1
|
Ferraz Lobato L, Ciattini S, Gallo A, Allão Cassaro RA, Sorace L, Poneti G. Thermodynamics of spin crossover in a bis(terpyridine) cobalt(II) complex featuring a thioether functionality. Dalton Trans 2024; 53:9933-9941. [PMID: 38808660 DOI: 10.1039/d4dt00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
In this contribution, a terpyridine-based ligand bearing a thioether functionality is used to prepare a new cobalt(II) spin crossover complex: [Co(TerpyPhSMe)2](PF6)2 (1), where TerpyPhSMe is 4'-(4-methylthiophenyl)-2,2':6',2''-terpyridine. Its structure, determined by single crystal X-ray diffraction, reveals a mer coordination of the tridentate terpyridine ligands, leading to a tetragonally compressed octahedron. Intermolecular interactions in the crystal lattice freeze the complex in the high spin state in the solid state at all temperatures, as indicated by magnetometry and Electron Paramagnetic Resonance (EPR) spectra. When dissolved in acetonitrile, however, temperature dependent electronic, 1H-NMR and EPR spectra highlight an entropy-driven spin crossover transition, whose thermodynamics parameters have been determined. This is the first report of a cobalt(II) SCO complex featuring a thioether group, allowing its implementation in chemically grown bistable monolayers and may open important perspectives for the use of such systems in molecular spintronics.
Collapse
Affiliation(s)
- Lúcio Ferraz Lobato
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Samuele Ciattini
- Interdepartmental Center for Crystallography (CRIST), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Angelo Gallo
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Rafael A Allão Cassaro
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Lorenzo Sorace
- Department of Chemistry "U. Schiff" and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Giordano Poneti
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Largo dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
2
|
Hu Z, Yang S. Endohedral metallofullerene molecular nanomagnets. Chem Soc Rev 2024; 53:2863-2897. [PMID: 38324027 DOI: 10.1039/d3cs00991b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Magnetic lanthanide (Ln) metal complexes exhibiting magnetic bistability can behave as molecular nanomagnets, also known as single-molecule magnets (SMMs), suitable for storing magnetic information at the molecular level, thus attracting extensive interest in the quest for high-density information storage and quantum information technologies. Upon encapsulating Ln ion(s) into fullerene cages, endohedral metallofullerenes (EMFs) have been proven as a promising and versatile platform to realize chemically robust SMMs, in which the magnetic properties are able to be readily tailored by altering the configurations of the encapsulated species and the host cages. In this review, we present critical discussions on the molecular structures and magnetic characterizations of EMF-SMMs, with the focus on their peculiar molecular and electronic structures and on the intriguing molecular magnetism arising from such structural uniqueness. In this context, different families of magnetic EMFs are summarized, including mononuclear EMF-SMMs wherein single-ion anisotropy is decisive, dinuclear clusterfullerenes whose magnetism is governed by intramolecular magnetic interaction, and radical-bridged dimetallic EMFs with high-spin ground states that arise from the strong ferromagnetic coupling. We then discuss how molecular assemblies of SMMs can be constructed, in a way that the original SMM behavior is either retained or altered in a controlled manner, thanks to the chemical robustness of EMFs. Finally, on the basis of understanding the structure-magnetic property correlation, we propose design strategies for high-performance EMF-SMMs by engineering ligand fields, electronic structures, magnetic interactions, and molecular vibrations that can couple to the spin states.
Collapse
Affiliation(s)
- Ziqi Hu
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Shangfeng Yang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Adamek M, Pastukh O, Laskowska M, Karczmarska A, Laskowski Ł. Nanostructures as the Substrate for Single-Molecule Magnet Deposition. Int J Mol Sci 2023; 25:52. [PMID: 38203222 PMCID: PMC10778921 DOI: 10.3390/ijms25010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Anchoringsingle-molecule magnets (SMMs) on the surface of nanostructures is gaining particular interest in the field of molecular magnetism. The accurate organization of SMMs on low-dimensional substrates enables controlled interactions and the possibility of individual molecules' manipulation, paving the route for a broad range of nanotechnological applications. In this comprehensive review article, the most studied types of SMMs are presented, and the quantum-mechanical origin of their magnetic behavior is described. The nanostructured matrices were grouped and characterized to outline to the reader their relevance for subsequent compounding with SMMs. Particular attention was paid to the fact that this process must be carried out in such a way as to preserve the initial functionality and properties of the molecules. Therefore, the work also includes a discussion of issues concerning both the methods of synthesis of the systems in question as well as advanced measurement techniques of the resulting complexes. A great deal of attention was also focused on the issue of surface-molecule interaction, which can affect the magnetic properties of SMMs, causing molecular crystal field distortion or magnetic anisotropy modification, which affects quantum tunneling or magnetic hysteresis, respectively. In our opinion, the analysis of the literature carried out in this way will greatly help the reader to design SMM-nanostructure systems.
