZ-166 10, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2, Prague 6 CZ-166 10, Czech Republic.,Department of Analytical Chemistry, Faculty of Science, Charles University in Prague , Hlavova 2030/8, Prague 2 CZ-128 43, Czech Republic
| |
Collapse
|
24
|
Gemperline E, Horn HA, DeLaney K, Currie CR, Li L. Imaging with Mass Spectrometry of Bacteria on the Exoskeleton of Fungus-Growing Ants. ACS Chem Biol 2017; 12:1980-1985. [PMID: 28617577 DOI: 10.1021/acschembio.7b00038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mass spectrometry imaging is a powerful analytical technique for detecting and determining spatial distributions of molecules within a sample. Typically, mass spectrometry imaging is limited to the analysis of thin tissue sections taken from the middle of a sample. In this work, we present a mass spectrometry imaging method for the detection of compounds produced by bacteria on the outside surface of ant exoskeletons in response to pathogen exposure. Fungus-growing ants have a specialized mutualism with Pseudonocardia, a bacterium that lives on the ants' exoskeletons and helps protect their fungal garden food source from harmful pathogens. The developed method allows for visualization of bacterial-derived compounds on the ant exoskeleton. This method demonstrates the capability to detect compounds that are specifically localized to the bacterial patch on ant exoskeletons, shows good reproducibility across individual ants, and achieves accurate mass measurements within 5 ppm error when using a high-resolution, accurate-mass mass spectrometer.
Collapse
Affiliation(s)
- Erin Gemperline
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Heidi A. Horn
- Department
of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kellen DeLaney
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Cameron R. Currie
- Department
of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- School
of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|