1
|
Rijns L, Rutten MGTA, Vrehen AF, Aldana AA, Baker MB, Dankers PYW. Mimicking the extracellular world: from natural to fully synthetic matrices utilizing supramolecular biomaterials. NANOSCALE 2024; 16:16290-16312. [PMID: 39161293 DOI: 10.1039/d4nr02088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The extracellular matrix (ECM) has evolved around complex covalent and non-covalent interactions to create impressive function-from cellular signaling to constant remodeling. A major challenge in the biomedical field is the de novo design and control of synthetic ECMs for applications ranging from tissue engineering to neuromodulation to bioelectronics. As we move towards recreating the ECM's complexity in hydrogels, the field has taken several approaches to recapitulate the main important features of the native ECM (i.e. mechanical, bioactive and dynamic properties). In this review, we first describe the wide variety of hydrogel systems that are currently used, ranging from fully natural to completely synthetic to hybrid versions, highlighting the advantages and limitations of each class. Then, we shift towards supramolecular hydrogels that show great potential for their use as ECM mimics due to their biomimetic hierarchical structure, inherent (controllable) dynamic properties and their modular design, allowing for precise control over their mechanical and biochemical properties. In order to make the next step in the complexity of synthetic ECM-mimetic hydrogels, we must leverage the supramolecular self-assembly seen in the native ECM; we therefore propose to use supramolecular monomers to create larger, hierarchical, co-assembled hydrogels with complex and synergistic mechanical, bioactive and dynamic features.
Collapse
Affiliation(s)
- Laura Rijns
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Martin G T A Rutten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Annika F Vrehen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ana A Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
2
|
Veloso SRS, Rosa M, Diaferia C, Fernandes C. A Review on the Rheological Properties of Single Amino Acids and Short Dipeptide Gels. Gels 2024; 10:507. [PMID: 39195036 DOI: 10.3390/gels10080507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Self-assembled peptide-based hydrogels have attracted considerable interest from the research community. Particularly, low molecular weight gelators (LMWGs) consisting of amino acids and short peptides are highly suitable for biological applications owing to their facile synthesis and scalability, as well as their biocompatibility, biodegradability, and stability in physiological conditions. However, challenges in understanding the structure-property relationship and lack of design rules hinder the development of new gelators with the required properties for several applications. Hereby, in the plethora of peptide-based gelators, this review discusses the mechanical properties of single amino acid and dipeptide-based hydrogels. A mutual analysis of these systems allows us to highlight the relationship between the gel mechanical properties and amino acid sequence, preparation methods, or N capping groups. Additionally, recent advancements in the tuning of the gels' rheological properties are reviewed. In this way, the present review aims to help bridge the knowledge gap between structure and mechanical properties, easing the selection or design of peptides with the required properties for biological applications.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Laboratory of Physics for Materials and Emergent Technologies (LaPMET), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Mariangela Rosa
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Célio Fernandes
- Transport Phenomena Research Centre (CEFT), Department of Mechanical Engineering, Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Centre of Mathematics (CMAT), School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Rijns L, Baker MB, Dankers PYW. Using Chemistry To Recreate the Complexity of the Extracellular Matrix: Guidelines for Supramolecular Hydrogel-Cell Interactions. J Am Chem Soc 2024; 146:17539-17558. [PMID: 38888174 PMCID: PMC11229007 DOI: 10.1021/jacs.4c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Hydrogels have emerged as a promising class of extracellular matrix (ECM)-mimicking materials in regenerative medicine. Here, we briefly describe current state-of-the-art of ECM-mimicking hydrogels, ranging from natural to hybrid to completely synthetic versions, giving the prelude to the importance of supramolecular interactions to make true ECM mimics. The potential of supramolecular interactions to create ECM mimics for cell culture is illustrated through a focus on two different supramolecular hydrogel systems, both developed in our laboratories. We use some recent, significant findings to present important design principles underlying the cell-material interaction. To achieve cell spreading, we propose that slow molecular dynamics (monomer exchange within fibers) is crucial to ensure the robust incorporation of cell adhesion ligands within supramolecular fibers. Slow bulk dynamics (stress-relaxation─fiber rearrangements, τ1/2 ≈ 1000 s) is required to achieve cell spreading in soft gels (<1 kPa), while gel stiffness overrules dynamics in stiffer gels. Importantly, this resonates with the findings of others which specialize in different material types: cell spreading is impaired in case substrate relaxation occurs faster than clutch binding and focal adhesion lifetime. We conclude with discussing considerations and limitations of the supramolecular approach as well as provide a forward thinking perspective to further understand supramolecular hydrogel-cell interactions. Future work may utilize the presented guidelines underlying cell-material interactions to not only arrive at the next generation of ECM-mimicking hydrogels but also advance other fields, such as bioelectronics, opening up new opportunities for innovative applications.
Collapse
Affiliation(s)
- Laura Rijns
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Matthew B. Baker
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology
Inspired Regenerative Medicine, Maastricht
University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y. W. Dankers
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
4
|
Bianco S, Hasan M, Ahmad A, Richards SJ, Dietrich B, Wallace M, Tang Q, Smith AJ, Gibson MI, Adams DJ. Mechanical release of homogenous proteins from supramolecular gels. Nature 2024; 631:544-548. [PMID: 39020036 PMCID: PMC11254749 DOI: 10.1038/s41586-024-07580-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/17/2024] [Indexed: 07/19/2024]
Abstract
A long-standing challenge is how to formulate proteins and vaccines to retain function during storage and transport and to remove the burdens of cold-chain management. Any solution must be practical to use, with the protein being released or applied using clinically relevant triggers. Advanced biologic therapies are distributed cold, using substantial energy, limiting equitable distribution in low-resource countries and placing responsibility on the user for correct storage and handling. Cold-chain management is the best solution at present for protein transport but requires substantial infrastructure and energy. For example, in research laboratories, a single freezer at -80 °C consumes as much energy per day as a small household1. Of biological (protein or cell) therapies and all vaccines, 75% require cold-chain management; the cost of cold-chain management in clinical trials has increased by about 20% since 2015, reflecting this complexity. Bespoke formulations and excipients are now required, with trehalose2, sucrose or polymers3 widely used, which stabilize proteins by replacing surface water molecules and thereby make denaturation thermodynamically less likely; this has enabled both freeze-dried proteins and frozen proteins. For example, the human papilloma virus vaccine requires aluminium salt adjuvants to function, but these render it unstable against freeze-thaw4, leading to a very complex and expensive supply chain. Other ideas involve ensilication5 and chemical modification of proteins6. In short, protein stabilization is a challenge with no universal solution7,8. Here we designed a stiff hydrogel that stabilizes proteins against thermal denaturation even at 50 °C, and that can, unlike present technologies, deliver pure, excipient-free protein by mechanically releasing it from a syringe. Macromolecules can be loaded at up to 10 wt% without affecting the mechanism of release. This unique stabilization and excipient-free release synergy offers a practical, scalable and versatile solution to enable the low-cost, cold-chain-free and equitable delivery of therapies worldwide.
Collapse
Affiliation(s)
- Simona Bianco
- Department of Chemistry, University of Glasgow, Glasgow, UK
| | - Muhammad Hasan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ashfaq Ahmad
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Sarah-Jane Richards
- Department of Chemistry, University of Warwick, Coventry, UK
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Bart Dietrich
- Department of Chemistry, University of Glasgow, Glasgow, UK
| | - Matthew Wallace
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Qiao Tang
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Andrew J Smith
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, UK
| | - Matthew I Gibson
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
- Department of Chemistry, University of Warwick, Coventry, UK.
- Department of Chemistry, University of Manchester, Manchester, UK.