Collapse
Affiliation(s)
| | | | - Magdalena Laskowska
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (M.A.); (O.P.); (Ł.L.)
| | | | | |
Collapse
|
4
|
Huang C, Sun R, Bao L, Tian X, Pan C, Li M, Shen W, Guo K, Wang B, Lu X, Gao S. A hard molecular nanomagnet from confined paramagnetic 3d-4f spins inside a fullerene cage. Nat Commun 2023; 14:8443. [PMID: 38114506 PMCID: PMC10730828 DOI: 10.1038/s41467-023-44194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Reducing inter-spin distance can enhance magnetic interactions and allow for the realization of outstanding magnetic properties. However, achieving reduced distances is technically challenging. Here, we construct a 3d-4f metal cluster (Dy2VN) inside a C80 cage, affording a heretofore unseen metallofullerene containing both paramagnetic 3d and 4f metal ions. The significantly suppressed 3d-4f (Dy-V) distances, due to the unique cage confinement effect, were observed by crystallographic and theoretical analysis of Dy2VN@Ih(7)-C80. These reduced distances result in an enhanced magnetic coupling (Jtotal, Dy-V = 53.30 cm-1; Jtotal, Dy-Dy = -6.25 cm-1), leading to a high magnetic blocking temperature compared to reported 3d-4f single-molecule magnets and strong coercive field of 2.73 Tesla. Our work presents a new class of single-molecule magnets with both paramagnetic 3d and 4f metals confined in a fullerene cage, offering superior and tunable magnetic properties due to the unique cage confinement effect and the diverse composition of the entrapped magnetic core.
Collapse
Affiliation(s)
- Chenli Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Rong Sun
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China.
| | - Xinyue Tian
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Changwang Pan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an, 710071, China
| | - Wangqiang Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China.
- College of Chemistry and Chemical Engineering, Hainan University, No. 58, Renmin Avenue, Haikou, 570228, P. R. China.
| | - Song Gao
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
5
|
Magnetic molecules on surfaces: SMMs and beyond. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Ying X, Zhu Z, Zhao C, Zhang YQ, Tang J. Five-Coordinated Dysprosium Single-Molecule Magnet Functionalized by the SMe Group. Inorg Chem 2022; 61:20547-20551. [DOI: 10.1021/acs.inorgchem.2c03375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Ying
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
7
|
Koutsouflakis E, Krylov D, Bachellier N, Sostina D, Dubrovin V, Liu F, Spree L, Velkos G, Schimmel S, Wang Y, Büchner B, Westerström R, Bulbucan C, Kirkpatrick K, Muntwiler M, Dreiser J, Greber T, Avdoshenko SM, Dorn H, Popov AA. Metamagnetic transition and a loss of magnetic hysteresis caused by electron trapping in monolayers of single-molecule magnet Tb 2@C 79N. NANOSCALE 2022; 14:9877-9892. [PMID: 35781298 DOI: 10.1039/d1nr08475e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Realization of stable spin states in surface-supported magnetic molecules is crucial for their applications in molecular spintronics, memory storage or quantum information processing. In this work, we studied the surface magnetism of dimetallo-azafullerene Tb2@C79N, showing a broad magnetic hysteresis in a bulk form. Surprisingly, monolayers of Tb2@C79N exhibited a completely different behavior, with the prevalence of a ground state with antiferromagnetic coupling at low magnetic field and a metamagnetic transition in the magnetic field of 2.5-4 T. Monolayers of Tb2@C79N were deposited onto Cu(111) and Au(111) by evaporation in ultra-high vacuum conditions, and their topography and electronic structure were characterized by scanning tunneling microscopy and spectroscopy (STM/STS). X-ray photoelectron spectroscopy (XPS), in combination with DFT studies, revealed that the nitrogen atom of the azafullerene cage tends to avoid metallic surfaces. Magnetic properties of the (sub)monolayers were then studied by X-ray magnetic circular dichroism (XMCD) at the Tb-M4,5 absorption edge. While in bulk powder samples Tb2@C79N behaves as a single-molecule magnet with ferromagnetically coupled magnetic moments and blocking of magnetization at 28 K, its monolayers exhibited a different ground state with antiferromagnetic coupling of Tb magnetic moments. To understand if this unexpected behavior is caused by a strong hybridization of fullerenes with metallic substrates, XMCD measurements were also performed for Tb2@C79N adsorbed on h-BN|Rh(111) and MgO|Ag(100). The co-existence of two forms of Tb2@C79N was found on these substrates as well, but magnetization curves showed narrow magnetic hysteresis detectable up to 25 K. The non-magnetic state of Tb2@C79N in monolayers is assigned to anionic Tb2@C79N- species with doubly-occupied Tb-Tb bonding orbital and antiferromagnetic coupling of the Tb moments. A charge transfer from the substrate or trapping of secondary electrons are discussed as a plausible origin of these species.
