1
|
Wang S, Liu G, Liu R, Wu H, Shen M, Yousaf B, Wang X. COVID-19 lockdown measures affect polycyclic aromatic hydrocarbons distribution and sources in sediments of Chaohu Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175608. [PMID: 39173763 DOI: 10.1016/j.scitotenv.2024.175608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
The COVID-19 pandemic has profoundly impacted human activities and the environment globally. The lockdown measures have led to significant changes in industrial activities, transportation, and human behavior. This study investigates how the lockdown measures influenced the distribution of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Chaohu Lake, a semi-enclosed lake. Surface sediment samples were collected in summer of 2020 (lockdown have just been lifted) and 2022 and analyzed for 16 priority PAHs. The range of ΣPAHs concentrations remained similar between 2020 (158.19-1693.64 ng·g-1) and 2022 (148.86-1396.54 ng·g-1). Among the sampling sites, the west lake exhibited similar PAHs concentrations characteristics over the two years, with higher levels observed in areas near Hefei City. However, the east lake exhibited increased ΣPAHs concentrations in 2022 compared to 2020, especially the area near ship factory. PAHs source analysis using principal component analysis-multiple linear regression (PCA-MLR) revealed an increased proportion of petroleum combustion sources in 2022 compared to 2020. The isotope analysis results showed that organic matter (OM) sources in the western lake remained relatively stable over the two years, with sewage discharge dominating. In contrast, the eastern lake experienced a shift in OM sources from sewage to C3 plants, potentially contributing to the increased PAH levels observed in the eastern lake sediments. Ecological risk assessment revealed low to moderate risk in both 2020 and 2022. Health risk evaluation indicated little difference in incremental lifetime cancer risk (ILCR) values between the two years, with only benzo[a]pyrene (BaP) posing a high risk among the carcinogenic PAHs. Children generally faced higher health risks compared to adults. This study reveals pandemic-induced changes in PAH pollution and sources in lake sediments, offering new insights into the impact of human activities on persistent organic pollutants, with implications for future pollution control strategies.
Collapse
Affiliation(s)
- Sizhuang Wang
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Ruijia Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Haixin Wu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Mengchen Shen
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xin Wang
- Anhui Municipal Ecological and Environmental Monitoring Center, Hefei 230071, China
| |
Collapse
|
2
|
Mikac I, Bačić N, Ujčić P, Lučić M, Vdović N, Ivanić M, Ahel M, Mikac N. Decoupling Sources of Anthropogenic Influences on Sediments of the Visovac Lake (Krka National Park, Croatia) Using Multiparametric Approach. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:335-352. [PMID: 39392485 DOI: 10.1007/s00244-024-01095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Historical changes of sediment characteristics and levels of inorganic and organic contaminants were studied in dated sediment cores from the Visovac Lake, situated in the Krka National Park, Croatia, to identify the main sources of anthropogenic pressures on this highly protected system. Depth distributions of lithogenic elements showed a steady decrease of terrigenous inputs due to the reduction in agricultural activities in the area, which was particularly pronounced during the 1991-1995 war in Croatia. Vertical and longitudinal distributions of Cd and Zn indicated that they are predominately of anthropogenic origin. The historical profiles of these toxic metals coincide well with the recorded production of metal industry in the upper reach of the Krka River with a sharp decrease reflecting the interruption by the war and slow recovery afterwards. By contrast, the recovery of the tourist industry in Krka NP after the war was accompanied by increasing contamination by elements characteristic of boat and car traffic (Sn, Cu, Pb) as well as oil pollution. The contamination with polycyclic aromatic hydrocarbons and polychlorinated biphenyls was only moderate. Although levels of metallic and organic contamination can be considered relatively low, the observed shift from industrial to tourism-related sources indicated that touristic activities should also be regarded as a possible threat for this vulnerable karst aquatic ecosystem.
Collapse
Affiliation(s)
- Iva Mikac
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička 54, 10000, Zagreb, Croatia
| | - Niko Bačić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička 54, 10000, Zagreb, Croatia
| | - Petar Ujčić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička 54, 10000, Zagreb, Croatia
| | - Mavro Lučić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička 54, 10000, Zagreb, Croatia
| | - Neda Vdović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička 54, 10000, Zagreb, Croatia
| | - Maja Ivanić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička 54, 10000, Zagreb, Croatia
| | - Marijan Ahel
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička 54, 10000, Zagreb, Croatia
| | - Nevenka Mikac
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička 54, 10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Liu H, Hu J, Tan Y, Zheng Z, Liu M, Lohmann R, Vojta S, Katz S, Liu Y, Li Z, Fang Z, Cai M, Zhao W. Identification of key anthropogenic and land use factors and ecological risk assessment of dissolved polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in an urbanized estuary in China. MARINE POLLUTION BULLETIN 2024; 207:116876. [PMID: 39173474 DOI: 10.1016/j.marpolbul.2024.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
This study investigated dissolved PAHs and OCPs in Quanzhou Bay estuaries, assessed their ecological risk, and examined anthropogenic impacts on contaminant distribution. Results showed that dissolved ∑24PAH concentrations ranged from 117 to 709 ng/L (mean: 358 ng/L), with dominance of 2-ring PAHs (Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene). Dissolved DDT levels ranged from 0.06 to 0.49 ng/L (mean: 0.28 ng/L), while HCBz concentrations varied from 0.02 to 0.44 ng/L (mean: 0.20 ng/L). PAHs were higher in the north due to urbanization and transport, while OCPs showed higher levels in the south due to historical agricultural use. Rural areas, water bodies, and wetlands significantly influenced the behavior of PAHs according to Spearman correlation and lasso regression analyses. Quanzhou Bay was categorized as a low to medium risk area based on dispersion simulation and ecological risk assessment, highlighting implications for future sustainable development and policy planning. CAPSULE: The coupled relationship between human activities and the distribution of dissolved PAHs and OCPs in urbanized estuaries was explored using statistical methods and GIS technology, providing valuable insights into environmental processes and pollutant control policies.
Collapse
Affiliation(s)
- Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jiajie Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yan Tan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhong Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Simon Vojta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Samuel Katz
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Yong Liu
- Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, PR China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Minggang Cai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China.
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
4
|
Yin F, Gao C, Feng D, Sun Y. A review of the pollution signatures of polycyclic aromatic hydrocarbons in the sediments of the East China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124386. [PMID: 38897279 DOI: 10.1016/j.envpol.2024.124386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Marine sediments serve as crucial reservoirs for polycyclic aromatic hydrocarbons (PAHs), and their PAH signatures offer valuable historical pollution records. This article provides a comprehensive review of the pollution status of 16 priority PAHs in more than 1000 sediments from the East China Sea (ECS). It focuses on the PAH sources, spatiotemporal distributions, driving factors, and ecological risks, with information derived from peer-reviewed papers published between 2003 and 2023. The results revealed that vehicular emissions, mixed combustion sources of coal, biomass, and coke, as well as petrogenic sources, were the primary contributors to PAH pollution in the ECS sediments, accounting for 50%, 34%, and 16%, respectively. Human activities, hydrodynamic mechanisms, and environmental variables such as particle size and organic matter, collectively influenced the distribution of PAHs. Additionally, the population size and economic development played a key role in the temporal distribution of PAHs in the ECS sediments. The ecotoxicity assessment of PAHs in sediments indicated a low risk level. These outcomes are expected to provide environmentalists with detailed and up-to-date insights into sedimentary PAHs in the ECS, helping to develop suitable monitoring plans and strategies for promoting better management of ECS environment.
Collapse
Affiliation(s)
- Fang Yin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 201306, PR China
| | - Chen Gao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China
| | - Daolun Feng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 201306, PR China
| | - Yawei Sun
- Nantong Marine Center, Ministry of Natural Resources, Nantong, 226002, PR China.
| |
Collapse
|
5
|
Teixeira J, Delerue-Matos C, Morais S, Oliveira M. Environmental contamination with polycyclic aromatic hydrocarbons and contribution from biomonitoring studies to the surveillance of global health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54339-54362. [PMID: 39207613 DOI: 10.1007/s11356-024-34727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This work presents an integrated overview of polycyclic aromatic hydrocarbons' (PAHs) ubiquity comprising environmental contamination in the air, aquatic ecosystems, and soils; characterizes the contamination in biota; and identifies main biomonitors and human exposure to PAHs and associated health risks. Urban centers and industrial areas present increased concentrations in the air (1344.4-12,300 versus 0.03-0.60 ng/m3 in industrial/urban and rural zones) and soils (0.14-1.77 × 106 versus 2.00-9.04 × 103 versus 1.59-5.87 × 103 ng/g in urban, forest, and rural soils), respectively. Increased concentrations were found in coastal zones and superficial waters as well as in sediments (7.00 × 104-1.00 × 109 ng/g). Benzo(a)pyrene, a carcinogenic PAH, was found in all environmental media. Mosses, lichens, tree leaves, bivalves, cephalopods, terrestrials' snails, and honeybees are good biomonitors of biota contamination. More studies are needed to improve characterization of PAHs' levels, distribution, and bioaccumulation in the environmental media and assess the associated risks for biota and human health. Actions and strategies to mitigate and prevent the bioaccumulation of PAHs in the environment and trophic chains toward the WHO's One-Health Perspective to promote the health of all ecosystems and human life are urgently needed.