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Dave J Adams
- Department of Chemistry, University of Glasgow, Glasgow, UK.
| |
Collapse
|
5
|
Ginesi RE, Draper ER. Methods of changing low molecular weight gel properties through gelation kinetics. SOFT MATTER 2024; 20:3887-3896. [PMID: 38691131 DOI: 10.1039/d4sm00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Low molecular weight gels continue to attract notable interest, with many potential applications. However, there are still significant gaps in our understanding of these systems and the correlation between the pre-gel and final gel states. The kinetics of the gelation process plays a crucial role in the bulk properties of the hydrogel and presents an opportunity to fine-tune these systems to meet the requirements of the chosen application. Therefore, it is possible to use a single gelator for multiple applications. This review discusses four ways to modify the pre-gelled structures before triggering gelation. Such modifications can enhance the material's intended performance, which may result in significant advancements in high-tech areas, such as drug delivery, cell culturing, electronics, and tissue engineering.
Collapse
Affiliation(s)
- Rebecca E Ginesi
- School of Chemistry, University of Glasgow, Glasgow, UK, G12 8QQ, UK.
| | - Emily R Draper
- School of Chemistry, University of Glasgow, Glasgow, UK, G12 8QQ, UK.
| |
Collapse
|
6
|
Salter LC, Wojciechowski JP, McLean B, Charchar P, Barnes PRF, Creamer A, Doutch J, Barriga HMG, Holme MN, Yarovsky I, Stevens MM. 3,4-Ethylenedioxythiophene Hydrogels: Relating Structure and Charge Transport in Supramolecular Gels. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:3092-3106. [PMID: 38617802 PMCID: PMC11007859 DOI: 10.1021/acs.chemmater.3c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024]
Abstract
Ionic charge transport is a ubiquitous language of communication in biological systems. As such, bioengineering is in constant need of innovative, soft, and biocompatible materials that facilitate ionic conduction. Low molecular weight gelators (LMWGs) are complex self-assembled materials that have received increasing attention in recent years. Beyond their biocompatible, self-healing, and stimuli responsive facets, LMWGs can be viewed as a "solid" electrolyte solution. In this work, we investigate 3,4-ethylenedioxythiophene (EDOT) as a capping group for a small peptide library, which we use as a system to understand the relationship between modes of assembly and charge transport in supramolecular gels. Through a combination of techniques including small-angle neutron scattering (SANS), NMR-based Van't Hoff analysis, atomic force microscopy (AFM), rheology, four-point probe, and electrochemical impedance spectroscopy (EIS), we found that modifications to the peptide sequence result in distinct assembly pathways, thermodynamic parameters, mechanical properties, and ionic conductivities. Four-point probe conductivity measurements and electrochemical impedance spectroscopy suggest that ionic conductivity is approximately doubled by programmable gel assemblies with hollow cylinder morphologies relative to gels containing solid fibers or a control electrolyte. More broadly, it is hoped this work will serve as a platform for those working on charge transport of aqueous soft materials in general.
Collapse
Affiliation(s)
- Luke C.
B. Salter
- Department
of Materials and Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jonathan P. Wojciechowski
- Department
of Materials and Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ben McLean
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- ARC
Research Hub for Australian Steel Innovation, https://www.rmit.edu.au/research/centres-collaborations/multi-partner-collaborations/arc-research-hub-aus-steel-manufacturing
| | - Patrick Charchar
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Piers R. F. Barnes
- Department
of Physics, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Adam Creamer
- Department
of Materials and Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - James Doutch
- ISIS
Muon and Neutron Source, Rutherford Appleton
Laboratory, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Hanna M. G. Barriga
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Margaret N. Holme
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Irene Yarovsky
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Molly M. Stevens
- Department
of Materials and Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
and Kavli Institute for Nanoscience Discovery, University of Oxford, OX1
3QU, Oxford, United Kingdom
| |
Collapse
|
7
|
Li W, Wen Y, Wang K, Ding Z, Wang L, Chen Q, Xie L, Xu H, Zhao H. Developing a machine learning model for accurate nucleoside hydrogels prediction based on descriptors. Nat Commun 2024; 15:2603. [PMID: 38521777 PMCID: PMC10960799 DOI: 10.1038/s41467-024-46866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Supramolecular hydrogels derived from nucleosides have been gaining significant attention in the biomedical field due to their unique properties and excellent biocompatibility. However, a major challenge in this field is that there is no model for predicting whether nucleoside derivative will form a hydrogel. Here, we successfully develop a machine learning model to predict the hydrogel-forming ability of nucleoside derivatives. The optimal model with a 71% (95% Confidence Interval, 0.69-0.73) accuracy is established based on a dataset of 71 reported nucleoside derivatives. 24 molecules are selected via the optimal model external application and the hydrogel-forming ability is experimentally verified. Among these, two rarely reported cation-independent nucleoside hydrogels are found. Based on their self-assemble mechanisms, the cation-independent hydrogel is found to have potential applications in rapid visual detection of Ag+ and cysteine. Here, we show the machine learning model may provide a tool to predict nucleoside derivatives with hydrogel-forming ability.
Collapse
Affiliation(s)
- Weiqi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yinghui Wen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Kaichao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Zihan Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
8
|
Cheng L, De Leon-Rodriguez LM, Gilbert EP, Loo T, Petters L, Yang Z. Self-assembly and hydrogelation of a potential bioactive peptide derived from quinoa proteins. Int J Biol Macromol 2024; 259:129296. [PMID: 38199549 DOI: 10.1016/j.ijbiomac.2024.129296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
In this work the identification of peptides derived from quinoa proteins which could potentially self-assemble, and form hydrogels was carried out with TANGO, a statistical mechanical based algorithm that predicts β-aggregate propensity of peptides. Peptides with the highest aggregate propensity were subjected to gelling screening experiments from which the most promising bioactive peptide with sequence KIVLDSDDPLFGGF was selected. The self-assembling and hydrogelation properties of the C-terminal amidated peptide (KIVLDSDDPLFGGF-NH2) were studied. The effect of concentration, pH, and temperature on the secondary structure of the peptide were probed by circular dichroism (CD), while its nanostructure was studied by transmission electron microscopy (TEM) and small-angle neutron scattering (SANS). Results revealed the existence of random coil, α-helix, twisted β-sheet, and well-defined β-sheet secondary structures, with a range of nanostructures including elongated fibrils and bundles, whose proportion was dependant on the peptide concentration, pH, or temperature. The self-assembly of the peptide is demonstrated to follow established models of amyloid formation, which describe the unfolded peptide transiting from an α-helix-containing intermediate into β-sheet-rich protofibrils. The self-assembly is promoted at high concentrations, elevated temperatures, and pH values close to the peptide isoelectric point, and presumably mediated by hydrogen bond, hydrophobic and electrostatic interactions, and π-π interactions (from the F residue). At 15 mg/mL and pH 3.5, the peptide self-assembled and formed a self-supporting hydrogel exhibiting viscoelastic behaviour with G' (1 Hz) ~2300 Pa as determined by oscillatory rheology measurements. The study describes a straightforward method to monitor the self-assembly of plant protein derived peptides; further studies are needed to demonstrate the potential application of the formed hydrogels in food and biomedicine.
Collapse
Affiliation(s)
- Lirong Cheng
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | | | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee, NSW, Australia; Centre for Nutrition and Food Sciences, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Trevor Loo
- BioProtection Aotearoa, School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Ludwig Petters
- School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Zhi Yang
- School of Food and Advanced Technology, Massey University, Auckland 0632, New Zealand.
| |
Collapse
|
9
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
10
|
Xu T, Wang J, Zhao S, Chen D, Zhang H, Fang Y, Kong N, Zhou Z, Li W, Wang H. Accelerating the prediction and discovery of peptide hydrogels with human-in-the-loop. Nat Commun 2023; 14:3880. [PMID: 37391398 PMCID: PMC10313671 DOI: 10.1038/s41467-023-39648-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The amino acid sequences of peptides determine their self-assembling properties. Accurate prediction of peptidic hydrogel formation, however, remains a challenging task. This work describes an interactive approach involving the mutual information exchange between experiment and machine learning for robust prediction and design of (tetra)peptide hydrogels. We chemically synthesize more than 160 natural tetrapeptides and evaluate their hydrogel-forming ability, and then employ machine learning-experiment iterative loops to improve the accuracy of the gelation prediction. We construct a score function coupling the aggregation propensity, hydrophobicity, and gelation corrector Cg, and generate an 8,000-sequence library, within which the success rate of predicting hydrogel formation reaches 87.1%. Notably, the de novo-designed peptide hydrogel selected from this work boosts the immune response of the receptor binding domain of SARS-CoV-2 in the mice model. Our approach taps into the potential of machine learning for predicting peptide hydrogelator and significantly expands the scope of natural peptide hydrogels.