Collapse
Affiliation(s)
- Emmanouil Koutsouflakis
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Denis Krylov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Nicolas Bachellier
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Daria Sostina
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Vasilii Dubrovin
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Lukas Spree
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Georgios Velkos
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Sebastian Schimmel
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Yaofeng Wang
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Rasmus Westerström
- The Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Claudiu Bulbucan
- The Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Kyle Kirkpatrick
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Matthias Muntwiler
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Jan Dreiser
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Thomas Greber
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Physik-Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Stas M Avdoshenko
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Harry Dorn
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| |
Collapse
|
8
|
Dey S, Rajaraman G. Attaining record-high magnetic exchange, magnetic anisotropy and blocking barriers in dilanthanofullerenes. Chem Sci 2021; 12:14207-14216. [PMID: 34760206 PMCID: PMC8565386 DOI: 10.1039/d1sc03925c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
While the blocking barrier (U eff) and blocking temperature (T B) for "Dysprocenium" SIMs have been increased beyond liquid N2 temperature, device fabrication of these molecules remains a challenge as low-coordinate Ln3+ complexes are very unstable. Encapsulating the lanthanide ion inside a cage such as a fullerene (called endohedral metallofullerene or EMF) opens up a new avenue leading to several Ln@EMF SMMs. The ab initio CASSCF calculations play a pivotal role in identifying target metal ions and suitable cages in this area. Encouraged by our earlier prediction on Ln2@C79N, which was verified by experiments, here we have undertaken a search to enhance the exchange coupling in this class of molecules beyond the highest reported value. Using DFT and ab initio calculations, we have studied a series of Gd2@C2n (30 ≤ 2n ≤ 80), where an antiferromagnetic J Gd⋯Gd of -43 cm-1 was found for a stable Gd2@C38-D 3h cage. This extremely large and exceptionally rare 4f⋯4f interaction results from a direct overlap of 4f orbitals due to the confinement effect. In larger cages such as Gd2@C60 and Gd2@C80, the formation of two centre-one-electron (2c-1e-) Gd-Gd bonds is perceived. This results in a radical formation in the fullerene cage leading to its instability. To avoid this, we have studied heterofullerenes where one of the carbon atoms is replaced by a nitrogen atom. Specifically, we have studied Ln2@C59N and Ln2@C79N, where strong delocalisation of the electron yields a mixed valence-like behaviour. This suggests a double-exchange (B) is operational, and CASSCF calculations yield a B value of 434.8 cm-1 and resultant J Gd-rad of 869.5 cm-1 for the Gd2@C59N complex. These parameters are found to be two times larger than the world-record J reported for Gd2@C79N. Further ab initio calculations reveal an unprecedented U cal of 1183 and 1501 cm-1 for Dy2@C59N and Tb2@C59N, respectively. Thus, this study offers strong exchange coupling as criteria for new generation SMMs as the existing idea of enhancing the blocking barrier via crystal field modulation has reached its saturation point.
Collapse
Affiliation(s)
- Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
9
|
Paschke F, Birk T, Enenkel V, Liu F, Romankov V, Dreiser J, Popov AA, Fonin M. Exceptionally High Blocking Temperature of 17 K in a Surface-Supported Molecular Magnet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102844. [PMID: 34396601 PMCID: PMC11468252 DOI: 10.1002/adma.202102844] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Single-molecule magnets (SMMs) are among the most promising building blocks for future magnetic data storage or quantum computing applications, owing to magnetic bistability and long magnetic relaxation times. The practical device integration requires realization of 2D surface assemblies of SMMs, where each magnetic unit shows magnetic relaxation being sufficiently slow at application-relevant temperatures. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism, it is shown that sub-monolayers of Dy2 @C80 (CH2 Ph) dimetallofullerenes prepared on graphene by electrospray deposition exhibit magnetic behavior fully comparable to that of the bulk. Magnetic hysteresis and relaxation time measurements show that the magnetic moment remains stable for 100 s at 17 K, marking the blocking temperature TB(100) , being not only in excellent agreement with that of the bulk sample but also representing by far the highest one detected for a surface-supported single-molecule magnet. The reported findings give a boost to the efforts to stabilize and address the spin degree of freedom in molecular magnets aiming at the realization of SMM-based spintronic units.