Collapse
Affiliation(s)
- Joana Teixeira
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
6
|
Du M, Hu T, Liu W, Shi M, Li P, Mao Y, Liu L, Xing X, Qi S. Chronological evaluation of polycyclic aromatic hydrocarbons in sediments of tangxun lake in central China and impacts of human activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54887-54904. [PMID: 39215914 DOI: 10.1007/s11356-024-34816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
This study sheds light on the contamination of polycyclic aromatic hydrocarbons (PAHs) in Tangxun Lake sediments, an urban lake reflecting environmental changes in Central China. By analyzing sediment cores from both the inner and outer areas of the lake, we determined the historical trends and sources of PAHs over the past century. The results reveal a significant increase in PAHs concentrations, particularly since the 1980s, coinciding with China's rapid urbanization and industrialization. Using diagnostic ratios and Absolute principal component score-multivariate linear regression (APCS-MLR) methods, we identified petroleum combustion, coal combustion, and biomass combustion as the primary sources of PAHs in the lake sediments. The spatial analysis indicates higher PAHs levels in the inner lake, likely due to its closer proximity to industrial activities. Moreover, by comparing PAH trends in Tangxun Lake with those in other urban, suburban, and remote lakes across China, based on data from 49 sedimentary cores, we highlight the impact of regional socio-economic dynamics on PAH deposition. These insights are crucial for developing effective pollution mitigation strategies and promoting sustainable development in rapidly urbanizing regions.
Collapse
Affiliation(s)
- Minkai Du
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Tianpeng Hu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Weijie Liu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Mingming Shi
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Peng Li
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
- Hubei Geological Survey, Wuhan, 430034, Hubei, China
| | - Yao Mao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Wuhan East Lake High-Tech Development Zone, Hubei Province, China
| | - Li Liu
- Hubei Geological Survey, Wuhan, 430034, Hubei, China
| | - Xinli Xing
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Wuhan East Lake High-Tech Development Zone, Hubei Province, China.
| | - Shihua Qi
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Wuhan East Lake High-Tech Development Zone, Hubei Province, China
| |
Collapse
|
7
|
Polasko AL, Koutnik VS, Tsai K, Alkidim S, Borthakur A, Mohanty S, Mahendra S. Evaluation of historical data on persistent organic pollutants and heavy metals in Lake Baikal: Implications for accumulation in marine environments. ENVIRONMENTAL RESEARCH 2024; 252:119035. [PMID: 38685302 DOI: 10.1016/j.envres.2024.119035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Lake Baikal, the largest freshwater lake by volume, provides drinking water and aquatic food supplies to over 2.5 million people. However, the lake has been contaminated with recalcitrant pollutants released from surrounding industrial complexes, agriculture, and natural lands, thereby increasing the risk of their bioaccumulation in fish and seals. Yet, a collective analysis of historical concentration data and their bioaccumulation potential as well as what factors drive their accumulation in fish or seals remains largely unknown. We analyzed concentration data from 42 studies collected between 1985 and 2019 in water, sediment, fish, and seals of Lake Baikal. Heavy metals had the highest concentrations in water and biota followed closely by polycyclic aromatic hydrocarbons (PAHs) and organochlorines. Among organochlorines, polychlorinated biphenyls (PCBs) showed the highest levels in water, surpassing hexachlorocyclohexane (HCH) concentrations, particularly after normalizing to solubility. While naphthalene and phenanthrene exhibited the highest average concentrations among polycyclic aromatic hydrocarbons (PAHs), their relative concentrations significantly decreased upon solubility normalization. The analysis confirmed that bioconcentration and biomagnification of organochlorine pesticides, PCBs, PAHs, and heavy metals depend primarily on source strength to drive their concentration in water and secondarily on their chemical characteristics as evidenced by the higher concentrations of low-solubility PCBs and high molecular weight PAHs in water and sediment. The differential biomagnification patterns of Cu, Hg, and Zn compared to Pb are attributed to their distinct sources and bioavailability, with Cu, Hg, and Zn showing more pronounced biomagnification due to prolonged industrial release, in contrast to the declining Pb levels. Dibenzo-p-dioxins were detected in sediment and seals, but not in water or fish compartments. These data highlight the importance of addressing even low concentrations of organic and inorganic pollutants and the need for more consistent and frequent monitoring to ensure the future usability of this and other similar essential natural resources.
Collapse
Affiliation(s)
| | | | | | - Sarah Alkidim
- Brown University, Department of Physics, Providence, RI, USA
| | - Annesh Borthakur
- St. Louis University, Department of Civil, Computer, and Electrical Engineering, 1 N. Grand Blvd, St. Lous, MO, USA
| | - Sanjay Mohanty
- University of California at Los Angeles (UCLA), Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Shaily Mahendra
- University of California at Los Angeles (UCLA), Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| |
Collapse
|
8
|
Grmasha RA, Stenger-Kovács C, Al-Sareji OJ, Al-Juboori RA, Meiczinger M, Andredaki M, Idowu IA, Majdi HS, Hashim K, Al-Ansari N. Temporal and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in the Danube River in Hungary. Sci Rep 2024; 14:8318. [PMID: 38594356 PMCID: PMC11004153 DOI: 10.1038/s41598-024-58793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
The Danube is a significant transboundary river on a global scale, with several tributaries. The effluents from industrial operations and wastewater treatment plants have an impact on the river's aquatic ecosystem. These discharges provide a significant threat to aquatic life by deteriorating the quality of water and sediment. Hence, a total of 16 Polycyclic Aromatic Hydrocarbons (PAHs) compounds were analyzed at six locations along the river, covering a period of 12 months. The objective was to explore the temporal and spatial fluctuations of these chemicals in both water and sediment. The study revealed a significant fluctuation in the concentration of PAHs in water throughout the year, with levels ranging from 224.8 ng/L during the summer to 365.8 ng/L during the winter. Similarly, the concentration of PAHs in sediment samples varied from 316.7 ng/g in dry weight during the summer to 422.9 ng/g in dry weight during the winter. According to the Europe Drinking Water Directive, the levels of PAHs exceeded the permitted limit of 100 ng/L, resulting in a 124.8% rise in summer and a 265.8% increase in winter. The results suggest that the potential human-caused sources of PAHs were mostly derived from pyrolytic and pyrogenic processes, with pyrogenic sources being more dominant. Assessment of sediment quality standards (SQGs) showed that the levels of PAHs in sediments were below the Effect Range Low (ERL), except for acenaphthylene (Acy) and fluorene (Fl) concentrations. This suggests that there could be occasional biological consequences. The cumulative Individual Lifetime Cancer Risk (ILCR) exceeds 1/104 for both adults and children in all sites.
Collapse
Affiliation(s)
- Ruqayah Ali Grmasha
- Limnology Research Group, Center for Natural Science, University of Pannonia, Egyetem Utca 10, 8200, Veszprém, Hungary
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, 51001, Iraq
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Csilla Stenger-Kovács
- Limnology Research Group, Center for Natural Science, University of Pannonia, Egyetem Utca 10, 8200, Veszprém, Hungary
- HUN-REN-PE Limnoecology Research Group, Egyetem Utca 10, 8200, Veszprém, Hungary
| | - Osamah J Al-Sareji
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, 51001, Iraq
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, Aalto, PO Box 15200, 00076, Espoo, Finland
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Manolia Andredaki
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK
| | - Ibijoke A Idowu
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Hillah, Iraq
| | - Khalid Hashim
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, 51001, Iraq.
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK.
- Dijlah University College, Baghdad, Iraq.
| | - Nadhir Al-Ansari
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, Lulea, Sweden.
| |
Collapse
|
9
|
Ge H, Liu X, Lu D, Yang Z, Li H. Degradation of pyrene by Xanthobacteraceae bacterium strain S3 isolated from the rhizosphere sediment of Vallisneria natans: active conditions, metabolite identification, and proposed pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25659-25670. [PMID: 38483714 DOI: 10.1007/s11356-024-32724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were typical environmental contaminants that accumulated continuously in sediment. Microbial degradation is the main way of PAH degradation in the natural environment. Therefore, expanding the available pool of microbial resources and investigating the molecular degrading mechanisms of PAHs are critical to the efficient control of PAH-polluted sites. Here, a strain (identified as Xanthobacteraceae bacterium) with the ability to degrade pyrene was screened from the rhizosphere sediment of Vallisneria natans. Response surface analysis showed that the strain could degrade pyrene at pH 5-7, NaCl addition 0-1.5%, and temperature 25-40 °C, and the maximum pyrene degradation (~ 95.4%) was obtained under the optimum conditions (pH 7.0, temperature 28.5 °C, and NaCl-free addition) after 72 h. Also, it was observed that the effect of temperature on the degradation ratio was the most significant. Furthermore, eighteen metabolites were identified by mass spectrometry, among which (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid, 7-(carboxymethyl)-8-formyl-1-naphthyl acetic acid, phthalic acid, naphthalene-1,2-diol, and phenol were the main metabolites. And the degradation pathway of pyrene was proposed, suggesting that pyrene undergoes initial ortho-cleavage under the catalysis of metapyrocatechase to form (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid. Subsequently, this intermediate was progressively oxidized and degraded to phthalic acid or phenol, which could enter the tricarboxylic acid cycle. Furthermore, the pyrene biodegradation by the strain followed the first-order kinetic model and the degradation rate changed from fast to slow, with the rate remaining mostly slow in the later stages. The slow biodegradation rate was probably caused by a significant amount of phenol accumulation in the initial stage of degradation, which resulted in a decrease in bacterial activity or death.
