1
|
Hoxha A, Nikolaou A, Wilkinson HN, Hardman MJ, Gutierrez-Merino J, Felipe-Sotelo M, Carta D. Wound Healing Promotion via Release of Therapeutic Metallic Ions from Phosphate Glass Fibers: An In Vitro and Ex Vivo Study. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37669-37682. [PMID: 39010729 DOI: 10.1021/acsami.4c07035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Biomaterials capable of promoting wound healing and preventing infections remain in great demand to address the global unmet need for the treatment of chronic wounds. Phosphate-based glasses (PG) have shown potential as bioresorbable materials capable of inducing tissue regeneration, while being replaced by regenerated tissue and releasing therapeutic species. In this work, phosphate-glass-based fibers (PGF) in the system P2O5-CaO-Na2O added with 1, 2, 4, 6, and 10 mol % of the therapeutic metallic ions (TMI) Ag+, Zn2+, and Fe3+ were manufactured via electrospinning of coacervate gels. Coacervation is a sustainable, cost-effective, water-based method to produce PG. All TMI are effective in promoting wound closure (re-epithelialization) in living human skin ex vivo, where the best-performing system is PGF containing Ag+. In particular, PGF with ≥4 mol % of Ag+ is capable of promoting 84% wound closure over 48 h. These results are confirmed by scratch test migration assays, with the PGF-Ag systems containing ≥6 mol % of Ag+, demonstrating significant wound closure enhancement (up to 72%) after 24 h. The PGF-Ag systems are also the most effective in terms of antibacterial activity against both the Gram-positive Staphylococcus aureus and the Gram-negative Escherichia coli. PGF doped with Zn2+ shows antibacterial activity only against S. aureus in the systems containing Zn2+ ≥ 10 mol %. In addition, PGF doped with Fe3+ rapidly accelerates ex vivo healing in patient chronic wound skin (>30% in 48 h), demonstrating the utility of doped PGF as a potential therapeutic strategy to treat chronic wounds.
Collapse
Affiliation(s)
- Agron Hoxha
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, U.K
| | - Athanasios Nikolaou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, U.K
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, U.K
| | - Holly N Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, U.K
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, U.K
| | - Matthew J Hardman
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, U.K
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, U.K
| | | | - Monica Felipe-Sotelo
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, U.K
| | - Daniela Carta
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, U.K
| |
Collapse
|
2
|
Lu Y, Wang Y, Wang J, Liang L, Li J, Yu Y, Zeng J, He M, Wei X, Liu Z, Shi P, Li J. A comprehensive exploration of hydrogel applications in multi-stage skin wound healing. Biomater Sci 2024; 12:3745-3764. [PMID: 38959069 DOI: 10.1039/d4bm00394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Hydrogels, as an emerging biomaterial, have found extensive use in the healing of wounds due to their distinctive physicochemical structure and functional properties. Moreover, hydrogels can be made to match a range of therapeutic requirements for materials used in wound healing through specific functional modifications. This review provides a step-by-step explanation of the processes involved in cutaneous wound healing, including hemostasis, inflammation, proliferation, and reconstitution, along with an investigation of the factors that impact these processes. Furthermore, a thorough analysis is conducted on the various stages of the wound healing process at which functional hydrogels are implemented, including hemostasis, anti-infection measures, encouraging regeneration, scar reduction, and wound monitoring. Next, the latest progress of multifunctional hydrogels for wound healing and the methods to achieve these functions are discussed in depth and categorized for elucidation. Finally, perspectives and challenges associated with the clinical applications of multifunctional hydrogels are discussed.
Collapse
Affiliation(s)
- Yongping Lu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Yuemin Wang
- College of Medicine, Southwest Jiaotong University, 610003, China
| | - Jie Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Ling Liang
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jinrong Li
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Yue Yu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jia Zeng
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Mingfang He
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Xipeng Wei
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Zhining Liu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Ping Shi
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
3
|
Waghode P, Quadir SS, Choudhary D, Sharma S, Joshi G. Small interfering RNA (siRNA) as a potential gene silencing strategy for diabetes and associated complications: challenges and future perspectives. J Diabetes Metab Disord 2024; 23:365-383. [PMID: 38932822 PMCID: PMC11196550 DOI: 10.1007/s40200-024-01405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/17/2024] [Indexed: 06/28/2024]
Abstract
Objective This article critically reviews the recent search on the use of Small Interfering RNA (siRNA) in the process of gene regulation that has been harnessed to silence specific genes in various cell types, including those involved in diabetes complications. Significance Diabetes, a prevalent and severe condition, poses life-threatening risks due to elevated blood glucose levels. It results from inadequate insulin production by the pancreas or ineffective insulin utilization by the body. Recent research suggests siRNA could hold promise in addressing diabetes complications. Methods In this review, we discussed several subjects, including diabetes; its function, and common treatment options. An in-depth analysis of gene silencing method for siRNA and role of siRNA in diabetes, focusing on its impact on glucose homeostasis, diabetic retinopathy, wound healing, diabetic nephropathy and peripheral neuropathy, diabetic foot ulcers, diabetic atherosclerosis, and diabetic cardiomyopathy. Result siRNA-based treatment has the potential to target specific genes without disrupting several other endogenous pathways, which decreases the risk of off-target effects. In addition, siRNA has the capability to provide long-term efficacy with a single dose which will reduce treatment options and enhance patient compliance. Conclusion In the context of diabetic complications, siRNA has been explored as a potential therapeutic tool to modulate the expression of genes involved in various processes associated with diabetes-related issues such as Diabetic Retinopathy, Neuropathy, Nephropathy, wound healing. The use of siRNA in these contexts is still largely experimental, and challenges such as delivery to specific tissues, potential off-target effects, and long-term safety need to be addressed. Additionally, the development of siRNA-based therapies for clinical use in diabetic complications is an active area of research. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01405-7.
Collapse
Affiliation(s)
- Pranali Waghode
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, deemed to be University, Vile Parle West, 400056 Mumbai, Maharashtra India
| | - Sheikh Shahnawaz Quadir
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, deemed to be University, Vile Parle West, 400056 Mumbai, Maharashtra India
| | - Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| |
Collapse
|
4
|
Wang Y, Chai YQ, Cai J, Huang SS, Wang YF, Yuan SS, Wang JL, Shi KQ, Deng JJ. Human Adipose Tissue Lysate-Based Hydrogel for Lasting Immunomodulation to Effectively Improve Spinal Cord Injury Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304318. [PMID: 38018305 DOI: 10.1002/smll.202304318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/22/2023] [Indexed: 11/30/2023]
Abstract
The long-term inflammatory microenvironment is one of the main obstacles to inhibit acute spinal cord injury (SCI) repair. The natural adipose tissue-derived extracellular matrix hydrogel shows effective anti-inflammatory regulation because of its unique protein components. However, the rapid degradation rate and removal of functional proteins during the decellularization process impair the lasting anti-inflammation function of the adipose tissue-derived hydrogel. To address this problem, adipose tissue lysate provides an effective way for SCI repair due to its abundance of anti-inflammatory and nerve regeneration-related proteins. Thereby, human adipose tissue lysate-based hydrogel (HATLH) with an appropriate degradation rate is developed, which aims to in situ long-term recruit and induce anti-inflammatory M2 macrophages through sustainedly released proteins. HATLH can recruit and polarize M2 macrophages while inhibiting pro-inflammatory M1 macrophages regardless of human or mouse-originated. The axonal growth of neuronal cells also can be effectively improved by HATLH and HATLH-induced M2 macrophages. In vivo experiments reveal that HATLH promotes endogenous M2 macrophages infiltration in large numbers (3.5 × 105/100 µL hydrogel) and maintains a long duration for over a month. In a mouse SCI model, HATLH significantly inhibits local inflammatory response, improves neuron and oligodendrocyte differentiation, enhances axonal growth and remyelination, as well as accelerates neurological function restoration.
