1
|
Xu Y, Sui X, Li J, Zhang L, Wang P, Liu Y, Shi H, Zhang Y. Early-life exposure to per- and polyfluoroalkyl substances: Analysis of levels, health risk and binding abilities to transport proteins. ECO-ENVIRONMENT & HEALTH 2024; 3:308-316. [PMID: 39258237 PMCID: PMC11385757 DOI: 10.1016/j.eehl.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/05/2024] [Accepted: 04/14/2024] [Indexed: 09/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) can pass through the placenta and adversely affect fetal development. However, there is a lack of comparison of legacy and emerging PFAS levels among different biosamples in pregnant women and their offspring. This study, based on the Shanghai Maternal-Child Pairs Cohort, analyzed the concentrations of 16 PFAS in the maternal serum, cord serum, and breast milk samples from 1,076 mother-child pairs. The placental and breastfeeding transfer efficiencies of PFAS were determined in maternal-cord and maternal-milk pairs, respectively. The binding affinities of PFAS to five transporters were simulated using molecular docking. The results suggested that PFAS were frequently detected in different biosamples. The median concentration of perfluorooctane sulfonate (PFOS) was the highest at 8.85 ng/mL, followed by perfluorooctanoic acid (PFOA) at 7.13 ng/mL and 6:2 chlorinated polyfluorinated ether sulfonate at 5.59 ng/mL in maternal serum. The median concentrations of PFOA were highest in cord serum (4.23 ng/mL) and breast milk (1.08 ng/mL). PFAS demonstrated higher placental than breastfeeding transfer efficiencies. The transfer efficiencies and the binding affinities of most PFAS to proteins exhibited alkyl chain length-dependent patterns. Furthermore, we comprehensively assessed the estimated daily intakes (EDIs) of PFAS in breastfeeding infants of different age groups and used the hazard quotient (HQ) to characterize the potential health risk. EDIs decreased with infant age, and PFOS had higher HQs than PFOA. These findings highlight the significance of considering PFAS exposure, transfer mechanism, and health risks resulting from breast milk intake in early life.
Collapse
Affiliation(s)
- Yaqi Xu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xinyao Sui
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Jinhong Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yang Liu
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Koval AM, Jenness GR, Shukla MK. Structural investigation of the complexation between vitamin B12 and per- and polyfluoroalkyl substances: Insights into degradation using density functional theory. CHEMOSPHERE 2024; 364:143213. [PMID: 39214410 DOI: 10.1016/j.chemosphere.2024.143213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Environmental remediation of per- and polyfluoroalkyl substances (PFAS) has become a significant research topic in recent years due to the fact that these materials are omnipresent, resistant to degradation and thus environmentally persistent. Unfortunately, they have also been shown to cause health concerns. PFAS are widely used in industrial applications and consumer products. Vitamin B12 (B12) has been identified as being catalytically active towards a variety of halogenated compounds such as PFAS. It has also been shown to be effective when using sulfide as a reducing agent for B12. This is promising as sulfide is readily available in the environment. However, there are many unknowns with respect to PFAS interactions with B12. These include the reaction mechanism and B12's specificity for PFAS with certain functionalization(s). In order to understand the specificity of B12 towards branched PFAS, we examined the atomistic interactions between B12 and eight different PFAS molecules using Density Functional Theory (B3LYP/cc-pVDZ). The PFAS test set included linear PFAS and their branched analogs, carboxylic acid and sulfonic acid headgroups, and aromatic and non-aromatic cyclic structures. Conformational analyses were carried out to determine the lowest energy configurations. This analysis showed that small chain PFAS such as perfluorobutanoic acid interact with the cobalt center of B12. Bulkier PFAS prefer to interact with the amine and carbonyl groups on the sidechains of the B12 ring system. Furthermore, computed complexation energies determined that, in general, branched PFAS (e.g. perfluoro-5-methylheptane sulfonic acid) interact more strongly than linear molecules (e.g. perfluorooctanesulfonic acid). Our results indicate that it may be possible to alter the interactions between B12 and PFAS by synthetically modifying the sidechains of the ring structure.
Collapse
Affiliation(s)
- Ashlyn M Koval
- Simetri, Inc., 7005 University Blvd, Winter Park, FL, 32792, United States
| | - Glen R Jenness
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, United States
| | - Manoj K Shukla
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, United States.
| |
Collapse
|
3
|
Coperchini F, Teliti M, Greco A, Croce L, Rotondi M. Per-polyfluoroalkyl substances (PFAS) as thyroid disruptors: is there evidence for multi-transgenerational effects? Expert Rev Endocrinol Metab 2024; 19:307-315. [PMID: 38764236 DOI: 10.1080/17446651.2024.2351885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION The environmental spread of pollutants has led to a persistent exposure of living beings to multiple chemicals, by now become ubiquitous in the surrounding environment. Environmental exposure to these substances has been reported to cause multi- and/or transgenerational health effects. Per- and Polyfluorinated Substances (PFAS) raise great concern, given their known effects both as endocrine disruptors and potential carcinogens. The multi/trans-generational effects of different endocrine disruptors have been investigated by several studies, and harmful effects observed also for PFAS. AREAS COVERED This review examines the current data on the multi-trans-generational effects of PFAS, with a focus on their impact on the thyroid axis. The aim is to determine if there is evidence of potential multi-trans-generational effects of PFAS on the thyroid and/or if more research is needed. EXPERT OPINION PFAS exposure impacts thyroid homeostasis and can cross the placental barrier. In addition PFAS have shown multi-transgenerational effects in laboratory experiences and animal models, but thyroid disruptive effects of PFAS were also investigated only in a small number of these studies. Efforts are needed to study the adverse effects of PFAS, as not all PFAS are regulated and removal strategies are still being developed.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia, Italy
| |
Collapse
|
4
|
Soerensen AL, Benskin JP, Faxneld S. Four Decades of Spatiotemporal Variability of Per- and Polyfluoroalkyl Substances (PFASs) in the Baltic Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10806-10816. [PMID: 38829301 PMCID: PMC11192033 DOI: 10.1021/acs.est.4c03031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Temporal and spatial variability of per- and polyfluoroalkyl substances (PFASs) in herring, cod, eelpout, and guillemot covering four decades and more than 1000 km in the Baltic Sea was investigated to evaluate the effect of PFAS regulations and residence times of PFASs. Overall, PFAS concentrations responded rapidly to recent regulations but with some notable basin- and homologue-specific variability. The well-ventilated Kattegat and Bothnian Bay showed a faster log-linear decrease for most PFASs than the Baltic Proper, which lacks a significant loss mechanism. PFOS and FOSA, for example, have decreased with 0-7% y-1 in the Baltic Proper and 6-16% y-1 in other basins. PFNA and partly PFOA are exceptions and continue to show stagnant or increasing concentrations. Further, we found that Bothnian Bay herring contained the highest concentrations of >C12 perfluoroalkyl carboxylic acids (PFCAs), likely from rivers with high loads of dissolved organic carbon. In the Kattegat, low PFAS concentrations, but a high FOSA fraction, could be due to influence from the North Sea inflow below the halocline and possibly a local source of FOSA and/or isomer-specific biotransformation. This study represents the most comprehensive spatial and temporal investigation of PFASs in Baltic wildlife while providing new insights into cycling of PFASs within the Baltic Sea ecosystem.
Collapse
Affiliation(s)
- Anne L. Soerensen
- Department
of Environmental Monitoring and Research, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| | - Jonathan P. Benskin
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Suzanne Faxneld
- Department
of Environmental Monitoring and Research, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| |
Collapse
|
5
|
Yadav A, Vuković L, Narayan M. An Atomic and Molecular Insight into How PFOA Reduces α-Helicity, Compromises Substrate Binding, and Creates Binding Pockets in a Model Globular Protein. J Am Chem Soc 2024; 146:12766-12777. [PMID: 38656109 DOI: 10.1021/jacs.4c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose significant health risks due to their widespread presence in various environmental and biological matrices. However, the molecular-level mechanisms underlying the interactions between PFAS and biological constituents, including proteins, carbohydrates, lipids, and DNA, remain poorly understood. Here, we investigate the interactions between a legacy PFAS, viz. perfluorooctanoic acid (PFOA), and the milk protein β-lactoglobulin (BLG) obtained using a combination of experimental and computational techniques. Circular dichroism studies reveal that PFOA perturbs the secondary structure of BLG, by driving a dose-dependent loss of α-helicity and alterations in its β-sheet content. Furthermore, exposure of the protein to PFOA attenuates the on-rate constant for the binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid (ANS), suggesting potential functional impairment of BLG by PFOA. Steered molecular dynamics and umbrella sampling calculations reveal that PFOA binding leads to the formation of an energetically favorable novel binding pocket within the protein, when residues 129-142 are steered to unfold from their initial α-helical structure, wherein a host of intermolecular interactions between PFOA and BLG's residues serve to insert the PFOA into the region between the unfolded helix and beta-sheets. Together, the data provide a novel understanding of the atomic and molecular mechanism(s) by which PFAS modulates structure and function in a globular protein, leading to a beginning of our understanding of altered biological outcomes.