Collapse
Affiliation(s)
- Huanying Ge
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Xinghao Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Denglong Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China.
| |
Collapse
|
10
|
Bărbulescu A, Barbeş L, Dumitriu CȘ. Advances in Water, Air and Soil Pollution Monitoring, Modeling and Restoration. TOXICS 2024; 12:244. [PMID: 38668467 PMCID: PMC11054471 DOI: 10.3390/toxics12040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/29/2024]
Abstract
Global pollution demands continuous attention and concerted efforts to reduce its effects [...].
Collapse
Affiliation(s)
- Alina Bărbulescu
- Department of Civil Engineering, Transilvania University of Brașov, 5 Turnului Str., 500152 Brașov, Romania;
| | - Lucica Barbeş
- Department of Chemistry and Chemical Engineering, “Ovidius” University of Constanța, 124 Mamaia Bd., 900527 Constanța, Romania
- Doctoral School of Biotechnical Systems Engineering, Politehnica University of Bucharest, 313, Splaiul Independenţei, 060042 Bucharest, Romania
| | - Cristian Ștefan Dumitriu
- Faculty of Mechanical Engineering and Robotics in Constructions, Technical University of Civil Engineering, Calea Plevnei 59, 021242 Bucharest, Romania
| |
Collapse
|
11
|
Garagnon J, Perrette Y, Naffrechoux E, Pons-Branchu E. Polycyclic aromatic hydrocarbon record in an urban secondary carbonate deposit over the last three centuries (Paris, France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167429. [PMID: 37774882 DOI: 10.1016/j.scitotenv.2023.167429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Preserving water resources and limiting pollution are central environmental issues in the current context of intense anthropization. Among organic pollutants, polycyclic aromatic hydrocarbons (PAHs) are commonly analysed as part of water quality assessments. After being emitted into the atmosphere, these persistent organic pollutants are deposited on the continental surface, where they are transported to the aquatic environment by run-off and infiltration waters. Mainly due to anthropogenic emissions, PAHs can therefore be considered as a proxy for human activities. Urban secondary carbonate deposits (USCDs), similar to cave speleothems, have recently been studied for their potential as natural archives of water quality. However, USCDs have never been used to trace water organic pollution and only a few studies on PAHs in speleothems are available. This study focuses on a well-dated USCD covering the last 300 years from the Great Aqueduct of Belleville (north-east of Paris, France). The aim is to determine the nature and variation of trapped organic compounds over time and to discuss their origin, transport, and link with changes in soil occupation due to human activities. To do so, high-resolution solid-phase UV fluorescence imaging analyses were combined with chemical analyses of PAHs and organic carbon carried out on low-weight samples. The results show that PAHs have been present in urban surface water for 300 years. Over the last few decades, a 7-fold increase is observed, accompanied by a change in the pollution source, enriched in high-molecular-weight PAHs, probably linked to urban dust. This study also reveals modes of transport directly influenced by changes in the soil occupation that are very different from those usually encountered in natural environments. This work thus paves the way for a better long-term understanding of the impact of human activity on the transfer of pollutants to sub-surface waters.
Collapse
Affiliation(s)
- Julia Garagnon
- LSCE/IPSL, UMR 8212CEA-CNRS-UVSQ, Université Paris-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette, France; EDYTEM (CNRS/USMB/MCC), Bâtiment Pole Montagne, Campus Scientifique, 73376 Le Bourget du Lac Cedex, France.
| | - Yves Perrette
- EDYTEM (CNRS/USMB/MCC), Bâtiment Pole Montagne, Campus Scientifique, 73376 Le Bourget du Lac Cedex, France
| | - Emmanuel Naffrechoux
- EDYTEM (CNRS/USMB/MCC), Bâtiment Pole Montagne, Campus Scientifique, 73376 Le Bourget du Lac Cedex, France
| | - Edwige Pons-Branchu
- LSCE/IPSL, UMR 8212CEA-CNRS-UVSQ, Université Paris-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
12
|
He Y, Wang X, Zhang Z. Polycyclic aromatic hydrocarbons (PAHs) in a sediment core from Lake Taihu and their associations with sedimentary organic matter. J Environ Sci (China) 2023; 129:79-89. [PMID: 36804244 DOI: 10.1016/j.jes.2022.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 06/18/2023]
Abstract
Sediment core is the recorder of polycyclic aromatic hydrocarbon (PAH) pollutions and the associated sedimentary organic matter (SOM), acting as crucial supports for pollution control and environmental management. Here, the sedimentary records of PAHs and SOM in the past century in Lake Taihu, China, were reconstructed from a 50-cm sediment core. On the one hand, the presence of PAHs ranged from 8.99 to 199.2 ng/g. Vertically, PAHs declined with the depth increased, and the sedimentation history of PAHs was divided into two stages with a discontinuity at 20 cm depth. In composition, PAHs in the sediment core were dominated by three-ring PAHs (44.6% ± 9.1%, mean ± standard deviation), and were followed by four-ring (27.0% ± 3.3%), and five-ring (12.1% ± 4.0%) PAHs. In toxicity assessment, the sedimentary records of benzo[a]pyrene-based toxic equivalency were well described by an exponential model with R-square of 0.95, and the environmental background toxic value was identified as 1.62 ng/g. On the other hand, different components of SOM were successfully identified by n-alkane markers (p < 0.01) and the variations of SOM were well explained (84.6%). A discontinuity of SOM was recognized at 22 cm depth. Association study showed that the sedimentary PAHs were associated with both anthropogenic and biogenic SOM (p < 0.05) with explained variances for most individual PAHs of 60%. It indicated the vertical distributions of PAHs were driven by sedimentary SOM. Therefore, environmental processes such as biogenic factors should attract more attentions as well as PAH emissions to reduce the impacts of PAHs.
Collapse
Affiliation(s)
- Yong He
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Xiangyu Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhaobin Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Di Duca F, Montuori P, Trama U, Masucci A, Borrelli GM, Triassi M. Health Risk Assessment of PAHs from Estuarine Sediments in the South of Italy. TOXICS 2023; 11:toxics11020172. [PMID: 36851047 PMCID: PMC9964163 DOI: 10.3390/toxics11020172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Increased concerns about the toxicities of Polycyclic Aromatic Hydrocarbons (PAHs), ubiquitous and persistent compounds, as well as the associated ecotoxicology issue in estuarine sediments, have drawn attention worldwide in the last few years. The levels of PAHs in the Sele, Sarno, and Volturno Rivers sediments were evaluated. Moreover, the cancerogenic risk resulting from dermal and ingestion exposure to PAHs was estimated using the incremental lifetime cancer risk (ILCR) assessment and the toxic equivalent concentration (TEQBaP). For Sele River, the results showed that the total PAH concentration ranged from 632.42 to 844.93 ng g-1 dw, with an average value of 738.68 ng g-1 dw. ∑PAHs were in the range of 5.2-678.6 ng g-1 dw and 434.8-872.1 ng g-1 dw for the Sarno and Volturno River sediments, respectively. The cancerogenic risk from the accidental ingestion of PAHs in estuarine sediments was low at all sampling sites. However, based on the ILCRdermal values obtained, the risk of cancer associated with exposure by dermal contact with the PAHs present in the sediments was moderate, with a mean ILCRdermal value of 2.77 × 10-6. This study revealed the pollution levels of PAHs across the South of Italy and provided a scientific basis for PAH pollution control and environmental protection.
Collapse
Affiliation(s)
- Fabiana Di Duca
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Paolo Montuori
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Ugo Trama
- General Directorate of Health, Campania Region, Centro Direzionale Is. C3, 80143 Naples, Italy
| | - Armando Masucci
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Gennaro Maria Borrelli
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Maria Triassi
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| |
Collapse
|
14
|
Wu H, Wang J, Guo J, Hu X, Chen J. Sedimentary records of polycyclic aromatic hydrocarbons from three enclosed lakes in China: Response to energy structure and economic development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120929. [PMID: 36566918 DOI: 10.1016/j.envpol.2022.120929] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Historical polycyclic aromatic hydrocarbon (PAH) pollution was explored through the sedimentary records of three lakes: Huguangyan Maar Lake (HGY) in South China, Mayinghai Lake (MYH) in North China, and Sihailongwan Lake (SHLW) in Northeast China. In these three lakes, the PAH concentrations in sediments are still rising, showing the different trend to lakes in developed countries. PAH pollution in South China occurred from 1850, much earlier than the increases since 1980 observed in North and Northeast China. The temporal trends of PAH concentrations in lake sediments are highly correlated with local economic development. Spatially, although the region where HGY is located has the highest gross domestic product, higher fluxes of PAHs were found in MYH sediments, indicating that atmospheric PAH pollution in North China might be more serious, and that PAH pollution is not fully correlated with economic development. Source analysis suggested that the PAHs in lake sediments are mainly derived from oil leaks, coal and biomass combustion, vehicle emissions, and diagenesis. Positive matrix factorization (PMF) model revealed that the contribution of vehicle emissions and coal combustion to PAHs has increased significantly in the past 40 years. Benzo(a)pyrene equivalent (BaPE) in the surface sediments of MYH and SHLW were similar and higher than in HGY. In HGY, vehicle emissions posed the highest toxic risk, followed by coal combustion. However, in MYH, the toxicity risk of vehicle emissions was close to that of coal and biomass combustion due to the highly developed coal industry in Shanxi Province. In SHLW, the contribution of fossil fuel combustion to BaPE was significantly higher than that of biomass combustion. This study provides important information for understanding PAH pollution affected by anthropogenic activities in the Anthropocene and provides a scientific basis for formulating PAH pollution control strategies.
