1
|
Gao N, Xu G, Chang G, Wu Y. From Lab to Life: Self-Powered Sweat Sensors and Their Future in Personal Health Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409178. [PMID: 39467262 DOI: 10.1002/advs.202409178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Indexed: 10/30/2024]
Abstract
The rapid development of wearable sweat sensors has demonstrated their potential for continuous, non-invasive disease diagnosis and health monitoring. Emerging energy harvesters capable of converting various environmental energy sources-biomechanical, thermal, biochemical, and solar-into electrical energy are revolutionizing power solutions for wearable devices. Based on self-powered technology, the integration of the energy harvesters with wearable sweat sensors can drive the device for biosensing, signal processing, and data transmission. As a result, self-powered sweat sensors are able to operate continuously without external power or charging, greatly facilitating the development of wearable electronics and personalized healthcare. This review focuses on the recent advances in self-powered sweat sensors for personalized healthcare, covering sweat sensors, energy harvesters, energy management, and applications. The review begins with the foundations of wearable sweat sensors, providing an overview of their detection methods, materials, and wearable devices. Then, the working mechanism, structure, and a characteristic of different types of energy harvesters are discussed. The features and challenges of different energy harvesters in energy supply and energy management of sweat sensors are emphasized. The review concludes with a look at the future prospects of self-powered sweat sensors, outlining the trajectory of the field and its potential to flourish.
Collapse
Affiliation(s)
- Nan Gao
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Gang Chang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
2
|
Atta S, Zhao Y, Sanchez S, Vo-Dinh T. A Simple and Sensitive Wearable SERS Sensor Utilizing Plasmonic-Active Gold Nanostars. ACS OMEGA 2024; 9:38897-38905. [PMID: 39310163 PMCID: PMC11411535 DOI: 10.1021/acsomega.4c05140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
Wearable sweat sensors hold great potential for offering detailed health insights by monitoring various biomarkers present in sweat, such as glucose, lactate, uric acid, and urea, in real time. However, most previously reported sensors, primarily based on electrochemical technology, are limited to monitoring only a single analyte at a given time. This study introduces a simple, sensitive, wearable patch based on surface-enhanced Raman spectroscopy (SERS), integrated with highly plasmonically active sharp-branched gold nanostars (GNS) for the simultaneous detection of three sweat biomarkers: lactate, urea, and glucose. We have fabricated the GNS on commercially available adhesive tape, resulting in achieving a low-cost, flexible, and adhesive wearable SERS patch. The limits of detection for lactate, urea, and glucose were achieved at 0.7, 0.6, and 0.7 μM, respectively, which are significantly lower than the clinically relevant concentrations of these biomarkers in sweat. We further evaluated the performance of our wearable SERS patch during outdoor activities, including sitting, walking, and running. To evaluate its overall effectiveness, we simultaneously measured the concentrations of lactate, urea, and glucose during these activities. Overall, our simple, sensitive wearable SERS sensor represents a significant breakthrough by enabling the simultaneous detection of lactate, urea, and glucose present in sweat, marking a major step toward future applications in autonomous and noninvasive personalized healthcare monitoring at home.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Yuanhao Zhao
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sanchez
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
3
|
Yan M, Wu Z, Li Z, Li Z, Wang J, Hu Z. Self-powered biosensing sutures for real-time wound monitoring. Biosens Bioelectron 2024; 259:116365. [PMID: 38759309 DOI: 10.1016/j.bios.2024.116365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Effective wound management has the potential to reduce both the duration and cost of wound healing. However, traditional methods often rely on direct observation or complex and expensive biological testing to monitor and evaluate the invasive damage caused by wound healing, which can be time-consuming. Biosensors offer the advantage of precise and real-time monitoring, but existing devices are not suitable for integration with sensitive wound tissue due to their external dimensions. Here, we have designed a self-powered biosensing suture (SPBS) based on biofuel cells to accurately monitor glucose concentration at the wound site and promote wound healing. The anode of the SPBS consists of carbon nanotubes-modified carbon fibers, tetrathiafulvalene (TTF), and glucose oxidase (GOx), while the cathode is composed of Ag2O and carbon nanotubes modified nanotubes modified carbon fibers. It was observed that SPBS exhibited excellent physical and chemical stability in vitro. Regardless of different bending degrees or pH values, the maximum power density of SPBS remained above 92%, which is conducive to long-term dynamic evaluation. Furthermore, the voltage generated by SPBS reflects blood glucose concentration, and measurements at wound sites are consistent with those obtained using a commercially available blood glucose meter. SPBS achieves the healing effect of traditional medical sutures after complete healing within 14 days. It offers valuable insights for intelligent devices dedicated to real-time wound monitoring.
Collapse
Affiliation(s)
- Miaomiao Yan
- College of Textiles and Clothing, XinJiang University, Urumqi, 830046, Xinjiang, China; Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zihan Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Zhihui Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Junping Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
4
|
Dang C, Wang Z, Hughes-Riley T, Dias T, Qian S, Wang Z, Wang X, Liu M, Yu S, Liu R, Xu D, Wei L, Yan W, Zhu M. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem Soc Rev 2024; 53:8790-8846. [PMID: 39087714 DOI: 10.1039/d4cs00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fabrics represent a unique platform for seamlessly integrating electronics into everyday experiences. The advancements in functionalizing fabrics at both the single fibre level and within constructed fabrics have fundamentally altered their utility. The revolution in materials, structures, and functionality at the fibre level enables intimate and imperceptible integration, rapidly transforming fibres and fabrics into next-generation wearable devices and systems. In this review, we explore recent scientific and technological breakthroughs in smart fibre-enabled fabrics. We examine common challenges and bottlenecks in fibre materials, physics, chemistry, fabrication strategies, and applications that shape the future of wearable electronics. We propose a closed-loop smart fibre-enabled fabric ecosystem encompassing proactive sensing, interactive communication, data storage and processing, real-time feedback, and energy storage and harvesting, intended to tackle significant challenges in wearable technology. Finally, we envision computing fabrics as sophisticated wearable platforms with system-level attributes for data management, machine learning, artificial intelligence, and closed-loop intelligent networks.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Theodore Hughes-Riley
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Tilak Dias
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xingbei Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rongkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dewen Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Ghazizadeh E, Naseri Z, Deigner HP, Rahimi H, Altintas Z. Approaches of wearable and implantable biosensor towards of developing in precision medicine. Front Med (Lausanne) 2024; 11:1390634. [PMID: 39091290 PMCID: PMC11293309 DOI: 10.3389/fmed.2024.1390634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/30/2024] [Indexed: 08/04/2024] Open
Abstract
In the relentless pursuit of precision medicine, the intersection of cutting-edge technology and healthcare has given rise to a transformative era. At the forefront of this revolution stands the burgeoning field of wearable and implantable biosensors, promising a paradigm shift in how we monitor, analyze, and tailor medical interventions. As these miniature marvels seamlessly integrate with the human body, they weave a tapestry of real-time health data, offering unprecedented insights into individual physiological landscapes. This log embarks on a journey into the realm of wearable and implantable biosensors, where the convergence of biology and technology heralds a new dawn in personalized healthcare. Here, we explore the intricate web of innovations, challenges, and the immense potential these bioelectronics sentinels hold in sculpting the future of precision medicine.
Collapse
Affiliation(s)
- Elham Ghazizadeh
- Department of Bioinspired Materials and Biosensor Technologies, Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Naseri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Villingen-Schwenningen, Germany
- Fraunhofer Institute IZI (Leipzig), Rostock, Germany
- Faculty of Science, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Hossein Rahimi
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zeynep Altintas
- Department of Bioinspired Materials and Biosensor Technologies, Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| |
Collapse
|
6
|
Kang M, Yeo WH. Advances in Energy Harvesting Technologies for Wearable Devices. MICROMACHINES 2024; 15:884. [PMID: 39064395 PMCID: PMC11279352 DOI: 10.3390/mi15070884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
The development of wearable electronics is revolutionizing human health monitoring, intelligent robotics, and informatics. Yet the reliance on traditional batteries limits their wearability, user comfort, and continuous use. Energy harvesting technologies offer a promising power solution by converting ambient energy from the human body or surrounding environment into electrical power. Despite their potential, current studies often focus on individual modules under specific conditions, which limits practical applicability in diverse real-world environments. Here, this review highlights the recent progress, potential, and technological challenges in energy harvesting technology and accompanying technologies to construct a practical powering module, including power management and energy storage devices for wearable device developments. Also, this paper offers perspectives on designing next-generation wearable soft electronics that enhance quality of life and foster broader adoption in various aspects of daily life.