Collapse
Affiliation(s)
- Anju Yadav
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Lela Vuković
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Bioinformatics Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
6
|
Madrigal JM, Troisi R, Surcel HM, Öhman H, Kivelä J, Kiviranta H, Rantakokko P, Koponen J, Medgyesi DN, Kitahara CM, McGlynn KA, Sampson J, Albert PS, Ward MH, Jones RR. Prediagnostic serum concentrations of per- and polyfluoroalkyl substances and risk of papillary thyroid cancer in the Finnish Maternity Cohort. Int J Cancer 2024; 154:979-991. [PMID: 37902275 PMCID: PMC11286200 DOI: 10.1002/ijc.34776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
Human exposure to per- and polyfluoroalkyl substances (PFAS) occurs globally through contaminated food, dust, and drinking water. Studies of PFAS and thyroid cancer have been limited. We conducted a nested case-control study of prediagnostic serum levels of 19 PFAS and papillary thyroid cancer (400 cases, 400 controls) in the Finnish Maternity Cohort (pregnancies 1986-2010; follow-up through 2016), individually matched on sample year and age. We used conditional logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for log2 transformed and categorical exposures, overall and stratified by calendar period, birth cohort, and median age at diagnosis. We adjusted for other PFAS with Spearman correlation rho = 0.3-0.6. Seven PFAS, including perfluoroctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), N-ethyl-perfluorooctane sulfonamidoacetic acid (EtFOSAA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorohexane sulfonic acid (PFHxS) were detected in >50% of women. These PFAS were not associated with risk of thyroid cancer, except for PFHxS, which was inversely associated (OR log2 = 0.82, 95% CI: 0.70-0.97). We observed suggestive but imprecise increased risks associated with PFOA, PFOS, and EtFOSAA for those diagnosed at ages <40 years, whereas associations were null or inverse among those diagnosed at 40+ years (P-interaction: .02, .08, .13, respectively). There was little evidence of other interactions. These results show no clear association between PFAS and papillary thyroid cancer risk. Future work would benefit from evaluation of these relationships among those with higher exposure levels and during periods of early development when the thyroid gland may be more susceptible to environmental harms.
Collapse
Affiliation(s)
- Jessica M. Madrigal
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
| | | | - Heljä-Marja Surcel
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Hanna Öhman
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Juha Kivelä
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Hannu Kiviranta
- Finnish Institute for Health and Welfare /Environmental Health Unit, Kuopio, Finland
| | - Panu Rantakokko
- Finnish Institute for Health and Welfare /Environmental Health Unit, Kuopio, Finland
| | - Jani Koponen
- Finnish Institute for Health and Welfare /Environmental Health Unit, Kuopio, Finland
| | - Danielle N. Medgyesi
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | | | | | | | - Mary H. Ward
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
| | - Rena R. Jones
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
| |
Collapse
|
7
|
Wang H, Zhang H, Hu S, Xu T, Yang Y, Cao M, Wei S, Song Y, Han J, Yin D. Insight into the differential toxicity of PFOA and PFBA based on a 3D-cultured MDA-MB-231 cell model. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133499. [PMID: 38219595 DOI: 10.1016/j.jhazmat.2024.133499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/26/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a category of high-concerned emerging contaminants which are suspected to correlate with various human adverse health outcomes including tumors. It is also a question whether short-chain PFASs are qualified alternatives under the regulation of long-chain PFASs. In this study, a three-dimensional (3D) culture system based on Gelatin methacrylate (GelMA) hydrogel matrix was used to investigate the impacts of 120-h perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA) exposure of MDA-MB-231 cells. The results showed that PFOA exposure promoted the proliferation, migration, and invasion of MDA-MB-231 cells in an environmentally relevant concentration range (0.1 to 10 μM), exhibiting a clear malignant-promoting risk. In contrast, PFBA only showed a trend to induce non-invasive cell migration. Hippo/YAP signaling pathway was identified as the contributor to the differences between the two PFASs. PFOA but PFBA reduced YAP phosphorylation and increased the nuclear content of YAP, which further facilitated abundant key factors of epithelial-mesenchymal transition (EMT) process. Our results provided a new idea for the carcinogenicity of PFOA using a 3D-based paradigm. Although the effects by PFBA were much milder than PFOA in the current test duration, the cell model suitable for longer exposure is still necessary to better assess the safety of alternative short-chain PFASs.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongchang Zhang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yiheng Yang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yiqun Song
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Han
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
8
|
Zhang X, Zhou X, Chen H, Gao X, Zhou Y, Lee HK, Huang Z. Changes in Concentrations of Polyfluoroalkyl Substances in Human Milk Over Lactation Time and Effects of Maternal Exposure via Analysis of Matched Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4115-4126. [PMID: 38390687 DOI: 10.1021/acs.est.3c09896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are potentially related to many adverse health outcomes and could be transferred from maternal blood to human milk, which is an important exposure source for infants during a long-term period. In this study, the maternal blood of 76 women after delivery and their matched human milk samples obtained at 0.5, 1, and 3 months were analyzed by solid-phase extraction method with metal-organic framework/polymer hybrid nanofibers as the sorbents and ultrahigh-performance liquid chromatography-negative electrospray ionization mass spectrometric for quantitative analysis of 31 PFAS. The perfluorooctanoic acid, perfluorooctane sulfonate, and N-methyl perfluorooctane sulfonamido acetic acid (N-MeFOSAA) contributed to more than approximately 50% of the total PFAS concentrations in blood and human milk, while N-MeFOSAA (median: 0.274 ng/mL) was the highest PFAS in human milk at 3 months. The transfer efficiencies for PFAS from maternal blood to human milk at 0.5 months were generally lower, with medians ranging from 0.20% to 16.9%. The number of PFAS species detected in human milk increased as the lactation time went on from 0.5 to 3 months, and the concentrations of 10 PFAS displayed an increasing trend as the prolongation of lactation time (p < 0.05).
Collapse
Affiliation(s)
- Xin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xingyan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Huijun Chen
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Xinyi Gao
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhenzhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| |
Collapse
|
9
|
Oh J, Shin HM, Kannan K, Calafat AM, Schmidt RJ, Hertz-Picciotto I, Bennett DH. Per- and Polyfluoroalkyl Substances (PFAS) in Serum of 2 to 5 year-Old Children: Temporal Trends, Determinants, and Correlations with Maternal PFAS Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 38335968 PMCID: PMC10882966 DOI: 10.1021/acs.est.3c08928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Young children may experience higher per- and polyfluoroalkyl substances (PFAS) exposure than adults due to breastfeeding, higher dust ingestion rates, and frequent hand-to-mouth activities. We explored temporal trends and determinants of child serum PFAS concentrations and their correlations with paired maternal PFAS concentrations. From 2009 to 2017, we collected one blood sample from each of 541 children aged 2-5 years participating in the Childhood Autism Risks from Genetics and Environment (CHARGE) study and quantified 14 PFAS in serum. For nine frequently detected PFAS (>65% of samples), we performed multiple regression adjusting for potential determinants to estimate mean percent concentration changes. For a subset of 327 children, we also quantified nine PFAS in their mother's serum collected at the same visit and computed Spearman correlation coefficients (rsp) between maternal and child PFAS concentrations. During 2009-2017, child serum concentrations of all nine PFAS decreased by 6-25% annually. Several PFAS concentrations were higher among non-Hispanic white children and those with highly educated parents. Most maternal and child PFAS concentrations were moderately correlated (rsp = 0.13-0.39), with a strong correlation for N-methyl perfluorooctane sulfonamido acetic acid (rsp = 0.68). Breastfeeding duration appeared to contribute to higher child and lower maternal PFAS concentrations, resulting in relatively weak correlations between maternal and child PFAS concentrations for samples collected in early childhood. Considering that more than half of our study children had neurodevelopmental concerns, the generalizability of our findings might be limited.
Collapse
Affiliation(s)
- Jiwon Oh
- Department
of Public Health Sciences, University of
California Davis, Davis, California 95616, United States
| | - Hyeong-Moo Shin
- Department
of Environmental Science, Baylor University, Waco, Texas 76798, United States
| | - Kurunthachalam Kannan
- Division
of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York 12201, United States
- Department
of Environmental Health Sciences, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Antonia M. Calafat
- National
Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Rebecca J. Schmidt
- Department
of Public Health Sciences, University of
California Davis, Davis, California 95616, United States
- University
of California Davis MIND (Medical Investigations of Neurodevelopmental
Disorders) Institute, Sacramento, California 98517, United States
| | - Irva Hertz-Picciotto
- Department
of Public Health Sciences, University of
California Davis, Davis, California 95616, United States
- University
of California Davis MIND (Medical Investigations of Neurodevelopmental
Disorders) Institute, Sacramento, California 98517, United States
| | - Deborah H. Bennett
- Department
of Public Health Sciences, University of
California Davis, Davis, California 95616, United States
| |
Collapse
|
10
|
Zheng G, Eick SM, Salamova A. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15782-15793. [PMID: 37818968 PMCID: PMC10603771 DOI: 10.1021/acs.est.2c06715] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) make up a large group of fluorinated organic compounds extensively used in consumer products and industrial applications. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), the two perfluoroalkyl acids (PFAAs) with 8 carbons in their structure, have been phased out on a global scale because of their high environmental persistence and toxicity. As a result, shorter-chain PFAAs with less than 8 carbons in their structure are being used as their replacements and are now widely detected in the environment, raising concerns about their effects on human health. In this study, 47 PFAAs and their precursors were measured in paired samples of dust and drinking water collected from residential homes in Indiana, United States, and in blood and urine samples collected from the residents of these homes. Ultrashort- (with 2 or 3 carbons [C2-C3]) and short-chain (with 4-7 carbons [C4-C7]) PFAAs were the most abundant in all four matrices and constituted on average 69-100% of the total PFAA concentrations. Specifically, trifluoroacetic acid (TFA, C2) and perfluoropropanoic acid (PFPrA, C3) were the predominant PFAAs in most of the samples. Significant positive correlations (n = 81; r = 0.23-0.42; p < 0.05) were found between TFA, perfluorobutanoic acid (PFBA, C4), and perfluoroheptanoic acid (PFHpA, C7) concentrations in dust or water and those in serum, suggesting dust ingestion and/or drinking water consumption as important exposure pathways for these compounds. This study demonstrates that ultrashort- and short-chain PFAAs are now abundant in the indoor environment and in humans and warrants further research on potential adverse health effects of these exposures.