Collapse
Affiliation(s)
- Tengyan Xu
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jiaqi Wang
- Research Center for the Industries of the Future, Westlake University, No. 600 Dunyu Road, Sandun Town, Xihu District, Hangzhou, 310030, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Shuang Zhao
- School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Dinghao Chen
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hongyue Zhang
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yu Fang
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Nan Kong
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Ziao Zhou
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Wenbin Li
- Research Center for the Industries of the Future, Westlake University, No. 600 Dunyu Road, Sandun Town, Xihu District, Hangzhou, 310030, Zhejiang Province, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Research Center for the Industries of the Future, Westlake University, No. 600 Dunyu Road, Sandun Town, Xihu District, Hangzhou, 310030, Zhejiang Province, China.
| |
Collapse
|
11
|
Petit N, Dyer JM, Gerrard JA, Domigan LJ, Clerens S. Insight into the self-assembly and gel formation of a bioactive peptide derived from bovine casein. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
12
|
Hamley IW. Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups. ACS APPLIED BIO MATERIALS 2023; 6:384-409. [PMID: 36735801 PMCID: PMC9945136 DOI: 10.1021/acsabm.2c01041] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The self-assembly and structural and functional properties of peptide conjugates containing bulky terminal aromatic substituents are reviewed with a particular focus on bioactivity. Terminal moieties include Fmoc [fluorenylmethyloxycarbonyl], naphthalene, pyrene, naproxen, diimides of naphthalene or pyrene, and others. These provide a driving force for self-assembly due to π-stacking and hydrophobic interactions, in addition to the hydrogen bonding, electrostatic, and other forces between short peptides. The balance of these interactions leads to a propensity to self-assembly, even for conjugates to single amino acids. The hybrid molecules often form hydrogels built from a network of β-sheet fibrils. The properties of these as biomaterials to support cell culture, or in the development of molecules that can assemble in cells (in response to cellular enzymes, or otherwise) with a range of fascinating bioactivities such as anticancer or antimicrobial activity, are highlighted. In addition, applications of hydrogels as slow-release drug delivery systems and in catalysis and other applications are discussed. The aromatic nature of the substituents also provides a diversity of interesting optoelectronic properties that have been demonstrated in the literature, and an overview of this is also provided. Also discussed are coassembly and enzyme-instructed self-assembly which enable precise tuning and (stimulus-responsive) functionalization of peptide nanostructures.
Collapse
|
13
|
Randle RI, Ginesi RE, Matsarskaia O, Schweins R, Draper ER. Process Dependent Complexity in Multicomponent Gels. Macromol Rapid Commun 2023; 44:e2200709. [PMID: 36177680 PMCID: PMC11475255 DOI: 10.1002/marc.202200709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Mixing low molecular weight gelators (LMWGs) can be used to combine favorable properties of the individual components within a multifunctional gel. Such multicomponent systems are complex enough in themselves but the method of combining components is not commonly considered something to influence self-assembly. Herein, two multicomponent systems comprising of a naphthalene-based dipeptide hydrogelator and one of two modified naphthalene diimides (NDIs), one of which forms gels, and the other does not, are investigated. These systems are probed, examining the structures formed and their gel properties (when preparing a solution from either a mixed powder of both components or by mixing pre-formed solutions of each component) using rheology, small angle neutron scattering (SANS), and absorbance spectroscopy. It is found that by altering the method of preparation, it is can either induce self-sorting or co-assembly within the fibers formed that underpin the gel network.
Collapse
Affiliation(s)
- Rebecca I. Randle
- School of Chemistry, Joseph Black BuildingUniversity of GlasgowGlasgowG12 8QQUK
| | - Rebecca E. Ginesi
- School of Chemistry, Joseph Black BuildingUniversity of GlasgowGlasgowG12 8QQUK
| | - Olga Matsarskaia
- Institut Laue‐LangevinLarge Scale Structures Group71 Avenue des Martyrs, CS 20156Grenoble CEDEX 9F‐38042France
| | - Ralf Schweins
- Institut Laue‐LangevinLarge Scale Structures Group71 Avenue des Martyrs, CS 20156Grenoble CEDEX 9F‐38042France
| | - Emily R. Draper
- School of Chemistry, Joseph Black BuildingUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
14
|
Bayón-Fernández A, Méndez-Ardoy A, Alvarez-Lorenzo C, Granja JR, Montenegro J. Self-healing cyclic peptide hydrogels. J Mater Chem B 2023; 11:606-617. [PMID: 36533555 DOI: 10.1039/d2tb01721k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Hydrogels are soft materials of great interest in different areas such as chemistry, biology, and therapy. Gels made by the self-assembly of small molecules are known as supramolecular gels. The modulation of their properties by monomer molecular design is still difficult to predict due to the potential impact of subtle structural modifications in the self-assembly process. Herein, we introduce the design principles of a new family of self-assembling cyclic octapeptides of alternating chirality that can be used as scaffolds for the development of self-healing hydrogelator libraries with tunable properties. The strategy was used in the preparation of an amphiphilic cyclic peptide monomer bearing an alkoxyamine connector, which allowed the insertion of different aromatic aldehyde pendants to modulate the hydrophobic/hydrophilic balance and fine-tune the properties of the resulting gel. The resulting amphiphiles were able to form self-healable hydrogels with viscoelastic properties (loss tangent, storage modulus), which were strongly dependent on the nature and number of aromatic moieties anchored to the hydrophilic peptide. Structural studies by SEM, STEM and AFM indicated that the structure of the hydrogels was based on a dense network of peptide nanotubes. Excellent agreement was established between the peptide primary structure, nanotube length distributions and viscoelastic behaviour.
Collapse
Affiliation(s)
- Alfonso Bayón-Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Godoy-Gallardo M, Merino-Gómez M, Matiz LC, Mateos-Timoneda MA, Gil FJ, Perez RA. Nucleoside-Based Supramolecular Hydrogels: From Synthesis and Structural Properties to Biomedical and Tissue Engineering Applications. ACS Biomater Sci Eng 2023; 9:40-61. [PMID: 36524860 DOI: 10.1021/acsbiomaterials.2c01051] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Supramolecular hydrogels are of great interest in tissue scaffolding, diagnostics, and drug delivery due to their biocompatibility and stimuli-responsive properties. In particular, nucleosides are promising candidates as building blocks due to their manifold noncovalent interactions and ease of chemical modification. Significant progress in the field has been made over recent years to allow the use of nucleoside-based supramolecular hydrogels in the biomedical field, namely drug delivery and 3D bioprinting. For example, their long-term stability, printability, functionality, and bioactivity have been greatly improved by employing more than one gelator, incorporating different cations, including silver for antibacterial activity, or using additives such as boric acid or even biomolecules. This now permits their use as bioinks for 3D printing to produce cell-laden scaffolds with specified geometries and pore sizes as well as a homogeneous distribution of living cells and bioactive molecules. We have summarized the latest advances in nucleoside-based supramolecular hydrogels. Additionally, we discuss their synthesis, structural properties, and potential applications in tissue engineering and provide an outlook and future perspective on ongoing developments in the field.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Bioengineering Institute of Technology (BIT), Department of Basic Science, International University of Catalonia (UIC), Carrer de Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Maria Merino-Gómez
- Bioengineering Institute of Technology (BIT), Department of Basic Science, International University of Catalonia (UIC), Carrer de Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Luisamaria C Matiz
- Bioengineering Institute of Technology (BIT), Department of Basic Science, International University of Catalonia (UIC), Carrer de Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Miguel A Mateos-Timoneda
- Bioengineering Institute of Technology (BIT), Department of Basic Science, International University of Catalonia (UIC), Carrer de Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - F Javier Gil
- Bioengineering Institute of Technology (BIT), Department of Basic Science, International University of Catalonia (UIC), Carrer de Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain.,Department of Dentistry, Faculty of Dentistry, International University of Catalonia (UIC), Carrer de Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Roman A Perez
- Bioengineering Institute of Technology (BIT), Department of Basic Science, International University of Catalonia (UIC), Carrer de Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| |
Collapse
|
16
|
Computational approaches for understanding and predicting the self-assembled peptide hydrogels. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Savage P, Gao S, Esposto J, Adhikari B, Zabik N, Kraatz HB, Eichhorn SH, Martic-Milne S. Self-assembly of N-, C- and N-/C-terminated Val-and Phe-amino acid side chains of naphthalene. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Helmick H, Hartanto C, Ettestad S, Liceaga A, Bhunia AK, Kokini JL. Quantitative structure-property relationships of thermoset pea protein gels with ethanol, shear, and sub-zero temperature pretreatments. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Abstract
![]()
Low molecular weight
gels are formed by the self-assembly of small
molecules into anisotropic structures that form a network capable
of immobilizing the solvent. Such gels are common, with a huge number
of different examples existing, and they have many applications. However,
there are still significant gaps in our understanding of these systems
and challenges that need to be addressed if we are to be able to fully
design such systems. Here, a number of these challenges are discussed.