Collapse
Affiliation(s)
- Minki Kang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
You Z, Zhao M, Lu H, Chen H, Wang Y. Eye-Readable and Wearable Colorimetric Sensor Arrays for In Situ Monitoring of Volatile Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19359-19368. [PMID: 38568140 DOI: 10.1021/acsami.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Wearable sensors utilize changes in color as a response to physiological stimuli, making them easily recognizable by the naked eye. These colorimetric wearable sensors offer benefits such as easy readability, rapid responsiveness, cost-effectiveness, and straightforward manufacturing techniques. However, their applications in detecting volatile organic compounds (VOCs) in situ have been limited due to the low concentration of complex VOCs and complicated external interferences. Aiming to address these challenges, we introduced readable and wearable colorimetric sensing arrays with a microchannel structure and highly gas-sensitive materials for in situ detection of complex VOCs. The highly gas-sensitive materials were designed by loading gas-sensitive dyes into the porous metal-organic frameworks and further depositing the composites on the electrospun nanofiber membrane. The colorimetric sensor arrays were fabricated using various gas-sensitive composites, including eight dye/MOF composites that respond to various VOCs and two Pd2+/dye/MOF composites that respond to ethylene. This enables the specific recognition of multiple characteristic VOCs. A microfluidic channel made of polydimethylsiloxane (PDMS) was integrated with different colorimetric elements to create a wearable sensor array. It was attached to the surface of fruits to collect and monitor VOCs using the DenseNet classification method. As a proof of concept, we demonstrated the feasibility of the wearable sensing system in monitoring the ripening process of fruits by continuously measuring the VOC emissions from the skin of the fruit.
Collapse
Affiliation(s)
- Zhiheng You
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Mingming Zhao
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Huizi Lu
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Huayun Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yixian Wang
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
8
|
Farzin MA, Naghib SM, Rabiee N. Advancements in Bio-inspired Self-Powered Wireless Sensors: Materials, Mechanisms, and Biomedical Applications. ACS Biomater Sci Eng 2024; 10:1262-1301. [PMID: 38376103 DOI: 10.1021/acsbiomaterials.3c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The rapid maturation of smart city ecosystems is intimately linked to advances in the Internet of Things (IoT) and self-powered sensing technologies. Central to this evolution are battery-less sensors that are critical for applications such as continuous health monitoring through blood metabolites and vital signs, the recognition of human activity for behavioral analysis, and the operational enhancement of humanoid robots. The focus on biosensors that exploit the human body for energy-spanning wearable, attachable, and implantable variants has intensified, driven by their broad applicability in areas from underwater exploration to biomedical assays and earthquake monitoring. The heart of these sensors lies in their diverse energy harvesting mechanisms, including biofuel cells, and piezoelectric, triboelectric, and pyroelectric nanogenerators. Notwithstanding the wealth of research, the literature still lacks a holistic review that integrates the design challenges and implementation intricacies of such sensors. Our review seeks to fill this gap by thoroughly evaluating energy harvesting strategies from both material and structural perspectives and assessing their roles in powering an array of sensors for myriad uses. This exploration offers a comprehensive outlook on the state of self-powered sensing devices, tackling the nuances of their deployment and highlighting their potential to revolutionize data gathering in autonomous systems. The intent of this review is to chart the current landscape and future prospects, providing a pivotal reference point for ongoing research and innovation in self-powered wireless sensing technologies.
Collapse
Affiliation(s)
- Mohammad Ali Farzin
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran 13114-16846, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran 13114-16846, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
9
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
10
|
Cai J, Shen F, Zhao J, Xiao X. Enzymatic biofuel cell: A potential power source for self-sustained smart textiles. iScience 2024; 27:108998. [PMID: 38333690 PMCID: PMC10850773 DOI: 10.1016/j.isci.2024.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Self-sustained smart textiles require a miniaturized and flexible power source, while the state-of-the-art lithium-ion battery cannot be seamlessly integrated into smart textiles. Enzymatic biofuel cells (EBFC), utilizing physiological glucose or lactate as fuels to convert chemical energy into electricity, are a potential alternative power source. In comparison to other proposed energy harvesters relying on solar and biomechanical energy, EBFCs feature several key properties, including continuous power generation, biocompatible interfaces without using toxic elements, simple configuration without extra packaging, and biodegradability. There is an urgent need to introduce EBFCs to the researchers working on smart textiles, who typically are not expert on bioelectrochemistry. This minireview first introduces the working principle of EBFC and then summarizes its recent progress on fibers, yarns, and textiles. It's expected that this review can help to bridge the knowledge gap and provide the community of smart textiles with information on both the strengths and limitations of EBFCs.
Collapse
Affiliation(s)
- Jingsheng Cai
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Fei Shen
- Jiangsu Zoolnasm Technology CO., LTD, Suzhou 215000, China
| | - Jianqing Zhao
- Jiangsu Zoolnasm Technology CO., LTD, Suzhou 215000, China
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
11
|
Cao L, Chen J, Pang J, Qu H, Liu J, Gao J. Research Progress in Enzyme Biofuel Cells Modified Using Nanomaterials and Their Implementation as Self-Powered Sensors. Molecules 2024; 29:257. [PMID: 38202838 PMCID: PMC10780655 DOI: 10.3390/molecules29010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Enzyme biofuel cells (EBFCs) can convert chemical or biochemical energy in fuel into electrical energy, and therefore have received widespread attention. EBFCs have advantages that traditional fuel cells cannot match, such as a wide range of fuel sources, environmental friendliness, and mild reaction conditions. At present, research on EBFCs mainly focuses on two aspects: one is the use of nanomaterials with excellent properties to construct high-performance EBFCs, and the other is self-powered sensors based on EBFCs. This article reviews the applied nanomaterials based on the working principle of EBFCs, analyzes the design ideas of self-powered sensors based on enzyme biofuel cells, and looks forward to their future research directions and application prospects. This article also points out the key properties of nanomaterials in EBFCs, such as electronic conductivity, biocompatibility, and catalytic activity. And the research on EBFCs is classified according to different research goals, such as improving battery efficiency, expanding the fuel range, and achieving self-powered sensors.
Collapse
Affiliation(s)
- Lili Cao
- College of Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (J.P.); (H.Q.); (J.L.); (J.G.)
| | | | | | | | | | | |
Collapse
|
12
|
Moradi S, Firoozbakhtian A, Hosseini M, Karaman O, Kalikeri S, Raja GG, Karimi-Maleh H. Advancements in wearable technology for monitoring lactate levels using lactate oxidase enzyme and free enzyme as analytical approaches: A review. Int J Biol Macromol 2024; 254:127577. [PMID: 37866568 DOI: 10.1016/j.ijbiomac.2023.127577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Lactate is a metabolite that holds significant importance in human healthcare, biotechnology, and the food industry. The need for lactate monitoring has led to the development of various devices for measuring lactate concentration. Traditional laboratory methods, which involve extracting blood samples through invasive techniques such as needles, are costly, time-consuming, and require in-person sampling. To overcome these limitations, new technologies for lactate monitoring have emerged. Wearable biosensors are a promising approach that offers non-invasiveness, low cost, and short response times. They can be easily attached to the skin and provide continuous monitoring. In this review, we evaluate different types of wearable biosensors for lactate monitoring using lactate oxidase enzyme as biological recognition element and free enzyme systems.
Collapse
Affiliation(s)
- Sara Moradi
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Ali Firoozbakhtian
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran; Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Onur Karaman
- Akdeniz University, Department of Medical Imaging Techniques, Antalya, Turkey.
| | - Shankramma Kalikeri
- Division of Nanoscience and Technology, School of Lifesciences, Mysuru, JSS Academy of Higher Education and Research, Mysuru-570015, Karnataka, India
| | - G Ganesh Raja
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile
| | - Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhu Medical University, Quzhou Peoplés Hospital, PR China; School of Resources and Environment, University of Electronic Science and Technology of China, PR China; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
13
|
Guan S, Yang Y, Wang Y, Zhu X, Ye D, Chen R, Liao Q. A Dual-Functional MXene-Based Bioanode for Wearable Self-Charging Biosupercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305854. [PMID: 37671789 DOI: 10.1002/adma.202305854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/30/2023] [Indexed: 09/07/2023]
Abstract
As a reliable energy-supply platform for wearable electronics, biosupercapacitors combine the characteristics of biofuel cells and supercapacitors to harvest and store the energy from human's sweat. However, the bulky preparation process and deep embedding of enzyme active sites in bioelectrodes usually limit the energy-harvesting process, retarding the practical power-supply sceneries especially during the complicated in vivo motion. Herein, a MXene/single-walled carbon nanotube/lactate oxidase hierarchical structure as the dual-functional bioanode is designed, which can not only provide a superior 3D catalytic microenvironment for enzyme accommodation to harvest energy from sweat, but also offers sufficient capacitance to store energy via the electrical double-layer capacitor. A wearable biosupercapacitor is fabricated in the "island-bridge" structure with a composite bioanode, active carbon/Pt cathode, polyacrylamide hydrogel substrate, and liquid metal conductor. The device exhibits an open-circuit voltage of 0.48 V and the high power density of 220.9 µW cm-2 at 0.5 mA cm-2 . The compact conformal adhesion with skin is successfully maintained under stretching/bending conditions. After repeatedly stretching the devices, there is no significant power attenuation in pulsed output. The unique bioelectrode structure and attractive energy harvesting/storing properties demonstrate the promising potential of this biosupercapacitor as a micro self-powered platform of wearable electronics.