Collapse
Affiliation(s)
- Guomao Zheng
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Stephanie M. Eick
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
- Department
of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Amina Salamova
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Nyström-Kandola J, Ahrens L, Glynn A, Johanson G, Benskin JP, Gyllenhammar I, Lignell S, Vogs C. Low concentrations of perfluoroalkyl acids (PFAAs) in municipal drinking water associated with serum PFAA concentrations in Swedish adolescents. ENVIRONMENT INTERNATIONAL 2023; 180:108166. [PMID: 37708812 DOI: 10.1016/j.envint.2023.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
While highly contaminated drinking water (DW) is a major source of exposure to perfluoroalkyl acids (PFAAs), the contribution of low-level contaminated DW (i.e. < 10 ng/L of individual PFAAs) to PFAA body burdens has rarely been studied. To address this knowledge gap, we evaluated the association between concentrations of perflurooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS) and perfluorooctane sulfonic acid (PFOS), and their sum (∑4PFAAs) in DW and serum in Swedish adolescents using weighted least squares regression. We paired serum PFAA concentrations in adolescents (age 10-21 years, n = 790) from the dietary survey Riksmaten Adolescents 2016-17 (RMA) with mean PFAA concentrations in water samples collected in 2018 from waterworks (n = 45) supplying DW to the participant residential and school addresses. The median concentrations of individual PFAAs in DW were < 1 ng/L. Median concentrations of PFNA and PFHxS in serum were < 1 ng/g, while those of PFOA and PFOS were 1-2 ng/g. Significant positive associations between PFAA concentrations in DW and serum were found for all four PFAAs and ∑4PFAAs, with estimated serum/DW concentration ratios ranging from 210 (PFOA) to 670 (PFHxS), taking exposure from sources other than DW (background) into consideration. The mean concentrations of PFHxS and ∑4PFAA in DW that would likely cause substantially elevated serum concentrations above background variation were estimated to 0.9 ng/L and 2.4 ng/L, respectively. The European Food Safety Authority has determined a health concern concentration of 6.9 ng ∑4PFAAs/mL serum. This level was to a large degree exceeded by RMA participants with DW ∑4PFAA concentrations above the maximum limits implemented in Denmark (2 ng ∑4PFAAs/L) and Sweden (4 ng ∑4PFAAs/L) than by RMA participants with DW concentrations below the maximum limits. In conclusion, PFAA exposure from low-level contaminated DW must be considered in risk assessment for adolescents.
Collapse
Affiliation(s)
- Jennifer Nyström-Kandola
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, SE-750 07 Uppsala, Sweden.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Anders Glynn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, SE-750 07 Uppsala, Sweden
| | - Gunnar Johanson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, SE-750 07 Uppsala, Sweden; Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, P.O. Box 210, SE 171 77 Stockholm, Sweden
| | - Jonathan P Benskin
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Irina Gyllenhammar
- Department of Risk and Benefit Assessment, Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Sanna Lignell
- Department of Risk and Benefit Assessment, Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Carolina Vogs
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, SE-750 07 Uppsala, Sweden
| |
Collapse
|
12
|
Haque F, Soerensen AL, Sköld M, Awad R, Spaan KM, Lauria MZ, Plassmann MM, Benskin JP. Per- and polyfluoroalkyl substances (PFAS) in white-tailed sea eagle eggs from Sweden: temporal trends (1969-2021), spatial variations, fluorine mass balance, and suspect screening. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1549-1563. [PMID: 37622471 DOI: 10.1039/d3em00141e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Temporal and spatial trends of 15 per- and polyfluoroalkyl substances (PFAS) were determined in white-tailed sea eagle (WTSE) eggs (Haliaeetus albicilla) from two inland and two coastal regions of Sweden between 1969 and 2021. PFAS concentrations generally increased from ∼1969 to ∼1990s-2010 (depending on target and site) and thereafter plateaued or declined, with perfluorooctane sulfonamide (FOSA) and perfluorooctane sulfonate (PFOS) declining faster than most perfluoroalkyl carboxylic acids (PFCAs). The net result was a shift in the PFAS profile from PFOS-dominant in 1969-2010 to an increased prevalence of PFCAs over the last decade. Further, during the entire period higher PFAS concentrations were generally observed in coastal populations, possibly due to differences in diet and/or proximity to more densely populated areas. Fluorine mass balance determination in pooled samples from three of the regions (2019-2021) indicated that target PFAS accounted for the vast majority (i.e. 81-100%) of extractable organic fluorine (EOF). Nevertheless, high resolution mass-spectrometry-based suspect screening identified 55 suspects (31 at a confidence level [CL] of 1-3 and 24 at a CL of 4-5), of which 43 were substances not included in the targeted analysis. Semi-quantification of CL ≤ 2 suspects increased the identified EOF to >90% in coastal samples. In addition to showing the impact of PFAS regulation and phase-out initiatives, this study demonstrates that most extractable organofluorine in WTSE eggs is made up of known (legacy) PFAS, albeit with low levels of novel substances.
Collapse
Affiliation(s)
- Faiz Haque
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91, Stockholm, Sweden.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USA.
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden.
| | - Martin Sköld
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden.
- Department of Mathematics, Stockholm University, Albanovägen 28, 106 91, Stockholm, Sweden
| | - Raed Awad
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91, Stockholm, Sweden.
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28, Stockholm, Sweden
| | - Kyra M Spaan
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91, Stockholm, Sweden.
| | - Mélanie Z Lauria
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91, Stockholm, Sweden.
| | - Merle M Plassmann
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91, Stockholm, Sweden.
| | - Jonathan P Benskin
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91, Stockholm, Sweden.
| |
Collapse
|
13
|
Wu Y, Bao J, Liu Y, Wang X, Qu W. A Review on Per- and Polyfluoroalkyl Substances in Pregnant Women: Maternal Exposure, Placental Transfer, and Relevant Model Simulation. TOXICS 2023; 11:430. [PMID: 37235245 PMCID: PMC10224256 DOI: 10.3390/toxics11050430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are important and ubiquitous environmental contaminants worldwide. These novel contaminants can enter human bodies via various pathways, subsequently posing risks to the ecosystem and human health. The exposure of pregnant women to PFASs might pose risks to the health of mothers and the growth and development of fetuses. However, little information is available about the placental transfer of PFASs from mothers to fetuses and the related mechanisms through model simulation. In the present study, based upon a review of previously published literature, we initially summarized the exposure pathways of PFASs in pregnant women, factors affecting the efficiency of placental transfer, and mechanisms associated with placental transfer; outlined simulation analysis approaches using molecular docking and machine learning to reveal the mechanisms of placental transfer; and finally highlighted future research emphases that need to be focused on. Consequently, it was notable that the binding of PFASs to proteins during placental transfer could be simulated by molecular docking and that the placental transfer efficiency of PFASs could also be predicted by machine learning. Therefore, future research on the maternal-fetal transfer mechanisms of PFASs with the benefit of simulation analysis approaches is warranted to provide a scientific basis for the health effects of PFASs on newborns.
Collapse
Affiliation(s)
| | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Yang Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | | | | |
Collapse
|
14
|
Han F, Liu J, Wang Y, Li J, Lyu B, Zhao Y, Wu Y. Penetration of Perfluorooctanesulfonate Isomers and Their Alternatives from Maternal Blood to Milk and Its Associations with Chemical Properties and Milk Primary Components. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2457-2463. [PMID: 36734054 DOI: 10.1021/acs.est.2c07401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Perfluorooctanesulfonate (PFOS) and its alternatives, including chlorinated polyfluorinated ether sulfonates (Cl-PFESAs), are mainly detected per- and polyfluoroalkyl substances (PFAS) in human samples such as milk. However, the mechanism of their blood to milk transfer was not well studied. Here, 145 paired maternal serum and human milk samples were analyzed for six PFOS isomers and Cl-PFESAs to evaluate the transfer efficiency from maternal serum to human milk (TEHM/MS). Besides physicochemical properties, this study for the first time evaluated the influencing effects of the primary components in human milk (carbohydrate, lipid, and protein) on TEHM/MS of PFAS. No significant association was observed between TEHM/MS and the albumin binding affinity of the compounds (p = 0.601), but TEHM/MS was significantly negatively correlated with the logarithmic octanol-water partition coefficients (r2 = 0.853, p = 0.001), the logarithmic membrane-water partition coefficients (r2 = 0.679, p = 0.012), and the carbohydrate contents in human milk. The effect of carbohydrate was further confirmed using in vitro tests. The negative associations between TEHM/MS and hydrophobicity, membrane passive permeability, and the carbohydrate content in human milk consistently indicated that passive diffusion through the paracellular route might be the main transfer pathway for PFOS and Cl-PFESAs from blood to milk in humans.