Collapse
Affiliation(s)
- Fabian Paschke
- Department of PhysicsUniversity of Konstanz78457KonstanzGermany
| | - Tobias Birk
- Department of PhysicsUniversity of Konstanz78457KonstanzGermany
| | - Vivien Enenkel
- Department of PhysicsUniversity of Konstanz78457KonstanzGermany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research (IFW Dresden)01069DresdenGermany
| | | | - Jan Dreiser
- Swiss Light SourcePaul Scherrer InstituteVilligen5232Switzerland
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden)01069DresdenGermany
| | - Mikhail Fonin
- Department of PhysicsUniversity of Konstanz78457KonstanzGermany
| |
Collapse
|
10
|
|
11
|
Chen C, Spree L, Koutsouflakis E, Krylov DS, Liu F, Brandenburg A, Velkos G, Schimmel S, Avdoshenko SM, Fedorov A, Weschke E, Choueikani F, Ohresser P, Dreiser J, Büchner B, Popov AA. Magnetic Hysteresis at 10 K in Single Molecule Magnet Self-Assembled on Gold. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2000777. [PMID: 33717832 PMCID: PMC7927621 DOI: 10.1002/advs.202000777] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Tremendous progress in the development of single molecule magnets (SMMs) raises the question of their device integration. On this route, understanding the properties of low-dimensional assemblies of SMMs, in particular in contact with electrodes, is a necessary but difficult step. Here, it is shown that fullerene SMM self-assembled on metal substrate from solution retains magnetic hysteresis up to 10 K. Fullerene-SMM DySc2N@C80 and Dy2ScN@C80 are derivatized to introduce a thioacetate group, which is used to graft SMMs on gold. Magnetic properties of grafted SMMs are studied by X-ray magnetic circular dichroism and compared to the films of nonderivatized fullerenes prepared by sublimation. In self-assembled films, the magnetic moments of the Dy ions are preferentially aligned parallel to the surface, which is different from the disordered orientation of endohedral clusters in nonfunctionalized fullerenes. Whereas chemical derivatization reduces the blocking temperature of magnetization and narrows the hysteresis of Dy2ScN@C80, for DySc2N@C80 equally broad hysteresis is observed as in the fullerene multilayer. Magnetic bistability in the DySc2N@C80 grafted on gold is sustained up to 10 K. This study demonstrates that self-assembly of fullerene-SMM derivatives offers a facile solution-based procedure for the preparation of functional magnetic sub-monolayers with excellent SMM performance.
Collapse
Affiliation(s)
- Chia‐Hsiang Chen
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
- Department of Medicinal and Applied ChemistryKaohsiung Medical UniversityKaohsiung807Taiwan
| | - Lukas Spree
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Emmanouil Koutsouflakis
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Denis S. Krylov
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Ariane Brandenburg
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Georgios Velkos
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Sebastian Schimmel
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Stanislav M. Avdoshenko
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Alexander Fedorov
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
- Helmholtz‐Zentrum Berlin für Materialien und EnergieWilhelm‐Conrad‐Röntgen‐Campus BESSY IIAlbert‐Einstein‐Strasse 15BerlinD‐12489Germany
| | - Eugen Weschke
- Helmholtz‐Zentrum Berlin für Materialien und EnergieWilhelm‐Conrad‐Röntgen‐Campus BESSY IIAlbert‐Einstein‐Strasse 15BerlinD‐12489Germany
| | - Fadi Choueikani
- Synchrotron SOLEILL'Orme des MerisiersSaint‐Aubin, BP 48Gif‐sur‐Yvette91192France
| | - Philippe Ohresser
- Synchrotron SOLEILL'Orme des MerisiersSaint‐Aubin, BP 48Gif‐sur‐Yvette91192France
| | - Jan Dreiser
- Swiss Light SourcePaul Scherrer InstituteVilligen PSICH‐5232Switzerland
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| |
Collapse
|
12
|
Jayabalaji G, Ramya L, Meena Devi J. Investigation on the structural, thermal and hydration properties of gold-fullerene nanocomposite. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01773-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Cai W, Bocarsly JD, Gomez A, Letona Lee RJ, Metta-Magaña A, Seshadri R, Echegoyen L. High blocking temperatures for DyScS endohedral fullerene single-molecule magnets. Chem Sci 2020; 11:13129-13136. [PMID: 34094494 PMCID: PMC8163201 DOI: 10.1039/d0sc05265e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/23/2020] [Indexed: 11/21/2022] Open
Abstract
Dy-based single-molecule magnets (SMMs) are of great interest due to their ability to exhibit very large thermal barriers to relaxation and therefore high blocking temperatures. One interesting line of investigation is Dy-encapsulating endohedral clusterfullerenes, in which a carbon cage protects magnetic Dy3+ ions against decoherence by environmental noise and allows for the stabilization of bonding and magnetic interactions that would be difficult to achieve in other molecular architectures. Recent studies of such materials have focused on clusters with two Dy atoms, since ferromagnetic exchange between Dy atoms is known to reduce the rate of magnetic relaxation via quantum tunneling. Here, two new dysprosium-containing mixed-metallic sulfide clusterfullerenes, DyScS@C s(6)-C82 and DyScS@C 3v(8)-C82, have been successfully synthesized, isolated and characterized by mass spectrometry, Vis-NIR, cyclic voltammetry, single crystal X-ray diffractometry, and magnetic measurements. Crystallographic analyses show that the conformation of the encapsulated cluster inside the fullerene cages is notably different than in the Dy2X@C s(6)-C82 and Dy2X@C 3v(8)-C82 (X = S, O) analogues. Remarkably, both isomers of DyScS@C82 show open magnetic hysteresis and slow magnetic relaxation, even at zero field. Their magnetic blocking temperatures are around 7.3 K, which are among the highest values reported for clusterfullerene SMMs. The SMM properties of DyScS@C82 far outperform those of the dilanthanide analogues Dy2S@C82, in contrast to the trend observed for carbide and nitride Dy clusterfullerenes.