Collapse
Affiliation(s)
- Shoujie Guan
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Yang Yang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Yuyang Wang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Xun Zhu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Dingding Ye
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Rong Chen
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Qiang Liao
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
14
|
Garland NT, Kaveti R, Bandodkar AJ. Biofluid-Activated Biofuel Cells, Batteries, and Supercapacitors: A Comprehensive Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303197. [PMID: 37358398 DOI: 10.1002/adma.202303197] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Recent developments in wearable and implanted devices have resulted in numerous, unprecedented capabilities that generate increasingly detailed information about a user's health or provide targeted therapy. However, options for powering such systems remain limited to conventional batteries which are large and have toxic components and as such are not suitable for close integration with the human body. This work provides an in-depth overview of biofluid-activated electrochemical energy devices, an emerging class of energy sources judiciously designed for biomedical applications. These unconventional energy devices are composed of biocompatible materials that harness the inherent chemistries of various biofluids to produce useable electrical energy. This work covers examples of such biofluid-activated energy devices in the form of biofuel cells, batteries, and supercapacitors. Advances in materials, design engineering, and biotechnology that form the basis for high-performance, biofluid-activated energy devices are discussed. Innovations in hybrid manufacturing and heterogeneous integration of device components to maximize power output are also included. Finally, key challenges and future scopes of this nascent field are provided.
Collapse
Affiliation(s)
- Nate T Garland
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Rajaram Kaveti
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
15
|
Hou Y, Gao M, Gao J, Zhao L, Teo EHT, Wang D, Qi HJ, Zhou K. 3D Printed Conformal Strain and Humidity Sensors for Human Motion Prediction and Health Monitoring via Machine Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304132. [PMID: 37939292 PMCID: PMC10754119 DOI: 10.1002/advs.202304132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Wearable sensors have garnered considerable attention due to their flexibility and lightweight characteristics in the realm of healthcare applications. However, developing robust wearable sensors with facile fabrication and good conformity remains a challenge. In this study, a conductive graphene nanoplate-carbon nanotube (GC) ink is synthesized for multi jet fusion (MJF) printing. The layer-by-layer fabrication process of MJF not only improves the mechanical and flame-retardant properties of the printed GC sensor but also bolsters its robustness and sensitivity. The direction of sensor bending significantly impacts the relative resistance changes, allowing for precise investigations of joint motions in the human body, such as those of the fingers, wrists, elbows, necks, and knees. Furthermore, the data of resistance changes collected by the GC sensor are utilized to train a support vector machine with a 95.83% accuracy rate for predicting human motions. Due to its stable humidity sensitivity, the sensor also demonstrates excellent performance in monitoring human breath and predicting breath modes (normal, fast, and deep breath), thereby expanding its potential applications in healthcare. This work opens up new avenues for using MJF-printed wearable sensors for a variety of healthcare applications.
Collapse
Affiliation(s)
- Yanbei Hou
- HP‐NTU Digital Manufacturing Corporate LabSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Ming Gao
- HP‐NTU Digital Manufacturing Corporate LabSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Jingwen Gao
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Lihua Zhao
- HP‐NTU Digital Manufacturing Corporate LabSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- 3D LabHP LabsHP Inc.Palo AltoCA94304USA
| | - Edwin Hang Tong Teo
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Dong Wang
- School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - H. Jerry Qi
- The George Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Kun Zhou
- HP‐NTU Digital Manufacturing Corporate LabSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| |
Collapse
|
16
|
Crivillé-Tena L, Colomer-Farrarons J, Miribel-Català PL. Fully Autonomous Active Self-Powered Point-of-Care Devices: The Challenges and Opportunities. SENSORS (BASEL, SWITZERLAND) 2023; 23:9453. [PMID: 38067826 PMCID: PMC10708618 DOI: 10.3390/s23239453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Quick and effective point-of-care (POC) devices have the chance to revolutionize healthcare in developed and developing countries since they can operate anywhere the patient is, with the possibility of obtaining and sending the results to the doctor without delay. In recent years, significant efforts have focused on developing new POC systems that can screen for biomarkers continuously and non-invasively in body fluids to prevent, diagnose, and manage diseases. However, one of the critical challenges left to address is how to power them effectively and sufficiently. In developing countries and rural and remote areas, where there are usually no well-established electricity grids or nearby medical facilities, and using batteries is unreliable or not cost-effective, alternative power sources are the most challenging issue for stand-alone and self-sustained POC devices. Here, we provide an overview of the techniques for used self-powering POC devices, where the sample is used to detect and simultaneously generate energy to power the system. Likewise, this paper introduced the state-of-the-art with a review of different research projects, patents, and commercial products for self-powered POCs from the mid-2010s until present day.
Collapse
Affiliation(s)
| | - Jordi Colomer-Farrarons
- Discrete-to-Integrated Systems Laboratory (D2In), Electronics and Biomedical Engineering Department, Universitat de Barcelona (UB), Marti i Franques, 1-11, 08028 Barcelona, Spain;
| | - Pere Ll. Miribel-Català
- Discrete-to-Integrated Systems Laboratory (D2In), Electronics and Biomedical Engineering Department, Universitat de Barcelona (UB), Marti i Franques, 1-11, 08028 Barcelona, Spain;
| |
Collapse
|
17
|
Garland NT, Song JW, Ma T, Kim YJ, Vázquez-Guardado A, Hashkavayi AB, Ganeshan SK, Sharma N, Ryu H, Lee MK, Sumpio B, Jakus MA, Forsberg V, Kaveti R, Sia SK, Veves A, Rogers JA, Ameer GA, Bandodkar AJ. A Miniaturized, Battery-Free, Wireless Wound Monitor That Predicts Wound Closure Rate Early. Adv Healthc Mater 2023; 12:e2301280. [PMID: 37407030 PMCID: PMC10766868 DOI: 10.1002/adhm.202301280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Diabetic foot ulcers are chronic wounds that affect millions and increase the risk of amputation and mortality, highlighting the critical need for their early detection. Recent demonstrations of wearable sensors enable real-time wound assessment, but they rely on bulky electronics, making them difficult to interface with wounds. Herein, a miniaturized, wireless, battery-free wound monitor that measures lactate in real-time and seamlessly integrates with bandages for conformal attachment to the wound bed is introduced. Lactate is selected due to its multifaceted role in initiating healing. Studies in healthy and diabetic mice reveal distinct lactate profiles for normal and impaired healing wounds. A mathematical model based on the sensor data predicts wound closure rate within the first 3 days post-injury with ≈76% accuracy, which increases to ≈83% when pH is included. These studies underscore the significance of monitoring biomarkers during the inflammation phase, which can offer several benefits, including short-term use of wound monitors and their easy removal, resulting in lower risks of injury and infection at the wound site. Improvements in prediction accuracy can be achieved by designing mathematical models that build on multiple wound parameters such as pro-inflammatory and metabolic markers. Achieving this goal will require designing multi-analyte wound monitors.