Collapse
Affiliation(s)
- Yu Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, 325000, China
| | - Ying-Qian Chai
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Jie Cai
- Department of Orthopedics, Xiaoshan Hospital Affiliated to Wenzhou Medical University, Hangzhou, Zhejiang, 310000, China
| | - Shan-Shan Huang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Ye-Feng Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Shan-Shan Yuan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Ji-Long Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Ke-Qing Shi
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Jun-Jie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
5
|
Wang Y, Vizely K, Li CY, Shen K, Shakeri A, Khosravi R, Smith JR, Alteza EAII, Zhao Y, Radisic M. Biomaterials for immunomodulation in wound healing. Regen Biomater 2024; 11:rbae032. [PMID: 38779347 PMCID: PMC11110865 DOI: 10.1093/rb/rbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The substantial economic impact of non-healing wounds, scarring, and burns stemming from skin injuries is evident, resulting in a financial burden on both patients and the healthcare system. This review paper provides an overview of the skin's vital role in guarding against various environmental challenges as the body's largest protective organ and associated developments in biomaterials for wound healing. We first introduce the composition of skin tissue and the intricate processes of wound healing, with special attention to the crucial role of immunomodulation in both acute and chronic wounds. This highlights how the imbalance in the immune response, particularly in chronic wounds associated with underlying health conditions such as diabetes and immunosuppression, hinders normal healing stages. Then, this review distinguishes between traditional wound-healing strategies that create an optimal microenvironment and recent peptide-based biomaterials that modulate cellular processes and immune responses to facilitate wound closure. Additionally, we highlight the importance of considering the stages of wounds in the healing process. By integrating advanced materials engineering with an in-depth understanding of wound biology, this approach holds promise for reshaping the field of wound management and ultimately offering improved outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Chen Yu Li
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Karen Shen
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Ramak Khosravi
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - James Ryan Smith
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
6
|
Zhan G, Yu L, Wang Q, Jin L, Yin X, Cao X, Gao H. Patterned collagen films loaded with miR-133b@MBG-NH 2for potential applications in corneal stromal injury repair. Biomed Mater 2024; 19:035009. [PMID: 38422520 DOI: 10.1088/1748-605x/ad2ed2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Corneal stromal injury is a common surgical disease. With the development of tissue engineering materials, many artificial corneal scaffolds have been developed to replace allograft corneal transplantation and solve the problem of corneal donor shortage. However, few researchers have paid attention to corneal stromal wound healing. Herein, a nanocomposite of amino modified mesoporous bioactive glass (MBG-NH2) and microRNA-133b (miR-133b) was introduced into the patterned collagen films to achieve corneal stromal injury repair. MBG-NH2nanoparticles as a nano delivery carrier could efficiently load miR-133b and achieve the slow release of miR-133b. The physicochemical properties of collagen films were characterized and found the microgrooved collagen films loaded with miR-133b@MBG-NH2nanoparticles possessed similar swelling properties, optical clarity, and biodegradability to the natural cornea.In vitrocell experiments were also conducted and proved that the patterned collagen films with miR-133b@MBG-NH2possessed good biocompatibility, and miR-133b@MBG-NH2nanoparticles could be significantly uptake by rabbit corneal stromal cells (RCSCs) and have a significant impact on the orientation, proliferation, migration, and gene expression of RCSCs. More importantly, the patterned collagen films with miR-133b@MBG-NH2could effectively promote the migration of RCSCs and accelerate wound healing process, and down-regulate the expression levels ofα-SMA, COL-I, and CTGF genes associated with myofibroblast differentiation of corneal stromal cells, which has a potential application prospect in the repair of corneal stromal injury.
Collapse
Affiliation(s)
- Guancheng Zhan
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Lixia Yu
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Qiqi Wang
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Longyang Jin
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, People's Republic of China
| | - Xiaohong Yin
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiaodong Cao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, People's Republic of China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, People's Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Huichang Gao
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, People's Republic of China
| |
Collapse
|
7
|
Le Thi P, Tran DL, Park KM, Lee S, Oh DH, Park KD. Biocatalytic nitric oxide generating hydrogels with enhanced anti-inflammatory, cell migration, and angiogenic capabilities for wound healing applications. J Mater Chem B 2024; 12:1538-1549. [PMID: 38251728 DOI: 10.1039/d3tb01943h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Although wound healing is a normal physiological process in the human body, it is often impaired by bacterial infections, ischemia, hypoxia, and excess inflammation, which can lead to chronic and non-healing wounds. Recently, injectable hydrogels with controlled nitric oxide (NO) release behaviour have become potential wound healing therapeutic agents due to their excellent biochemical, mechanical, and biological properties. Here, we proposed novel multifunctional NO-releasing hydrogels that could regulate various wound healing processes, including hemostasis, inflammation, cell proliferation and angiogenesis. By incorporating the copper nanoparticles (NPs) in the network of dual enzymatically crosslinked gelatin hydrogels (GH/Cu), NO was in situ produced via the Cu-catalyzed decomposition of endogenous RSNOs available in the blood, thus resolving the intrinsic shortcomings of NO therapies, such as the short storage and release time, as well as the burst and uncontrollable release modes. We demonstrated that the NO-releasing gelatin hydrogels enhanced the proliferation and migration of endothelial cells, while promoting the M2 (anti-inflammatory) polarization of the macrophage. Furthermore, the effects of NO release on angiogenesis were evaluated using an in vitro tube formation assay and in ovo chicken chorioallantoic membrane (CAM) assay, which revealed that GH/Cu hydrogels could significantly facilitate neovascularization, consistent with the in vivo results. Therefore, we suggested that these hydrogel systems would significantly enhance the wound healing process through the synergistic effects of the hydrogels and NO, and hence could be used as advanced wound dressing materials.
Collapse
Affiliation(s)
- Phuong Le Thi
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, No. 1B - TL29 Street, Thanh Loc Ward, 12th District, Ho Chi Minh City 700000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Dieu Linh Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1A - TL29 Street, Thanh Loc Ward, 12th District, Ho Chi Minh City 700000, Vietnam.
| | - Kyung Min Park
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Simin Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Dong Hwan Oh
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
8
|
Wang L, Qiu L, Li B, Reis RL, Kundu SC, Duan L, Xiao B, Yang X. Tissue adhesives based on chitosan for skin wound healing: Where do we stand in this era? A review. Int J Biol Macromol 2024; 258:129115. [PMID: 38163498 DOI: 10.1016/j.ijbiomac.2023.129115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Chitosan has been commonly used as an adhesive dressing material due to its excellent biocompatibility, degradability, and renewability. Tissue adhesives are outstanding among wound dressings because they can close the wound, absorb excess tissue exudate from the wound site, provide a moist environment, and act as a carrier for loading various bioactive molecules. They have been widely used in both preclinical and clinical treatment of skin wounds. This review summarizes recent research progresses in the application of chitosan and its derivatives for tissue adhesives. We also introduce their biomedical effects on wound adhesion, contamination isolation, antibacterial, immune regulation, and wound healing, and the strategies to achieve these functions when used as wound dressings. Finally, challenges and future perspectives of chitosan-based tissue adhesives are discussed for wound healing.
Collapse
Affiliation(s)
- Lingshuang Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Libin Qiu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Baoyi Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Lian Duan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Xiao Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Chen P, Liao X. Kartogenin delivery systems for biomedical therapeutics and regenerative medicine. Drug Deliv 2023; 30:2254519. [PMID: 37665332 PMCID: PMC10478613 DOI: 10.1080/10717544.2023.2254519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Kartogenin, a small and heterocyclic molecule, has emerged as a promising therapeutic agent for incorporation into biomaterials, owing to its unique physicochemical and biological properties. It holds potential for the regeneration of cartilage-related tissues in various common conditions and injuries. Achieving sustained release of kartogenin through appropriate formulation and efficient delivery systems is crucial for modulating cell behavior and tissue function. This review provides an overview of cutting-edge kartogenin-functionalized biomaterials, with a primarily focus on their design, structure, functions, and applications in regenerative medicine. Initially, we discuss the physicochemical properties and biological functions of kartogenin, summarizing the underlying molecular mechanisms. Subsequently, we delve into recent advancements in nanoscale and macroscopic materials for the carriage and delivery of kartogenin. Lastly, we address the opportunities and challenges presented by current biomaterial developments and explore the prospects for their application in tissue regeneration. We aim to enhance the generation of insightful ideas for the development of kartogenin delivery materials in the field of biomedical therapeutics and regenerative medicine by providing a comprehensive understanding of common preparation methods.
Collapse
Affiliation(s)
- Peixing Chen
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| |
Collapse
|
10
|
Liu W, Zu L, Wang S, Li J, Fei X, Geng M, Zhu C, Shi H. Tailored biomedical materials for wound healing. BURNS & TRAUMA 2023; 11:tkad040. [PMID: 37899884 PMCID: PMC10605015 DOI: 10.1093/burnst/tkad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/25/2023] [Accepted: 06/30/2023] [Indexed: 10/31/2023]
Abstract
Wound healing is a long-term, multi-stage biological process that mainly includes haemostatic, inflammatory, proliferative and tissue remodelling phases. Controlling infection and inflammation and promoting tissue regeneration can contribute well to wound healing. Smart biomaterials offer significant advantages in wound healing because of their ability to control wound healing in time and space. Understanding how biomaterials are designed for different stages of wound healing will facilitate future personalized material tailoring for different wounds, making them beneficial for wound therapy. This review summarizes the design approaches of biomaterials in the field of anti-inflammatory, antimicrobial and tissue regeneration, highlights the advanced precise control achieved by biomaterials in different stages of wound healing and outlines the clinical and practical applications of biomaterials in wound healing.