Collapse
Affiliation(s)
- Feng Han
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jiaying Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yuxin Wang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Bing Lyu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
15
|
Han F, Wang Y, Li J, Lyu B, Liu J, Zhang J, Zhao Y, Wu Y. Occurrences of legacy and emerging per- and polyfluoroalkyl substances in human milk in China: Results of the third National Human Milk Survey (2017-2020). JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130163. [PMID: 36272370 DOI: 10.1016/j.jhazmat.2022.130163] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants widely contaminated and exposed in humans. China is a major manufacturer and consumer of these chemicals. To characterize the occurrences, geographical variations, temporal trends, and exposure risks of legacy and emerging PFAS in perinatal women and their children in China, 30 PFAS were measured in 100 pooled human milk samples consisting of 3531 individual samples collected from 100 sites in 24 provinces during the 2017-2020 National Human Milk Survey. Linear-perfluorooctanoic acid (L-PFOA, 151 pg/mL) and linear-perfluorooctane sulfonate (L-PFOS, 57.0 pg/mL) were the predominant PFAS in human milk, followed by 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA, 25.9 pg/mL). The geographic variation trend of PFOA was different from PFOS and Cl-PFESA, and a special geographic trend of perfluoropentanesulfonate (PFPeS) was observed. Comparison of National Human Milk surveys from different periods showed a sharp decrease of PFAS exposure in old industrial areas including Shanghai and Liaoning, but higher PFAS exposure observed in Shandong and Hubei indicated a possible domestic shift of PFAS manufacture to these areas. Worldwide comparison of PFAS in human milk indicated high PFOA exposure in China. Risk assessments for mothers and breastfeeding infants showed that PFAS exposure is of concern in China.
Collapse
Affiliation(s)
- Feng Han
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yuxin Wang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Bing Lyu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jiaying Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Jian Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
16
|
Ahuja JKC, Casavale KO, Li Y, Hopperton KE, Chakrabarti S, Hines EP, Brooks SPJ, Bondy GS, MacFarlane AJ, Weiler HA, Wu X, Borghese MM, Ahluwalia N, Cheung W, Vargas AJ, Arteaga S, Lombo T, Fisher MM, Hayward D, Pehrsson PR. Perspective: Human Milk Composition and Related Data for National Health and Nutrition Monitoring and Related Research. Adv Nutr 2022; 13:2098-2114. [PMID: 36084013 PMCID: PMC9776678 DOI: 10.1093/advances/nmac099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/18/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023] Open
Abstract
National health and nutrition monitoring is an important federal effort in the United States and Canada, and the basis for many of their nutrition and health policies. Understanding of child exposures through human milk (HM) remains out of reach due to lack of current and representative data on HM's composition and intake volume. This article provides an overview of the current national health and nutrition monitoring activities for HM-fed children, HM composition (HMC) and volume data used for exposure assessment, categories of potential measures in HM, and associated variability factors. In this Perspective, we advocate for a framework for collection and reporting of HMC data for national health and nutrition monitoring and programmatic needs, including a shared vision for a publicly available Human Milk Composition Data Repository (HMCD-R) to include essential metadata associated with HMC. HMCD-R can provide a central, integrated platform for researchers and public health officials for compiling, evaluating, and sharing HMC data. The compiled compositional and metadata in HMCD-R would provide pertinent measures of central tendency and variability and allow use of modeling techniques to approximate compositional profiles for subgroups, providing more accurate exposure assessments for purposes of monitoring and surveillance. HMC and related metadata could facilitate understanding the complexity and variability of HM composition, provide crucial data for assessment of infant and maternal nutritional needs, and inform public health policies, food and nutrition programs, and clinical practice guidelines.
Collapse
Affiliation(s)
- Jaspreet K C Ahuja
- Methods and Application of Food Composition Laboratory, Beltsville Human
Nutrition Research Center, Agricultural Research Services, US Department
of Agriculture, Beltsville, Maryland, USA
| | - Kellie O Casavale
- Center for Food Safety and Applied Nutrition, Food and Drug
Administration, US Department of Health and Human Services, College
Park, Maryland, USA
| | - Ying Li
- Methods and Application of Food Composition Laboratory, Beltsville Human
Nutrition Research Center, Agricultural Research Services, US Department
of Agriculture, Beltsville, Maryland, USA
| | - Kathryn E Hopperton
- Nutrition Premarket Assessment Division, Bureau of Nutritional Sciences,
Food Directorate, Health Products and Food Branch, Health Canada,
Ottawa, Ontario, Canada
| | - Subhadeep Chakrabarti
- Nutrition Premarket Assessment Division, Bureau of Nutritional Sciences,
Food Directorate, Health Products and Food Branch, Health Canada,
Ottawa, Ontario, Canada
| | - Erin P Hines
- Reproductive and Developmental Toxicology Branch, Public Health and
Integrated Toxicology Division, US Environmental Protection Agency,
Chapel Hill, North Carolina, USA
| | - Stephen P J Brooks
- Nutrition Research Division, Bureau of Nutritional Sciences, Food
Directorate, Health Products and Food Branch, Health Canada, Ottawa,
Ontario, Canada
| | - Genevieve S Bondy
- Bureau of Chemical Safety, Food Directorate, Health Products and Food
Branch, Health Canada, Ottawa, Ontario, Canada
| | - Amanda J MacFarlane
- Nutrition Research Division, Bureau of Nutritional Sciences, Food
Directorate, Health Products and Food Branch, Health Canada, Ottawa,
Ontario, Canada
| | - Hope A Weiler
- Nutrition Research Division, Bureau of Nutritional Sciences, Food
Directorate, Health Products and Food Branch, Health Canada, Ottawa,
Ontario, Canada
| | - Xianli Wu
- Methods and Application of Food Composition Laboratory, Beltsville Human
Nutrition Research Center, Agricultural Research Services, US Department
of Agriculture, Beltsville, Maryland, USA
| | - Michael M Borghese
- Environmental Health Sciences and Research Bureau, Health
Canada, Ottawa, Ontario, Canada
| | - Namanjeet Ahluwalia
- National Center for Health Statistics, Centers for Disease Control and
Prevention, Department of Health and Human Services, Hyattsville,
Maryland, USA
| | - Winnie Cheung
- Nutrition Premarket Assessment Division, Bureau of Nutritional Sciences,
Food Directorate, Health Products and Food Branch, Health Canada,
Ottawa, Ontario, Canada
| | - Ashley J Vargas
- Eunice Kennedy Shriver National Institute of Child Health and Human
Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Sonia Arteaga
- Environmental influences on Child Health Outcomes (ECHO) Program, Office of
the Director, National Institutes of Health, Bethesda, Maryland,
USA
| | - Tania Lombo
- Maternal Adolescent Pediatric Research Branch, Prevention Science Program,
Division of AIDS, National Institute of Allergy and Infectious Diseases
(NIAID), Bethesda, Maryland, USA
| | - Mandy M Fisher
- Environmental Health Sciences and Research Bureau, Health
Canada, Ottawa, Ontario, Canada
| | - Deborah Hayward
- Nutrition Premarket Assessment Division, Bureau of Nutritional Sciences,
Food Directorate, Health Products and Food Branch, Health Canada,
Ottawa, Ontario, Canada
| | - Pamela R Pehrsson
- Methods and Application of Food Composition Laboratory, Beltsville Human
Nutrition Research Center, Agricultural Research Services, US Department
of Agriculture, Beltsville, Maryland, USA
| |
Collapse
|
17
|
Giffard NG, Gitlin SA, Rardin M, Petali JM, Chen CY, Romano ME. Occurrence and Risks of Per- and Polyfluoroalkyl Substances in Shellfish. Curr Environ Health Rep 2022; 9:591-603. [PMID: 36255596 PMCID: PMC9841895 DOI: 10.1007/s40572-022-00379-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Per- and polyfluoroalkyl substances (PFAS) are a diverse class of persistent, fluorinated surfactants used widely in industrial and commercial applications with known adverse health effects. Seafood consumption is thought to be an underappreciated source of PFAS exposure in the general population. This review synthesizes the current understanding of PFAS occurrence in shellfish, a term used to describe animals such as mollusk bivalves, certain gastropods (snails), cephalopods (e.g., octopuses and squid), and crustaceans, and highlights scientific gaps relative to bioaccumulation and the protection of shellfish consumers. RECENT FINDINGS A range of sampling methodologies are used across studies, and the suite of PFAS surveyed across studies is highly variable. Concentrations of PFAS observed in shellfish vary by geographic location, shellfish species, habitat, and across PFAS compounds, and studies informing estimates of bioaccumulation of PFAS in shellfish are extremely limited at this time. This review identifies several important opportunities for researchers to standardize PFAS sampling techniques, sample preparation, and analytical methodologies to allow for better comparison of PFAS analytes both within and across future studies. Increasing the range of geographic locations where samples are collected is also a critical priority to support a greater knowledge of worldwide PFAS contamination. When put into the context of risk to consumer, concentrations of PFAS, especially PFOS, found in shellfish collected from sites containing aqueous film-forming foam (AFFF) and industrial contamination may present risks to frequent consumers. Further research is needed to protect shellfish consumers and to inform shellfish advisories and health protective policies.