Collapse
Affiliation(s)
- Wenting Cai
- Department of Chemistry, University of Texas at El Paso 500 W University Avenue El Paso Texas 79968 USA
| | - Joshua D Bocarsly
- Materials Research Lab, Materials Department, University of California Santa Barbara Santa Barbara California 93106 USA
| | - Ashley Gomez
- Department of Chemistry, University of Texas at El Paso 500 W University Avenue El Paso Texas 79968 USA
| | - Rony J Letona Lee
- Department of Chemistry, University of Texas at El Paso 500 W University Avenue El Paso Texas 79968 USA
| | - Alejandro Metta-Magaña
- Department of Chemistry, University of Texas at El Paso 500 W University Avenue El Paso Texas 79968 USA
| | - Ram Seshadri
- Materials Research Lab, Materials Department, University of California Santa Barbara Santa Barbara California 93106 USA
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso 500 W University Avenue El Paso Texas 79968 USA
| |
Collapse
|
14
|
Zykin MA, Kazin PE, Jansen M. All-Inorganic Single-Ion Magnets in Ceramic Matrices. Chemistry 2020; 26:8834-8844. [PMID: 32130745 DOI: 10.1002/chem.201905290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/03/2020] [Indexed: 02/05/2023]
Abstract
All-inorganic single-ion magnets representing paramagnetic ions incorporated in a crystalline diamagnetic matrix are reviewed. Key results and advantages of this approach in comparison with the common strategy based on molecular metal-organic complexes are considered, and some unsolved problems and future perspectives are discussed.
Collapse
Affiliation(s)
- Mikhail A Zykin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
| | - Pavel E Kazin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
| | - Martin Jansen
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| |
Collapse
|
15
|
Velkos G, Yang W, Yao YR, Sudarkova SM, Liu X, Büchner B, Avdoshenko SM, Chen N, Popov AA. Shape-adaptive single-molecule magnetism and hysteresis up to 14 K in oxide clusterfullerenes Dy 2O@C 72 and Dy 2O@C 74 with fused pentagon pairs and flexible Dy-(μ 2-O)-Dy angle. Chem Sci 2020; 11:4766-4772. [PMID: 33437409 PMCID: PMC7116574 DOI: 10.1039/d0sc00624f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/19/2020] [Indexed: 01/05/2023] Open
Abstract
Dysprosium oxide clusterfullerenes Dy2O@Cs(10528)-C72 and Dy2O@C2(13333)-C74 are synthesized and characterized by single-crystal X-ray diffraction. Carbon cages of both molecules feature two adjacent pentagon pairs. These pentalene units determine positions of endohedral Dy ions hence the shape of the Dy2O cluster, which is bent in Dy2O@C72 but linear in Dy2O@C74. Both compounds show slow relaxation of magnetization and magnetic hysteresis. Nearly complete cancelation of ferromagnetic dipolar and antiferromagnetic exchange Dy…Dy interactions leads to unusual magnetic properties. Dy2O@C74 exhibits zero-field quantum tunneling of magnetization and magnetic hysteresis up to 14 K, the highest temperature among Dy-clusterfullerenes.
Collapse
Affiliation(s)
- Georgios Velkos
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20
,
01069 Dresden
, Germany
.