Collapse
Affiliation(s)
- Wenhui Liu
- Clinical laboratory, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lihua Zu
- Clinical laboratory, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
| | - Shanzheng Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu 210009, P.R. China
| | - Jingyao Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaoyuan Fei
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Meng Geng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunlei Zhu
- Department of Orthopaedics, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
| | - Hui Shi
- Clinical laboratory, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Zhu Y, Li J, Kim J, Li S, Zhao Y, Bahari J, Eliahoo P, Li G, Kawakita S, Haghniaz R, Gao X, Falcone N, Ermis M, Kang H, Liu H, Kim H, Tabish T, Yu H, Li B, Akbari M, Emaminejad S, Khademhosseini A. Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare. Biomaterials 2023; 296:122075. [PMID: 36931103 PMCID: PMC10085866 DOI: 10.1016/j.biomaterials.2023.122075] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Skin-interfaced electronics (skintronics) have received considerable attention due to their thinness, skin-like mechanical softness, excellent conformability, and multifunctional integration. Current advancements in skintronics have enabled health monitoring and digital medicine. Particularly, skintronics offer a personalized platform for early-stage disease diagnosis and treatment. In this comprehensive review, we discuss (1) the state-of-the-art skintronic devices, (2) material selections and platform considerations of future skintronics toward intelligent healthcare, (3) device fabrication and system integrations of skintronics, (4) an overview of the skintronic platform for personalized healthcare applications, including biosensing as well as wound healing, sleep monitoring, the assessment of SARS-CoV-2, and the augmented reality-/virtual reality-enhanced human-machine interfaces, and (5) current challenges and future opportunities of skintronics and their potentials in clinical translation and commercialization. The field of skintronics will not only minimize physical and physiological mismatches with the skin but also shift the paradigm in intelligent and personalized healthcare and offer unprecedented promise to revolutionize conventional medical practices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Payam Eliahoo
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, 90007, United States
| | - Guanghui Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China; Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hao Liu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - HanJun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Tanveer Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Department of Manufacturing Systems Engineering and Management, California State University, Northridge, CA, 91330, United States
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| |
Collapse
|
12
|
Pazyar N, Movahedyan M, Yaghoobi R, Haghighizadeh MH. The assessment of suture spacing on the esthetic and functional outcomes of skin closures in different age groups. Health Sci Rep 2023; 6:e1201. [PMID: 37064324 PMCID: PMC10098442 DOI: 10.1002/hsr2.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/25/2023] [Indexed: 04/18/2023] Open
Abstract
Background and Aims Dermatological surgeons must master the factors affecting wound healing. Suturing is the most common method of wound closure. One of the significant factors in suturing that affects wound healing and cosmetic results is the distance between sutures, which has been studied very little to date. The aim of the current study was to investigate the effect of simple interrupted suture with a distance of 2 and 5 mm on the esthetic and functional results of suture closure in different age groups. Methods In patients with two skin lesions, one wound was sutured with a distance of 2 mm and the other with a distance of 5 mm, and the wounds were evaluated 1 and 3 months after the operation using the POSAS scale. Results Patients' opinions indicate that, in the suture intervals of 2- and 5-mm and at 1 and 3 months, the average was lower in the younger group than it was in the older group and also, as per the physician's opinion, the average in the age group under 50 years was significantly lower than that in the age group over 50 years. Conclusions According to the results of the present study, a suture of 2-mm and a suture of 5-mm would result in different esthetic and functional outcomes depending on the patient's age. The average in the age group less than 50 years was significantly lower than that of the age group greater than 50 years.
Collapse
Affiliation(s)
- Nader Pazyar
- Faculty of Dermatology DepartmentAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Maryam Movahedyan
- Dermatology Department, Emam Hospital, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Reza Yaghoobi
- Faculty of Dermatology DepartmentAhvaz Jundishapur University of Medical SciencesAhvazIran
| | | |
Collapse
|
13
|
Tewari NK, Kumar V, Choubey N, Tiwari S. Platelet Rich Fibrin Membrane Grafting After Laser Excision for Oral Mucosal Lesions. Indian J Otolaryngol Head Neck Surg 2022; 74:2506-2512. [PMID: 36452669 PMCID: PMC9702254 DOI: 10.1007/s12070-020-02225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022] Open
Abstract
Platelet rich fibrin (PRF) is a novel surgical biomaterial which has shown immense healing and regenerative potential with diverse clinical applications. Surgical excision is a routinely employed treatment modality for mucosal oral lesions with or without grafting or repair of the base of the wound. We proposed a hypothesis that covering of the base of excised lesion with this platelet rich fibrin membrane can accelerate the rate of physiological healing process and regeneration. To evaluate the role, efficacy, advantages and adverse effects if any, of placement of PRF membrane grafts over surgical excision sites of oral mucosal lesions. Platelet rich fibrin membrane graft was prepared as per recommendation and established protocols. Patients were selected for surgical excision of localized, superficial oral mucosal lesions after meticulous clinical and radiological considerations and informed consent was taken. After laser excision with safe margins, the base of wound was covered with PRF membrane graft, stitched in place by 3-0 vicryl sutures. The operated site was clinically evaluated at regular intervals and a healing score was calculated and statistically tabulated on the basis of various parameters of healing. A total of 34 patients were included in the study with a male preponderance (21 males and 13 females). Satisfactory and clinically acceptable wound healing was observed in most of the patient with minimal morbidities. Surgical site demonstrated good healing score and clinically complete healing with good epithelialisation was achieved in all patients. Platelet rich fibrin membrane is an effective grafting biomaterial after excision of oral mucosal lesions as it enhances the rate of healing with minimal complications. We recommend further multicentre studies with higher sample size to explore its utility and clinical applications in different avenues of oral and head neck surgery.
Collapse
Affiliation(s)
| | - Vivek Kumar
- Department of ENT, PMCH, Ashok Rajpath, Patna, 800004 India
| | | | - Sushmita Tiwari
- Kiran Dental and Maxillofacial Surgery Centre Patna, Patna, India
| |
Collapse
|
14
|
Bahari N, Hashim N, Md Akim A, Maringgal B. Recent Advances in Honey-Based Nanoparticles for Wound Dressing: A Review. NANOMATERIALS 2022; 12:nano12152560. [PMID: 35893528 PMCID: PMC9332021 DOI: 10.3390/nano12152560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022]
Abstract
Wounds with impaired healing, including delayed acute injuries and chronic injuries, generally fail to progress through normal healing stages. A deeper understanding of the biochemical processes involved in chronic wound cures is necessary to correct the microenvironmental imbalances in the wound treatment designs of products. The therapeutic benefits of honey, particularly its antimicrobial activity, make it a viable option for wound treatment in a variety of situations. Integration with nanotechnology has opened up new possibilities not only for wound healing but also for other medicinal applications. In this review, recent advances in honey-based nanoparticles for wound healing are discussed. This also covers the mechanism of the action of nanoparticles in the wound healing process and perspectives on the challenges and future trends of using honey-based nanoparticles. The underlying mechanisms of wound healing using honey are believed to be attributed to hydrogen peroxide, high osmolality, acidity, non-peroxide components, and phenols. Therefore, incorporating honey into various wound dressings has become a major trend due to the increasing demand for combination dressings in the global wound dressing market because these dressings contain two or more types of chemical and physical properties to ensure optimal functionality. At the same time, their multiple features (low cost, biocompatibility, and swelling index) and diverse fabrication methods (electrospun fibres, hydrogels, etc.) make them a popular choice among researchers.