Collapse
Affiliation(s)
- Nathan G Giffard
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Saige A Gitlin
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Marta Rardin
- Environmental Health Program, New Hampshire Department of Environmental Services, Concord, NH, USA
| | - Jonathan M Petali
- Environmental Health Program, New Hampshire Department of Environmental Services, Concord, NH, USA
| | - Celia Y Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Megan E Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- One Medical Center Drive, Hinman, Box 7927, Lebanon, NH, 03756, USA.
| |
Collapse
|
18
|
Predicting Exposure to Perfluorinated Alkyl Substances (PFAS) among US Infants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148402. [PMID: 35886252 PMCID: PMC9318798 DOI: 10.3390/ijerph19148402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023]
Abstract
PFASs have been detected in nearly every serum sample collected over the last two decades from US adults as part of the National Health and Nutrition Examination Survey (NHANES) and are commonly found in other data sets from around the world. However, less is known about infant PFAS exposures, primarily because the collection of infant serum samples is less common and frequently avoided. Cord blood samples are often preferred for chemical exposure assessments because this is thought to provide a good representation of infant serum concentrations, at least at the time of birth. In this paper, we will provide a statistical and probabilistic analysis of what can be expected for infants living in the US using NHANES from 2007 to 2008, which contains a rare subset of infant data. Regulatory efforts that require estimation of exposures among the very youth can be challenging, both because of a lack of data in general and because variability among this most vulnerable population can be uncertain. We report that US infant exposures are extremely common and that serum concentrations remain fairly constant, despite infant growth rates and relatively high caloric and fluid intake, with the possible exception of PFOS. Infant serum PFOS concentrations between months 1 and 3 are consistently higher than at less than one month, even though healthy infants at 1 and 2 months weigh more than they did at birth. This suggests that the babies are exposed to greater concentrations of PFOS after birth or that excretion kinetics differ for this PFAS.
Collapse
|
19
|
Nyström J, Benskin JP, Plassmann M, Sandblom O, Glynn A, Lampa E, Gyllenhammar I, Moraeus L, Lignell S. Demographic, life-style and physiological determinants of serum per- and polyfluoroalkyl substance (PFAS) concentrations in a national cross-sectional survey of Swedish adolescents. ENVIRONMENTAL RESEARCH 2022; 208:112674. [PMID: 34998808 DOI: 10.1016/j.envres.2022.112674] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/18/2021] [Accepted: 01/02/2022] [Indexed: 05/09/2023]
Abstract
PER: and polyfluoroalkyl substances (PFAS) may affect adolescent health, yet factors related to PFAS concentrations in serum are poorly understood. We studied demographic, life-style and physiological determinants of serum PFAS concentrations in Swedish adolescents from a nation-wide survey, Riksmaten Adolescents 2016-17 (RMA, age 10-21 years, n = 1098). Serum samples were analyzed for 42 PFAS, using liquid chromatography-tandem mass spectrometry. The cumulative probability model was used to estimate associations between serum PFAS and determinants, using ordinal logistic regression. Legacy linear (lin-) perfluorooctanoic acid (PFOA), perfluorononaoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), lin-perfluorohexanesulfonic acid (PFHxS) and lin-/branched (br-) perfluorooctanesulfonic acid (PFOS) were quantifiable in ≥70% of the samples. The emerging PFAS 9-chlorohexanedecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS) was quantified in 5.4% of the samples, suggesting initiation of long-range transport far from production sites. Median concentrations of all legacy PFAS were <2 ng/g serum, with a few participants having very high (>100 ng/g serum) lin-PFHxS and lin-/br-PFOS concentrations due to previous high exposure from PFAS-contaminated drinking water. Legacy PFAS exposure was strongly associated with birth country of the participants and their mothers. 2-fold higher estimated adjusted mean (EAM) concentrations were seen among high income country participants with mothers from high income countries than among low/lower-middle income country participants with mothers from the same category. Menstruating females had lower br-PFOS EAM concentrations than those who were not. Iron status (plasma ferritin) among females may be a marker of intensity of menstrual bleeding, but it was not significantly associated with legacy PFAS concentrations among females. Further studies are needed to determine how physiological changes occurring around menstruation affect the toxicokinetics of PFAS in females. In conclusion, PFAS are pollutants of the industrialized world and some of the identified determinants may be overlooked confounders/effect modifiers that should be included in future PFAS/health studies among adolescents.
Collapse
Affiliation(s)
- Jennifer Nyström
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| | - Jonathan P Benskin
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Merle Plassmann
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Oskar Sandblom
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Anders Glynn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Erik Lampa
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Irina Gyllenhammar
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Lotta Moraeus
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Sanna Lignell
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| |
Collapse
|
20
|
Hallberg I, Persson S, Olovsson M, Moberg M, Ranefall P, Laskowski D, Damdimopoulou P, Sirard MA, Rüegg J, Sjunnesson YC. Bovine oocyte exposure to perfluorohexane sulfonate (PFHxS) induces phenotypic, transcriptomic, and DNA methylation changes in resulting embryos in vitro. Reprod Toxicol 2022; 109:19-30. [DOI: 10.1016/j.reprotox.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
21
|
Guo P, Furnary T, Vasiliou V, Yan Q, Nyhan K, Jones DP, Johnson CH, Liew Z. Non-targeted metabolomics and associations with per- and polyfluoroalkyl substances (PFAS) exposure in humans: A scoping review. ENVIRONMENT INTERNATIONAL 2022; 162:107159. [PMID: 35231839 PMCID: PMC8969205 DOI: 10.1016/j.envint.2022.107159] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 05/13/2023]
Abstract
OBJECTIVE To summarize the application of non-targeted metabolomics in epidemiological studies that assessed metabolite and metabolic pathway alterations associated with per- and polyfluoroalkyl substances (PFAS) exposure. RECENT FINDINGS Eleven human studies published before April 1st, 2021 were identified through database searches (PubMed, Dimensions, Web of Science Core Collection, Embase, Scopus), and citation chaining (Citationchaser). The sample sizes of these studies ranged from 40 to 965, involving children and adolescents (n = 3), non-pregnant adults (n = 5), or pregnant women (n = 3). High-resolution liquid chromatography-mass spectrometry was the primary analytical platform to measure both PFAS and metabolome. PFAS were measured in either plasma (n = 6) or serum (n = 5), while metabolomic profiles were assessed using plasma (n = 6), serum (n = 4), or urine (n = 1). Four types of PFAS (perfluorooctane sulfonate(n = 11), perfluorooctanoic acid (n = 10), perfluorohexane sulfonate (n = 9), perfluorononanoic acid (n = 5)) and PFAS mixtures (n = 7) were the most studied. We found that alterations to tryptophan metabolism and the urea cycle were most reported PFAS-associated metabolomic signatures. Numerous lipid metabolites were also suggested to be associated with PFAS exposure, especially key metabolites in glycerophospholipid metabolism which is critical for biological membrane functions, and fatty acids and carnitines which are relevant to the energy supply pathway of fatty acid oxidation. Other important metabolome changes reported included the tricarboxylic acid (TCA) cycle regarding energy generation, and purine and pyrimidine metabolism in cellular energy systems. CONCLUSIONS There is growing interest in using non-targeted metabolomics to study the human physiological changes associated with PFAS exposure. Multiple PFAS were reported to be associated with alterations in amino acid and lipid metabolism, but these results are driven by one predominant type of pathway analysis thus require further confirmation. Standardizing research methods and reporting are recommended to facilitate result comparison. Future studies should consider potential differences in study methodology, use of prospective design, and influence from confounding bias and measurement errors.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA
| | - Tristan Furnary
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
| | - Qi Yan
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, USA
| | - Kate Nyhan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA; Harvey Cushing / John Hay Whitney Medical Library, Yale University, New Haven, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA; Department of Biochemistry, Emory University School of Medicine, Atlanta, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA.
| |
Collapse
|
22
|
Serrano L, Iribarne-Durán LM, Suárez B, Artacho-Cordón F, Vela-Soria F, Peña-Caballero M, Hurtado JA, Olea N, Fernández MF, Freire C. Concentrations of perfluoroalkyl substances in donor breast milk in Southern Spain and their potential determinants. Int J Hyg Environ Health 2021; 236:113796. [PMID: 34192647 DOI: 10.1016/j.ijheh.2021.113796] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Breast milk is considered to offer the best nutrition to infants; however, it may be a source of exposure to environmental chemicals such as perfluoroalkyl compounds (PFAS) for breastfeeding infants. PFAS are a complex group of synthetic chemicals whose high stability has led to their ubiquitous contamination of the environment. OBJECTIVE To assess the concentrations and profiles of PFAS in breast milk from donors to a human milk bank and explore factors potentially related to this exposure. METHODS Pooled milk samples were collected from 82 donors to the Human Milk Bank of the Virgen de las Nieves University Hospital (Granada, Spain). Ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was applied to determine milk concentrations of 11 PFAS, including long-chain and short-chain compounds. A questionnaire was used to collect information on donors' socio-demographic characteristics, lifestyle, diet, and use of personal care products (PCPs). Factors related to individual and total PFAS concentrations were evaluated by multivariate regression analysis. RESULTS PFAS were detected in 24-100% of breast milk samples. PFHpA was detected in 100% of samples, followed by PFOA (84%), PFNA (71%), PFHxA (66%), and PFTrDA (62%). Perfluorooctane sulfonate (PFOS) was detected in only 34% of donors. The median concentrations ranged from <0.66 ng/dL (perfluorohexane sulfonic acid [PFHxS]) to 19.39 ng/L (PFHpA). The median of the sum of PFAS concentrations was 87.67 ng/L and was higher for short-chain than long-chain PFAS. Factors most frequently associated with increased PFAS concentrations included intake of creatin animal food items and use of PCPs such as skin care and makeup products. CONCLUSIONS Several PFAS, including short-chain compounds, are detected in pooled donor milk samples. Breast milk may be an important pathway for the PFAS exposure of breastfed infants, including preterm infants in NICUs. Despite the reduced sample size, these data suggest that various lifestyle factors influence PFAS concentrations, highlighting the use of PCPs.