Collapse
Affiliation(s)
- Hongchen Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jianyang Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xinping Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
15
|
Gravina P, Sebastiani B, Bruschi F, Petroselli C, Moroni B, Selvaggi R, Goretti E, Pallottini M, Ludovisi A, Cappelletti D. Sources and trends of trace elements and polycyclic aromatic hydrocarbons in a shallow lake in the Mediterranean area from sediment archives of the Anthropocene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85815-85828. [PMID: 36125684 PMCID: PMC9668802 DOI: 10.1007/s11356-022-22939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 09/04/2022] [Indexed: 05/13/2023]
Abstract
In this study, the anthropogenic contamination in Trasimeno lake (Central Italy) was investigated using three sediment cores spanning over the last 150 years (Anthropocene) to identify the primary sources of pollution and quantify the level of contaminant enrichment in the basin. First, based on the relative cumulative frequency and linear regression methods, we obtained a geochemical baseline for the lake using the deeper parts of the sediment cores. The geochemical baseline allowed us to determine the values of trace elements enrichment factors. On this knowledge, as a second result, we were able to reconstruct the natural sources and the anthropogenic impact on the lake with a biennial resolution. This goal has been obtained by combining different inorganic and organic chemical proxies such as trace elements, polycyclic aromatic hydrocarbons, and lead isotope ratios and exploiting both principal component and factor analysis to associate chemical proxies to human-driven contamination processes. Five different groups of elements have been identified, one of which is of natural origin and four of anthropogenic origin. In particular, it was possible to identify the times and impacts of the industrial activities during the Second World War, which dispersed heavy metals in sediments. Moreover, we found evidence of the recent human activities that have characterized the surroundings of the basin, such as Pb inputs related to the use of gasoline and the enrichment of certain elements generally used in agricultural activities (such as P, Cu, and Mn) due to the development of this sector in the last 40 years.
Collapse
Affiliation(s)
- Paola Gravina
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Bartolomeo Sebastiani
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Federica Bruschi
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Chiara Petroselli
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Beatrice Moroni
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Roberta Selvaggi
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Enzo Goretti
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Matteo Pallottini
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Alessandro Ludovisi
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - David Cappelletti
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| |
Collapse
|
16
|
Fu M, Wang H, Bai Q, Du J, Niu Q, Nie J. Urinary polycyclic aromatic hydrocarbon metabolites, plasma p-tau231 and mild cognitive impairment in coke oven workers. CHEMOSPHERE 2022; 307:135911. [PMID: 35961449 DOI: 10.1016/j.chemosphere.2022.135911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As a group of environmental pollutants, polycyclic aromatic hydrocarbons (PAHs) may be neurotoxic,especially in high-exposure occupational populations. However, the effect of PAHs on mild cognitive impairment (MCI) is still unclear. OBJECTIVE We aimed to investigate the relationship between PAH metabolites and MCI and to explore whether plasma p-tau231 can be used as a potential biomarker to reflect MCI in coke oven workers. METHOD A total of 330 workers were recruited from a coke oven plant as the exposure group, and 234 workers were recruited from a water treatment plant as the control group. The concentrations of eleven PAH metabolites and plasma p-tau231 were determined by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) and ELISA. Cognitive function was measured by the Montreal Cognitive Assessment (MoCA) questionnaire. A multivariate logistic regression model and multiple linear regression model were used to analyze the associations of urinary PAH metabolites with the detection rate of MCI, MoCA scores and plasma p-tau231. The dose-response relationships were evaluated using restricted cubic spline models. RESULTS We found 146 MCI-positive workers in coke oven plant (44.24%), and 69 MCI-positive workers in water treatment plant (29.49%). In addition, the urinary sum of PAH metabolites (Ʃ-OH PAHs) was significantly associated with MCI (OR, 1.371; 95% CI:1.102-1.705). Each one-unit increase in ln-transformed Ʃ-OH PAHs was associated with a 0.429 decrease in the sum of MoCA, a 0.281 reduction in the visuospatial/executive function and a 9.416 increase in the level of plasma P-Tau231. We found a negative association between plasma P-Tau231 and visuospatial/executive function (β = -0.007, 95% CI: -0.011, -0.003). CONCLUSION Our data indicated that urinary Ʃ-OH PAHs levels of workers were positively associated with MCI and the level of plasma P-Tau231.
Collapse
Affiliation(s)
- Mengmeng Fu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| | - Huimin Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| | - QianXiang Bai
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| | - Juanjuan Du
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
17
|
Ding H, Lan J, Yao S, Zhang D, Han B, Pan G, Li X. Evolution of polycyclic aromatic hydrocarbons in the surface sediment of southern Jiaozhou Bay in northern China after an accident of oil pipeline explosion. MARINE POLLUTION BULLETIN 2022; 183:114039. [PMID: 35986952 DOI: 10.1016/j.marpolbul.2022.114039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The 2013 "Qingdao oil pipeline explosion" contaminated about 2.5 km of shoreline in the Jiaozhou Bay area and aroused widespread concern because of the serious casualties even though it was not the most severe oil-spill contamination in China. To evaluate the long-term impact, we collected thirty-three surface sediment samples after 3 years of the accident, with sixteen polycyclic aromatic hydrocarbons (PAHs) detected. Spatial-temporal variation in PAHs revealed that a minimal impact might still be present after 3 years. Source analysis combined with a one-way ANOVA showed that pyrolytic sources were consistently predominant. The environmental impact was already minimal 3 years later and negligible thereafter. Although the cancer risk has decreased over the years, there has always been a potential hazard to human for specific occupation, with all of the risk values exceeded 10-6. This study offers a reference for assessing the long-term impact of oil spills in similar bay areas.
Collapse
Affiliation(s)
- Huiping Ding
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Jie Lan
- Qingdao Institute of Scientific & Technical Information, Qingdao 266003, China.
| | - Shuo Yao
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Bin Han
- Key Laboratory of Marine Eco-Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Gang Pan
- School of Humanities, York St John University, York YO31 7EX, UK
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
18
|
Bai Y, Yu H, Shi K, Shang N, He Y, Meng L, Huang T, Yang H, Huang C. Polycyclic aromatic hydrocarbons in remote lakes from the Tibetan Plateau: Concentrations, source, ecological risk, and influencing factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115689. [PMID: 35816959 DOI: 10.1016/j.jenvman.2022.115689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have received worldwide attention due to their potential teratogenic, persistent, and carcinogenic characteristics. In this study, the PAHs concentrations in two dated sediment cores taken from central Tibetan Plateau (TP) were analyzed to study the deposition history, potential sources, ecological risks, and influencing factors. Total concentration of PAHs (∑PAHs) ranged from 50.0 to 195 ng g-1 and 51.9-133 ng g-1 in sediments of Pung Co (PC) and Dagze Co (DZC), respectively. 2-3-ring PAHs were dominant in the two lake sediments, accounting for an average of 77.5% and 80.1%, respectively. The historical trends of ∑PAHs in the two lakes allowed to distinguish three periods, namely, relative stability before the 1950s, a gradual increase between the 1950s and the 1990s, and then a decline to the present-day. In addition, the trend in the concentration level of each PAH composition was consistent with ∑PAHs before the 1990s, while they exhibited different trends since the 1990s, which may be the result of a combination of anthropogenic activities and climate change in recent years, whereas before the 1990s the PAH profile was mainly influenced by atmospheric deposition. The results of source apportionment examined according to diagnostic ratios and positive matrix factorization were consistent and revealed that PAHs were primarily derived from biomass and coal combustion. Significant correlations between PAHs and organic carbon (OC) indicate that OC might be a key factor influencing the concentration of PAHs in sediments. The ecological risk assessment demonstrated that PAHs in TP sediments occurred at a low risk level. Results of this study could be helpful to develop a deeper insight into the deposition history of PAHs in remote lakes of the TP region and explore the response of these variations to climate change and human activities.
Collapse
Affiliation(s)
- Yixin Bai
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Heyu Yu
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Kunlin Shi
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Nana Shang
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Yao He
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Lize Meng
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Tao Huang
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, PR China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, PR China
| | - Hao Yang
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, PR China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, PR China
| | - Changchun Huang
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, PR China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, PR China.
| |
Collapse
|
19
|
Guo F, Gao M, Dong J, Sun J, Hou G, Liu S, Du X, Yang S, Liu J, Huang Y. The first high resolution PAH record of industrialization over the past 200 years in Liaodong Bay, northeastern China. WATER RESEARCH 2022; 224:119103. [PMID: 36116194 DOI: 10.1016/j.watres.2022.119103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are excellent tracers for fossil fuel combustion, natural fires and petroleum contamination, and have been widely used for reconstructing past wildfires and industrial activities at a variety of time scales. Here, for the first time, we obtain a high resolution (annual to decadal scale) record of PAHs from two parallel marine sediment cores from the Liaodong Bay, Northeastern China to reconstruct the industrial activities, spanning the past ∼ 200 years from 1815 to 2014. Our data indicate that PAH variations can be divided into four episodes: I) low (probably near background) PAHs from natural fires and domestic wood combustion during the pre-industrial period from 1815 to 1890; II) slightly increased (but with large fluctuations) PAH concentrations derived from intermittent warfare during the World War (1891-1945) and increased industrial activities after 1946 (1946-1965); III) a period of stagnation and, in some cases, reduction in PAHs during the "Cultural Revolution" (1966 to 1979); and IV) a rapid and persistent rise in PAHs post 1979 linked to fast economic development, with PAH concentrations doubled from 1979 to 2014. Changes in PAH distributions demonstrate major shifts in the dominant types of fuels over time from vegetation/wood, to coal and wood, followed by coal and petroleum (including vehicle emissions) over the past 200 years. We find that PAH records also show similar trend to domestic economy and the estimated regional Anthropocene CO2 emissions from industrial activities, suggesting sedimentary PAH fluxes could be used as an indirect and qualitative proxy to track the trend for regional anthropogenic CO2 emissions.