Collapse
Affiliation(s)
- Nate T. Garland
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, USA
| | - Joseph W. Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Tengfei Ma
- IBM T. J. Watson Research Center, Ossining, NY, USA
| | - Yong Jae Kim
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, USA
| | | | - Ayemeh Bagheri Hashkavayi
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, USA
| | - Sankalp Koduvayur Ganeshan
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, USA
| | - Nivesh Sharma
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, USA
| | - Hanjun Ryu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Min-Kyu Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Brandon Sumpio
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Viviane Forsberg
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 851 70, Sundsvall, Sweden
| | - Rajaram Kaveti
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, USA
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John A. Rogers
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute for Bionanotechnology, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Amay J. Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
18
|
He Q, Zeng Y, Jiang L, Wang Z, Lu G, Kang H, Li P, Bethers B, Feng S, Sun L, Sun P, Gong C, Jin J, Hou Y, Jiang R, Xu W, Olevsky E, Yang Y. Growing recyclable and healable piezoelectric composites in 3D printed bioinspired structure for protective wearable sensor. Nat Commun 2023; 14:6477. [PMID: 37838708 PMCID: PMC10576793 DOI: 10.1038/s41467-023-41740-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023] Open
Abstract
Bionic multifunctional structural materials that are lightweight, strong, and perceptible have shown great promise in sports, medicine, and aerospace applications. However, smart monitoring devices with integrated mechanical protection and piezoelectric induction are limited. Herein, we report a strategy to grow the recyclable and healable piezoelectric Rochelle salt crystals in 3D-printed cuttlebone-inspired structures to form a new composite for reinforcement smart monitoring devices. In addition to its remarkable mechanical and piezoelectric performance, the growth mechanisms, the recyclability, the sensitivity, and repairability of the 3D-printed Rochelle salt cuttlebone composite were studied. Furthermore, the versatility of composite has been explored and applied as smart sensor armor for football players and fall alarm knee pads, focusing on incorporated mechanical reinforcement and electrical self-sensing capabilities with data collection of the magnitude and distribution of impact forces, which offers new ideas for the design of next-generation smart monitoring electronics in sports, military, aerospace, and biomedical engineering.
Collapse
Affiliation(s)
- Qingqing He
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Laiming Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Ziyu Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China.
| | - Gengxi Lu
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Haochen Kang
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Pei Li
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Brandon Bethers
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Shengwei Feng
- Department of Civil and Environmental Engineering, University of California, Irvine, California, CA, 92697, USA
| | - Lizhi Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, California, CA, 92697, USA
| | - Peter Sun
- Grossmont College, 8800 Grossmont College Dr, El Cajon, CA, 92020, USA
| | - Chen Gong
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jie Jin
- Canoo Technologies Inc, Torrance, CA, 90503, USA
| | - Yue Hou
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Runjian Jiang
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Wenwu Xu
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Eugene Olevsky
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Yang Yang
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
19
|
Li S, Li H, Lu Y, Zhou M, Jiang S, Du X, Guo C. Advanced Textile-Based Wearable Biosensors for Healthcare Monitoring. BIOSENSORS 2023; 13:909. [PMID: 37887102 PMCID: PMC10605256 DOI: 10.3390/bios13100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
With the innovation of wearable technology and the rapid development of biosensors, wearable biosensors based on flexible textile materials have become a hot topic. Such textile-based wearable biosensors promote the development of health monitoring, motion detection and medical management, and they have become an important support tool for human healthcare monitoring. Textile-based wearable biosensors not only non-invasively monitor various physiological indicators of the human body in real time, but they also provide accurate feedback of individual health information. This review examines the recent research progress of fabric-based wearable biosensors. Moreover, materials, detection principles and fabrication methods for textile-based wearable biosensors are introduced. In addition, the applications of biosensors in monitoring vital signs and detecting body fluids are also presented. Finally, we also discuss several challenges faced by textile-based wearable biosensors and the direction of future development.
Collapse
Affiliation(s)
- Sheng Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
- CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China
| | - Huan Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Yongcai Lu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Minhao Zhou
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Sai Jiang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Xiaosong Du
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Chang Guo
- CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
| |
Collapse
|
20
|
Yao Y, Huang W, Chen J, Liu X, Bai L, Chen W, Cheng Y, Ping J, Marks TJ, Facchetti A. Flexible and Stretchable Organic Electrochemical Transistors for Physiological Sensing Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209906. [PMID: 36808773 DOI: 10.1002/adma.202209906] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed.
Collapse
Affiliation(s)
- Yao Yao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianhua Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Xiaoxue Liu
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Wei Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| |
Collapse
|
21
|
Saldanha DJ, Cai A, Dorval Courchesne NM. The Evolving Role of Proteins in Wearable Sweat Biosensors. ACS Biomater Sci Eng 2023; 9:2020-2047. [PMID: 34491052 DOI: 10.1021/acsbiomaterials.1c00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sweat is an increasingly popular biological medium for fitness monitoring and clinical diagnostics. It contains an abundance of biological information and is available continuously and noninvasively. Sweat-sensing devices often employ proteins in various capacities to create skin-friendly matrices that accurately extract valuable and time-sensitive information from sweat. Proteins were first used in sensors as biorecognition elements in the form of enzymes and antibodies, which are now being tuned to operate at ranges relevant for sweat. In addition, a range of structural proteins, sometimes assembled in conjunction with polymers, can provide flexible and compatible matrices for skin sensors. Other proteins also naturally possess a range of functionalities─as adhesives, charge conductors, fluorescence emitters, and power generators─that can make them useful components in wearable devices. Here, we examine the four main components of wearable sweat sensors─the biorecognition element, the transducer, the scaffold, and the adhesive─and the roles that proteins have played so far, or promise to play in the future, in each component. On a case-by-case basis, we analyze the performance characteristics of existing protein-based devices, their applicable ranges of detection, their transduction mechanism and their mechanical properties. Thereby, we review and compare proteins that can readily be used in sweat sensors and others that will require further efforts to overcome design, stability or scalability challenges. Incorporating proteins in one or multiple components of sweat sensors could lead to the development and deployment of tunable, greener, and safer biosourced devices.
Collapse
Affiliation(s)
- Dalia Jane Saldanha
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada H3A 0C5
| | - Anqi Cai
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada H3A 0C5
| | | |
Collapse
|
22
|
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem Rev 2023; 123:5049-5138. [PMID: 36971504 PMCID: PMC10406569 DOI: 10.1021/acs.chemrev.2c00823] [Citation(s) in RCA: 127] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Wearable sensors hold great potential in empowering personalized health monitoring, predictive analytics, and timely intervention toward personalized healthcare. Advances in flexible electronics, materials science, and electrochemistry have spurred the development of wearable sweat sensors that enable the continuous and noninvasive screening of analytes indicative of health status. Existing major challenges in wearable sensors include: improving the sweat extraction and sweat sensing capabilities, improving the form factor of the wearable device for minimal discomfort and reliable measurements when worn, and understanding the clinical value of sweat analytes toward biomarker discovery. This review provides a comprehensive review of wearable sweat sensors and outlines state-of-the-art technologies and research that strive to bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and approaches for sweat induction and sampling are introduced. Additionally, design considerations for the system-level development of wearable sweat sensing devices, spanning from strategies for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore, the applications, data analytics, commercialization efforts, challenges, and prospects of wearable sweat sensors for precision medicine are discussed.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Daniel Mukasa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
23
|
Veenuttranon K, Kaewpradub K, Jeerapan I. Screen-Printable Functional Nanomaterials for Flexible and Wearable Single-Enzyme-Based Energy-Harvesting and Self-Powered Biosensing Devices. NANO-MICRO LETTERS 2023; 15:85. [PMID: 37002513 PMCID: PMC10066049 DOI: 10.1007/s40820-023-01045-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Developing flexible bioelectronics is essential to the realization of artificial intelligence devices and biomedical applications, such as wearables, but their potential is limited by sustainable energy supply. An enzymatic biofuel cell (BFC) is promising for power supply, but its use is limited by the challenges of incorporating multiple enzymes and rigid platforms. This paper shows the first example of screen-printable nanocomposite inks engineered for a single-enzyme-based energy-harvesting device and a self-powered biosensor driven by glucose on bioanode and biocathode. The anode ink is modified with naphthoquinone and multiwalled carbon nanotubes (MWCNTs), whereas the cathode ink is modified with Prussian blue/MWCNT hybrid before immobilizing with glucose oxidase. The flexible bioanode and the biocathode consume glucose. This BFC yields an open circuit voltage of 0.45 V and a maximum power density of 266 μW cm-2. The wearable device coupled with a wireless portable system can convert chemical energy into electric energy and detect glucose in artificial sweat. The self-powered sensor can detect glucose concentrations up to 10 mM. Common interfering substances, including lactate, uric acid, ascorbic acid, and creatinine, have no effect on this self-powered biosensor. Additionally, the device can endure multiple mechanical deformations. New advances in ink development and flexible platforms enable a wide range of applications, including on-body electronics, self-sustainable applications, and smart fabrics.