Collapse
Affiliation(s)
- Laura Serrano
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, 18012, Granada, Spain.
| | - Luz Mª Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain.
| | - Beatriz Suárez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Radiology and Physical Medicine Department, University of Granada, 18016, Granada, Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain.
| | - Manuela Peña-Caballero
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, 18012, Granada, Spain; Human Milk Bank of the Virgen de las Nieves University Hospital, 18012, Granada, Spain.
| | - Jose A Hurtado
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, 18012, Granada, Spain.
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Radiology and Physical Medicine Department, University of Granada, 18016, Granada, Spain; Nuclear Medicine Unit, San Cecilio University Hospital, 18016, Granada, Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Radiology and Physical Medicine Department, University of Granada, 18016, Granada, Spain.
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
23
|
Abafe OA, Macheka LR, Olowoyo JO. Confirmatory Analysis of Per and Polyfluoroalkyl Substances in Milk and Infant Formula Using UHPLC-MS/MS. Molecules 2021; 26:molecules26123664. [PMID: 34208500 PMCID: PMC8234569 DOI: 10.3390/molecules26123664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
An ultra-high performance liquid chromatography tandem mass spectrometry method was developed and validated for the sensitive determination and unambiguous confirmation of residues of per and polyfluorinated alkyl substances (PFAS) in breastmilk, retail milk and infant formulas following two sample preparation methods. Sample pre-treatment was carried out by a simplified QuEChERS method without requiring dSPE or any further clean-up. The method was validated in accordance with the requirements of Commission Decision 657/2002/EC with slight modifications. The method displayed good linearity with R2 ranging from 0.9843–0.9998 for all target PFAS. The recovery and within-laboratory reproducibility of the method (n = 63) were in the range 60–121% and 5–28%, respectively. The decision limit, detection capability and limit of quantitation ranged from 30–60 ng kg−1 to 40–100 ng kg−1 and 5–50 ng kg−1, respectively. Acceptable matrix effect values in the range −45–29% were obtained with uncertainty of measurement lower than 25% for all target PFAS. The method displays its suitability for the sensitive and high-throughput confirmatory analysis of C4–C14 PFAS in breastmilk, dairy milk and infant formulas.
Collapse
Affiliation(s)
- Ovokeroye A. Abafe
- Residue Analysis Laboratory, Agricultural Research Council-OVR, Pretoria 0110, South Africa;
- School of Health Sciences, University of KwaZulu-Natal, Private Bag x5400, Durban 4001, South Africa
- Correspondence: or
| | - Linda R. Macheka
- Residue Analysis Laboratory, Agricultural Research Council-OVR, Pretoria 0110, South Africa;
- School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| | - Joshua O. Olowoyo
- School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| |
Collapse
|
24
|
Baluyot JC, Reyes EM, Velarde MC. Per- and polyfluoroalkyl substances (PFAS) as contaminants of emerging concern in Asia's freshwater resources. ENVIRONMENTAL RESEARCH 2021; 197:111122. [PMID: 33823192 DOI: 10.1016/j.envres.2021.111122] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of per- and polyfluoroalkyl substances (PFAS) in water resources is an emerging concern because of their environmental persistence and bioaccumulation in humans. In Western countries, health advisories regarding PFAS exposure have been released to warn the public of its potential adverse effects. However, awareness regarding PFAS exposure in Asia is still at its infancy as reflected by the minimal safeguards imposed to protect the population from exposure. Here, we reviewed studies on PFAS contamination in Asia with a focus on freshwater resources to determine whether PFAS is also a concern in this part of the globe. Peer reviewed articles which included information on PFAS levels from 2000 to 2020 were compiled. The highest PFAS contamination was detected in surface water relative to ground, tap, and drinking water. PFAS levels in water resources in several countries in Asia, such as China, Japan, and South Korea, were above the recommended level, similar to that in the United States. PFAS in South and Southeast Asia were just below the recommended level, but the rise of PFAS in China in the recent decade, alongside its remarkable economic and industrial growth, suggests that increased PFAS contamination in South and Southeast Asia may soon follow, as these countries compete with the global economy. Hence, there is a need for these countries to also implement measures that will reduce the exposure of their population to PFAS.
Collapse
Affiliation(s)
- Jobriell C Baluyot
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Emmanuel Marc Reyes
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
25
|
Zheng G, Schreder E, Dempsey JC, Uding N, Chu V, Andres G, Sathyanarayana S, Salamova A. Per- and Polyfluoroalkyl Substances (PFAS) in Breast Milk: Concerning Trends for Current-Use PFAS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7510-7520. [PMID: 33982557 DOI: 10.1021/acs.est.0c06978] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This is the first study in the last 15 years to analyze per- and polyfluoroalkyl substances (PFAS) in breast milk collected from mothers (n = 50) in the United States, and our findings indicate that both legacy and current-use PFAS now contaminate breast milk, exposing nursing infants. Breast milk was analyzed for 39 PFAS, including 9 short-chain and 30 long-chain compounds, and 16 of these PFAS were detected in 4-100% of the samples. The ∑PFAS concentration in breast milk ranged from 52.0 to 1850 pg/mL with a median concentration of 121 pg/mL. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were the most abundant PFAS in these samples (medians 30.4 and 13.9 pg/mL, respectively). Two short-chain PFAS, including perfluoro-n-hexanoic acid (PFHxA, C6) and perfluoro-n-heptanoic acid (PFHpA, C7), were detected in most of the samples with median concentrations of 9.69 and 6.10 pg/mL, respectively. Analysis of the available breast milk PFAS data from around the world over the period of 1996-2019 showed that while the levels of the phased-out PFOS and PFOA have been declining with halving times of 8.1 and 17 years, respectively, the detection frequencies of current-use short-chain PFAS have been increasing with a doubling time of 4.1 years.
Collapse
Affiliation(s)
- Guomao Zheng
- Paul H. O'Neill School of Public and Environmental Affairs Indiana University, Bloomington, Indiana 47405, United States
| | - Erika Schreder
- Toxic-Free Future, Seattle, Washington 98103, United States
| | | | - Nancy Uding
- Toxic-Free Future, Seattle, Washington 98103, United States
| | - Valerie Chu
- Toxic-Free Future, Seattle, Washington 98103, United States
| | - Gabriel Andres
- Toxic-Free Future, Seattle, Washington 98103, United States
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington/Seattle Children's Research Institute, Seattle, Washington 91807, United States
| | - Amina Salamova
- Paul H. O'Neill School of Public and Environmental Affairs Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
26
|
Bălan SA, Mathrani VC, Guo DF, Algazi AM. Regulating PFAS as a Chemical Class under the California Safer Consumer Products Program. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:25001. [PMID: 33595352 PMCID: PMC7888260 DOI: 10.1289/ehp7431] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a group of manmade chemicals containing at least one fully fluorinated carbon atom. The widespread use, large number, and diverse chemical structures of PFAS pose challenges to any sufficiently protective regulation, emissions reduction, and remediation at contaminated sites. Regulating only a subset of PFAS has led to their replacement with other members of the class with similar hazards, that is, regrettable substitutions. Regulations that focus solely on perfluoroalkyl acids (PFAAs) are ineffective, given that nearly all other PFAS can generate PFAAs in the environment. OBJECTIVES In this commentary, we present the rationale adopted by the State of California's Department of Toxic Substances Control (DTSC) for regulating PFAS as a class in certain consumer products. DISCUSSION We at the California DTSC propose regulating certain consumer products if they contain any member of the class of PFAS because: a) all PFAS, or their degradation, reaction, or metabolism products, display at least one common hazard trait according to the California Code of Regulations, namely environmental persistence; and b) certain key PFAS that are the degradation, reaction or metabolism products, or impurities of nearly all other PFAS display additional hazard traits, including toxicity; are widespread in the environment, humans, and biota; and will continue to cause adverse impacts for as long as any PFAS continue to be used. Regulating PFAS as a class is thus logical, necessary, and forward-thinking. This technical position may be helpful to other regulatory agencies in comprehensively addressing this large class of chemicals with common hazard traits. https://doi.org/10.1289/EHP7431.