;
| | - Wei Yang
- College of Chemistry
, Chemical Engineering and Materials Science
, Soochow University
,
Suzhou
, Jiangsu 215123
, P.R. China
.
| | - Yang-Rong Yao
- Department of Chemistry
, University of Texas at El Paso
, 500 W University Avenue
,
El Paso
, Texas 79968
, USA
| | - Svetlana M. Sudarkova
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20
,
01069 Dresden
, Germany
.
;
- Chemistry Department
, Moscow State University
,
119991 Moscow
, Russia
| | - XinYe Liu
- College of Chemistry
, Chemical Engineering and Materials Science
, Soochow University
,
Suzhou
, Jiangsu 215123
, P.R. China
.
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20
,
01069 Dresden
, Germany
.
;
| | - Stanislav M. Avdoshenko
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20
,
01069 Dresden
, Germany
.
;
| | - Ning Chen
- College of Chemistry
, Chemical Engineering and Materials Science
, Soochow University
,
Suzhou
, Jiangsu 215123
, P.R. China
.
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20
,
01069 Dresden
, Germany
.
;
| |
Collapse
|
16
|
Krylov DS, Schimmel S, Dubrovin V, Liu F, Nguyen TTN, Spree L, Chen C, Velkos G, Bulbucan C, Westerström R, Studniarek M, Dreiser J, Hess C, Büchner B, Avdoshenko SM, Popov AA. Substrate‐Independent Magnetic Bistability in Monolayers of the Single‐Molecule Magnet Dy
2
ScN@C
80
on Metals and Insulators. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Denis S. Krylov
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20 01069 Dresden Germany
- Center for Quantum Nanoscience Institute for Basic Science (IBS) Seoul Republic of Korea
| | - Sebastian Schimmel
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20 01069 Dresden Germany
| | - Vasilii Dubrovin
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20 01069 Dresden Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20 01069 Dresden Germany
| | - T. T. Nhung Nguyen
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20 01069 Dresden Germany
| | - Lukas Spree
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20 01069 Dresden Germany
| | - Chia‐Hsiang Chen
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20 01069 Dresden Germany
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807 Taiwan
| | - Georgios Velkos
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20 01069 Dresden Germany
| | - Claudiu Bulbucan
- The division of synchrotron radiation research Lund University 22100 Lund Sweden
| | - Rasmus Westerström
- The division of synchrotron radiation research Lund University 22100 Lund Sweden
| | - Michał Studniarek
- Swiss Light Source Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Jan Dreiser
- Swiss Light Source Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Christian Hess
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20 01069 Dresden Germany
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20 01069 Dresden Germany
| | - Stanislav M. Avdoshenko
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20 01069 Dresden Germany
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20 01069 Dresden Germany
| |
Collapse
|
17
|
Krylov DS, Schimmel S, Dubrovin V, Liu F, Nguyen TTN, Spree L, Chen C, Velkos G, Bulbucan C, Westerström R, Studniarek M, Dreiser J, Hess C, Büchner B, Avdoshenko SM, Popov AA. Substrate-Independent Magnetic Bistability in Monolayers of the Single-Molecule Magnet Dy 2 ScN@C 80 on Metals and Insulators. Angew Chem Int Ed Engl 2020; 59:5756-5764. [PMID: 31860759 PMCID: PMC7155138 DOI: 10.1002/anie.201913955] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Indexed: 01/08/2023]
Abstract
Magnetic hysteresis is demonstrated for monolayers of the single-molecule magnet (SMM) Dy2 ScN@C80 deposited on Au(111), Ag(100), and MgO|Ag(100) surfaces by vacuum sublimation. The topography and electronic structure of Dy2 ScN@C80 adsorbed on Au(111) were studied by STM. X-ray magnetic CD studies show that the Dy2 ScN@C80 monolayers exhibit similarly broad magnetic hysteresis independent on the substrate used, but the orientation of the Dy2 ScN cluster depends strongly on the surface. DFT calculations show that the extent of the electronic interaction of the fullerene molecules with the surface is increasing dramatically from MgO to Au(111) and Ag(100). However, the charge redistribution at the fullerene-surface interface is fully absorbed by the carbon cage, leaving the state of the endohedral cluster intact. This Faraday cage effect of the fullerene preserves the magnetic bistability of fullerene-SMMs on conducting substrates and facilitates their application in molecular spintronics.