Collapse
Affiliation(s)
- Norfarina Bahari
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang 43400, Selangor, Malaysia
| | - Norhashila Hashim
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- SMART Farming Technology Research Centre (SFTRC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Bernard Maringgal
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia;
| |
Collapse
|
15
|
Muñoz-González PU, Lona-Ramos MC, Gutiérrez-Verdín LD, Luévano-Colmenero GH, Tenorio-Rocha F, García-Contreras R, González-García G, Rosillo-de la Torre A, Delgado J, Castellano LE, Mendoza-Novelo B. Gel dressing based on type I collagen modified with oligourethane and silica for skin wound healing. Biomed Mater 2022; 17. [PMID: 35483345 DOI: 10.1088/1748-605x/ac6b70] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/28/2022] [Indexed: 11/12/2022]
Abstract
Cutaneous wound healing is a complex process that leads the skin reparation with the formation of scar tissue that typically lacks skin appendages. This fact drives us to find new strategies to improve regenerative healing of the skin. This study outlines, the contribution of colloidal silica particles and oligourethane crosslinking on the collagen material properties and the effect on skin wound healing in rats. We characterized the gel properties that are key forin-situgelation, which is accomplished by the latent reactivity of oligourethane bearing blocked isocyanate groups to crosslink collagen while entrapping silica particles. The swelling/degradation behavior and the elastic modulus of the composite gel were consistent with the modification of collagen type I with oligourethane and silica. On the other hand, these gels were characterized as scaffold for murine macrophages and human stem cells. The application of a composite gel dressing on cutaneous wounds showed a histological appearance of the recovered skin as intact skin; featured by the epidermis, hair follicles, sebaceous glands, subcutaneous adipose layer, and dermis. The results suggest that the collagen-based composite dressings are promising modulators in skin wound healing to achieve a regenerative skin closure with satisfactory functional and aesthetic scars.
Collapse
Affiliation(s)
- Pedro U Muñoz-González
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México.,Natural and Exact Sciences Division, University of Guanajuato. Noria alta S/N, Col. Noria alta, C.P. 36050 Guanajuato, GTO, México
| | - María C Lona-Ramos
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| | - Luis D Gutiérrez-Verdín
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México.,Interdisciplinary Professional Engineering Unit Campus Guanajuato, National Polytechnic Institute. Mineral de Valenciana # 200, Col. Fraccionamiento industrial puerto interior, C.P. 36275 Silao de la Victoria, GTO, México
| | - Guadalupe H Luévano-Colmenero
- Interdisciplinary Professional Engineering Unit Campus Guanajuato, National Polytechnic Institute. Mineral de Valenciana # 200, Col. Fraccionamiento industrial puerto interior, C.P. 36275 Silao de la Victoria, GTO, México
| | - Fernando Tenorio-Rocha
- ENES León, National University Autonomous of Mexico, Boulevard UNAM #2011, Col. Predio el saucillo y el potrero, C.P. 37689 León, GTO, México
| | - René García-Contreras
- ENES León, National University Autonomous of Mexico, Boulevard UNAM #2011, Col. Predio el saucillo y el potrero, C.P. 37689 León, GTO, México
| | - Gerardo González-García
- Natural and Exact Sciences Division, University of Guanajuato. Noria alta S/N, Col. Noria alta, C.P. 36050 Guanajuato, GTO, México
| | - Argelia Rosillo-de la Torre
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| | - Jorge Delgado
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| | - Laura E Castellano
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| | - Birzabith Mendoza-Novelo
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| |
Collapse
|
16
|
Fabrication and evaluation of nanoencapsulated quercetin for wound healing application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04094-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Menegasso JF, Moraes NAC, Vásquez TP, Felipetti FA, Antonio RV, Dutra RC. Modified montmorillonite-bacterial cellulose composites as a novel dressing system for pressure injury. Int J Biol Macromol 2022; 194:402-411. [PMID: 34818530 DOI: 10.1016/j.ijbiomac.2021.11.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 02/03/2023]
Abstract
The main objective of this study was to investigate the effects of bacterial cellulose hydrogel (BCH) incorporated into montmorillonite (MMT) and its underlying mechanisms of action on a skin wound healing mouse model following pressure injury model. Komagataeibacter hansenii was used to obtain 5 cm in diameter and 0.8 mm of thickness circular bacterial cellulose (BC) sheets, which were incorporated with MMT by deposition ex-site using a 0.1% MMT suspension (100 rpm for 24 h at 28 °C). Afterward, Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) were used to characterize the bacterial cellulose hydrogel incorporated into montmorillonite (BCH-MMT). The pressure injury model was assessed by macroscopic and histological analysis in male Swiss mice. Both, BC and BCH-MMT, showed a typical FTIR spectrum of cellulosic substrates with pronounces bands around 3344, 2920, 1637, and 1041 cm-1 while microparticles of MMT dispersed uniformly throughout BC were revealed by SEM photographs. Animals treated with BCH-MMT showed significant healing of pressure ulcers as demonstrated by reduced area of redness and spontaneous hyperalgesia, lower amounts of in-site inflammatory cells (to the same level as the positive control Dersani®) and ultimately, complete epidermis re-epithelialization and tissue regeneration. Altogether, these findings suggest that a modified BCH-MMT film could serve as scaffolding for skin tissue engineering and potentially as a novel dressing material for pressure injury.
Collapse
Affiliation(s)
- Jaíne Ferrareis Menegasso
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Nayara Alves Celinca Moraes
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Tatiana Pineda Vásquez
- Laboratory of Biochemistry and Microbiology Applied to Biotechnological Processes, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Francielly Andressa Felipetti
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Regina Vasconcellos Antonio
- Laboratory of Biochemistry and Microbiology Applied to Biotechnological Processes, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
18
|
Ionescu OM, Iacob AT, Mignon A, Van Vlierberghe S, Baican M, Danu M, Ibănescu C, Simionescu N, Profire L. Design, preparation and in vitro characterization of biomimetic and bioactive chitosan/polyethylene oxide based nanofibers as wound dressings. Int J Biol Macromol 2021; 193:996-1008. [PMID: 34756969 DOI: 10.1016/j.ijbiomac.2021.10.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/03/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
Chitosan-based nanofibers (CS-NFs) are excellent artificial extracellular matrices (ECMs) due to the resemblance of CS with the glycosaminoglycans of the natural ECMs. Despite this excellent feature, the poor electrospinnability and mechanical properties of CS are responsible for important limitations in respect to its biomedical applications. To improve the CS's physico-chemical properties, new bioactive and biomimetic CS-NFs were formulated with polyethylene oxide (PEO), having incorporated different active components (ACs) with important beneficial effects for healing. Manuka honey (trophic and antimicrobial effects), propolis (antimicrobial effects), Calendula officinalis infusion (antioxidant effect, reepithelialization stimulating agent), insulin (trophic effect), and L-arginine (angiogenic effect) were selected as ACs. SEM morphology analysis revealed well-alignment, unidirectional arrays, with small diameters, no beads, and smooth surfaces for developed CS_PEO-ACs NFs. The developed NFs showed good biodegradability (NFs mats lost up to 60% of their initial weight in PBS), increased hemocompatibility (hemolytic index less than 4%), and a reduced cytotoxicity degree (cell viability degree more than 90%). In addition, significant antioxidant and antimicrobial effects were noted for the developed NFs which make them suitable for chronic wounds, due to the role of oxidative stress and infection risk in delaying normal wound healing. The most suitable for wound healing applications seems to be CS_PEO@P_C which showed an improved hemolysis index (2.92 ± 0.16%), is non-toxic (cell viability degree more than 97%), and has also significant radical scavenging effect (DPPH inhibition more than 65%). In addition, CS_PEO@P_C presents increased antimicrobial effects, more noticeably for Staphylococcus aureus strain, which is a key feature in preventing wound infection and delaying the healing process. It can be concluded that the developed CS/PEO-ACs NFs are very promising biomaterials for wound care, especially CS_PEO@P_C.