Collapse
Affiliation(s)
- Fei Guo
- Institute of Marine Science and Technology, Shandong University Qingdao, Qingdao 266237, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xian 710061, China.
| | - Maosheng Gao
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, China
| | - Junfu Dong
- Institute of Marine Science and Technology, Shandong University Qingdao, Qingdao 266237, China
| | - Jun Sun
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, China
| | - Guohua Hou
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, China
| | - Sen Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaojing Du
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912-1846, United States
| | - Shu Yang
- Institute of Marine Science and Technology, Shandong University Qingdao, Qingdao 266237, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University Qingdao, Qingdao 266237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510000, China.
| | - Yongsong Huang
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912-1846, United States.
| |
Collapse
|
20
|
Wang H, Chen Z, Walker TR, Wang Y, Luo Q, Wu H, Wang X. Characterization, source apportionment and risk assessment of PAHs in urban surface dust in Shenyang city, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3639-3654. [PMID: 34687406 DOI: 10.1007/s10653-021-01134-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Characteristics, profile composition, ecological and human health risk of polycyclic aromatic hydrocarbons in surface dust collected from Shenyang city, China, were investigated. Concentrations of 16 USEPA priority PAHs ranged between 371.57 and 3300.04 μg/kg (mean 1244.76 ± 715.25 μg/kg). Fluoranthene was the most abundant individual PAHs, followed by pyrene, and high molecular weight PAHs, more than three times of low molecular weight PAHs, were the predominant components. Profiles of PAHs showed that 4-ring PAHs were dominant, followed by 3-ring and 5-ring PAHs, and indicated that combustion sources accounted for the most PAHs. Results of diagnostic ratios and positive matrix factorization all suggested that pyrogenic sources were the most important source of PAHs in urban dust, followed by natural gas combustion and petrogenic sources, and traffic emissions would play an increasingly critical role with the increasing of vehicles. Health risk assessment suggested children were the most vulnerable to PAHs compared to adolescents and adults. Ingestion was the most important exposure pathway. The total lifetime cancer risk of 43.33% of sampling sites was higher than 10-6, but the TLCR at all sites was much lower than the highest acceptable risk established by USEPA (10-4).
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, 110044, People's Republic of China.
- School for Resource and Environmental Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| | - Zijian Chen
- Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, 110044, People's Republic of China
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Yinggang Wang
- Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, 110044, People's Republic of China
| | - Qing Luo
- Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, 110044, People's Republic of China
| | - Hao Wu
- Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, 110044, People's Republic of China
| | - Xiaoxu Wang
- Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, 110044, People's Republic of China
| |
Collapse
|
21
|
Comparing the chromatographic performance of benzene and aniline end capped stationary phase synthesized by click chemistry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Ugochukwu UC, Chukwuone NA, Jidere C, Agu C, Kurumeh L, Ezeudu OB. Legacy PAHs in effluent receiving river sediments near a large petroleum products depot in Enugu, Nigeria: Human health risks and economic cost of pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119731. [PMID: 35820571 DOI: 10.1016/j.envpol.2022.119731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
This study assessed the human health risk of exposure to legacy PAHs in the Nwaenebo River sediments that received effluents for over two decades from the Nigeria National Petroleum Corporation (NNPC) petroleum product Depot in Emene, Enugu, Nigeria. The study went further to estimate economic costs of the sediment PAHs pollution based on the human health risk of exposure. The human health risks were determined by estimating carcinogenic and mutagenic risks via Benzo[a]pyrene total potential equivalent (BaP TPE) and mutagenic equivalent quotient (MEQ). The economic costs of the sediment pollution comprised costs due to mortality and those due to morbidity and were estimated using the value of statistical lives (VSLs) and cost of illness (CoI), respectively. The study, with an appropriate selection of sampling points established that the NNPC petroleum Depot was responsible for the Nwaenebo River sediment PAHs pollution with ƩPAHs concentration 14.3-163 mg/kg. The carcinogenic and mutagenic risks varied from 1.3*10^-5 to 4.7*10^-5 and 1.4*10^-5 to 6.0*10^-5 respectively. Based on risk threshold of 10^-6, these risks were high. The long term economic costs of pollution of the sediments by the PAHs were estimated at 60.5 million USD and 0.46 million USD for mortality and morbidity costs, respectively.
Collapse
Affiliation(s)
- Uzochukwu C Ugochukwu
- Shell/UNN Centre for Environmental Management & Control, University of Nigeria, Enugu Campus, Nigeria; Resource and Environmental Policy Research Centre, University of Nigeria Nsukka, Enugu State, Nigeria.
| | - Nnaemeka Andegbe Chukwuone
- Department of Agricultural Economics, University of Nigeria, Nsukka, Enugu State, Nigeria; Resource and Environmental Policy Research Centre, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Chika Jidere
- Department of Soil Science, University of Nigeria, Nsukka, Enugu State, Nigeria; Resource and Environmental Policy Research Centre, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Chizoba Agu
- Shell/UNN Centre for Environmental Management & Control, University of Nigeria, Enugu Campus, Nigeria
| | - Leonard Kurumeh
- Shell/UNN Centre for Environmental Management & Control, University of Nigeria, Enugu Campus, Nigeria
| | - Obiora Boniface Ezeudu
- Shell/UNN Centre for Environmental Management & Control, University of Nigeria, Enugu Campus, Nigeria
| |
Collapse
|
23
|
Wang C, Hao Z, Huang C, Wang Q, Yan Z, Bai L, Jiang H, Li D. Drinking water treatment residue recycled to synchronously control the pollution of polycyclic aromatic hydrocarbons and phosphorus in sediment from aquatic ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128533. [PMID: 35219062 DOI: 10.1016/j.jhazmat.2022.128533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Great efforts have long been made to control sediment pollution from persistent organic pollutants and phosphorus for aquatic ecosystem restoration. This study proposed a novel recycling of drinking water treatment residue (DWTR) to synchronously control sediment polycyclic aromatic hydrocarbons (PAHs) and phosphorus pollution based on a 350-day incubation test. The results suggested that DWTR addition reduced approximately 88%- 96% of potential bioavailable PAHs and 76% of mobile phosphorus in sediment. The dominant mechanisms for both reductions by DWTR were immobilization, mainly through increasing sediment amorphous aluminum and iron. The tendency of enhanced PAHs degradation by DWTR was also observed, especially for high molecular weight PAHs (e.g., chrysene, indeno(1, 2, 3-cd)pyrene, and benzo(g, hi)perylene), which decreased by approximately 21.1%- 22.0% of the total. Additionally, accompanying a clear increase in the connections of microbial cooccurrence networks, the variations in bioavailable PAHs, amorphous aluminum and iron, and other properties (e.g., pH, nitrogen, and organic matter) significantly (p < 0.01) enhanced Flavobacterium enrichment, although the enrichment of many other microbes potentially related to PAHs degradation (e.g., C1-B045) decreased after DWTR addition. Therefore, DWTR could promote the construction of a "PAHs immobilization with microbial augmentation" system while immobilizing phosphorus in sediment, indicating the high feasibility of controlling multiple sediment pollution.
Collapse
Affiliation(s)
- Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Zheng Hao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghao Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianhong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongdong Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210008, China
| |
Collapse
|
24
|
Influence of Source Apportionment of PAHs Occurrence in Aquatic Suspended Particulate Matter at a Typical Post-Industrial City: A Case Study of Freiberger Mulde River. SUSTAINABILITY 2022. [DOI: 10.3390/su14116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have received extensive attention because of their widespread presence in various environmental media and their high environmental toxicity. Thus, figuring out the long-term variances of their occurrence and driving force in the environment is helpful for environmental pollution control. This study investigates the concentration levels, spatial variance, and source apportionment of PAHs in suspended particulate matter of Freiberger Mulde river, Germany. Results show that the concentrations of the 16 priority PAHs suggested by USEPA (Σ16PAHs) were in the range of 707.0–17,243.0 μg kg−1 with a mean value of 5258.0 ± 2569.2 μg kg−1 from 2002 to 2016. The relatively high average concentrations of Σ16PAHs were found in the midstream and upstream stations of the given river (7297.5 and 6096.9 μg kg−1 in Halsbrucke and Hilbersdorf, respectively). In addition, the annual average concentration of Σ16PAHs showed an obvious decreasing pattern with time. Positive Matrix Factorization (PMF) receptor model identified three potential sources: coke ovens (7.6–23.0%), vehicle emissions (35.9–47.7%), and coal and wood combustion (34.5–47.3%). The source intensity variation and wavelet coherence analysis indicated that the use of clean energy played a key role in reducing PAHs pollution levels in suspended sediments. The risk assessment of ecosystem and human health suggested that the Σ16PAHs in the given area posed a non-negligible threat to aquatic organisms and humans. The data provided herein could assist the subsequent management of PAHs in the aquatic environment.