Collapse
Affiliation(s)
- Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
20
|
Sahajpal K, Sharma S, Shekhar S, Kumar A, Meena MK, Bhagi AK, Sharma B. Dynamic Protein and Polypeptide Hydrogels Based on Schiff Base Co-assembly for Biomedicine. J Mater Chem B 2022; 10:3173-3198. [DOI: 10.1039/d2tb00077f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive hydrogels are promising building blocks for biomedical devices, attributable to their excellent hydrophilicity, biocompatibility, and dynamic responsiveness to temperature, light, pH, and water content. Although hydrogels find interesting applications...
Collapse
|
21
|
Hendrikse SIS, Contreras-Montoya R, Ellis AV, Thordarson P, Steed JW. Biofunctionality with a twist: the importance of molecular organisation, handedness and configuration in synthetic biomaterial design. Chem Soc Rev 2021; 51:28-42. [PMID: 34846055 DOI: 10.1039/d1cs00896j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The building blocks of life - nucleotides, amino acids and saccharides - give rise to a large variety of components and make up the hierarchical structures found in Nature. Driven by chirality and non-covalent interactions, helical and highly organised structures are formed and the way in which they fold correlates with specific recognition and hence function. A great amount of effort is being put into mimicking these highly specialised biosystems as biomaterials for biomedical applications, ranging from drug discovery to regenerative medicine. However, as well as lacking the complexity found in Nature, their bio-activity is sometimes low and hierarchical ordering is missing or underdeveloped. Moreover, small differences in folding in natural biomolecules (e.g., caused by mutations) can have a catastrophic effect on the function they perform. In order to develop biomaterials that are more efficient in interacting with biomolecules, such as proteins, DNA and cells, we speculate that incorporating order and handedness into biomaterial design is necessary. In this review, we first focus on order and handedness found in Nature in peptides, nucleotides and saccharides, followed by selected examples of synthetic biomimetic systems based on these components that aim to capture some aspects of these ordered features. Computational simulations are very helpful in predicting atomic orientation and molecular organisation, and can provide invaluable information on how to further improve on biomaterial designs. In the last part of the review, a critical perspective is provided along with considerations that can be implemented in next-generation biomaterial designs.
Collapse
Affiliation(s)
- Simone I S Hendrikse
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia. .,School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Pall Thordarson
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | |
Collapse
|
22
|
Yao S, Brahmi R, Portier F, Putaux JL, Chen J, Halila S. Hierarchical Self-Assembly of Amphiphilic β-C-Glycosylbarbiturates into Multiresponsive Alginate-Like Supramolecular Hydrogel Fibers and Vesicle Hydrogel. Chemistry 2021; 27:16716-16721. [PMID: 34622999 DOI: 10.1002/chem.202102950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 01/03/2023]
Abstract
Ordered molecular self-assembly of glycoamphiphiles has been regarded as an attractive, practical and bottom-up approach to obtain stable, structurally well-defined, and functional mimics of natural polysaccharides. This study describes a versatile and rational design of carbohydrate-based hydrogelators through N,N'-substituted barbituric acid-mediated Knoevenagel condensation onto unprotected carbohydrates in water. Amphiphilic N-substituted β-C-maltosylbarbiturates self-assembled into pH- and calcium-triggered alginate-like supramolecular hydrogel fibers with a multistimuli responsiveness to temperature, pH and competitive metal chelating agent. In addition, amphiphilic N,N'-disubstituted β-C-maltosylbarbiturates formed vesicle gels in pure water that were scarcely observed for glyco-hydrogelators. Finally, barbituric acid worked as a multitasking group allowing chemoselective ligation onto reducing-end carbohydrates, structural diversity, stimuli-sensitiveness, and supramolecular interactions by hydrogen bonding.
Collapse
Affiliation(s)
- Shun Yao
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Robin Brahmi
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | | | | | - Jing Chen
- Zhejiang International Scientific and, Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Sami Halila
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| |
Collapse
|
23
|
Dodda JM, Azar MG, Sadiku R. Crosslinking Trends in Multicomponent Hydrogels for Biomedical Applications. Macromol Biosci 2021; 21:e2100232. [PMID: 34612608 DOI: 10.1002/mabi.202100232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Multicomponent-based hydrogels are well established candidates for biomedical applications. However, certain aspects of multicomponent systems, e.g., crosslinking, structural binding, network formation, proteins/drug incorporation, etc., are challenging aspects to modern biomedical research. The types of crosslinking and network formation are crucial for the effective combination of multiple component systems. The creation of a complex system in the overall structure and the crosslinking efficiency of different polymeric chains in an organized fashion are crucially important, especially when the materials are for biomedical applications. Therefore, the engineering of hydrogel has to be, succinctly understood, carefully formulated, and expertly designed. The different crosslinking methods in use, hydrogen bonding, electrostatic interaction, coordination bonding, and self-assembly. The formations of double, triple, and multiple networks, are well established. A systematic study of the crosslinking mechanisms in multicomponent systems, in terms of the crosslinking types, network formation, intramolecular bonds between different structural units, and their potentials for biomedical applications, is lacking and therefore, these aspects require investigations. To this end, the present review, focuses on the recent advances in areas of the physical, chemical, and enzymatic crosslinking methods that are often, employed for the designing of multicomponent hydrogels.