Collapse
Affiliation(s)
- Oana Maria Ionescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Arn Mignon
- Smart Polymeric Biomaterials, Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium
| | - Mihaela Baican
- Department of Pharmaceutical Physics, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Maricel Danu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iaşi, Mangeron Avenue 73, 700050 Iaşi, Romania; "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Constanța Ibănescu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iaşi, Mangeron Avenue 73, 700050 Iaşi, Romania; "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Natalia Simionescu
- "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; "Prof. Dr. Nicolae Oblu" Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| | - Lenuța Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania.
| |
Collapse
|
19
|
Algahtani MS, Ahmad MZ, Nourein IH, Albarqi HA, Alyami HS, Alyami MH, Alqahtani AA, Alasiri A, Algahtani TS, Mohammed AA, Ahmad J. Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and In Vivo Evaluation. Gels 2021; 7:gels7040213. [PMID: 34842698 PMCID: PMC8628781 DOI: 10.3390/gels7040213] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogels being a drug delivery system has great significance particularly for topical application in cutaneous open wound. Its specific physicochemical properties such as non-adhesiveness, moisture retention, exudate absorption, and gas permeability make them ideal as a drug delivery vehicle for wound healing application. Further, curcumin (a natural bioactive) was selected as a therapeutic agent to incorporate into the hydrogel system to design and develop nanogel pharmaceutical products for wound healing. Although, curcumin possesses remarkable anti-inflammatory, antioxidant, and anti-infective activity along with hastening the healing process by acting over the different stages of the wound healing process, but its poor biopharmaceutical (low aqueous solubility and skin penetrability) attributes hamper their therapeutic efficacy for skin applications. The current investigation aimed to develop the curcumin-loaded nanogel system and evaluated to check the improvement in the therapeutic efficacy of curcumin through a nanomedicine-based approach for wound healing activity in Wistar rats. The curcumin was enclosed inside the nanoemulsion system prepared through a high-energy ultrasonic emulsification technique at a minimum concentration of surfactant required to nanoemulsify the curcumin-loaded oil system (Labrafac PG) having droplet size 56.25 ± 0.69 nm with polydispersity index 0.05 ± 0.01 and negatively surface charge with zeta potential −20.26 ± 0.65 mV. It was observed that the impact of Smix (surfactant/co-surfactant mixture) ratio on droplet size of generated nanoemulsion is more pronounced at lower Smix concentration (25%) compared to the higher Smix concentration (30%). The optimized curcumin-loaded nanoemulsion was incorporated into a 0.5% Carbopol® 940 hydrogel system for topical application. The developed curcumin nanoemulgel exhibited thixotropic rheological behavior and a significant (p < 0.05) increase in skin penetrability characteristics compared to curcumin dispersed in conventional hydrogel system. The in vivo wound healing efficacy study and histological examination of healed tissue specimen further signify the role of the nanomedicine-based approach to improve the biopharmaceutical attributes of curcumin.
Collapse
Affiliation(s)
- Mohammed S. Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Ihab Hamed Nourein
- Department of Clinical Laboratory (Histopathology and Cytology), College of Applied Medical Sciences, Najran University, Najran 11001, Saudi Arabia;
| | - Hassan A. Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Hamad S. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Mohammad H. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Ali Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Thamer S. Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.); (H.A.A.); (H.S.A.); (M.H.A.); (A.A.A.); (A.A.); (T.S.A.); (A.A.M.)
- Correspondence: ; Tel.: +966-17542-8744
| |
Collapse
|
20
|
Horii T, Tsujimoto H, Hagiwara A, Isogai N, Sueyoshi Y, Oe Y, Kageyama S, Yoshida T, Kobayashi K, Minato H, Ueda J, Ichikawa H, Kawauchi A. Effects of Fiber Diameter and Spacing Size of an Artificial Scaffold on the In Vivo Cellular Response and Tissue Remodeling. ACS APPLIED BIO MATERIALS 2021; 4:6924-6936. [DOI: 10.1021/acsabm.1c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tsunehito Horii
- Department of Urology, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 610-0321, Japan
- Division of Medical Life System, Department of Life and Medical Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Hiroyuki Tsujimoto
- Department of Urology, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 610-0321, Japan
- Division of Medical Life System, Department of Life and Medical Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Akeo Hagiwara
- Department of Urology, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 610-0321, Japan
- Division of Medical Life System, Department of Life and Medical Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Noritaka Isogai
- Department of Plastic and Reconstructive Surgery, Kindai University, Osaka 589-0014, Japan
| | - Yu Sueyoshi
- Department of Plastic and Reconstructive Surgery, Kindai University, Osaka 589-0014, Japan
| | - Yasumitsu Oe
- Department of Gastroenterology, Kusatsu General Hospital, Yabase, Kusatsu, Shiga 525-8585, Japan
| | - Susumu Kageyama
- Department of Urology, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 610-0321, Japan
| | - Tetsuya Yoshida
- Department of Urology, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 610-0321, Japan
| | - Kenichi Kobayashi
- Department of Urology, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 610-0321, Japan
| | - Hiroshi Minato
- Department of Surgery, Yawata Chuo Hospital, Yawatagotanda, Yawata, Kyoto 614-8071, Japan
| | - Joe Ueda
- Department of Gastroenterology, Ueda Clinic, Kitanakaieshita, Takanosu, Akita 018-3331, Japan
| | - Hiroshi Ichikawa
- Division of Medical Life System, Department of Life and Medical Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 610-0321, Japan
| |
Collapse
|
21
|
Stejskalová A, Vankelecom H, Sourouni M, Ho MY, Götte M, Almquist BD. In vitro modelling of the physiological and diseased female reproductive system. Acta Biomater 2021; 132:288-312. [PMID: 33915315 DOI: 10.1016/j.actbio.2021.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
The maladies affecting the female reproductive tract (FRT) range from infections to endometriosis to carcinomas. In vitro models of the FRT play an increasingly important role in both basic and translational research, since the anatomy and physiology of the FRT of humans and other primates differ significantly from most of the commonly used animal models, including rodents. Using organoid culture to study the FRT has overcome the longstanding hurdle of maintaining epithelial phenotype in culture. Both ECM-derived and engineered materials have proved critical for maintaining a physiological phenotype of FRT cells in vitro by providing the requisite 3D environment, ligands, and architecture. Advanced materials have also enabled the systematic study of factors contributing to the invasive metastatic processes. Meanwhile, microphysiological devices make it possible to incorporate physical signals such as flow and cyclic exposure to hormones. Going forward, advanced materials compatible with hormones and optimised to support FRT-derived cells' long-term growth, will play a key role in addressing the diverse array of FRT pathologies and lead to impactful new treatments that support the improvement of women's health. STATEMENT OF SIGNIFICANCE: The female reproductive system is a crucial component of the female anatomy. In addition to enabling reproduction, it has wide ranging influence on tissues throughout the body via endocrine signalling. This intrinsic role in regulating normal female biology makes it susceptible to a variety of female-specific diseases. However, the complexity and human-specific features of the reproductive system make it challenging to study. This has spurred the development of human-relevant in vitro models for helping to decipher the complex issues that can affect the reproductive system, including endometriosis, infection, and cancer. In this Review, we cover the current state of in vitro models for studying the female reproductive system, and the key role biomaterials play in enabling their development.
Collapse
|
22
|
Caroni JG, de Almeida Mattos AV, Fernandes KR, Balogh DT, Renno ACM, Okura MH, Malpass ACG, Ferraresi C, Garcia LA, Sanfelice RC, Pavinatto A. Chitosan-based glycerol-plasticized membranes: bactericidal and fibroblast cellular growth properties. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03310-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Lin Z, Zhao C, Lei Z, Zhang Y, Huang R, Lin B, Dong Y, Zhang H, Li J, Li X. Epidermal stem cells maintain stemness via a biomimetic micro/nanofiber scaffold that promotes wound healing by activating the Notch signaling pathway. Stem Cell Res Ther 2021; 12:341. [PMID: 34112252 PMCID: PMC8193873 DOI: 10.1186/s13287-021-02418-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Epidermal stem cells (EpSCs) play a vital role in wound healing and skin renewal. Although biomaterial scaffolds have been used for transplantation of EpSCs in wound healing, the ex vivo differentiation of EpSCs limits their application. METHODS To inhibit the differentiation of EpSCs and maintain their stemness, we developed an electrospun polycaprolactone (PCL)+cellulose acetate (CA) micro/nanofiber for the culture and transplantation of EpSCs. The modulation effect on EpSCs of the scaffold and the underlying mechanism were explored. Liquid chromatography-tandem mass spectrometry for label-free quantitative proteomics was used to analyze proteomic changes in EpSCs cultured on scaffolds. In addition, the role of transplanted undifferentiated EpSCs in wound healing was also studied. RESULTS In this study, we found that the PCL+CA micro/nanofiber scaffold can inhibit the differentiation of EpSCs through YAP activation-mediated inhibition of the Notch signaling pathway. Significantly differentially expressed proteomics was observed in EpSCs cultured on scaffolds and IV collagen-coated culture dishes. Importantly, differential expression levels of ribosome-related proteins and metabolic pathway-related proteins were detected. Moreover, undifferentiated EpSCs transplanted with the PCL+CA scaffold can promote wound healing through the activation of the Notch signaling pathway in rat full-thickness skin defect models. CONCLUSIONS Overall, our study demonstrated the role of the PCL+CA micro-nanofiber scaffold in maintaining the stemness of EpSCs for wound healing, which can be helpful for the development of EpSCs maintaining scaffolds and exploration of interactions between biomaterials and EpSCs.