Collapse
Affiliation(s)
- Denis S. Krylov
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)SeoulRepublic of Korea
| | - Sebastian Schimmel
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - Vasilii Dubrovin
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - T. T. Nhung Nguyen
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - Lukas Spree
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - Chia‐Hsiang Chen
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
- Department of Medicinal and Applied ChemistryKaohsiung Medical UniversityKaohsiung807Taiwan
| | - Georgios Velkos
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - Claudiu Bulbucan
- The division of synchrotron radiation researchLund University22100LundSweden
| | - Rasmus Westerström
- The division of synchrotron radiation researchLund University22100LundSweden
| | - Michał Studniarek
- Swiss Light SourcePaul Scherrer Institute5232Villigen PSISwitzerland
| | - Jan Dreiser
- Swiss Light SourcePaul Scherrer Institute5232Villigen PSISwitzerland
| | - Christian Hess
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - Stanislav M. Avdoshenko
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| |
Collapse
|
18
|
Wang T, Wang C. Functional Metallofullerene Materials and Their Applications in Nanomedicine, Magnetics, and Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901522. [PMID: 31131986 DOI: 10.1002/smll.201901522] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Endohedral metallofullerenes exhibit combined properties from carbon cages as well as internal metal moieties and have great potential in a wide range of applications as molecule materials. Along with the breakthrough of mass production of metallofullerenes, their applied research has been greatly developed with more and more new functions and practical applications. For gadolinium metallofullerenes, their water-soluble derivatives have been demonstrated with antitumor activity and unprecedented tumor vascular-targeting therapy. Metallofullerene water-soluble derivatives also can be applied to treat reactive oxygen species (ROS)-induced diseases due to their high antioxidative activity. For magnetic metallofullerenes, the internal electron spin and metal species bring about spin sensitivity, molecular magnets, and spin quantum qubits, which have many promising applications. Metallofullerenes are significant candidates for fabricating useful electronic devices because of their various electronic structures. This Review provides a summary of the metallofullerene studies reported recently, in the fields of tumor inhibition, tumor vascular-targeting therapies, antioxidative activity, spin probes, single-molecule magnets, spin qubits, and electronic devices. This is not an exhaustive summary and there are many other important study results regarding metallofullerenes. All of this research has revealed the irreplaceable role of metallofullerene materials.
Collapse
Affiliation(s)
- Taishan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
19
|
Jin P, Li Y, Magagula S, Chen Z. Exohedral functionalization of endohedral metallofullerenes: Interplay between inside and outside. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Velkos G, Krylov DS, Kirkpatrick K, Spree L, Dubrovin V, Büchner B, Avdoshenko SM, Bezmelnitsyn V, Davis S, Faust P, Duchamp J, Dorn HC, Popov AA. Hohe Block‐Temperatur der Magnetisierung und herausragende Koerzitivfeldstärke im Azafulleren Tb
2
@C
79
N mit einer Einelektronen‐Terbium‐Terbium‐Bindung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Georgios Velkos
- Leibniz Institut für Festkörper- und Werkstoffforschung Helmholtzstraße 20 01069 Dresden Deutschland
| | - Denis S. Krylov
- Leibniz Institut für Festkörper- und Werkstoffforschung Helmholtzstraße 20 01069 Dresden Deutschland
- Center for Quantum NanoscienceInstitute for Basic Science (IBS) Seoul Republic of Korea
| | - Kyle Kirkpatrick
- Department of ChemistryVirginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - Lukas Spree
- Leibniz Institut für Festkörper- und Werkstoffforschung Helmholtzstraße 20 01069 Dresden Deutschland
| | - Vasilii Dubrovin
- Leibniz Institut für Festkörper- und Werkstoffforschung Helmholtzstraße 20 01069 Dresden Deutschland
| | - Bernd Büchner
- Leibniz Institut für Festkörper- und Werkstoffforschung Helmholtzstraße 20 01069 Dresden Deutschland
| | - Stanislav M. Avdoshenko
- Leibniz Institut für Festkörper- und Werkstoffforschung Helmholtzstraße 20 01069 Dresden Deutschland
| | - Valeriy Bezmelnitsyn
- Luna nanoWorks, a Division ofLuna Innovation Inc. 521 Bridge St Danville Virginia USA
| | - Sean Davis
- Luna nanoWorks, a Division ofLuna Innovation Inc. 521 Bridge St Danville Virginia USA
| | - Paul Faust
- Department of ChemistryVirginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - James Duchamp
- Department of ChemistryVirginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - Harry C. Dorn
- Department of ChemistryVirginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - Alexey A. Popov
- Leibniz Institut für Festkörper- und Werkstoffforschung Helmholtzstraße 20 01069 Dresden Deutschland
| |
Collapse
|
21
|
Velkos G, Krylov DS, Kirkpatrick K, Spree L, Dubrovin V, Büchner B, Avdoshenko SM, Bezmelnitsyn V, Davis S, Faust P, Duchamp J, Dorn HC, Popov AA. High Blocking Temperature of Magnetization and Giant Coercivity in the Azafullerene Tb 2 @C 79 N with a Single-Electron Terbium-Terbium Bond. Angew Chem Int Ed Engl 2019; 58:5891-5896. [PMID: 30786125 PMCID: PMC6519270 DOI: 10.1002/anie.201900943] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/19/2019] [Indexed: 11/09/2022]
Abstract
The azafullerene Tb2 @C79 N is found to be a single-molecule magnet with a high 100-s blocking temperature of magnetization of 24 K and large coercivity. Tb magnetic moments with an easy-axis single-ion magnetic anisotropy are strongly coupled by the unpaired spin of the single-electron Tb-Tb bond. Relaxation of magnetization in Tb2 @C79 N below 15 K proceeds via quantum tunneling of magnetization with the characteristic time τQTM =16 462±1230 s. At higher temperature, relaxation follows the Orbach mechanism with a barrier of 757±4 K, corresponding to the excited states, in which one of the Tb spins is flipped.