Collapse
|
25
|
Jesus F, Pereira JL, Campos I, Santos M, Ré A, Keizer J, Nogueira A, Gonçalves FJM, Abrantes N, Serpa D. A review on polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their toxicity to benthic fauna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153282. [PMID: 35066033 DOI: 10.1016/j.scitotenv.2022.153282] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/04/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds, found ubiquitously in all environmental compartments. PAHs are considered hazardous pollutants, being of concern to both the environmental and human health. In the aquatic environment, PAHs tend to accumulate in the sediment due to their high hydrophobicity, and thus sediments can be considered their ultimate sink. Concurrently, sediments comprise important habitats for benthic species. This raises concern over the toxic effects of PAHs to benthic communities. Despite PAHs have been the subject of several reviews, their toxicity to freshwater benthic species has not been comprehensively discussed. This review aimed to provide an overview on PAHs distribution in freshwater environments and on their toxicity to benthic fauna species. The distribution of PAHs between sediments and the overlying water column, given by the sediment-water partition coefficient, revealed that PAHs concentrations were 2 to 4 orders of magnitude higher in sediments than in water. The sediment-water partition coefficient was positively correlated to PAHs hydrophobicity. Toxicity of PAHs to benthic fauna was addressed through Species Sensitivity Distributions. The derived hazardous concentration for 5% of the species (HC5) decreased as follows: NAP (376 μg L-1) > PHE > PYR > FLT > ANT (0.854 μg L-1), varying by 3 orders of magnitude. The hazardous concentrations (HC5) to benthic species were inversely correlated to the hydrophobicity of the individual PAHs. These findings are pertinent for environmental risk assessment of these compounds. This review also identified future challenges regarding the environmental toxicity of PAHs to freshwater benthic communities, namely the need for updating the PAHs priority list and the importance of comprehensively and more realistically assess the toxicity of PAHs in combination with other stressors, both chemical and climate-related.
Collapse
Affiliation(s)
- Fátima Jesus
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Joana L Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Campos
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Martha Santos
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Ré
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jacob Keizer
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Nogueira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nelson Abrantes
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Dalila Serpa
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
26
|
Li Z, Zhang W, Shan B. Effects of organic matter on polycyclic aromatic hydrocarbons in riverine sediments affected by human activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152570. [PMID: 34954165 DOI: 10.1016/j.scitotenv.2021.152570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Organic matter (OM) is an important component of riverine environments and a major factor in the migration and transformation of hydrophobic organic substances, such as polycyclic aromatic hydrocarbons (PAHs), to sediments. We studied the distributions, sources, and correlations between PAHs and OM in sediments from the Duliujian and the Beiyun rivers in North China. Sixteen PAHs were detected in the surface sediments at total concentrations ranging from 356 to 4652 ng·g-1 dry weight, which caused a moderate to high level of pollution. The PAH distributions were significantly and positively correlated with OM (p < 0.01) and higher concentrations were detected downstream of areas affected by human activity. Petroleum, coal, and wood combustion were the main sources of PAHs in riverine sediments, and the sources of OM in sediment included terrestrial and aquatic higher plants, soil, and sewage discharge. The OM accumulated and aged along the river, with increases in the degree of aromaticity and condensation, which led to stronger adsorption of PAHs. Our results will help to promote the management and restoration of contaminated riverine sediments.
Collapse
Affiliation(s)
- Zhenhan Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wenqiang Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Baoqing Shan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
27
|
Kim D, Kim S, Yim UH, Ha SY, An JG, Loh A, Kim S. Determination of anthropogenic organics in dichlomethane extracts of aerosol particulate matter collected from four different locations in China and Republic of Korea by GC-MS and FTICR-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150230. [PMID: 34536876 DOI: 10.1016/j.scitotenv.2021.150230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/29/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
In this study, the hypothesis that particulate matter in east of Korea peninsula would be significantly influenced by particulate matter originated from east of China was evaluated. To test the hypothesis, water-insoluble compounds in particulate matter samples collected from three different locations in Korea and one in China were characterized by atmospheric pressure photoionization (APPI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and gas chromatography mass spectrometry (GC-MS). Each sample was collected twice, in winter and in spring. The GC-MS data revealed the presence of high levels of polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]anthracene in the samples from Tianjin, China. The sample collected in the winter from Baengnyeong Island, which is the location in Korea that is geographically closest to the east coast of China was also rich in aromatic compounds. Meanwhile, the APPI FTICR-MS data showed that polycondensed PAHs and two- to four-ring PAHs with long alkyl chains were abundant in the winter samples from Tianjin and Baengnyeong Island which stems most likely from coal combustion in the eastern China. In contrast, nonaromatic compounds with a biogenic origin were mostly observed in samples collected from islands located in eastern (Ulleung Island) and southern (Jeju Island) Korea. A principal component analysis by FTICR-MS and GC-MS also showed that the samples from Tianjin and those collected from Baengnyeong Island in the winter are strongly associated with coal combustion, whereas the other samples are mainly influenced by vehicle emissions. Therefore, it is concluded that the atmosphere from east of China has significant influence over atmosphere in west of Korea peninsula.
Collapse
Affiliation(s)
- Donghwi Kim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Sungjune Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Sung Yong Ha
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Joon Geon An
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Andrew Loh
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; Mass Spectrometry Convergence Research Center and Green-Nano Materials Research Center, Daegu 41566, Republic of Korea.
| |
Collapse
|
28
|
Xu L, Liu S, Tang Y, Han X, Wang Y, Fu D, Qin Q, Xu Y. Long-Term Dechlorination of Polychlorinated Biphenyls (PCBs) in Taihu Lake Sediment Microcosms: Identification of New Pathways, PCB-Driven Shifts of Microbial Communities, and Insights into Dechlorination Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:938-950. [PMID: 34958198 DOI: 10.1021/acs.est.1c06057] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbial reductive dechlorination of polychlorinated biphenyls (PCBs) is regarded as an alternative approach for in situ remediation and detoxification in the environment. To better understand the process of PCB dechlorination in freshwater lake sediment, a long-term (108 weeks) dechlorination study was performed in Taihu Lake sediment microcosms with nine parent PCB congeners (PCB5, 12, 64, 71, 105, 114, 149, 153, and 170). Within 108 weeks, the total PCBs declined by 32.8%, while parent PCBs declined by 84.8%. PCB dechlorinators preferred to attack meta- and para-chlorines, principally para-flanked meta and single-flanked para chlorines. A total of 58 dechlorination pathways were observed, and 20 of them were not in 8 processes, suggesting the broad spectrum of PCB dechlorination in the environment. Rare ortho dechlorination was confirmed to target the unflanked ortho chlorine, indicating a potential for complete dechlorination. PCBs drove the shifts of the microbial community structures, and putative dechlorinating bacteria were growth-linked to PCB dechlorination. The distinct jump of RDase genes ardA, rdh12, pcbA4, and pcbA5 was found to be consistent with the commencement of dechlorination. The maintained high level of putative dechlorinating phylum Chloroflexi (including Dehalococcoides and o-17/DF-1), genus Dehalococcoides, and four RDase genes at the end of incubation revealed the long-term dechlorination potential. This work provided insights into dechlorination potential for long-term remediation strategies at PCB-contaminated sites.
Collapse
Affiliation(s)
- Lei Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Sha Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Xuexin Han
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dafang Fu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Qingdong Qin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
29
|
Xu Q, Hu L, Chen S, Fu X, Gong P, Huang Z, Miao W, Jin C, Jin Y. Parental exposure 3-methylcholanthrene disturbed the enterohepatic circulation in F1 generation of mice. CHEMOSPHERE 2022; 286:131681. [PMID: 34346331 DOI: 10.1016/j.chemosphere.2021.131681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/03/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
3-methylcholanthrene (3 MC) is an environmental compound belonging to the PAHs and is reportedly thought to be a risk factor for the prevalence of hepatic function disorder. Here, a dose of 0.5 mg/kg of 3 MC was given to 4-week-old male and female mice (F0) in their diet for 6 weeks. After exposure, then the mice were mated between different groups. The first filial (F1) generation offspring of exposed or unexposed parental mice were sacrificed at the age of 5 weeks (F1-5 W), and the potential effects on the F0 and F1 offspring were evaluated. The results showed that the total bile acids (TBAs) in the serum and feces in F0 females and female F1-5 W individuals born from female mice exposed to 3 MC decreased, while the TBAs in the liver increased. The transcriptional levels of major genes participating in synthesis, regulation, transportation and apical uptake was also altered correspondingly. In addition, the transcription of some genes related to inflammation was enhanced in these mice. Further investigation revealed that in addition to distinct changes in the mucus secretion, tight junction proteins and ion transport were induced, and antimicrobial peptides were also disrupted in the intestine of F0 mice and F1-5 W female offspring of maternal mice exposed to 3 MC. Our results suggested that exposure to 3 MC, but not male exposure, had the potential to interfere with BAs metabolism, affecting gut barrier function. Females were more seriously affected than males.
Collapse
Affiliation(s)
- Qihao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Siqi Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Xiaoyong Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Ping Gong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Zeyao Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Wenyu Miao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| |
Collapse
|
30
|
Guo W, Yue J, Zhao Q, Li J, Yu X, Mao Y. A 110 Year Sediment Record of Polycyclic Aromatic Hydrocarbons Related to Economic Development and Energy Consumption in Dongping Lake, North China. Molecules 2021; 26:molecules26226828. [PMID: 34833920 PMCID: PMC8622884 DOI: 10.3390/molecules26226828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
A sedimentary record of the 16 polycyclic aromatic hydrocarbon (PAH) pollutants from Dongping Lake, north China, is presented in this study. The influence of regional energy structure changes for 2–6-ring PAHs was investigated, in order to assess their sources and the impact of socioeconomic developments on the observed changes in concentration over time. The concentration of the ΣPAH16 ranged from 77.6 to 628.0 ng/g. Prior to the 1970s, the relatively low concentration of ΣPAH16 and the average presence of 44.4% 2,3-ring PAHs indicated that pyrogenic combustion from grass, wood, and coal was the main source of PAHs. The rapid increase in the concentration of 2,3-ring PAHs between the 1970s and 2006 was attributed to the growth of the urban population and the coal consumption, following the implementation of the Reform and Open Policy in 1978. The source apportionment, which was assessed using a positive matrix factorization model, revealed that coal combustion was the most important regional source of PAHs pollution (>51.0%). The PAHs were mainly transported to the site from the surrounding regions by atmospheric deposition rather than direct discharge.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China; (J.Y.); (Q.Z.); (J.L.)