Collapse
Affiliation(s)
- Zhixiao Lin
- Department of Plastic Surgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, 710038, China
| | - Congying Zhao
- Department of Plastic Surgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, 710038, China
| | - Zhanjun Lei
- Department of Plastic Surgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, 710038, China
| | - Yuheng Zhang
- Department of Plastic Surgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, 710038, China
| | - Rong Huang
- Department of Plastic Surgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, 710038, China
| | - Bin Lin
- Department of Plastic Surgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, 710038, China
| | - Yuchen Dong
- Department of Plastic Surgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, 710038, China
| | - Hao Zhang
- Department of Plastic Surgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, 710038, China
| | - Jinqing Li
- Department of Plastic Surgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, 710038, China.
| | - Xueyong Li
- Department of Plastic Surgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
24
|
de Sousa GP, Fontenele MKA, da Rocha RB, Cardoso VS. Update of Topical Interventions for Healing Diabetic Ulcers-A Systematic Review. INT J LOW EXTR WOUND 2021; 22:222-234. [PMID: 33949242 DOI: 10.1177/15347346211013189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There are a variety of dressings for wound healing. For this reason, research can assist in the choice and proper use of the intervention. This current view of the effectiveness of dressing on diabetic foot ulcers (DFUs) in patients with type 2 diabetes mellitus. This study is a systematic review of clinical trials selected in 4 databases: PubMed, Scopus, Web of Science, and Cochrane. Studies without language restriction, published between 2009 and 2020, were included. The search resulted in the identification of 5651 articles, of which 58 met all inclusion criteria. Among these, 2 biomaterials (D-acellular dermal matrix and keratinocyte) and phenytoin were highlighted for achieving healing rates of 100% and 95.82% ± 2.22%, respectively. The literature presents several alternatives with different actions, cure rates, reduction rates, and varied cost benefits. The growth in the use of biomaterials for the treatment of DFU can be seen in this study.
Collapse
Affiliation(s)
- Geice P de Sousa
- Center of Medical Specialties, Parnaíba, Piauí, Brazil.,School of Physical Therapy, 67823Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Maria K A Fontenele
- Center of Medical Specialties, Parnaíba, Piauí, Brazil.,School of Physical Therapy, 67823Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Rebeca B da Rocha
- Center of Medical Specialties, Parnaíba, Piauí, Brazil.,Postgraduate Program in Biomedical Sciences, 67823Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Vinicius S Cardoso
- Center of Medical Specialties, Parnaíba, Piauí, Brazil.,School of Physical Therapy, 67823Federal University of Piauí, Parnaíba, Piauí, Brazil.,Postgraduate Program in Biomedical Sciences, 67823Federal University of Piauí, Parnaíba, Piauí, Brazil
| |
Collapse
|
25
|
Zhao M, Shi J, Cai W, Liu K, Shen K, Li Z, Wang Y, Hu D. Advances on Graphene-Based Nanomaterials and Mesenchymal Stem Cell-Derived Exosomes Applied in Cutaneous Wound Healing. Int J Nanomedicine 2021; 16:2647-2665. [PMID: 33854313 PMCID: PMC8040697 DOI: 10.2147/ijn.s300326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
Graphene is a new type of carbon nanomaterial discovered after fullerene and carbon nanotube. Due to the excellent biological properties such as biocompatibility, cell proliferation stimulating, and antibacterial properties, graphene and its derivatives have become emerging candidates for the development of novel cutaneous wound dressings and composite scaffolds. On the other hand, pre-clinical research on exosomes derived from mesenchymal stem cells (MSC-Exos) has been intensified for cell-free treatment in wound healing and cutaneous regeneration, via ameliorating the damaged microenvironment of the wound site. Here, we provide a comprehensive understanding of the latest studies and observations on the various effects of graphene-based nanomaterials (GBNs) and MSC-Exos during the cutaneous wound repair process, as well as the putative mechanisms thereof. In addition, we propose the possible forward directions of GBNs and MSC-Exos applications, expecting to promote the clinical transformation.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Kaituo Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Zichao Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| |
Collapse
|
26
|
Abstract
Numerous individuals suffer from impaired wound healing, such as chronic ulcers, severe burns and immune disorders, resulting in both public health and economic burdens. Skin is the first line of defense and the largest organ of the human body, however, an incomplete understanding of underlying cellular and molecular mechanisms of dermal repair leads to a lack of effective therapy for healing impaired wounds. There are strong clinical and social needs for improved therapeutic approaches to enhance endogenous tissue repair and regenerative capacity. The purpose of this review is to illuminate the cellular and molecular aspects of the healing process and highlight potential therapeutic strategies to accelerate translational research and the development of clinical therapies in dermal wounds.
Collapse
Affiliation(s)
- Fan Yang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiangjun Bai
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaojing Dai
- MD Anderson Cancer Center, The Advanced Technology Genomics Core, Houston, TX 77030, USA
| | - Yong Li
- Department of Orthopedic Surgery & Biomedical Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49008, USA
| |
Collapse
|
27
|
Wang H, Xu Z, Li Q, Wu J. Application of metal-based biomaterials in wound repair. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2021.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
28
|
Liang J, Cui L, Li J, Guan S, Zhang K, Li J. Aloe vera: A Medicinal Plant Used in Skin Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:455-474. [PMID: 33066720 DOI: 10.1089/ten.teb.2020.0236] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skin injury is a major problem threatening human physical and mental health, and how to promote wound healing has been the focus. Developing new wound dressings is an important strategy in skin regeneration. Aloe vera is a medicinal plant with a long history, complex constituents, and various pharmacological activities. Many studies have shown that A. vera plays an important role in promoting wound healing. Adding A. vera to wound dressing has become an ideal way. This review will describe the process of skin injury and wound healing and analyze the role of A. vera in wound healing. In addition, the types of wound dressing and the applications of A. vera in wound dressing will be discussed.
Collapse
Affiliation(s)
- Jiaheng Liang
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Longlong Cui
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Jiankang Li
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Shuaimeng Guan
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Jingan Li
- School of Materials Science and Engineering and Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
29
|
Oliva N, Almquist BD. Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2020; 161-162:22-41. [PMID: 32745497 DOI: 10.1016/j.addr.2020.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Wound repair is a fascinatingly complex process, with overlapping events in both space and time needed to pave a pathway to successful healing. This additional complexity presents challenges when developing methods for the controlled delivery of therapeutics for wound repair and tissue engineering. Unlike more traditional applications, where biomaterial-based depots increase drug solubility and stability in vivo, enhance circulation times, and improve retention in the target tissue, when aiming to modulate wound healing, there is a desire to enable localised, spatiotemporal control of multiple therapeutics. Furthermore, many therapeutics of interest in the context of wound repair are sensitive biologics (e.g. growth factors), which present unique challenges when designing biomaterial-based delivery systems. Here, we review the diverse approaches taken by the biomaterials community for creating stimuli-responsive materials that are beginning to enable spatiotemporal control over the delivery of therapeutics for applications in tissue engineering and regenerative medicine.
Collapse
|
30
|
Organic nanocomposite Band-Aid for chronic wound healing: a novel honey-based nanofibrous scaffold. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01247-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Wen Q, Mithieux SM, Weiss AS. Elastin Biomaterials in Dermal Repair. Trends Biotechnol 2020; 38:280-291. [DOI: 10.1016/j.tibtech.2019.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/28/2019] [Accepted: 08/27/2019] [Indexed: 02/05/2023]
|
32
|
Zhang L, Yaron JR, Tafoya AM, Wallace SE, Kilbourne J, Haydel S, Rege K, McFadden G, Lucas AR. A Virus-Derived Immune Modulating Serpin Accelerates Wound Closure with Improved Collagen Remodeling. J Clin Med 2019; 8:jcm8101626. [PMID: 31590323 PMCID: PMC6832452 DOI: 10.3390/jcm8101626] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/20/2023] Open
Abstract
Numerous treatments have been developed to promote wound healing based on current understandings of the healing process. Hemorrhaging, clotting, and associated inflammation regulate early wound healing. We investigated treatment with a virus-derived immune modulating serine protease inhibitor (SERPIN), Serp-1, which inhibits thrombolytic proteases and inflammation, in a mouse excisional wound model. Saline or recombinant Serp-1 were applied directly to wounds as single doses of 1 μg or 2 µg or as two 1 µg boluses. A chitosan-collagen hydrogel was also tested for Serp-1 delivery. Wound size was measured daily for 15 days and scarring assessed by Masson’s trichrome, Herovici’s staining, and immune cell dynamics and angiogenesis by immunohistochemistry. Serp-1 treatment significantly accelerated wound healing, but was blocked by urokinase-type plasminogen activator (uPAR) antibody. Repeated dosing at a lower concentration was more effective than single high-dose serpin. A single application of Serp-1-loaded chitosan-collagen hydrogel was as effective as repeated aqueous Serp-1 dosing. Serp-1 treatment of wounds increased arginase-1-expressing M2-polarized macrophage counts and periwound angiogenesis in the wound bed. Collagen staining also demonstrated that Serp-1 improves collagen maturation and organization at the wound site. Serp-1 has potential as a safe and effective immune modulating treatment that targets thrombolytic proteases, accelerating healing and reducing scar in deep cutaneous wounds.