Collapse
Affiliation(s)
- Georgios Velkos
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069, Dresden, Germany
| | - Denis S Krylov
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069, Dresden, Germany.,Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Kyle Kirkpatrick
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Lukas Spree
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069, Dresden, Germany
| | - Vasilii Dubrovin
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069, Dresden, Germany
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069, Dresden, Germany
| | - Stanislav M Avdoshenko
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069, Dresden, Germany
| | - Valeriy Bezmelnitsyn
- Luna nanoWorks, a Division of, Luna Innovation Inc., 521 Bridge St, Danville, Virginia, USA
| | - Sean Davis
- Luna nanoWorks, a Division of, Luna Innovation Inc., 521 Bridge St, Danville, Virginia, USA
| | - Paul Faust
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - James Duchamp
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Harry C Dorn
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069, Dresden, Germany
| |
Collapse
|
22
|
Spree L, Popov AA. Recent advances in single molecule magnetism of dysprosium-metallofullerenes. Dalton Trans 2019; 48:2861-2871. [PMID: 30756104 PMCID: PMC6394203 DOI: 10.1039/c8dt05153d] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/24/2019] [Indexed: 11/21/2022]
Abstract
This article outlines the magnetic properties of single molecule magnets based on Dy-encapsulating endohedral metallofullerenes. The factors that govern these properties, such as the influence of different non-metal species in clusterfullerenes, the cage size, and cage isomerism are discussed, as well as the recent successful isolation of dimetallofullerenes with unprecedented magnetic properties. Finally, recent advances towards the organization of endohedral metallofullerenes in 1D, 2D, and 3D ordered structures with potential for devices are reviewed.
Collapse
Affiliation(s)
- Lukas Spree
- IFW Dresden
,
Helmhotzstraße 20
, 01069 Dresden
, Germany
.
;
| | - Alexey A. Popov
- IFW Dresden
,
Helmhotzstraße 20
, 01069 Dresden
, Germany
.
;
| |
Collapse
|
23
|
Cornia A, Mannini M, Sessoli R, Gatteschi D. Propeller-Shaped Fe4
and Fe3
M Molecular Nanomagnets: A Journey from Crystals to Addressable Single Molecules. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801266] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea Cornia
- Department of Chemical and Geological Sciences and INSTM Research Unit; University of Modena and Reggio Emilia; 41125 Modena Italy
| | - Matteo Mannini
- Department of Chemistry “Ugo Schiff” and INSTM Research Unit; University of Florence; 50019 Sesto Fiorentino (FI) Italy
| | - Roberta Sessoli
- Department of Chemistry “Ugo Schiff” and INSTM Research Unit; University of Florence; 50019 Sesto Fiorentino (FI) Italy
- Research Area Firenze; Istituto di Chimica dei Composti Organometallici - ICCOM-CNR; 50019 Sesto Fiorentino (FI) Italy
| | - Dante Gatteschi
- Department of Chemistry “Ugo Schiff” and INSTM Research Unit; University of Florence; 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
24
|
Jin J, Yang G, Liu Y, Cheng S, Liu J, Wu D, Wang YY. Two Series of Microporous Lanthanide–Organic Frameworks with Different Secondary Building Units and Exposed Lewis Base Active Sites: Sensing, Dye Adsorption, and Magnetic Properties. Inorg Chem 2018; 58:339-348. [DOI: 10.1021/acs.inorgchem.8b02435] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, Shaanxi, P. R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, Shaanxi, P. R. China
| | - Yanchen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, Shaanxi, P. R. China
| | - Shan Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, Shaanxi, P. R. China
| | - Jiao Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, Shaanxi, P. R. China
| | - Dan Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, Shaanxi, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, Shaanxi, P. R. China
| |
Collapse
|