Collapse
Affiliation(s)
- Simona Andreea Bălan
- Safer Consumer Products Program, California Department of Toxic Substances Control, Sacramento, California, USA
| | - Vivek Chander Mathrani
- Safer Consumer Products Program, California Department of Toxic Substances Control, Sacramento, California, USA
| | - Dennis Fengmao Guo
- Safer Consumer Products Program, California Department of Toxic Substances Control, Sacramento, California, USA
| | - André Maurice Algazi
- Safer Consumer Products Program, California Department of Toxic Substances Control, Sacramento, California, USA
| |
Collapse
|
27
|
Liu Y, Li A, Buchanan S, Liu W. Exposure characteristics for congeners, isomers, and enantiomers of perfluoroalkyl substances in mothers and infants. ENVIRONMENT INTERNATIONAL 2020; 144:106012. [PMID: 32771830 DOI: 10.1016/j.envint.2020.106012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 05/24/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in the environment, making it inevitable for humans to be exposed to these pollutants. The exposure begins while in utero and continues in infancy, during the potentially most sensitive early stages of life. This review summarizes the current knowledge on pre- and neo-natal exposures based on more than 200 articles published from 2000 to date. All relevant biological matrices used in the cited studies were included, such as maternal blood, umbilical cord blood, breast milk, placenta, amniotic fluid, fetal organs, newborns' dried blood spots, and infant serum. We show that such exposures are geographically global with significant discrepancies among countries and continents, and that while the levels of major legacy PFASs (PFOS and PFOA) have declined since 2000, those of others may have not. We also show that levels of PFOS and PFOA exceed those of some major environmental toxins, such as p,p'-DDE, BDE-47, PCB-153, PBB-153, and OH-PBDEs in maternal blood. Given that the behavior and potential effects have an origin in molecular structure, biomonitoring and research at the levels of isomers and enantiomers are critically important. Through critical analysis of these works, we summarize the major achievements, consensus, and the deficiencies of existing research. To our knowledge, this is the first review on the overall internal exposure status of mothers and infants to PFASs during pregnancy and lactation.
Collapse
Affiliation(s)
- Yingxue Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Susan Buchanan
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Awad R, Zhou Y, Nyberg E, Namazkar S, Yongning W, Xiao Q, Sun Y, Zhu Z, Bergman Å, Benskin JP. Emerging per- and polyfluoroalkyl substances (PFAS) in human milk from Sweden and China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2023-2030. [PMID: 32940316 DOI: 10.1039/d0em00077a] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Twenty per- and polyfluoroalkyl substances (PFAS) were determined in human milk from residents of three Chinese cities (Shanghai, Jiaxing, and Shaoxing; [n = 10 individuals per city]), sampled between 2010 and 2016. These data were compared to a combination of new and previously reported PFAS concentrations in human milk from Stockholm, Sweden, collected in 2016 (n = 10 individuals). Across the three Chinese cities, perfluorooctanoate (PFOA; sum isomers), 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS; also known as 6:2 Cl-PFESA or by its trade name "F53-B"), and perfluorooctane sulfonate (PFOS; sum isomers) occurred at the highest concentrations among all PFAS (up to 411, 976, and 321 pg mL-1, respectively), while in Stockholm, PFOA and PFOS were dominant (up to 89 and 72 pg mL-1, respectively). 3H-Perfluoro-3-[(3-methoxy-propoxy)propanoic acid] (ADONA) was intermittently detected but at concentrations below the method quantification limit (i.e. <10 pg mL-1) in Chinese samples, and was non-detectable in Swedish milk. The extremely high concentrations of F53-B in Chinese milk suggest that human exposure assessments focused only on legacy substances may severely underestimate overall PFAS exposure in breastfeeding infants.
Collapse
Affiliation(s)
- Raed Awad
- Department of Environmental Science (ACES), Stockholm University, 106 91 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Qi W, Clark JM, Timme-Laragy AR, Park Y. Per- and Polyfluoroalkyl Substances and Obesity, Type 2 Diabetes and Non-alcoholic Fatty Liver Disease: A Review of Epidemiologic Findings. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2020; 102:1-36. [PMID: 33304027 PMCID: PMC7723340 DOI: 10.1080/02772248.2020.1763997] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/27/2020] [Indexed: 05/17/2023]
Abstract
Per- and polyfluoroalkyl substances, a group of fluoro-surfactants widely detected in the environment, wildlife and humans, have been linked to adverse health effects. A growing body of literature has addressed their effects on obesity, diabetes and non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis. This review summarizes the brief historical use and chemistry of per- and polyfluoroalkyl substances, routes of human exposure, as well as the epidemiologic evidence for associations between exposure to per- and polyfluoroalkyl substances and the development of obesity, diabetes and non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis. We identified 22 studies on obesity and 32 studies on diabetes, while only 1 study was found for non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis by searching PubMed for human studies. Approximately 2/3 of studies reported positive associations between per- and polyfluoroalkyl substances exposure and the prevalence of obesity and/or type 2 diabetes. Causal links between per- and polyfluoroalkyl substances and obesity, diabetes and non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis, however, require further large-scale prospective cohort studies combined with mechanistic laboratory studies to better assess these associations.
Collapse
Affiliation(s)
- Weipeng Qi
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - John M. Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Alicia R. Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
30
|
Miaz LT, Plassmann MM, Gyllenhammar I, Bignert A, Sandblom O, Lignell S, Glynn A, Benskin JP. Temporal trends of suspect- and target-per/polyfluoroalkyl substances (PFAS), extractable organic fluorine (EOF) and total fluorine (TF) in pooled serum from first-time mothers in Uppsala, Sweden, 1996-2017. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1071-1083. [PMID: 32182307 DOI: 10.1039/c9em00502a] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A combined method for quantitative analysis, along with suspect and non-target screening of per- and polyfluoroalkyl substances (PFAS) was developed using ultra-high pressure liquid chromatography-ultra-high resolution (Orbitrap) mass spectrometry. The method was applied together with measurements of total- and extractable organofluorine (TF and EOF, respectively), to pooled serum samples from 1996-2017 from first-time mothers living in the county of Uppsala, Sweden, some of which (i.e. 148 of 472 women sampled 1996-2012) were exposed to drinking water contaminated with perfluorohexane sulfonate (PFHxS) and other PFAS until mid-2012. Declining trends were observed for all target PFAS as well as TF, with homologue-dependent differences in year of onset of decline. Only 33% of samples displayed detectable EOF, and amongst these samples the percentage of EOF explained by target PFAS declined significantly (-3.5% per year) over the entire study period. This finding corroborates prior observations in Germany after the year 2000, and may reflect increasing exposure to novel PFAS which have not yet been identified. Suspect screening revealed the presence of perfluoro-4-ethylcyclohexanesulfonate (PFECHS), which displayed declining trends since the year 2000. Non-target time trend screening revealed 3 unidentified features with time trends matching PFHxS. These features require further investigation, but may represent contaminants which co-occurred with PFHxS in the contaminated drinking water.
Collapse
Affiliation(s)
- Luc T Miaz
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Spaan KM, van Noordenburg C, Plassmann MM, Schultes L, Shaw S, Berger M, Heide-Jørgensen MP, Rosing-Asvid A, Granquist SM, Dietz R, Sonne C, Rigét F, Roos A, Benskin JP. Fluorine Mass Balance and Suspect Screening in Marine Mammals from the Northern Hemisphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020. [PMID: 32160740 DOI: 10.26434/chemrxiv.10128653.v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is increasing evidence that the ∼20 routinely monitored perfluoroalkyl and polyfluoroalkyl substances (PFASs) account for only a fraction of extractable organofluorine (EOF) occurring in the environment. To assess whether PFAS exposure is being underestimated in marine mammals from the Northern Hemisphere, we performed a fluorine mass balance on liver tissues from 11 different species using a combination of targeted PFAS analysis, EOF and total fluorine determination, and suspect screening. Samples were obtained from the east coast United States (US), west and east coast of Greenland, Iceland, and Sweden from 2000 to 2017. Of the 36 target PFASs, perfluorooctane sulfonate (PFOS) dominated in all but one Icelandic and three US samples, where the 7:3 fluorotelomer carboxylic acid (7:3 FTCA) was prevalent. This is the first report of 7:3 FTCA in polar bears (∼1000 ng/g, ww) and cetaceans (<6-190 ng/g, ww). In 18 out of 25 samples, EOF was not significantly greater than fluorine concentrations derived from sum target PFASs. For the remaining 7 samples (mostly from the US east coast), 30-75% of the EOF was unidentified. Suspect screening revealed an additional 37 PFASs (not included in the targeted analysis) bringing the total to 63 detected PFASs from 12 different classes. Overall, these results highlight the importance of a multiplatform approach for accurately characterizing PFAS exposure in marine mammals.