Collapse
Affiliation(s)
- Liqiang Zhang
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Jordan R Yaron
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Amanda M Tafoya
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Sarah E Wallace
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Jacquelyn Kilbourne
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Shelley Haydel
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA.
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Alexandra R Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
33
|
Ahmad N, Ahmad R, Al-Qudaihi A, Alaseel SE, Fita IZ, Khalid MS, Pottoo FH, Bolla SR. A novel self-nanoemulsifying drug delivery system for curcumin used in the treatment of wound healing and inflammation. 3 Biotech 2019; 9:360. [PMID: 31544014 DOI: 10.1007/s13205-019-1885-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
The main objective of this study was to develop and evaluate self-nanoemulsifying drug delivery system (SNEDDS) of curcumin (Cur) to enhance their solubility as well as improve skin permeation; and evaluate wound healing potential of Cur via SNEDDS in comparison with standards pure eucalyptus oil-SNEDDS (Euc-SNEDDS), pure curcumin suspension (Cur-S), and standard fusidic acid followed by their anti-inflammatory action. Curcumin-loaded different SNEDDS formulations were formulated through aqueous phase titration method and the zones of SNEDDS were recognized by the construction of phase diagrams. Eucalyptus oil, Tween 80 (surfactant), and Transcutol HP (co-surfactant) were selected on the basis of their solubility and highest nanoemulsion region. Characterization of thermodynamic stability for Cur-loaded SNEDDS was evaluated by its globule size, zeta potential, polydispersity index, viscosity, % transmittance, refractive index, and surface morphology. Cur-SNEDDS (Cur-SN4) was optimized and selected on the basis of their excellent physicochemical parameters for in vivo activity. The particle size (59.56 ± 0.94 nm), % transmittance (99.08 ± 0.07%), and PDI (0.207 ± 0.011 were observed for optimized Cur-SNEDDS. TEM and SEM showed their smooth and spherical shape of the morphological characterization with zeta potential (- 21.41 ± 0.89), refractive index (1.341 ± 0.06), and viscosity (11.64 ± 1.26 cp) for optimized Cur-SNEDDS. Finally, optimized Cur-SNEDDS was used to enhance skin permeation with improvement in the solubility of Cur. However, optimized Cur-SNEDDS showed significant wound healing activity as compared with pure eucalyptus oil and Cur-S on topical application. Optimized Cur-SNEDDS showed healing of wound as compared to standard fusidic acid. Optimized Cur-SNEDDS exhibited no signs of inflammatory cells on the histopathological studies of treated rats which were recommended the safety and non-toxicity of Cur-SNEDDS. Newly developed Cur-SNEDDS could be successfully used to enhance Cur-solubility and skin permeation, as well as suggested a potential role of Cur-SNEDDS for better improvement of wound healing activity followed by anti-inflammatory action of Cur via topical application.
Collapse
Affiliation(s)
- Niyaz Ahmad
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
- 2Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Rizwan Ahmad
- 3Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Ali Al-Qudaihi
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Salman Edrees Alaseel
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Ibrahim Zuhair Fita
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Mohammed Saifuddin Khalid
- 4Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Faheem Hyder Pottoo
- 4Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Srinivasa Rao Bolla
- 5Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Sandri G, Rossi S, Bonferoni MC, Miele D, Faccendini A, Del Favero E, Di Cola E, Icaro Cornaglia A, Boselli C, Luxbacher T, Malavasi L, Cantu’ L, Ferrari F. Chitosan/glycosaminoglycan scaffolds for skin reparation. Carbohydr Polym 2019; 220:219-227. [DOI: 10.1016/j.carbpol.2019.05.069] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/11/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023]
|
35
|
García-Villén F, Faccendini A, Aguzzi C, Cerezo P, Bonferoni MC, Rossi S, Grisoli P, Ruggeri M, Ferrari F, Sandri G, Viseras C. Montmorillonite-norfloxacin nanocomposite intended for healing of infected wounds. Int J Nanomedicine 2019; 14:5051-5060. [PMID: 31371946 PMCID: PMC6628958 DOI: 10.2147/ijn.s208713] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Chronic cutaneous wounds represent a major issue in medical care and are often prone to infections. Purpose: The aim of this study was the design of a clay mineral-drug nanocomposite based on montmorillonite and norfloxacin (NF, antimicrobial drug) as a powder for cutaneous application, to enhance wound healing in infected skin lesions. Methods: The nanocomposite has been prepared by means of an intercalation solution procedure. Adsorption isotherm, solid-state characterization of the nanocomposite, drug loading capacity and its release have been performed. Moreover, cytocompatibility, in vitro fibroblast proliferation and antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus were assessed. Results: The clay drug adsorption isotherm demonstrates that the mechanism of NF intercalation into montmorillonite galleries is the adsorption as one single process, due to the charge-charge interaction between protonated NF and negatively charged montmorillonite edges in the interlayer space. Nanocomposite is biocompatible and it is characterized by antimicrobial activity greater than the free drug: this is due to its nanostructure and controlled drug release properties. Conclusion: Considering the results obtained, NF-montmorillonite nanocomposite seems a promising tool to treat infected skin lesions or skin wounds prone to infection, as chronic ulcers (diabetic foot, venous leg ulcers) and burns.
Collapse
Affiliation(s)
- Fatima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
| | - Angela Faccendini
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia27100, Italy
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
| | - Pilar Cerezo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
| | | | - Silvia Rossi
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia27100, Italy
| | - Pietro Grisoli
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia27100, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia27100, Italy
| | - Franca Ferrari
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia27100, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia27100, Italy
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
| |
Collapse
|
36
|
Stejskalová A, Oliva N, England FJ, Almquist BD. Biologically Inspired, Cell-Selective Release of Aptamer-Trapped Growth Factors by Traction Forces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806380. [PMID: 30614086 PMCID: PMC6375388 DOI: 10.1002/adma.201806380] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/29/2018] [Indexed: 05/05/2023]
Abstract
Biomaterial scaffolds that are designed to incorporate dynamic, spatiotemporal information have the potential to interface with cells and tissues to direct behavior. Here, a bioinspired, programmable nanotechnology-based platform is described that harnesses cellular traction forces to activate growth factors, eliminating the need for exogenous triggers (e.g., light), spatially diffuse triggers (e.g., enzymes, pH changes), or passive activation (e.g., hydrolysis). Flexible aptamer technology is used to create modular, synthetic mimics of the Large Latent Complex that restrains transforming growth factor-β1 (TGF-β1). This flexible nanotechnology-based approach is shown here to work with both platelet-derived growth factor-BB (PDGF-BB) and vascular endothelial growth factor (VEGF-165), integrate with glass coverslips, polyacrylamide gels, and collagen scaffolds, enable activation by various cells (e.g., primary human dermal fibroblasts, HMEC-1 endothelial cells), and unlock fundamentally new capabilities such as selective activation of growth factors by differing cell types (e.g., activation by smooth muscle cells but not fibroblasts) within clinically relevant collagen sponges.