Collapse
Affiliation(s)
- Jagan Mohan Dodda
- New Technologies-Research Centre (NTC), University of West Bohemia, Univerzitní 8, Pilsen, 301 00, Czech Republic
| | - Mina Ghafouri Azar
- New Technologies-Research Centre (NTC), University of West Bohemia, Univerzitní 8, Pilsen, 301 00, Czech Republic
| | - Rotimi Sadiku
- Institute of NanoEngineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Staatsartillerie Rd, Pretoria West Campus, Pretoria, 0183, Republic of South Africa
| |
Collapse
|
24
|
Abstract
Lipopeptides are an exceptional example of amphiphilic molecules that self-assemble into functional structures with applications in the areas of nanotechnology, catalysis or medicinal chemistry. Herein, we report a library of 21 short lipopeptides, together with their supramolecular characterization and antimicrobial activity against both Gram-negative (E. coli) and Gram-positive (S. aureus) strains. This study shows that simple lipoamino acids self-assemble into micellar or vesicular structures, while incorporating dipeptides capable of stablishing hydrogen bonds results in the adoption of advanced fibrilar structures. The self-assembly effect has proven to be key to achieve antimicrobial activity.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA Nanociencia, Faraday 9, Campus UAM, 28049 Madrid, Spain and Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
25
|
Giuri D, Marshall LJ, Wilson C, Seddon A, Adams DJ. Understanding gel-to-crystal transitions in supramolecular gels. SOFT MATTER 2021; 17:7221-7226. [PMID: 34286796 DOI: 10.1039/d1sm00770j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most supramolecular gels are stable or assumed to be stable over time, and aging effects are often not studied. However, some gels do show clear changes on aging, and a small number of systems exhibit gel-to-crystal transitions. In these cases, crystals form over time, typically at the expense of the network underpinning the gel; this leads to the gel falling apart. These systems are rare, and little is known about how these gel-to-crystal transitions occur. Here, we use a range of techniques to understand in detail a gel-to-crystal transition for a specific functionalised dipeptide based gelator. We show that the gel-to-crystal transition depends on the final pH of the medium which we control by varying the amount of glucon-δ-lactone (GdL) added. In the gel phase, at low concentrations of GdL, and at early time points with high concentrations of GdL, we are able to show the nanometre scale dimensions of the self-assembled fibre using SAXS; however there is no evidence of molecular ordering of the gel fibres in the WAXS. At low concentrations of GdL, these self-assembled fibres stiffen with time but do not crystallise over the timescale of the SAXS experiment. At high concentrations of GdL, the fibres are already stiffened, and then, as the pH drops further, give way to the presence of crystals which appear to grow preferentially along the direction of the fibre axis. We definitively show therefore that the gel and crystal phase are not the same. Our work shows that many assumptions in the literature are incorrect. Finally, we also show that the sample holder geometry is an important parameter for these experiments, with the rate of crystallisation depending on the holder in which the experiment is carried out.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Libby J Marshall
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Claire Wilson
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Annela Seddon
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK. and Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
26
|
Firipis K, Nisbet DR, Franks SJ, Kapsa RMI, Pirogova E, Williams RJ, Quigley A. Enhancing Peptide Biomaterials for Biofabrication. Polymers (Basel) 2021; 13:polym13162590. [PMID: 34451130 PMCID: PMC8400132 DOI: 10.3390/polym13162590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Biofabrication using well-matched cell/materials systems provides unprecedented opportunities for dealing with human health issues where disease or injury overtake the body’s native regenerative abilities. Such opportunities can be enhanced through the development of biomaterials with cues that appropriately influence embedded cells into forming functional tissues and organs. In this context, biomaterials’ reliance on rigid biofabrication techniques needs to support the incorporation of a hierarchical mimicry of local and bulk biological cues that mimic the key functional components of native extracellular matrix. Advances in synthetic self-assembling peptide biomaterials promise to produce reproducible mimics of tissue-specific structures and may go some way in overcoming batch inconsistency issues of naturally sourced materials. Recent work in this area has demonstrated biofabrication with self-assembling peptide biomaterials with unique biofabrication technologies to support structural fidelity upon 3D patterning. The use of synthetic self-assembling peptide biomaterials is a growing field that has demonstrated applicability in dermal, intestinal, muscle, cancer and stem cell tissue engineering.
Collapse
Affiliation(s)
- Kate Firipis
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
- The Graeme Clark Institute, Faculty of Engineering and Information Technology, Melbourne, VIC 3000, Australia
- Faculty of Medicine, Dentistry and Health Services, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephanie J. Franks
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
| | - Robert M. I. Kapsa
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
| | - Elena Pirogova
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Richard J. Williams
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
- Correspondence: (R.J.W.); (A.Q.)
| | - Anita Quigley
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
- Correspondence: (R.J.W.); (A.Q.)
| |
Collapse
|
27
|
Van Lommel R, De Borggraeve WM, De Proft F, Alonso M. Computational Tools to Rationalize and Predict the Self-Assembly Behavior of Supramolecular Gels. Gels 2021; 7:87. [PMID: 34287290 PMCID: PMC8293097 DOI: 10.3390/gels7030087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Supramolecular gels form a class of soft materials that has been heavily explored by the chemical community in the past 20 years. While a multitude of experimental techniques has demonstrated its usefulness when characterizing these materials, the potential value of computational techniques has received much less attention. This review aims to provide a complete overview of studies that employ computational tools to obtain a better fundamental understanding of the self-assembly behavior of supramolecular gels or to accelerate their development by means of prediction. As such, we hope to stimulate researchers to consider using computational tools when investigating these intriguing materials. In the concluding remarks, we address future challenges faced by the field and formulate our vision on how computational methods could help overcoming them.
Collapse
Affiliation(s)
- Ruben Van Lommel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F Leuven Chem & Tech, P.O. Box 2404, 3001 Leuven, Belgium;
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium;
| | - Wim M. De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F Leuven Chem & Tech, P.O. Box 2404, 3001 Leuven, Belgium;
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium;
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium;
| |
Collapse
|
28
|
Arokianathan JF, Ramya KA, Deshpande AP, Leemarose A, Shanmugam G. Supramolecular organogel based on di-Fmoc functionalized unnatural amino acid: An attempt to develop a correlation between molecular structure and ambidextrous gelation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Petit N, Dyer JM, Clerens S, Gerrard JA, Domigan LJ. Oral delivery of self-assembling bioactive peptides to target gastrointestinal tract disease. Food Funct 2021; 11:9468-9488. [PMID: 33155590 DOI: 10.1039/d0fo01801e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptides are known for their diverse bioactivities including antioxidant, antimicrobial, and anticancer activity, all three of which are potentially useful in treating colon-associated diseases. Beside their capability to stimulate positive health effects once released in the body, peptides are able to form useful nanostructures such as hydrogels. Combining peptide bioactivity and peptide gel-forming potentials can create interesting systems that can be used for oral delivery. This combination, acting as a two-in-one system, has the potential to avoid the need for delicate entrapment of a drug or natural bioactive compound. We here review the context and research progress, to date, in this area.
Collapse
Affiliation(s)
- Noémie Petit
- Riddet Institute, Massey University, PB 11 222, Palmerston North 4442, New Zealand
| | | | | | | | | |
Collapse
|
30
|
van Teijlingen A, Tuttle T. Beyond Tripeptides Two-Step Active Machine Learning for Very Large Data sets. J Chem Theory Comput 2021; 17:3221-3232. [PMID: 33904712 PMCID: PMC8278388 DOI: 10.1021/acs.jctc.1c00159] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Self-assembling peptide nanostructures have been shown to be of great importance in nature and have presented many promising applications, for example, in medicine as drug-delivery vehicles, biosensors, and antivirals. Being very promising candidates for the growing field of bottom-up manufacture of functional nanomaterials, previous work (Frederix, et al. 2011 and 2015) has screened all possible amino acid combinations for di- and tripeptides in search of such materials. However, the enormous complexity and variety of linear combinations of the 20 amino acids make exhaustive simulation of all combinations of tetrapeptides and above infeasible. Therefore, we have developed an active machine-learning method (also known as "iterative learning" and "evolutionary search method") which leverages a lower-resolution data set encompassing the whole search space and a just-in-time high-resolution data set which further analyzes those target peptides selected by the lower-resolution model. This model uses newly generated data upon each iteration to improve both lower- and higher-resolution models in the search for ideal candidates. Curation of the lower-resolution data set is explored as a method to control the selected candidates, based on criteria such as log P. A major aim of this method is to produce the best results in the least computationally demanding way. This model has been developed to be broadly applicable to other search spaces with minor changes to the algorithm, allowing its use in other areas of research.
Collapse
Affiliation(s)
| | - Tell Tuttle
- Department of Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| |
Collapse
|
31
|
Abstract
Machine learning is making a major impact in materials research. I review current progress across a selection of areas of ubiquitous soft matter. When applied to particle tracking, machine learning using convolution neural networks is providing impressive performance but there remain some significant problems to solve. Characterising ordered arrangements of particles is a huge challenge and machine learning has been deployed to create the description, perform the classification and tease out an interpretation using a wide array of techniques often with good success. In glass research, machine learning has proved decisive in quantifying very subtle correlations between the local structure around a site and the susceptibility towards a rearrangement event at that site. There are also beginning to be some impressive attempts to deploy machine learning in the design of composite soft materials. The discovery aspect of this new materials design meets the current interest in teaching algorithms to learn to extrapolate beyond the training data.