Collapse
Affiliation(s)
- Kyra M Spaan
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91 Stockholm, Sweden
| | - Carmen van Noordenburg
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91 Stockholm, Sweden
| | - Merle M Plassmann
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91 Stockholm, Sweden
| | - Lara Schultes
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91 Stockholm, Sweden
| | - Susan Shaw
- Shaw Institute, P.O. Box 1652, Blue Hill, Maine 04614 United States
| | - Michelle Berger
- Shaw Institute, P.O. Box 1652, Blue Hill, Maine 04614 United States
| | | | | | - Sandra M Granquist
- Marine and Freshwater Research Institute, Skúlagata 4, 101 Reykjavı́k, Reykjavík, Iceland
- The Icelandic Seal Center, Brekkugata 2, 530 Hvammstangi, Iceland
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Frank Rigét
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Anna Roos
- Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. Box 50007, 104 05 Stockholm, Sweden
| | - Jonathan P Benskin
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91 Stockholm, Sweden
| |
Collapse
|
32
|
Spaan KM, van Noordenburg C, Plassmann MM, Schultes L, Shaw S, Berger M, Heide-Jørgensen MP, Rosing-Asvid A, Granquist SM, Dietz R, Sonne C, Rigét F, Roos A, Benskin JP. Fluorine Mass Balance and Suspect Screening in Marine Mammals from the Northern Hemisphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4046-4058. [PMID: 32160740 PMCID: PMC7309329 DOI: 10.1021/acs.est.9b06773] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 05/03/2023]
Abstract
There is increasing evidence that the ∼20 routinely monitored perfluoroalkyl and polyfluoroalkyl substances (PFASs) account for only a fraction of extractable organofluorine (EOF) occurring in the environment. To assess whether PFAS exposure is being underestimated in marine mammals from the Northern Hemisphere, we performed a fluorine mass balance on liver tissues from 11 different species using a combination of targeted PFAS analysis, EOF and total fluorine determination, and suspect screening. Samples were obtained from the east coast United States (US), west and east coast of Greenland, Iceland, and Sweden from 2000 to 2017. Of the 36 target PFASs, perfluorooctane sulfonate (PFOS) dominated in all but one Icelandic and three US samples, where the 7:3 fluorotelomer carboxylic acid (7:3 FTCA) was prevalent. This is the first report of 7:3 FTCA in polar bears (∼1000 ng/g, ww) and cetaceans (<6-190 ng/g, ww). In 18 out of 25 samples, EOF was not significantly greater than fluorine concentrations derived from sum target PFASs. For the remaining 7 samples (mostly from the US east coast), 30-75% of the EOF was unidentified. Suspect screening revealed an additional 37 PFASs (not included in the targeted analysis) bringing the total to 63 detected PFASs from 12 different classes. Overall, these results highlight the importance of a multiplatform approach for accurately characterizing PFAS exposure in marine mammals.
Collapse
Affiliation(s)
- Kyra M. Spaan
- Department of Environmental
Science, Stockholm University, Svante Arrhenius Väg 8, 106 91 Stockholm, Sweden
| | - Carmen van Noordenburg
- Department of Environmental
Science, Stockholm University, Svante Arrhenius Väg 8, 106 91 Stockholm, Sweden
| | - Merle M. Plassmann
- Department of Environmental
Science, Stockholm University, Svante Arrhenius Väg 8, 106 91 Stockholm, Sweden
| | - Lara Schultes
- Department of Environmental
Science, Stockholm University, Svante Arrhenius Väg 8, 106 91 Stockholm, Sweden
| | - Susan Shaw
- Shaw Institute, P.O. Box
1652, Blue Hill, Maine 04614 United States
| | - Michelle Berger
- Shaw Institute, P.O. Box
1652, Blue Hill, Maine 04614 United States
| | | | | | - Sandra M. Granquist
- Marine and Freshwater Research Institute, Skúlagata 4, 101 Reykjavík, Reykjavík, Iceland
- The Icelandic Seal
Center, Brekkugata 2, 530 Hvammstangi, Iceland
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Frank Rigét
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Anna Roos
- Greenland
Institute of Natural Resources, 3900 Nuuk, Greenland
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O.
Box 50007, 104 05 Stockholm, Sweden
| | - Jonathan P. Benskin
- Department of Environmental
Science, Stockholm University, Svante Arrhenius Väg 8, 106 91 Stockholm, Sweden
| |
Collapse
|
33
|
Schultes L, Sandblom O, Broeg K, Bignert A, Benskin JP. Temporal Trends (1981-2013) of Per- and Polyfluoroalkyl Substances and Total Fluorine in Baltic cod (Gadus morhua). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:300-309. [PMID: 31610607 PMCID: PMC7065099 DOI: 10.1002/etc.4615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 10/10/2019] [Indexed: 05/23/2023]
Abstract
Temporal trends from 1981 to 2013 of 28 per- and polyfluoroalkyl substances (PFASs) were investigated in liver tissue of cod (Gadus morhua) sampled near southeast Gotland, in the Baltic Sea. A total of 10 PFASs were detected, with ∑28 PFAS geometric mean concentrations ranging from 6.03 to 23.9 ng/g ww. Perfluorooctane sulfonate (PFOS) was the predominant PFAS, which increased at a rate of 3.4% per year. Most long-chain perfluoroalkyl carboxylic acids increased at rates of 3.9 to 7.3% per year except for perfluorooctanoate (PFOA), which did not change significantly over time. The perfluoroalkyl acid precursors perfluorooctane sulfonamide (FOSA) and 6:2 fluorotelomer sulfonic acid were detected, of which the former (FOSA) declined at a rate of -4.4% per year, possibly reflecting its phase-out starting in 2000. An alternate time trend analysis from 2000 to 2013 produced slightly different results, with most compounds increasing at slower rates compared to the entire study period. An exception was perfluorohexane sulfonate (PFHxS), increasing at a faster rate of 3.7% measured from 2000 on, compared to the 3.0% per year measured starting from 1981. Analysis of the total fluorine content of the samples revealed large amounts of unidentified fluorine; however, its composition (organic or inorganic) remains unclear. Significant negative correlations were found between concentrations of individual PFASs (with the exception of PFOS) and liver somatic index. In addition, body length was negatively correlated with PFOA and perfluorononanoate, but positively correlated with perfluorododecanoate (PFDoDA) and FOSA. Additional studies on endocrine, immunological, and metabolic effects of PFAS in marine fish are essential to assess the environmental risk of these substances. Environ Toxicol Chem 2020;39:300-309. © 2019 SETAC.
Collapse
Affiliation(s)
- Lara Schultes
- Department of Environmental Science and Analytical ChemistryStockholm UniversityStockholmSweden
| | - Oskar Sandblom
- Department of Environmental Science and Analytical ChemistryStockholm UniversityStockholmSweden
| | - Katja Broeg
- Federal Maritime and Hydrographic AgencyHamburgGermany
| | - Anders Bignert
- Department of Environmental Research and MonitoringSwedish Museum of Natural HistoryStockholmSweden
| | - Jonathan P. Benskin
- Department of Environmental Science and Analytical ChemistryStockholm UniversityStockholmSweden
| |
Collapse
|
34
|
Liu S, Yang R, Yin N, Faiola F. The short-chain perfluorinated compounds PFBS, PFHxS, PFBA and PFHxA, disrupt human mesenchymal stem cell self-renewal and adipogenic differentiation. J Environ Sci (China) 2020; 88:187-199. [PMID: 31862060 DOI: 10.1016/j.jes.2019.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 05/19/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFASs) are commonly used in industrial processes and daily life products. Because they are persistent, they accumulate in the environment, wildlife and humans. Although many studies have focused on two of the most representative PFASs, PFOS and PFOA, the potential toxicity of short-chain PFASs has not yet been given sufficient attention. We used a battery of assays to evaluate the toxicity of several four-carbon and six-carbon perfluorinated sulfonates and carboxyl acids (PFBS, PFHxS, PFBA and PFHxA), with a human mesenchymal stem cell (hMSC) system. Our results demonstrate significant cyto- and potential developmental toxicity for all the compounds analyzed, with shared but also distinct mechanisms of toxicity. Moreover, the effects of PFBS and PFHxS were stronger than those of PFBA and PFHxA, but occurred at higher doses compared to PFOS or PFOA.
Collapse
Affiliation(s)
- Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK.
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Wikström S, Lin PI, Lindh CH, Shu H, Bornehag CG. Maternal serum levels of perfluoroalkyl substances in early pregnancy and offspring birth weight. Pediatr Res 2020; 87:1093-1099. [PMID: 31835271 PMCID: PMC7196936 DOI: 10.1038/s41390-019-0720-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/16/2019] [Accepted: 09/19/2019] [Indexed: 11/14/2022]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are widespread, bioaccumulating, and persistent and show placental transfer. Emerging research indicates associations between prenatal exposure and low birth weight. The aim of this study was to assess the associations between first trimester exposure to PFASs and birth weight (BW) in the Swedish Environmental, Longitudinal, Mother and child, Asthma and allergy (SELMA) study and examine whether associations differ between girls and boys. METHODS Eight PFASs were analyzed in maternal serum (median: 10 weeks of pregnancy). Associations between prenatal PFAS exposure and birth outcomes with BW, BW for gestational age, and birth small for gestational age (SGA) were assessed in 1533 infants, adjusted for potential confounders and stratified by sex. RESULTS Increased maternal perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) were associated with lower BW, lower BW for gestational age, and SGA birth. Associations were significant only in girls, where prenatal exposure in the upper quartile was associated with a 93-142-g lower BW when compared with that of the lowest quartile exposure. The associations were not mediated by effects on gestational age. CONCLUSIONS We found associations between prenatal exposure for five different PFASs and birth weight, with more pronounced associations in girls than in boys.
Collapse
Affiliation(s)
- Sverre Wikström
- School of Medical Sciences, Örebro University, Örebro, Sweden. .,Department of Health Sciences, Karlstad University, Karlstad, Sweden.
| | - Ping-I Lin
- 0000 0001 0721 1351grid.20258.3dDepartment of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Christian H. Lindh
- 0000 0001 0930 2361grid.4514.4Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Huan Shu
- 0000 0001 0721 1351grid.20258.3dDepartment of Health Sciences, Karlstad University, Karlstad, Sweden ,0000 0004 1936 9377grid.10548.38Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Carl-Gustaf Bornehag
- 0000 0001 0721 1351grid.20258.3dDepartment of Health Sciences, Karlstad University, Karlstad, Sweden ,0000 0001 0670 2351grid.59734.3cDepartment of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY USA
| |
Collapse
|