Collapse
Affiliation(s)
- Kornautchaya Veenuttranon
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kanyawee Kaewpradub
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Itthipon Jeerapan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
24
|
A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications. Diagnostics (Basel) 2023; 13:diagnostics13050916. [PMID: 36900059 PMCID: PMC10001196 DOI: 10.3390/diagnostics13050916] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Personalized point-of-care testing (POCT) devices, such as wearable sensors, enable quick access to health monitoring without the use of complex instruments. Wearable sensors are gaining popularity owing to their ability to offer regular and continuous monitoring of physiological data by dynamic, non-invasive assessments of biomarkers in biofluids such as tear, sweat, interstitial fluid and saliva. Current advancements have concentrated on the development of optical and electrochemical wearable sensors as well as advances in non-invasive measurements of biomarkers such as metabolites, hormones and microbes. For enhanced wearability and ease of operation, microfluidic sampling, multiple sensing, and portable systems have been incorporated with materials that are flexible. Although wearable sensors show promise and improved dependability, they still require more knowledge about interaction between the target sample concentrations in blood and non-invasive biofluids. In this review, we have described the importance of wearable sensors for POCT, their design and types of these devices. Following which, we emphasize on the current breakthroughs in the application of wearable sensors in the realm of wearable integrated POCT devices. Lastly, we discuss the present obstacles and forthcoming potentials including the use of Internet of Things (IoT) for offering self-healthcare using wearable POCT.
Collapse
|
25
|
Abstract
Flexible sweat sensors have found widespread potential applications for long-term wear and tracking and real-time monitoring of human health. However, the main substrate currently used in common flexible sweat sensors is thin film, which has disadvantages such as poor air permeability and the need for additional wearables. In this Review, the recent progress of sweat sensors has been systematically summarized by the types of monitoring methods of sweat sensors. In addition, this Review introduces and compares the performance of sweat sensors based on thin film and textile substrates such as fiber/yarn. Finally, opportunities and suggestions for the development of flexible sweat sensors are presented by summarizing the integration methods of sensors and human body monitoring sites.
Collapse
Affiliation(s)
- Dan Luo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Haibo Sun
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Qianqian Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Xin Niu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Yin He
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Hao Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
26
|
Yuan X, Li C, Yin X, Yang Y, Ji B, Niu Y, Ren L. Epidermal Wearable Biosensors for Monitoring Biomarkers of Chronic Disease in Sweat. BIOSENSORS 2023; 13:313. [PMID: 36979525 PMCID: PMC10045998 DOI: 10.3390/bios13030313] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Biological information detection technology is mainly used for the detection of physiological and biochemical parameters closely related to human tissues and organ lesions, such as biomarkers. This technology has important value in the clinical diagnosis and treatment of chronic diseases in their early stages. Wearable biosensors can be integrated with the Internet of Things and Big Data to realize the detection, transmission, storage, and comprehensive analysis of human physiological and biochemical information. This technology has extremely wide applications and considerable market prospects in frontier fields including personal health monitoring, chronic disease diagnosis and management, and home medical care. In this review, we systematically summarized the sweat biomarkers, introduced the sweat extraction and collection methods, and discussed the application and development of epidermal wearable biosensors for monitoring biomarkers in sweat in preclinical research in recent years. In addition, the current challenges and development prospects in this field were discussed.
Collapse
Affiliation(s)
- Xichen Yuan
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chen Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Xu Yin
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
| | - Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yinbo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Li Ren
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| |
Collapse
|
27
|
Xue Z, Wu L, Yuan J, Xu G, Wu Y. Self-Powered Biosensors for Monitoring Human Physiological Changes. BIOSENSORS 2023; 13:236. [PMID: 36832002 PMCID: PMC9953832 DOI: 10.3390/bios13020236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Human physiological signals have an important role in the guidance of human health or exercise training and can usually be divided into physical signals (electrical signals, blood pressure, temperature, etc.) and chemical signals (saliva, blood, tears, sweat). With the development and upgrading of biosensors, many sensors for monitoring human signals have appeared. These sensors are characterized by softness and stretching and are self-powered. This article summarizes the progress in self-powered biosensors in the past five years. Most of these biosensors are used as nanogenerators and biofuel batteries to obtain energy. A nanogenerator is a kind of generator that collects energy at the nanoscale. Due to its characteristics, it is very suitable for bioenergy harvesting and sensing of the human body. With the development of biological sensing devices, the combination of nanogenerators and classical sensors so that they can more accurately monitor the physiological state of the human body and provide energy for biosensor devices has played a great role in long-range medical care and sports health. A biofuel cell has a small volume and good biocompatibility. It is a device in which electrochemical reactions convert chemical energy into electrical energy and is mostly used for monitoring chemical signals. This review analyzes different classifications of human signals and different forms of biosensors (implanted and wearable) and summarizes the sources of self-powered biosensor devices. Self-powered biosensor devices based on nanogenerators and biofuel cells are also summarized and presented. Finally, some representative applications of self-powered biosensors based on nanogenerators are introduced.
Collapse
Affiliation(s)
- Ziao Xue
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Li Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Junlin Yuan
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Guodong Xu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| |
Collapse
|
28
|
Lin Y, Chen X, Lu Q, Wang J, Ding C, Liu F, Kong D, Yuan W, Su W, Cui Z. Thermally Laminated Lighting Textile for Wearable Displays with High Durability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5931-5941. [PMID: 36688806 DOI: 10.1021/acsami.2c20681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Textile-based light-emitting devices are attracting more and more attention because of their potential applications in smart clothing, human-computer interfaces, safety warnings, entertainment fashion, etc. However, simple and efficient manufacturing of luminescent devices on fabrics even clothing with excellent stretchability and washability remains challenging. Here, a solvent-free thermal lamination process combined with laser engraving has been proposed to fabricate electroluminescent (EL) devices on textiles. All the preprepared components, such as the bottom electrode, the EL layer, and the top transparent electrode, were thermally laminated on the surface of textiles employing thermoplastic polyurethane (TPU) as the binding matrix. The stretchability, luminance, and interface adhesion of the EL devices were systematically studied, showing excellent mechanical durability at high temperature, in humid environments, withstanding repeated machine washing, and resistant to various forms of physical damage. As a demonstration of potential application, textile-based EL devices were fabricated, which could display colored and pixelated patterns as well as dynamic images. The thermal lamination technology developed in this work can potentially enable people to DIY (do it yourself) fabricate light-emitting devices on clothing using daily tools, which could facilitate the widespread use of textile-based wearable displays.
Collapse
Affiliation(s)
- Yong Lin
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Xiaolian Chen
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Qianying Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, People's Republic of China
| | - Jiayi Wang
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Chen Ding
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Fuxing Liu
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Desheng Kong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, People's Republic of China
| | - Wei Yuan
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Wenming Su
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zheng Cui
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| |
Collapse
|
29
|
Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional Fiber Materials to Smart Fiber Devices. Chem Rev 2023; 123:613-662. [PMID: 35977344 DOI: 10.1021/acs.chemrev.2c00192] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of fiber materials has accompanied the evolution of human civilization for centuries. Recent advances in materials science and chemistry offered fibers new applications with various functions, including energy harvesting, energy storing, displaying, health monitoring and treating, and computing. The unique one-dimensional shape of fiber devices endows them advantages to work as human-interfaced electronics due to the small size, lightweight, flexibility, and feasibility for integration into large-scale textile systems. In this review, we first present a discussion of the basics of fiber materials and the design principles of fiber devices, followed by a comprehensive analysis on recently developed fiber devices. Finally, we provide the current challenges facing this field and give an outlook on future research directions. With novel fiber devices and new applications continuing to be discovered after two decades of research, we envision that new fiber devices could have an important impact on our life in the near future.
Collapse
Affiliation(s)
- Chuanrui Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yue Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
30
|
Wang L, Zhu W, Zhang J, Zhu JJ. Miniaturized Microfluidic Electrochemical Biosensors Powered by Enzymatic Biofuel Cell. BIOSENSORS 2023; 13:175. [PMID: 36831941 PMCID: PMC9953942 DOI: 10.3390/bios13020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical biosensors, in which enzymatic biofuel cells simultaneously work as energy power and signal generators, have become a research hotspot. They display the merits of power self-support, a simplified structure, in vivo operational feasibility, online and timely monitoring, etc. Since the concept of enzymatic biofuel cell-powered biosensors (EBFC-SPBs) was first proposed, its applications in health monitoring have scored tremendous achievements. However, the creation and practical application of portable EBFC-SPBs are still impeded by the difficulty in their miniaturization. In recent years, the booming microfluidic technology has powerfully pushed forward the progress made in miniaturized and portable EBFC-SPBs. This brief review recalls and summarizes the achievements and progress made in miniaturized EBFC-SPBs. In addition, we also discuss the advantages and challenges that microfluidic and screen-printing technologies provide to wearable and disposable EBFC-SPBs.