Collapse
Affiliation(s)
- Paul S Clegg
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK.
| |
Collapse
|
32
|
Lin Y, Penna M, Spicer CD, Higgins SG, Gelmi A, Kim N, Wang ST, Wojciechowski JP, Pashuck ET, Yarovsky I, Stevens MM. High-Throughput Peptide Derivatization toward Supramolecular Diversification in Microtiter Plates. ACS NANO 2021; 15:4034-4044. [PMID: 33587607 PMCID: PMC7992134 DOI: 10.1021/acsnano.0c05423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The evolution of life on earth eventually leads to the emergence of species with increased complexity and diversity. Similarly, evolutionary chemical space exploration in the laboratory is a key step to pursue the structural and functional diversity of supramolecular systems. Here, we present a powerful tool that enables rapid peptide diversification and employ it to expand the chemical space for supramolecular functions. Central to this strategy is the exploitation of palladium-catalyzed Suzuki-Miyaura cross-coupling reactions to direct combinatorial synthesis of peptide arrays in microtiter plates under an open atmosphere. Taking advantage of this in situ library design, our results unambiguously deliver a fertile platform for creating a set of intriguing peptide functions including green fluorescent protein-like peptide emitters with chemically encoded emission colors, hierarchical self-assembly into nano-objects, and macroscopic hydrogels. This work also offers opportunities for quickly surveying the diversified peptide arrays and thereby identifying the structural factors that modulate peptide properties.
Collapse
Affiliation(s)
- Yiyang Lin
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- State
Key Laboratory of Chemical Resource Engineering, Beijing Laboratory
of Biomedical Materials, Beijing University
of Chemical Technology, Beijing 100029, China
| | - Matthew Penna
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Christopher D. Spicer
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Stuart G. Higgins
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Amy Gelmi
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nayoung Kim
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Shih-Ting Wang
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Jonathan P. Wojciechowski
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - E. Thomas Pashuck
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Irene Yarovsky
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
33
|
Zhang W, Zhang Z, Zhao S, Hong KH, Zhang MY, Song L, Yu F, Luo G, He YP. Pyromellitic-Based Low Molecular Weight Gelators and Computational Studies of Intermolecular Interactions: A Potential Additive for Lubricant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2954-2962. [PMID: 33636083 DOI: 10.1021/acs.langmuir.0c03625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low molecular weight gelators (LMWG) have been extensively explored in many research fields due to their unique reversible gel-sol transformation. Intermolecular interactions between LMWG are known as the main driving force for self-assembly. During this self-assembly process, individually analyzing the contribution difference between various intermolecular interactions is crucial to understand the gel properties. Herein, we report 2,5-bis(hexadecylcarbamoyl)terephthalic acid (BHTA) as a LMWG, which could efficiently form a stable organogel with n-hexadecane, diesel, liquid paraffin, and base lubricant oil at a relatively low concentration. To investigate the contribution difference of intermolecular interactions, we first finished FT-IR spectroscopy and XRD experiments. On the basis of the d-spacing, a crude simulation model was built and then subjected to molecular dynamics (MD) simulations. Then, we knocked out the energy contribution of the H-bonding interactions and π-π stacking, respectively, to evaluate the intermolecular interactions significantly influencing the stability of the gel system. MD simulations results suggest that the self-assembly of the aggregates was mainly driven by dense H-bonding interactions between carbonyl acid and amide moieties of BHTA, which is consistent with FT-IR data. Moreover, wave function analysis at a quantum level suggested these electrostatic interactions located in the middle of the BHTA molecule were surrounded by strong dispersion attraction originating from a hydrophobic environment. Furthermore, we also confirmed that 2 wt % BHTA was able to form gel lubricant with 150BS. The coefficient of friction (COF) data show that the gel lubricant has a better tribological performance than 150BS base lubricant oil. Finally, XPS was performed and offered valuable information about the lubrication mechanism during the friction.
Collapse
Affiliation(s)
- Wannian Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| | - Shanlin Zhao
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China
| | - Kwon Ho Hong
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Ming-Yuan Zhang
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China
| | - Lijuan Song
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China
| | - Fang Yu
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China
| | - Genxiang Luo
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China
| | - Yu-Peng He
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China
| |
Collapse
|
34
|
Singh WP, Bhandari S, Singh RS. Organogelators derived from the bisphenol A scaffold. NEW J CHEM 2021. [DOI: 10.1039/d1nj02664j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bisphenol A, a common precursor molecule used in the preparation of some polymers, was investigated as a possible scaffold for the design and synthesis of small-molecule gelators.
Collapse
Affiliation(s)
- Wangkhem P. Singh
- Organic Materials Research Laboratory, Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong – 793022, Meghalaya, India
| | - Sanjeev Bhandari
- Physics Division, Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong – 793022, Meghalaya, India
| | - Rajkumar S. Singh
- Organic Materials Research Laboratory, Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong – 793022, Meghalaya, India
| |
Collapse
|
35
|
Das AK, Gavel PK. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. SOFT MATTER 2020; 16:10065-10095. [PMID: 33073836 DOI: 10.1039/d0sm01136c] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this review, we have focused on the design and development of low molecular weight self-assembling peptide-based materials for various applications including cell proliferation, tissue engineering, antibacterial, antifungal, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting. The first part of the review describes about stimuli and various noncovalent interactions, which are the key components of various self-assembly processes for the construction of organized structures. Subsequently, the chemical functionalization of the peptides has been discussed, which is required for the designing of self-assembling peptide-based soft materials. Various low molecular weight self-assembling peptides have been discussed to explain the important structural features for the construction of defined functional nanostructures. Finally, we have discussed various examples of low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting applications.
Collapse
Affiliation(s)
- Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | | |
Collapse
|
36
|
Jain R, Pal VK, Roy S. Triggering Supramolecular Hydrogelation Using a Protein–Peptide Coassembly Approach. Biomacromolecules 2020; 21:4180-4193. [DOI: 10.1021/acs.biomac.0c00984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rashmi Jain
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Vijay Kumar Pal
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Sangita Roy
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
37
|
Delbecq F, Adenier G, Ogue Y, Kawai T. Gelation properties of various long chain amidoamines: Prediction of solvent gelation via machine learning using Hansen solubility parameters. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Ghilan A, Chiriac AP, Nita LE, Rusu AG, Neamtu I, Chiriac VM. Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2020; 28:1345-1367. [PMID: 32435165 PMCID: PMC7224028 DOI: 10.1007/s10924-020-01722-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Alina Ghilan
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Aurica P. Chiriac
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Loredana E. Nita
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Alina G. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Iordana Neamtu
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Vlad Mihai Chiriac
- “Gh. Asachi” Technical University, Faculty of Electronics, Telecommunications and Information Technology, Bd. Carol I, 11A, Iasi, 700506 Romania
| |
Collapse
|
39
|
McAulay K, Ucha PA, Wang H, Fuentes-Caparrós AM, Thomson L, Maklad O, Khunti N, Cowieson N, Wallace M, Cui H, Poole RJ, Seddon A, Adams DJ. Controlling the properties of the micellar and gel phase by varying the counterion in functionalised-dipeptide systems. Chem Commun (Camb) 2020; 56:4094-4097. [DOI: 10.1039/d0cc01252a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The micellar aggregates formed at high pH for dipeptide-based gelators can be varied by using different alkali metal salts to prepare the solutions.