- Correspondence: (W.G.); (Y.M.)
| | - Junhui Yue
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China; (J.Y.); (Q.Z.); (J.L.)
| | - Qian Zhao
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China; (J.Y.); (Q.Z.); (J.L.)
| | - Jun Li
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China; (J.Y.); (Q.Z.); (J.L.)
| | - Xiangyi Yu
- Solid Waste and Chemicals Management Center of MEE, Beijing, 100029, China;
| | - Yan Mao
- Solid Waste and Chemicals Management Center of MEE, Beijing, 100029, China;
- Correspondence: (W.G.); (Y.M.)
| |
Collapse
|
31
|
Kumar M, Bolan NS, Hoang SA, Sawarkar AD, Jasemizad T, Gao B, Keerthanan S, Padhye LP, Singh L, Kumar S, Vithanage M, Li Y, Zhang M, Kirkham MB, Vinu A, Rinklebe J. Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade? JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126534. [PMID: 34280720 DOI: 10.1016/j.jhazmat.2021.126534] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/26/2021] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are generated due to incomplete burning of organic substances. Use of fossil fuels is the primary anthropogenic cause of PAHs emission in natural settings. Although several PAH compounds exist in the natural environmental setting, only 16 of these compounds are considered priority pollutants. PAHs imposes several health impacts on humans and other living organisms due to their carcinogenic, mutagenic, or teratogenic properties. The specific characteristics of PAHs, such as their high hydrophobicity and low water solubility, influence their active adsorption onto soils and sediments, affecting their bioavailability and subsequent degradation. Therefore, this review first discusses various sources of PAHs, including source identification techniques, bioavailability, and interactions of PAHs with soils and sediments. Then this review addresses the remediation technologies adopted so far of PAHs in soils and sediments using immobilization techniques (capping, stabilization, dredging, and excavation), mobilization techniques (thermal desorption, washing, electrokinetics, and surfactant assisted), and biological degradation techniques. The pros and cons of each technology are discussed. A detailed systematic compilation of eco-friendly approaches used to degrade PAHs, such as phytoremediation, microbial remediation, and emerging hybrid or integrated technologies are reviewed along with case studies and provided prospects for future research.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; College of Engineering, Science and Environment, University of Newcastle, Callaghan NSW, 2308, Australia
| | - Son A Hoang
- College of Engineering, Science and Environment, University of Newcastle, Callaghan NSW, 2308, Australia
| | - Ankush D Sawarkar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, 440 010, India
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Bowen Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Yang Li
- Department of Environmental Engineering, China Jiliang University, Zhejiang, Hangzhou 310018, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Zhejiang, Hangzhou 310018, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States of America
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
32
|
Sun Y, Zhang R, Ma R, Zhou H, Zhang F, Guo G, Li H, Lü C. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in the sediments of Daihai Lake in Inner Mongolia, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23123-23132. [PMID: 33439447 DOI: 10.1007/s11356-021-12349-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are typical toxic organic pollutants that can accumulate in sediments and may be toxic to aquatic organisms. In the present study, the contamination level, composition pattern, and sources of sixteen PAHs listed by the United States Environmental Protection Agency were investigated in surface sediments and a sediment core from Daihai Lake, which is located in a typical semiarid area of Inner Mongolia, China, and the ecological risk of these PAHs was assessed. The results show that the total concentration of PAHs in the surface sediments ranged from 204.6 to 344.5 ng/g with an average value of 287.2 ng/g and that compared with other aquatic systems, the level of PAHs in the sediments from Daihai Lake was low. However, a general upward trend was observed for the concentrations of PAHs in the sediment core, which might be related to the increase in human activities in the area. Moreover, the PAH concentrations were significantly positively correlated with the total organic carbon (TOC) content in the sediments, and it is thus inferred that TOC regulates the distribution of PAHs in Daihai Lake. Three-ring and four-ring PAHs were found to be predominant in all the sediment samples, and phenanthrene (Phe) was the most abundant compound. According to the composition of PAHs and the anthracene (Ant)/(Ant+Phe) or fluoranthene (Flt)/(Flt+pyrene (Pyr)) ratios, the PAHs in Daihai Lake mainly originated from the combustion of domestic coal, grass, and wood, and petroleum cannot be ignored as a source considering the growth of industry. Risk assessment based on a comparison of PAH concentrations and the effect range low (ERL) and effect range median (ERM) values demonstrated that acenaphthene (Ace) at 11 sites and fluorene (Flu) at 7 sites had occasional adverse biological effects.
Collapse
Affiliation(s)
- Yuwei Sun
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ruiqing Zhang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China.
| | - Ruipeng Ma
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Haijun Zhou
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, Inner Mongolia, China.
| | - Fujin Zhang
- Institute of Environmental Resources and Analytical Technique, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China
| | - Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huixian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changwei Lü
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| |
Collapse
|
33
|
Multi-way calibration for the quantification of polycyclic aromatic hydrocarbons in samples of environmental impact. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Wu Z, Tao Y. Occurrence and Fluxes of Polycyclic Aromatic Hydrocarbons in the Third Largest Fresh Water Lake (Lake Taihu) in China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:190-197. [PMID: 32303814 DOI: 10.1007/s00128-020-02847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose great risks to lake ecosystem and human health. Comprehensive knowledge on PAHs in lakes is critical for their risk control. 118 samples were collected from different environmental medium to study the occurrence and fluxes of 16 PAH in Lake Taihu. The average ∑PAH16 in air, water, phytoplankton, zooplankton, suspended particle matter, and surface sediments were 122 ng m-3, 61.3 ng L-1, 6500 ng g-1, 4940 ng g-1, 27,900 ng g-1, and 522 ng g-1, respectively. Sediments were contaminated by PAHs from pyrogenic sources. The average fluxes of air-water, dry deposition, and sinking of the 16 individual PAHs were 2900, 300, and 251 ng m-2 d-1. In the air-water column-surface sediments system, air-water exchange was the main transport pathway. In order to ensure safety of drinking water resources for local residence, the governments are suggested to work together to reduce PAHs emission and implement new energy policy.
Collapse
Affiliation(s)
- Zifan Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqiang Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- College of Oceanography, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
35
|
Simão FCP, Gravato C, Machado AL, Soares AMVM, Pestana JLT. Toxicity of different polycyclic aromatic hydrocarbons (PAHs) to the freshwater planarian Girardia tigrina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115185. [PMID: 32777698 DOI: 10.1016/j.envpol.2020.115185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/18/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Freshwater planarians have been gaining relevance as experimental animals for numerous research areas given their interesting features, such as high regeneration potential, shared features with the vertebrates' nervous system or the range of endpoints that can be easily evaluated in response to contaminants. Ecotoxicological research using these animals has been steadily increasing in the past decades, as planarians' potentialities for this research area are being recognized. In this work, we used polycyclic aromatic hydrocarbons (PAHs) as model contaminants and evaluated effects of exposure to phenanthrene, pyrene and benzo[a]pyrene (B[a]P) in planarians. The freshwater planarian Girardia tigrina was chosen and mortality, cephalic regeneration (during and post-exposure), behavioral endpoints and presence of PAHs in tissues, were evaluated. Mortality was only observed in planarians exposed to phenanthrene, with an estimated LC50 of 830 μg L-1. Results indicate that planarian behavioral endpoints were very sensitive in response to sub-lethal concentrations of PAHs, showing a greater sensitivity towards B[a]P and pyrene. Briefly, post-exposure locomotion and post-exposure feeding were significantly impaired by sub-lethal concentrations of all compounds, whereas regeneration of photoreceptors was only significantly delayed in planarians exposed to pyrene. Moreover, levels of PAH-type compounds in planarian tissues followed a concentration-dependent increase, showing uptake of compounds from experimental solutions. The present results highlight the importance of studying alternative and complementary endpoints, such as behavior, not only because these may be able to detect effects at lower levels of contamination, but also due to their ecological relevance. The simplicity of evaluating a wide range of responses to contaminants further demonstrates the utility of freshwater planarians for ecotoxicological research.