Collapse
Affiliation(s)
- Linlin Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Wenlei Zhu
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jianrong Zhang
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
31
|
Yin J, Li J, Reddy VS, Ji D, Ramakrishna S, Xu L. Flexible Textile-Based Sweat Sensors for Wearable Applications. BIOSENSORS 2023; 13:bios13010127. [PMID: 36671962 PMCID: PMC9856321 DOI: 10.3390/bios13010127] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/12/2023]
Abstract
The current physical health care system has gradually evolved into a form of virtual hospitals communicating with sensors, which can not only save time but can also diagnose a patient's physical condition in real time. Textile-based wearable sensors have recently been identified as detection platforms with high potential. They are developed for the real-time noninvasive detection of human physiological information to comprehensively analyze the health status of the human body. Sweat comprises various chemical compositions, which can be used as biomarkers to reflect the relevant information of the human physiology, thus providing references for health conditions. Combined together, textile-based sweat sensors are more flexible and comfortable than other conventional sensors, making them easily integrated into the wearable field. In this short review, the research progress of textile-based flexible sweat sensors was reviewed. Three mechanisms commonly used for textile-based sweat sensors were firstly contrasted with an introduction to their materials and preparation processes. The components of textile-based sweat sensors, which mainly consist of a sweat transportation channel and collector, a signal-selection unit, sensing elements and sensor integration and communication technologies, were reviewed. The applications of textile-based sweat sensors with different mechanisms were also presented. Finally, the existing problems and challenges of sweat sensors were summarized, which may contribute to promote their further development.
Collapse
Affiliation(s)
- Jing Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jingcheng Li
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Vundrala Sumedha Reddy
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Dongxiao Ji
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
32
|
Lv J, Thangavel G, Lee PS. Reliability of printed stretchable electronics based on nano/micro materials for practical applications. NANOSCALE 2023; 15:434-449. [PMID: 36515001 DOI: 10.1039/d2nr04464a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent decades have witnessed the booming development of stretchable electronics based on nano/micro composite inks. Printing is a scalable, low-cost, and high-efficiency fabrication tool to realize stretchable electronics through additive processes. However, compared with conventional flexible electronics, stretchable electronics need to experience more severe mechanical deformation which may cause destructive damage. Most of the reported works in this field mainly focus on how to achieve a high stretchability of nano/micro composite conductors or single working modules/devices, with limited attention given to the reliability for practical applications. In this minireview, we summarized the failure modes when printing stretchable electronics using nano/micro composite ink, including dysfunction of the stretchable interconnects, the stress-concentrated rigid-soft interfaces for hybrid electronics, the vulnerable vias upon stretching, thermal accumulation, and environmental instability of stretchable materials. Strategies for tackling these challenges to realize reliable performances are proposed and discussed. Our review provides an overview on the importance of reliable, printable, and stretchable electronics, which are the key enablers in propelling stretchable electronics from fancy demos to practical applications.
Collapse
Affiliation(s)
- Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Gurunathan Thangavel
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| |
Collapse
|
33
|
Gao F, Liu C, Zhang L, Liu T, Wang Z, Song Z, Cai H, Fang Z, Chen J, Wang J, Han M, Wang J, Lin K, Wang R, Li M, Mei Q, Ma X, Liang S, Gou G, Xue N. Wearable and flexible electrochemical sensors for sweat analysis: a review. MICROSYSTEMS & NANOENGINEERING 2023; 9:1. [PMID: 36597511 PMCID: PMC9805458 DOI: 10.1038/s41378-022-00443-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 06/10/2023]
Abstract
Flexible wearable sweat sensors allow continuous, real-time, noninvasive detection of sweat analytes, provide insight into human physiology at the molecular level, and have received significant attention for their promising applications in personalized health monitoring. Electrochemical sensors are the best choice for wearable sweat sensors due to their high performance, low cost, miniaturization, and wide applicability. Recent developments in soft microfluidics, multiplexed biosensing, energy harvesting devices, and materials have advanced the compatibility of wearable electrochemical sweat-sensing platforms. In this review, we summarize the potential of sweat for medical detection and methods for sweat stimulation and collection. This paper provides an overview of the components of wearable sweat sensors and recent developments in materials and power supply technologies and highlights some typical sensing platforms for different types of analytes. Finally, the paper ends with a discussion of the challenges and a view of the prospective development of this exciting field.
Collapse
Affiliation(s)
- Fupeng Gao
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Chunxiu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Lichao Zhang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Tiezhu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Zheng Wang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Zixuan Song
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Haoyuan Cai
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Zhen Fang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Jiamin Chen
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Junbo Wang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871 Beijing, China
| | - Jun Wang
- Beijing Shuimujiheng Biotechnology Company, 101102 Beijing, China
| | - Kai Lin
- PLA Air Force Characteristic Medical Center, 100142 Beijing, China
| | - Ruoyong Wang
- PLA Air Force Characteristic Medical Center, 100142 Beijing, China
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, 100029 Beijing, China
| | - Qian Mei
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), 215163 Suzhou, China
| | - Xibo Ma
- CBSR&NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Shuli Liang
- Functional Neurosurgery Department, Beijing Children’s Hospital, Capital Medical University, 100045 Beijing, China
| | - Guangyang Gou
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Ning Xue
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| |
Collapse
|
34
|
Ketone bodies detection: Wearable and mobile sensors for personalized medicine and nutrition. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
García-Guzmán JJ, Sierra-Padilla A, Palacios-Santander JM, Fernández-Alba JJ, Macías CG, Cubillana-Aguilera L. What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications. BIOSENSORS 2022; 12:919. [PMID: 36354428 PMCID: PMC9688009 DOI: 10.3390/bios12110919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Monitoring of lactate is spreading from the evident clinical environment, where its role as a biomarker is notorious, to the agrifood ambit as well. In the former, lactate concentration can serve as a useful indicator of several diseases (e.g., tumour development and lactic acidosis) and a relevant value in sports performance for athletes, among others. In the latter, the spotlight is placed on the food control, bringing to the table meaningful information such as decaying product detection and stress monitoring of species. No matter what purpose is involved, electrochemical (bio)sensors stand as a solid and suitable choice. However, for the time being, this statement seems to be true only for discrete measurements. The reality exposes that real and continuous lactate monitoring is still a troublesome goal. In this review, a critical overview of electrochemical lactate (bio)sensors for clinical and agrifood situations is performed. Additionally, the transduction possibilities and different sensor designs approaches are also discussed. The main aim is to reflect the current state of the art and to indicate relevant advances (and bottlenecks) to keep in mind for further development and the final achievement of this highly worthy objective.
Collapse
Affiliation(s)
- Juan José García-Guzmán
- Instituto de Investigación e Innovación Biomédica de Cadiz (INiBICA), Hospital Universitario ‘Puerta del Mar’, Universidad de Cadiz, 11009 Cadiz, Spain
| | - Alfonso Sierra-Padilla
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, 11510 Cadiz, Spain
| | - José María Palacios-Santander
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, 11510 Cadiz, Spain
| | - Juan Jesús Fernández-Alba
- Department of Obstetrics and Gynecology, Hospital Universitario de Puerto Real, Puerto Real, 11510 Cadiz, Spain
| | - Carmen González Macías
- Department of Obstetrics and Gynecology, Hospital Universitario de Puerto Real, Puerto Real, 11510 Cadiz, Spain
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, 11510 Cadiz, Spain
| |
Collapse
|
36
|
Ul Haque S, Yasir M, Cosnier S. Recent advancements in the field of flexible/wearable enzyme fuel cells. Biosens Bioelectron 2022; 214:114545. [PMID: 35839595 DOI: 10.1016/j.bios.2022.114545] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 11/02/2022]
Abstract
This review article focusses on new advances in the field of enzyme fuel cells (EFCs), especially, on flexible materials which can be used to make flexible EFCs for wearable devices, three-dimensional (3D) printed structures to prepare electrodes for EFCs and micro/nano electromechanical structures (MEMS/NEMS) to fabricate micro-EFCs. Particular attention is given to newly developed approaches to obtain efficient electrodes for harvesting energy via EFCs. This review article explains the various attributes of these recently developing technologies and their ability to mitigate the energy requirements of flexible/wearable bioelectronic devices. Besides discussing key milestones achieved, this perspective review article also emphasizes the main hurdles that are currently impeding the realization of flexible/wearable EFCs. We have also emphasized on the major hurdles related to the flexible materials required to fabricate wearable EFCs, suitable 3D printing techniques required, and MEMS and NEMS to fabricate micro-EFCs. In all the recently developed techniques, there are some common issues like stability, low power output, mechanical strength and flexibility. This review article also provides various routes to mitigate these issues. The main aim of this perspective article is to develop curiosity among the researchers of various fields to team up in order to address the huge challenges that restrict the real-world application of flexible/wearable EFCs. Such collaboration is important to harness the full potential of EFCs. It is requested to read this review article with supporting information to get the complete essence.