Collapse
Affiliation(s)
- Kate McAulay
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | - Pedro Agís Ucha
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
- Department of Chemical Engineering
| | - Han Wang
- Department of Chemical and Biomolecular Engineering
- Whiting School of Engineering
- Johns Hopkins University
- Baltimore
- USA
| | | | - Lisa Thomson
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | - Osama Maklad
- School of Engineering
- University of Liverpool
- Liverpool
- UK
| | - Nikul Khunti
- Diamond Light Source Ltd
- Harwell Science and Innovation Campus
- Didcot
- UK
| | - Nathan Cowieson
- Diamond Light Source Ltd
- Harwell Science and Innovation Campus
- Didcot
- UK
| | | | - Honggang Cui
- Department of Chemical and Biomolecular Engineering
- Whiting School of Engineering
- Johns Hopkins University
- Baltimore
- USA
| | | | - Annela Seddon
- School of Physics
- HH Wills Physics Laboratory
- University of Bristol
- Bristol
- UK
| | | |
Collapse
|
40
|
Van Lommel R, Zhao J, De Borggraeve WM, De Proft F, Alonso M. Molecular dynamics based descriptors for predicting supramolecular gelation. Chem Sci 2020. [DOI: 10.1039/d0sc00129e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Four molecular dynamics-based descriptors were derived able to classify gelator–solvent combinations as a gel, precipitate or clear solution.
Collapse
Affiliation(s)
- Ruben Van Lommel
- Molecular Design and Synthesis
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Jianyu Zhao
- Eenheid Algemene Chemie (ALGC)
- Vrije Universiteit Brussel (VUB)
- 1050 Brussels
- Belgium
| | - Wim M. De Borggraeve
- Molecular Design and Synthesis
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC)
- Vrije Universiteit Brussel (VUB)
- 1050 Brussels
- Belgium
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC)
- Vrije Universiteit Brussel (VUB)
- 1050 Brussels
- Belgium
| |
Collapse
|
41
|
Hu T, Zhang Z, Hu H, Euston SR, Pan S. A Comprehensive Study on Self-Assembly and Gelation of C 13-Dipeptides-From Design Strategies to Functionalities. Biomacromolecules 2019; 21:670-679. [PMID: 31794666 DOI: 10.1021/acs.biomac.9b01386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Computational and experimental methods were applied to investigate the self-assembly and gelation of C13-dipeptides. A modified aggregation propensity (APS) was introduced to correlate the effects of side chains of amino acids on the tendency to aggregate. From the experimental results, the ranges of 0.156 < APS < 0.250 seemed to be a proper region for the C13-dipeptides to form hydrogels, while other molecules with higher or lower APS were insoluble or dissociated. As observed from molecular dynamics simulations, the C13-dipeptides first formed small aggregates through hydrophobic interactions and then rearranged through electrostatic attractions and hydrogen bonds for self-assembly. The C13-dipeptides tended to be antiparallel packed, as shown by hydrogen bonding analyses. Experimental observations and analyses on the structures of C13-dipeptide hydrogels matched the computational conclusions very well. From the five selected gelators, i.e., C13-GW, C13-VY, and C13-WT, strong π-π stacking was observed. For C13-WS, strong hydrogen bonding was found, and in C13-WY, both strong π-π interactions and hydrogen bonds were found. It takes around 90 min or longer for C13-dipeptides to form hydrogels, and those formed by C13-WY and C13-WS had weak water holding capacities, which might be due to strong intermolecular hydrogen bonding. From rheological studies, the C13-dipeptides formed strong chemical gels that were stabilized by strong interactions between the molecular aggregates. These gelators exhibit the potentials to be environmentally friendly substitutes for the common functionalized peptide gelators.
Collapse
Affiliation(s)
- Tan Hu
- College of Food Science and Technology , Huazhong Agricultural University , No. 1 Shizishan Road , Wuhan , Hubei 430070 , PR China.,Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University , Ministry of Education, Wuhan , Hubei 430070 , PR China
| | - Zhuo Zhang
- College of Food Science and Technology , Huazhong Agricultural University , No. 1 Shizishan Road , Wuhan , Hubei 430070 , PR China.,Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University , Ministry of Education, Wuhan , Hubei 430070 , PR China
| | - Hao Hu
- College of Food Science and Technology , Huazhong Agricultural University , No. 1 Shizishan Road , Wuhan , Hubei 430070 , PR China.,Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University , Ministry of Education, Wuhan , Hubei 430070 , PR China
| | - Stephen Robert Euston
- Institute of Mechanical, Process & Energy Engineering School of Engineering & Physical Sciences , Heriot-Watt University , Edinburgh , EH14 4AS , United Kingdom
| | - Siyi Pan
- College of Food Science and Technology , Huazhong Agricultural University , No. 1 Shizishan Road , Wuhan , Hubei 430070 , PR China.,Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University , Ministry of Education, Wuhan , Hubei 430070 , PR China
| |
Collapse
|
42
|
Lan Y, Lv M, Guo S, Nasr P, Ladizhansky V, Vaz R, Corradini MG, Hou T, Ghazani SM, Marnangoni A, Rogers MA. Molecular motifs encoding self-assembly of peptide fibers into molecular gels. SOFT MATTER 2019; 15:9205-9214. [PMID: 31710326 DOI: 10.1039/c9sm01793c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Peptides are a promising class of gelators, due to their structural simplicity, biocompatibility and versatility. Peptides were synthesized based on four amino acids: leucine, phenylalanine, tyrosine and tryptophan. These peptide gelators, with systematic structural variances in side chain structure and chain length, were investigated using Hansen solubility parameters to clarify molecular features that promote gelation in a wide array of solvents. It is of utmost importance to combine both changes to structural motifs and solvent in simultaneous studies to obtain a global perspective of molecular gelation. It was found that cyclization of symmetric dipeptides, into 2,5-diketopiperazines, drastically altered the gelation ability of the dipeptides. C-l-LL and C-l-YY, which are among the smallest peptide LMOGs reported to date, are robust gelators with a large radius of gelation (13.44 MPa1/2 and 13.90 MPa1/2, respectively), and even outperformed l-FF (5.61 MPa1/2). Interestingly, both linear dipeptides (l-FF and l-LL) gelled similar solvents, yet when cyclized only cyclo-dityrosine was a robust gelator, while cyclo-diphenylalanine was not. Changes in the side chains drastically affected the crystal morphology of the resultant gels. Symmetric cyclo dipeptides of leucine and tyrosine were capable of forming extremely high aspect ratio fibers in numerous solvents, which represent new molecular motifs capable of driving self-assembly.
Collapse
Affiliation(s)
- Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Muwen Lv
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Shenglan Guo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Pedram Nasr
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | - Raoul Vaz
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Maria G Corradini
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada. and Arrell Food Institute, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Tao Hou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Saeed M Ghazani
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Alejandro Marnangoni
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Michael A Rogers
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
43
|
Abraham BL, Liyanage W, Nilsson BL. Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14939-14948. [PMID: 31664849 PMCID: PMC7318788 DOI: 10.1021/acs.langmuir.9b02971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Supramolecular hydrogels formed by self-assembly of low molecular weight (LMW) compounds have been identified as promising materials for applications in tissue engineering and regenerative medicine. In many cases, the relationship between the chemical structure of the gelator and the emergent hydrogel properties is poorly understood. As a result, empirical screening strategies instead of rational design approaches are often relied upon to tune the emergent properties of the gels. Herein, we describe a novel strategy to identify improved phenylalanine (Phe) derived gelators using a focused empirical approach. Fluorenylmethoxycarbonyl (Fmoc) protected Phe derivatives are a privileged class of gelators that spontaneously self-assemble into fibrils that entangle to form a hydrogel network upon dissolution into water. However, the Fmoc group has been shown to have toxicity drawbacks for potential biological applications, requiring the identification of new N-terminal modifications that promote efficient self-assembly but lack the shortcomings of the Fmoc group. We previously discovered that fibrils in Fmoc-p-nitrophenylalanine (Fmoc-4-NO2-Phe) hydrogels transition to crystalline microtubes after several hours by a mechanism that involves the hierarchical assembly and fusion of the hydrogel fibrils. We hypothesized that this hierarchical crystallization behavior could form the basis of a screening approach to identify alternative N-terminal functional groups to replace Fmoc in Phe-derived LMW gelators. Specifically, screening N-terminal modifying groups for 4-NO2-Phe that stabilize the hydrogel state by preventing subsequent hierarchical crystallization would facilitate empirical identification of functional Fmoc replacements. To test this approach, we screened a small series of 4-NO2-Phe derivatives with various N-terminal modifying groups to determine if any provided stable LMW supramolecular hydrogels. All but one of the 4-NO2-Phe derivatives assembled into crystalline forms. Only the 1-naphthaleneacetic acid (1-Nap) 4-NO2-Phe derivative self-assembled into a stable hydrogel network. Additional Phe derivatives were modified by N-terminal 1-Nap groups to confirm the general potential of 1-Nap as a suitable replacement for Fmoc, and all derivatives formed stable hydrogels under similar conditions to their Fmoc-Phe counterparts. These results illustrate the potential of this approach to identify next-generation Phe-derived LMW gelators with improved emergent properties.