Collapse
Affiliation(s)
- Fátima C P Simão
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, 1749-016, Campo Grande, Lisboa, Portugal
| | - Ana Luísa Machado
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João L T Pestana
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
36
|
Hung CM, Huang CP, Chen CW, Wu CH, Lin YL, Dong CD. Activation of percarbonate by water treatment sludge-derived biochar for the remediation of PAH-contaminated sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114914. [PMID: 32806443 DOI: 10.1016/j.envpol.2020.114914] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Sludge from a groundwater treatment plant was used to prepare biochar by pyrolysis. The Fe-Mn rich biochar was used to activate percarbonate for the remediation of polycyclic aromatic hydrocarbons (PAHs) contaminated aquatic sediments. Results showed that the sludge-derived biochar (SBC) produced at a pyrolysis temperature of 700 °C was the most effective in activating percarbonate, which exhibited significant oxidative removal of PAHs. PAHs degradation took place via a Fenton-like oxidation manners, contributed from the Fe3+/Fe2+ and Mn3+/Mn2+ redox pairs, and achieved the highest degradation efficiency of 87% at pH0 6.0. Reactions between oxygenated functional groups of biochar and H2O2 generated of O2•- and HO• radicals in abundance under neutral and alkaline pH was responsible for the catalytic degradation of PAHs. Our results provided new insights into the environmental applications of SBC for the green sustainable remediation of organics-contaminated sediments and aided in reduction of associated environmental and health risk.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chung-Hsin Wu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
37
|
Idowu O, Tran TKA, Baker P, Farrel H, Zammit A, Semple KT, O'Connor W, Thavamani P. Bioavailability of polycyclic aromatic compounds (PACs) to the Sydney rock oyster (Saccostrea glomerata) from sediment matrices of an economically important Australian estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139574. [PMID: 32497880 DOI: 10.1016/j.scitotenv.2020.139574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Improving risk assessment and remediation rests on better understanding of contaminant bioavailability. Despite their strong toxicological attributes, little is known about the partitioning behaviour and bioavailability of polar polycyclic aromatic hydrocarbons (PAHs) in aquatic environments. The present study provides an insight into the bioavailable fractions of polar PAHs and their parent analogues in the tissues of the Sydney rock oyster, Saccostrea glomerata, a model aquatic bio-indicator organism. The concentration and distribution patterns of parent and polar PAHs including oxygenated PAHs (oxyPAHs), nitrated PAHs (NPAHs) and heterocyclic PAHs (HPAHs) were determined in water, sediment and oysters from an ecologically and economically important estuary of New South Wales, Australia. Total concentrations of PAHs, oxyPAHs, NPAHs and HPAHs were higher in sediments compared to oyster tissue and water. For most polar PAHs, total concentrations for water, sediment and oyster samples were <1 μg/g (μg/l for water) while parent PAH concentrations were several orders of magnitude higher. Computed biota-sediment accumulation factors (BSAFs) on lipid-normalized oyster concentrations revealed that while ∑oxyPAHs and ∑HPAHs exhibited low accumulation from sediment to oyster tissues (BSAF <1), ∑PAHs and ∑NPAH were found to be accumulated at high levels (BSAF >1). BSAF individual computation showed that bioaccumulation of nine investigated HPAHs in oyster tissues were relatively low and only 2-EAQ (oxyPAH) and 1N-NAP (NPAH) showed high levels of accumulation in oyster tissues, similar to parent PAHs. To the best of our knowledge, this is the first known study on the bioavailability of polar and non-polar PAHs in an Australian aquatic environment. The outcome of this study might be a useful indicator of the potential risks of polar PAHs to humans and other living organisms.
Collapse
Affiliation(s)
- Oluyoye Idowu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Thi Kim Anh Tran
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Phil Baker
- NSW Department of Primary Industries, Biosecurity and Food Safety, Taree, NSW 2430, Australia
| | - Hazel Farrel
- NSW Department of Primary Industries, Biosecurity and Food Safety, Taree, NSW 2430, Australia
| | - Anthony Zammit
- NSW Department of Primary Industries, Biosecurity and Food Safety, Taree, NSW 2430, Australia
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Wayne O'Connor
- Port Stephens Fisheries Institute, NSW Department of Primary Industries, Port Stephens, NSW 2316, Australia
| | - Palanisami Thavamani
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
38
|
Relationship between Polycyclic Aromatic Hydrocarbons in Sediments and Invertebrates of Natural and Artificial Stormwater Retention Ponds. WATER 2020. [DOI: 10.3390/w12072020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sediments and invertebrates were sampled from 9 stormwater retention ponds (SWRPs) and 11 natural, shallow lakes in Denmark. Samples were analyzed for 13 polycyclic aromatic hydrocarbons (PAHs). The SWRPs received urban and highway runoff from various types of drainage areas and the lakes were located in areas of various land uses. Comparing PAHs in the sediments of the SWRPs and the lakes, it was found that levels of total PAH were similar in the two aquatic systems, with median values of 0.94 and 0.63 mg·(kg·DM)−1 in sediments of SWRPs and lakes, respectively. However, the SWRP sediments tended to have higher concentrations of high-molecular-weight PAHs than the lakes. A similar pattern was seen for PAHs accumulated in invertebrates where the median of total PAH was 2.8 and 2.1 mg·(kg·DM)−1 for SWRPs and lakes, respectively. Principal component analysis on the PAH distribution in the sediments and invertebrates showed that ponds receiving highway runoff clustered with lakes in forests and farmland. The same was the case for some of the ponds receiving runoff from residential areas. Overall, results showed that sediment PAH levels in all SWRPs receiving runoff from highways were similar to the levels found in some of the investigated natural, shallow lakes, as were the sediment PAH levels from some of the residential SWRPs. Furthermore, there was no systematic trend that one type of water body exceeded environmental quality standards (EQS) values more often than others. Together this indicates that at least some SWRPs can sustain an invertebrate ecosystem without the organisms experiencing higher bioaccumulation of PAHs then what is the case in shallow lakes of the same region.
Collapse
|
39
|
He Y, Yang C, He W, Xu F. Nationwide health risk assessment of juvenile exposure to polycyclic aromatic hydrocarbons (PAHs) in the water body of Chinese lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138099. [PMID: 32229384 DOI: 10.1016/j.scitotenv.2020.138099] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
The high emissions of polycyclic aromatic hydrocarbons (PAHs) pose a serious threat to the lake ecosystem and human health, and the human health risk assessment of PAH exposure is expected as an urgent project in China. This paper focused on 44 Chinese lakes in 6 lake zones to investigate the occurrence, composition and source of 19 PAHs in water body and estimate the human health risk under PAH exposure. The "List of PAH Priority Lakes" in China was generated based on the combination of incremental lifetime cancer risk (ILCR) model and Monte Carlo simulation. Our results showed that the Σ17 PAHs ranged from 3.75 ng·L-1 to 368.68 ng·L-1 with a median of 55.88 ng·L-1. Low-ring PAHs were the predominant compounds. PAH profiles varied significantly at lake zone level. Diagnostic ratios showed that PAHs might derive from petroleum and coal or biomass combustion. Benzo[a]pyrene-equivalent toxic concentrations (BaPeq) of the Σ17 PAHs ranged from 0.07 ng·L-1 to 2.26 ng·L-1 (0.62 ± 0.52 ng·L-1, mean ± standard deviation) with a median of 0.47 ng·L-1. Benzo[a]anthracene (BaA), benzo[a]pyrene (BaP) and benzo[e]pyrene (BeP) were the main toxic isomers. Juvenile exposure to PAHs via oral ingestion (drinking) and dermal contact (showering) had negligible and potential health risks, respectively. Juveniles were the sensitive population for PAH exposure. 15 lakes were screened into the "List of PAH Priority Lakes" in three priority levels: first priority (Level A), moderate priority (Level B) and general priority (Level C). Lake Taihu, Lake Chaohu and Lake Hongze were the extreme priority lakes. Optimizing the economic structures and reducing the combustion emissions in these areas should be implemented to reduce the population under potential health risk of PAHs.
Collapse
Affiliation(s)
- Yong He
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chen Yang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei He
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fuliu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
40
|
Zhang Q, Liu P, Li S, Zhang X, Chen M. Progress in the analytical research methods of polycyclic aromatic hydrocarbons (PAHs). J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1746668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Qiongyao Zhang
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Ping Liu
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Shuling Li
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Xuejiao Zhang
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Mengdi Chen
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| |
Collapse
|
41
|
Idowu O, Carbery M, O'Connor W, Thavamani P. Speciation and source apportionment of polycyclic aromatic compounds (PACs) in sediments of the largest salt water lake of Australia. CHEMOSPHERE 2020; 246:125779. [PMID: 31927372 DOI: 10.1016/j.chemosphere.2019.125779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Great ecological and human health risks may arise from the presence of polycyclic aromatic hydrocarbons (PAHs) in aquatic environments and particularly in sediments, where they often partition. In spite of the apparent risk, knowledge about PAHs and their polar derivatives in sediments is limited. We, therefore, carried out an assessment of the concentrations of parent PAHs and their derivatives (polar PAHs) in sediments of Lake Macquarie: the largest saltwater lake in the southern hemisphere. A total of 31 sediment samples along the pollution prone western shoreline of the estuary were analysed. Multiple source apportionment methods were used to investigate PAH sources contributing to parent and polar PAH concentrations in the estuarine sediments. Concentration levels were highest for high molecular weight (HMW) PAHs compared to low molecular weight (LMW) PAHs. The highest PAH concentrations were recorded for oxygenated PAHs (oxy-PAHs) compared to parent and other polar PAHs. Polycyclic aromatic hydrocarbon diagnostic ratios and compositional analysis showed that PAHs in Lake Macquarie were predominantly pyrogenic exhibiting strong positive correlation (R2 = 0.972) with total PAH concentrations. Principal Component Analysis (PCA) identified three groupings of PAHs with oxy-PAHs and NPAHs dominating (40.2%). Carbazole, a heterocyclic PAH, was also a prominent contributor to sediment PAH concentrations. Atmospheric deposition, coal combustion and vehicular emissions were implicated as the major contributors to sediment pollution.
Collapse
Affiliation(s)
- Oluyoye Idowu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Maddison Carbery
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Wayne O'Connor
- Port Stephens Fisheries Institute, NSW Department of Primary Industries, Port Stephens, NSW, 2316, Australia
| | - Palanisami Thavamani
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
42
|
Identification of pyrene in complex sample matrix using time-resolved fluorescence measurement coupled with PARAFAC analysis. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|