Collapse
Affiliation(s)
- Sufia Ul Haque
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Yasir
- Department of Chemistry, Carnegie Mellon University, USA
| | - Serge Cosnier
- Department of Molecular Chemistry (DCM), University of Grenoble Alpes, France.
| |
Collapse
|
37
|
Sailapu SK, Menon C. Engineering Self-Powered Electrochemical Sensors Using Analyzed Liquid Sample as the Sole Energy Source. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203690. [PMID: 35981885 PMCID: PMC9561779 DOI: 10.1002/advs.202203690] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Many healthcare and environmental monitoring devices use electrochemical techniques to detect and quantify analytes. With sensors progressively becoming smaller-particularly in point-of-care (POC) devices and wearable platforms-it creates the opportunity to operate them using less energy than their predecessors. In fact, they may require so little power that can be extracted from the analyzed fluids themselves, for example, blood or sweat in case of physiological sensors and sources like river water in the case of environmental monitoring. Self-powered electrochemical sensors (SPES) can generate a response by utilizing the available chemical species in the analyzed liquid sample. Though SPESs generate relatively low power, capable devices can be engineered by combining suitable reactions, miniaturized cell designs, and effective sensing approaches for deciphering analyte information. This review details various such sensing and engineering approaches adopted in different categories of SPES systems that solely use the power available in liquid sample for their operation. Specifically, the categories discussed in this review cover enzyme-based systems, battery-based systems, and ion-selective electrode-based systems. The review details the benefits and drawbacks with these approaches, as well as prospects of and challenges to accomplishing them.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Biomedical and Mobile Health Technology (BMHT) labDepartment of Health Sciences and TechnologyETH ZürichZürich8008Switzerland
| | - Carlo Menon
- Biomedical and Mobile Health Technology (BMHT) labDepartment of Health Sciences and TechnologyETH ZürichZürich8008Switzerland
| |
Collapse
|
38
|
Selvam S, Park Y, Yim J. Design and Testing of Autonomous Chargeable and Wearable Sweat/Ionic Liquid-Based Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201890. [PMID: 35810477 PMCID: PMC9443445 DOI: 10.1002/advs.202201890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Indexed: 06/03/2023]
Abstract
This work demonstrates ionic liquid electrolyte-inscribed sweat-based dual electrolyte functioning supercapacitors capable of self-charging through sweat electrolyte function under a non-enzymatic route. The supercapacitor electrodes are fabricated from TREN (tris(2-aminoethyl)amine), poly-3,4-ethylenedioxythiophene, and a graphene oxide mixture with copper-mediated chelate, and this polymer-GO-metal chelate film can produce excellent energy harvest/storage performance from a sweat and ionic liquid integrated electrolyte system. The fabricated device is specifically designed to reduce deterioration using a typical planar structure. In the presence of sweat with ionic liquid, the dual electrolyte mode supercapacitor exhibits a maximum areal capacitance of 3600 mF cm-2 , and the energy density is 450 mWhcm-2 , which is more than 100 times greater than that from previously reported supercapacitors. The supercapacitors were fabricated/attached directly to textile fabrics as well as ITO-PET (Indium tin oxide (ITO)-polyethylene terephthalate (PET) film to study their performance on the human body during exercise. The self-charging performance with respect to sweat wetting time for the sweat@ionic liquid dual electrolyte showed that the supercapacitor performed well on both fabric and film. These devices exhibited good response for pH effect and biocompatibility, and as such present a promising multi-functional energy system as a stable power source for next-generation wearable smart electronics.
Collapse
Affiliation(s)
- Samayanan Selvam
- Division of Advanced Materials EngineeringKongju National UniversityBudaedong 275, Seobuk‐guCheonan‐siChungnam31080South Korea
| | - Young‐Kwon Park
- School of Environmental EngineeringUniversity of SeoulSeoul02504Korea
| | - Jin‐Heong Yim
- Division of Advanced Materials EngineeringKongju National UniversityBudaedong 275, Seobuk‐guCheonan‐siChungnam31080South Korea
| |
Collapse
|
39
|
Xu J, Yan Z, Liu Q. Smartphone-Based Electrochemical Systems for Glucose Monitoring in Biofluids: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155670. [PMID: 35957227 PMCID: PMC9371187 DOI: 10.3390/s22155670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 05/12/2023]
Abstract
As a vital biomarker, glucose plays an important role in multiple physiological and pathological processes. Thus, glucose detection has become an important direction in the electrochemical analysis field. In order to realize more convenient, real-time, comfortable and accurate monitoring, smartphone-based portable, wearable and implantable electrochemical glucose monitoring is progressing rapidly. In this review, we firstly introduce technologies integrated in smartphones and the advantages of these technologies in electrochemical glucose detection. Subsequently, this overview illustrates the advances of smartphone-based portable, wearable and implantable electrochemical glucose monitoring systems in diverse biofluids over the last ten years (2012-2022). Specifically, some interesting and innovative technologies are highlighted. In the last section, after discussing the challenges in this field, we offer some future directions, such as application of advanced nanomaterials, novel power sources, simultaneous detection of multiple markers and a closed-loop system.
Collapse
|
40
|
Ding C, Wang J, Yuan W, Zhou X, Lin Y, Zhu G, Li J, Zhong T, Su W, Cui Z. Durability Study of Thermal Transfer Printed Textile Electrodes for Wearable Electronic Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29144-29155. [PMID: 35723443 DOI: 10.1021/acsami.2c03807] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Textile-based electronics hold great promise because they can endow wearable devices with soft and comfortable characteristics. However, the inherent porosity and fluffiness of fabrics result in high surface roughness, which presents great challenges in the manufacture of high-performance fabric electrodes. In this work, we propose a thermal transfer printing method to address the above challenges, in which electrodes or circuits of silver flake/thermoplastic polyurethane (TPU) composites are prefabricated on a release film by coating and laser engraving and then laminated by hot-pressing to a variety of fabrics and textiles. This universal and scalable production technique enables fabric electrodes to be made without compromising the original wearability, washability, and stretchability of textiles. The prepared fabric electrodes exhibit high conductivity (5.48 × 104 S/cm), high adhesion (≥1750 N/m), good abrasion/washing resistance, high patterning resolution (∼40 μm), and good electromechanical performance up to 50% strain. To demonstrate the potential applications, we developed textile-based radio frequency identification (RFID) tags for remote identification and a large-sized heater for wearable thermotherapy. More importantly, the solvent-free thermal transfer printing technology developed in this paper enables people to DIY interesting flexible electronics on clothes with daily tools, which can promote the commercial application of smart textile-based electronics.
Collapse
Affiliation(s)
- Chen Ding
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Jiayi Wang
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wei Yuan
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Xiaojin Zhou
- Suzhou Institute of Fiber Inspection, Suzhou 215123, People's Republic of China
| | - Yong Lin
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Guoqing Zhu
- Suzhou Institute of Fiber Inspection, Suzhou 215123, People's Republic of China
| | - Jie Li
- Jiangsu Textiles Quality Services Inspection Testing Institute, Nanjing 210007, People's Republic of China
| | - Tao Zhong
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Wenming Su
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zheng Cui
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| |
Collapse
|
41
|
Du K, Lin R, Yin L, Ho JS, Wang J, Lim CT. Electronic textiles for energy, sensing, and communication. iScience 2022; 25:104174. [PMID: 35479405 PMCID: PMC9035708 DOI: 10.1016/j.isci.2022.104174] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
42
|
Cho S, Chang T, Yu T, Lee CH. Smart Electronic Textiles for Wearable Sensing and Display. BIOSENSORS 2022; 12:bios12040222. [PMID: 35448282 PMCID: PMC9029731 DOI: 10.3390/bios12040222] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Increasing demand of using everyday clothing in wearable sensing and display has synergistically advanced the field of electronic textiles, or e-textiles. A variety of types of e-textiles have been formed into stretchy fabrics in a manner that can maintain their intrinsic properties of stretchability, breathability, and wearability to fit comfortably across different sizes and shapes of the human body. These unique features have been leveraged to ensure accuracy in capturing physical, chemical, and electrophysiological signals from the skin under ambulatory conditions, while also displaying the sensing data or other immediate information in daily life. Here, we review the emerging trends and recent advances in e-textiles in wearable sensing and display, with a focus on their materials, constructions, and implementations. We also describe perspectives on the remaining challenges of e-textiles to guide future research directions toward wider adoption in practice.