Collapse
Affiliation(s)
- Brittany L Abraham
- Department of Chemistry , University of Rochester , Rochester , New York 14627-0216 , United States
| | - Wathsala Liyanage
- Department of Chemistry , University of Rochester , Rochester , New York 14627-0216 , United States
| | - Bradley L Nilsson
- Department of Chemistry , University of Rochester , Rochester , New York 14627-0216 , United States
| |
Collapse
|
44
|
Fuentes-Caparrós AM, McAulay K, Rogers SE, Dalgliesh RM, Adams DJ. On the Mechanical Properties of N-Functionalised Dipeptide Gels. Molecules 2019; 24:E3855. [PMID: 31731551 PMCID: PMC6864704 DOI: 10.3390/molecules24213855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022] Open
Abstract
The properties of a hydrogel are controlled by the underlying network that immobilizes the solvent. For gels formed by the self-assembly of a small molecule, it is common to show the primary fibres that entangle to form the network by microscopy, but it is difficult to access information about the network. One approach to understand the network is to examine the effect of the concentration on the rheological properties, such that G'∝ cx, where G' is the storage modulus and c is the concentration. A number of reports link the exponent x to a specific type of network. Here, we discuss a small library of gels formed using functionalized dipeptides, and describe the underlying networks of these gels, using microscopy, small angle scattering and rheology. We show that apparently different networks can give very similar values of x.
Collapse
Affiliation(s)
| | - Kate McAulay
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK; (A.M.F.-C.); (K.M.)
| | - Sarah E. Rogers
- Rutherford Appleton Laboratory, ISIS Pulsed Neutron Source, Didcot OX11 0QX, UK; (S.E.R.); (R.M.D.)
| | - Robert M. Dalgliesh
- Rutherford Appleton Laboratory, ISIS Pulsed Neutron Source, Didcot OX11 0QX, UK; (S.E.R.); (R.M.D.)
| | - Dave J. Adams
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK; (A.M.F.-C.); (K.M.)
| |
Collapse
|
45
|
Ma Y, Cametti M, DŽolić Z, Jiang S. Selective Cu(ii) sensing by a versatile AIE cyanostilbene-based gel system. SOFT MATTER 2019; 15:6145-6150. [PMID: 31309209 DOI: 10.1039/c9sm00955h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyanostilbene-based derivatives 1-3 were designed, synthesized and fully characterized. By screening their gelating abilities, we observed that the subtle difference in the position of the pyridine nitrogen greatly affected the resulting fluorescence and gelation properties. Notably, 1 was found to be a versatile ambidextrous gelator capable of forming organo-, hydro-, and Cu(ii) specific metallogels. Furthermore, a rare organogel-to-metallogel transformation at room temperature was also observed upon exposure of the 1-DMSO/H2O gel to aqueous Cu(ii). This process, accompanied by colour and fluorescence changes, provides an effective strategy for the preparation of novel sensing soft materials.
Collapse
Affiliation(s)
- Yao Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China.
| | - Massimo Cametti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| | - Zoran DŽolić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Shimei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China.
| |
Collapse
|
46
|
Chiriac AP, Ghilan A, Neamtu I, Nita LE, Rusu AG, Chiriac VM. Advancement in the Biomedical Applications of the (Nano)gel Structures Based on Particular Polysaccharides. Macromol Biosci 2019; 19:e1900187. [DOI: 10.1002/mabi.201900187] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/18/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Aurica P. Chiriac
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Alina Ghilan
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Iordana Neamtu
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Loredana E. Nita
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Alina G. Rusu
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Vlad Mihai Chiriac
- “Gh. Asachi” Technical UniversityFaculty of ElectronicsTelecommunications and Information Technology Bd. Carol I no. 11A 700506 Iaşi Romania
| |
Collapse
|
47
|
Draper ER, Adams DJ. Controlling the Assembly and Properties of Low-Molecular-Weight Hydrogelators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6506-6521. [PMID: 31038973 DOI: 10.1021/acs.langmuir.9b00716] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Low-molecular-weight gels are formed by the self-assembly of small molecules into fibrous networks that can immobilize a significant amount of solvent. Here, we focus on our work with a specific class of gelator, the functionalized dipeptide. We discuss the current state of the art in the area, focusing on how these materials can be controlled. We also highlight interesting and unusual observations and unanswered questions in the field.
Collapse
Affiliation(s)
- Emily R Draper
- School of Chemistry , University of Glasgow , Glasgow G12 9AB , U.K
| | - Dave J Adams
- School of Chemistry , University of Glasgow , Glasgow G12 9AB , U.K
| |
Collapse
|
48
|
Cross ER, Adams DJ. Probing the self-assembled structures and pK a of hydrogels using electrochemical methods. SOFT MATTER 2019; 15:1522-1528. [PMID: 30681698 DOI: 10.1039/c8sm02430h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The surface chemistry of the aggregated structures that form the scaffold in self-assembled hydrogels - their charge, hydrophobicity and ion-binding dynamics - plays an important role in determining the gel properties and the gel's suitability for specific applications. However, there are limited methods available for the study of this surface chemistry. Here, we show that electrochemical techniques can be used to measure the surface chemical properties of the self-assembled aggregate structures and also to determine the pKa of the gelators. We also provide a method to quickly determine whether a functionalised-dipeptide will form a gel or not. This method has scope for use in high-throughput screening and further complex pH-triggered self-assembled gelation systems.
Collapse
Affiliation(s)
- Emily R Cross
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
49
|
Chen A, Wang D, Bietsch J, Wang G. Synthesis and characterization of pentaerythritol derived glycoconjugates as supramolecular gelators. Org Biomol Chem 2019; 17:6043-6056. [DOI: 10.1039/c9ob00475k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Three series of glycoclusters were synthesized and studied and we found that covalently linking three or four monomeric glycosyl triazoles led to effective supramolecular gelation.
Collapse
Affiliation(s)
- Anji Chen
- Department of Chemistry and Biochemistry
- Old Dominion University
- Norfolk
- USA
| | - Dan Wang
- Department of Chemistry and Biochemistry
- Old Dominion University
- Norfolk
- USA
| | - Jonathan Bietsch
- Department of Chemistry and Biochemistry
- Old Dominion University
- Norfolk
- USA
| | - Guijun Wang
- Department of Chemistry and Biochemistry
- Old Dominion University
- Norfolk
- USA
| |
Collapse
|
50
|
Argudo PG, Contreras-Montoya R, Álvarez de Cienfuegos L, Cuerva JM, Cano M, Alba-Molina D, Martín-Romero MT, Camacho L, Giner-Casares JJ. Unravelling the 2D self-assembly of Fmoc-dipeptides at fluid interfaces. SOFT MATTER 2018; 14:9343-9350. [PMID: 30307451 DOI: 10.1039/c8sm01508b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dipeptides self-assemble into supramolecular structures showing plenty of applications in the nanotechnology and biomedical fields. A set of Fmoc-dipeptides with different aminoacid sequences has been synthesized and their self-assembly at fluid interfaces has been assessed. The relevant molecular parameters for achieving an efficient 2D self-assembly process have been established. The self-assembled nanostructures of Fmoc-dipeptides displayed significant chirality and retained the chemical functionality of the aminoacids. The impact of the sequence on the final supramolecular structure has been evaluated in detail using in situ characterization techniques at air/water interfaces. This study provides a general route for the 2D self-assembly of Fmoc-dipeptides.
Collapse
Affiliation(s)
- Pablo G Argudo
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|