Collapse
Affiliation(s)
- Anna Stejskalová
- Department of Bioengineering, Imperial College London,
London SW7 2AZ, UK
| | - Nuria Oliva
- Department of Bioengineering, Imperial College London,
London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London,
London SW7 2AZ, UK; Grup d’Enginyeria de Materials (GEMAT), Institut
Químic de Sarri, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017,
Spain
| | - Frances J. England
- Department of Bioengineering, Imperial College London,
London SW7 2AZ, UK
| | | |
Collapse
|
37
|
Affiliation(s)
- Ann Marie Schmidt
- From the Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine.
| |
Collapse
|
38
|
Ahmad N, Ahmad R, Al-Qudaihi A, Alaseel SE, Fita IZ, Khalid MS, Pottoo FH. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Adv 2019; 9:20192-20206. [PMID: 35514703 PMCID: PMC9065541 DOI: 10.1039/c9ra03102b] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/22/2020] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to develop and evaluate a curcumin (Cur) nanoemulsion (NE) and enhance transdermal drug delivery. The comparative effects of Cur-NE were evaluated in terms of wound healing and anti-inflammatory action. Clove oil (oil), Tween-80 (surfactant), and PEG-400 (co-surfactant) were selected on the basis of their solubility and maximum nanoemulsion region. An aqueous micro-titration method with high-energy ultrasonication was used for the preparation of Cur-NE. This method was optimized to find the best NE, followed by a five-factor, three-level, central composite design. % oil, % Smix, ultrasonication time (min), ultrasonication intensity (%), and temperature (°C) were selected and optimized as independent variables. The optimized NE had parameters of 5.0% oil, 10% Smix, ultrasonication time (10 min), 40% ultrasonication intensity and 50 °C temperature, which were applied as independent and dependent variables. On the basis of experimental data of the dependent variables, we calculated a hydrodynamic diameter of 93.64 ± 6.48 nm, transmittance of 98.64 ± 0.37%, and PDI of 0.263 ± 0.021. TEM and SEM results revealed the smooth and spherical shape of the particles in the NE, with a zeta potential of −11.67 ± 0.11, refractive index of 1.71 ± 0.034, viscosity of 37 ± 7 cp, pH of 7.4 ± 0.07, and drug content of 98.11 ± 0.16% for the optimized Cur-NE. Cur-NE optimization with clove oil, Tween-80, and PEG-400 might be useful for enhancing the skin permeation of Cur. In conclusion, Cur-NE played a significant role in wound healing and exhibited anti-inflammatory effects, demonstrating its potential as a nanoformulation for safe and nontoxic transdermal delivery. The aim of this study was to develop and evaluate a curcumin (Cur) nanoemulsion (NE) and enhance transdermal drug delivery.![]()
Collapse
Affiliation(s)
- Niyaz Ahmad
- Department of Pharmaceutics
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam
- Kingdom of Saudi Arabia-31441
| | - Rizwan Ahmad
- Department of Natural Products and Alternative Medicine
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam
- Kingdom of Saudi Arabia
| | - Ali Al-Qudaihi
- Department of Pharmaceutics
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam
- Kingdom of Saudi Arabia-31441
| | - Salman Edrees Alaseel
- Department of Pharmaceutics
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam
- Kingdom of Saudi Arabia-31441
| | - Ibrahim Zuhair Fita
- Department of Pharmaceutics
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam
- Kingdom of Saudi Arabia-31441
| | - Mohammed Saifuddin Khalid
- Department of Pharmacology
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam
- Kingdom of Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam
- Kingdom of Saudi Arabia
| |
Collapse
|
39
|
Zhao X, Song W, Chen Y, Liu S, Ren L. Collagen-based materials combined with microRNA for repairing cornea wounds and inhibiting scar formation. Biomater Sci 2019; 7:51-62. [DOI: 10.1039/c8bm01054d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AuNP/miR-133b can be released from cornea regeneration materials and entered into stromal cells to inhibit cornea scar formation.
Collapse
Affiliation(s)
- Xuan Zhao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Wenjing Song
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Yawei Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction
- Guangzhou 510006
- P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education
- South China University of Technology
| | - Sa Liu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Li Ren
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| |
Collapse
|
40
|
Chen X, Liu Y, Lin A, Huang N, Long L, Gang Y, Liu J. Folic acid-modified mesoporous silica nanoparticles with pH-responsiveness loaded with Amp for an enhanced effect against anti-drug-resistant bacteria by overcoming efflux pump systems. Biomater Sci 2018; 6:1923-1935. [PMID: 29850668 DOI: 10.1039/c8bm00262b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efflux pump system-mediated bacterial multidrug resistance is one of the main causes of antibiotic failure. Therefore, it is necessary to develop a novel nanocarrier that could effectively inhibit drug-resistant bacteria by increasing the intake and retention time of antibiotics. Herein, we constructed a pH-responsive nanocarrier (MSN@FA@CaP@FA) with double folic acid (FA) and calcium phosphate (CaP) covered on the surface of mesoporous silica (MSN) by electrostatic attraction and biomineralization, respectively. Afterward, loading the nanocomposites with ampicillin (Amp) effectively increased the uptake and reduced the efflux effect in Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by the specific targeting of FA. Moreover, Amp-MSN@FA@CaP@FA could specifically transport Amp to the bacterial infection site. Similarly, antibacterial experiments revealed that the Amp-MSN@FA@CaP@FA could significantly enhance the activity of Amp for inhibiting drug-resistant bacteria, without producing drug resistance. Additionally, the Amp-MSN@FA@CaP@FA could reduce the content of protein and inhibit the protein activity in drug-resistant bacteria, so that it destroyed the bacterial membrane and led to the bacteria death. In vivo antibacterial experiments showed that the Amp-MSN@FA@CaP@FA could effectively reduce the mortality of drug-resistant E. coli infection and promote wound healing of drug-resistant S. aureus infection. In summary, Amp-MSN@FA@CaP@FA has a potential for application in sustained-release nanostructures and to inhibit drug-resistant bacteria.
Collapse
Affiliation(s)
- Xu Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Wöltje M, Böbel M, Bienert M, Neuss S, Aibibu D, Cherif C. Functionalized silk fibers from transgenic silkworms for wound healing applications: Surface presentation of bioactive epidermal growth factor. J Biomed Mater Res A 2018; 106:2643-2652. [DOI: 10.1002/jbm.a.36458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/18/2018] [Accepted: 05/11/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Michael Wöltje
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, Hohe Str. 6 Dresden 01069 Germany
| | - Melanie Böbel
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, Hohe Str. 6 Dresden 01069 Germany
| | - Michaela Bienert
- Institute of Pathology & Helmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University, Pauwelsstr. 30 Aachen 52074 Germany
| | - Sabine Neuss
- Institute of Pathology & Helmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University, Pauwelsstr. 30 Aachen 52074 Germany
| | - Dilibaier Aibibu
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, Hohe Str. 6 Dresden 01069 Germany
| | - Chokri Cherif
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, Hohe Str. 6 Dresden 01069 Germany
| |
Collapse
|
42
|
Tavakoli J, Mirzaei S, Tang Y. Cost-Effective Double-Layer Hydrogel Composites for Wound Dressing Applications. Polymers (Basel) 2018; 10:E305. [PMID: 30966340 PMCID: PMC6415111 DOI: 10.3390/polym10030305] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/13/2022] Open
Abstract
Although poly vinyl alcohol-poly acrylic acid (PVA-PAA) composites have been widely used for biomedical applications, their incorporation into double-layer assembled thin films has been limited because the interfacial binding materials negatively influence the water uptake capacity of PVA. To minimize the effect of interfacial binding, a simple method for the fabrication of a double-layered PVA-PAA hydrogel was introduced, and its biomedical properties were evaluated in this study. Our results revealed that the addition of PAA layers on the surface of PVA significantly increased the swelling properties. Compared to PVA, the equilibrium swelling ratio of the PVA-PAA hydrogel increased (p = 0.035) and its water vapour permeability significantly decreased (p = 0.04). Statistical analysis revealed that an increase in pH value from 7 to 10 as well as the addition of PAA at pH = 7 significantly increased the adhesion force (p < 0.04). The mechanical properties-including ultimate tensile strength, modulus, and elongation at break-remained approximately untouched compared to PVA. A significant increase in biocompatibility was found after day 7 (p = 0.016). A higher release rate for tetracycline was found at pH = 8 compared to neutral pH.
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia.
- The Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia.
| | - Samaneh Mirzaei
- Stem Cell Technology Research Centre (STRC), 199777555 Tehran, Iran.
| | - Youhong Tang
- Centre for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia.
- The Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia.
| |
Collapse
|
43
|
Saporito F, Sandri G, Bonferoni MC, Rossi S, Boselli C, Icaro Cornaglia A, Mannucci B, Grisoli P, Vigani B, Ferrari F. Essential oil-loaded lipid nanoparticles for wound healing. Int J Nanomedicine 2017; 13:175-186. [PMID: 29343956 PMCID: PMC5747963 DOI: 10.2147/ijn.s152529] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical–chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus, the other of Streptococcus pyogenes. Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical–chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion.
Collapse
Affiliation(s)
| | | | | | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Pavia
| | | | | | | | | | | | | |
Collapse
|