Collapse
Affiliation(s)
- Seungse Cho
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Taehoo Chang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
43
|
Sinha A, Dhanjai, Stavrakis AK, Stojanović GM. Textile-based electrochemical sensors and their applications. Talanta 2022; 244:123425. [PMID: 35397323 DOI: 10.1016/j.talanta.2022.123425] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Textile and their composite-based functional sensors are extensively acknowledged and preferred detection platforms in recent times. Developing suitable methodologies for fabricating textile sensors can be achieved either by integration of conductive fibers and yarns into textiles using technologies such as weaving, knitting and embroidery; or by functionalization of textile materials with conductive nanomaterials/inks using printing or coating methods. Textile materials are gaining enormous attention for fabricating soft lab-on-fabric devices due to their unique features such as high flexibility, wear and wash resistance, mechanical strength and promising sensing performances. Owing to these collective properties, textile-based electrochemical transducers are now showcasing rapid and accurate electrical measurements towards real time point-of-care diagnostics and environmental monitoring applications. The present review provides a brief overview of key progress made in the field of developing textile materials and their composites-based electrochemical sensors and biosensors in recent years where electrode configurations are specifically based on either natural or synthetic fabrics. Different ways to fabricate and functionalize textiles for their application in electrochemical analysis are briefly discussed. The review ends with a conclusive note focusing on the current challenges in the fabrication of textile-based stable electrochemical sensors and biosensors.
Collapse
Affiliation(s)
- Ankita Sinha
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia.
| | - Dhanjai
- BioSense Institute, Dr Zorana Đinđića 1, University of Novi Sad, Novi Sad, 21000, Serbia
| | - Adrian K Stavrakis
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia
| | - Goran M Stojanović
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia
| |
Collapse
|
44
|
ZHOU J, MEN D, ZHANG XE. Progress in wearable sweat sensors and their applications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Zhang Y, Zheng S, Zhou F, Shi X, Dong C, Das P, Ma J, Wang K, Wu ZS. Multi-Layer Printable Lithium Ion Micro-Batteries with Remarkable Areal Energy Density and Flexibility for Wearable Smart Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104506. [PMID: 34837671 DOI: 10.1002/smll.202104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Pursuing high areal energy density and developing scalable fabrication strategies of micro-batteries are the key for the progressive printed microelectronics. Herein, the scalable fabrication of multi-layer printable lithium ion micro-batteries (LIMBs) with ultrahigh areal energy density and exceptional flexibility is reported, based on highly conductive and mechanically stable inks by fully incorporating the polyurethane binders in dibasic esters with high-conducting additives of graphene and carbon nanotubes into active materials to construct a cross-linked conductive network. Benefiting from relatively higher electrical conductivity (≈7000 mS cm-1 ) and stably connected network of microelectrodes, the as-fabricated LIMBs by multi-layer printing display robust areal capacity of 398 µAh cm-2 , and remarkable areal energy density of 695 μWh cm-2 , which are much higher than most LIMBs reported. Further, the printed LIMBs show notable capacity retention of 88% after 3000 cycles, and outstanding flexibility without any structure degradation under various torsion states and folding angles. Importantly, a wearable smart bracelet, composed of a serially connected LIMBs pack, a temperature sensor, and a light-emitting diode, is realized for the automatic detection of body temperature. Therefore, this strategy of fabricating highly conductive and mechanically stable printable ink will open a new avenue for developing high-performance printable LIMBs for smart microelectronics.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Shuanghao Zheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Feng Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaoyu Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Cong Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Kai Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
46
|
Jeerapan I, Moonla C, Thavarungkul P, Kanatharana P. Lab on a body for biomedical electrochemical sensing applications: The next generation of microfluidic devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:249-279. [PMID: 35094777 DOI: 10.1016/bs.pmbts.2021.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This chapter highlights applications of microfluidic devices toward on-body biosensors. The emerging application of microfluidics to on-body bioanalysis is a new strategy to establish systems for the continuous, real-time, and on-site determination of informative markers present in biofluids, such as sweat, interstitial fluid, blood, saliva, and tear. Electrochemical sensors are attractive to integrate with such microfluidics due to the possibility to be miniaturized. Moreover, on-body microfluidics coupled with bioelectronics enable smart integration with modern information and communication technology. This chapter discusses requirements and several challenges when developing on-body microfluidics such as difficulties in manipulating small sample volumes while maintaining mechanical flexibility, power-consumption efficiency, and simplicity of total automated systems. We describe key components, e.g., microchannels, microvalves, and electrochemical detectors, used in microfluidics. We also introduce representatives of advanced lab-on-a-body microfluidics combined with electrochemical sensors for biomedical applications. The chapter ends with a discussion of the potential trends of research in this field and opportunities. On-body microfluidics as modern total analysis devices will continue to bring several fascinating opportunities to the field of biomedical and translational research applications.
Collapse
Affiliation(s)
- Itthipon Jeerapan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - Chochanon Moonla
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Panote Thavarungkul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Proespichaya Kanatharana
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
47
|
|
48
|
|
49
|
Chen Y, Gao Z, Zhang F, Wen Z, Sun X. Recent progress in self-powered multifunctional e-skin for advanced applications. EXPLORATION (BEIJING, CHINA) 2022; 2:20210112. [PMID: 37324580 PMCID: PMC10191004 DOI: 10.1002/exp.20210112] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Electronic skin (e-skin), new generation of flexible wearable electronic devices, has characteristics including flexibility, thinness, biocompatibility with broad application prospects, and a crucial place in future wearable electronics. With the increasing demand for wearable sensor systems, the realization of multifunctional e-skin with low power consumption or even autonomous energy is urgently needed. The latest progress of multifunctional self-powered e-skin for applications in physiological health, human-machine interaction (HMI), virtual reality (VR), and artificial intelligence (AI) is presented here. Various energy conversion effects for the driving energy problem of multifunctional e-skin are summarized. An overview of various types of self-powered e-skins, including single-effect e-skins and multifunctional coupling-effects e-skin systems is provided, where the aspects of material preparation, device assembly, and output signal analysis of the self-powered multifunctional e-skin are described. In the end, the existing problems and prospects in this field are also discussed.
Collapse
Affiliation(s)
- Yunfeng Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouP. R. China
| | - Zhengqiu Gao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouP. R. China
| | - Fangjia Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouP. R. China
| | - Zhen Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouP. R. China
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouP. R. China
| |
Collapse
|
50
|
Zhang H, He R, Niu Y, Han F, Li J, Zhang X, Xu F. Graphene-enabled wearable sensors for healthcare monitoring. Biosens Bioelectron 2022; 197:113777. [PMID: 34781177 DOI: 10.1016/j.bios.2021.113777] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/19/2023]
Abstract
Wearable sensors in healthcare monitoring have recently found widespread applications in biomedical fields for their non- or minimal-invasive, user-friendly and easy-accessible features. Sensing materials is one of the major challenges to achieve these superiorities of wearable sensors for healthcare monitoring, while graphene-based materials with many favorable properties have shown great efficiency in sensing various biochemical and biophysical signals. In this paper, we review state-of-the-art advances in the development and modification of graphene-based materials (i.e., graphene, graphene oxide and reduced graphene oxide) for fabricating advanced wearable sensors with 1D (fibers), 2D (films) and 3D (foams/aerogels/hydrogels) macroscopic structures. We summarize the structural design guidelines, sensing mechanisms, applications and evolution of the graphene-based materials as wearable sensors for healthcare monitoring of biophysical signals (e.g., mechanical, thermal and electrophysiological signals) and biochemical signals from various body fluids and exhaled gases. Finally, existing challenges and future prospects are presented in this area.
Collapse
Affiliation(s)
- Huiqing Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rongyan He
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yan Niu
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Han
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Li
- Department of Plastic and Burn Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xiongwen Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|