1
|
Kontomaris SV, Malamou A, Stylianou A. Development of an accurate simplified approach for data processing in AFM indentation experiments. Micron 2024; 190:103782. [PMID: 39799615 DOI: 10.1016/j.micron.2024.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
Atomic Force Microscopy (AFM) nanoindentation is the most effective method for determining the mechanical properties of soft biological materials and biomaterials at the nanoscale, with significant applications in many areas, including cancer diagnosis. However, a major drawback of this method is the complexity of the experimental procedure and data processing, which requires several calibration steps.To avoid this complexity, the AFM tip is usually approximated as a perfect cone. In this case, F=ch2, where F is the applied force, ℎ is the indentation depth, and c is a constant that depends on both the cone's half-angle and the material's properties. However, since AFM tips are pyramidal with a rounded tip apex (or similar to a truncated cone in some cases), the conical approximation may lead to non-negligible errors. Although equations exist that relate the applied force, indentation depth, and the sample's Young's modulus for real indenters, they are rarely used because they do not directly relate the applied force to the indentation depth (i.e., the fitting process is much more complicated compared to the conical approximation). In this paper, a new, accurate, simplified approach for data processing is proposed, based on fitting the force-indentation data to a quadratic equation of the form: F=c2h2+c1h. It is proven that the parameter c2 is independent of the tip apex properties. On the other hand, the parameter c1 depends on the material properties, the cone's half angle, and the shape and dimensions of the tip apex. Simulated force-indentation data from sphero-conical and blunted pyramidal indenters, along with real experimental data from lung tissues, are processed using the proposed approach. The key result is that Young's modulus can be accurately determined using only the c2 parameter; therefore, tip characterization can be avoided.
Collapse
Affiliation(s)
- S V Kontomaris
- School of Sciences, European University Cyprus, Nicosia 2404, Cyprus; Department of Engineering and Construction, Metropolitan College, Athens 15125, Greece.
| | - A Malamou
- Radar Systems and Remote Sensing Lab of School of Electrical & Computer Engineering of National Technical University of Athens, Athens 15773 , Greece
| | - A Stylianou
- School of Sciences, European University Cyprus, Nicosia 2404, Cyprus.
| |
Collapse
|
2
|
Ghosh A, Gupta A, Jena S, Kirti A, Choudhury A, Saha U, Sinha A, Kumari S, Kujawska M, Kaushik A, Verma SK. Advances in posterity of visualization in paradigm of nano‐level ultra‐structures for nano–bio interaction studies. VIEW 2024. [DOI: 10.1002/viw.20240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025] Open
Abstract
AbstractThe progression in contemporary scientific field is facilitated by a multitude of sophisticated and cutting‐edge methodologies that are employed for various research purposes. Among these methodologies, microscopy stands out as a fundamental and essential technique utilized in scientific investigations. Moreover, due to the continuous evolution and enhancement of microscopic methodologies, nanotechnology has reached a highly developed stage within modern scientific realm, particularly renowned for its wide‐ranging applications in the fields of biomedicine and environmental science. When it comes to conducting comprehensive and in‐depth experimental analyses to explore the nanotechnological aspects relevant to biological applications, the concept of nano–biological interaction emerges as the focal point of any research initiative. Nonetheless, this particular study necessitates a meticulous approach toward imaging and visualization at diverse magnification levels to ensure accurate observations and interpretations. It is widely acknowledged that modern microscopy has emerged as a sophisticated and invaluable instrument in this regard. This review aims to provide a comprehensive discussion on the progress made in microscopic techniques specifically tailored for visualizing the interactions between nanostructures and biological entities, thereby facilitating the exploration of the practical applications of nanotechnology in the realm of biological sciences.
Collapse
Affiliation(s)
- Aishee Ghosh
- School of Biotechnology KIIT University Bhubaneswar Odisha India
- Department of Physics and Astronomy Uppsala University Uppsala Sweden
| | - Abha Gupta
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Snehasmita Jena
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Apoorv Kirti
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Anmol Choudhury
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Utsa Saha
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Adrija Sinha
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Shalini Kumari
- Markham College of Commerce Vinoba Bhave University Hazaribagh Jharkhand India
| | - Małgorzata Kujawska
- Department of Toxicology Poznan University of Medical Sciences Poznan Poland
| | - Ajeet Kaushik
- NanoBioTech Laboratory Department of Environmental Engineering Florida Polytechnic University Lakeland Florida USA
| | - Suresh K. Verma
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| |
Collapse
|
3
|
Polemidiotou K, Kulkarni SG, Szydlak R, Lekka M, Radmacher M, Gkretsi V, Stylianopoulos T, Stylianou A. Assessing sarcoma cell cytoskeleton remodeling in response to varying collagen concentration. Int J Biol Macromol 2024; 282:136770. [PMID: 39437949 DOI: 10.1016/j.ijbiomac.2024.136770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Sarcomas, rare malignant tumors of mesenchymal origin, are often underdiagnosed and have face diagnostic ambiguities and limited treatment options. The main objective of this study was to define the nanomechanical and biophysical properties of sarcoma cells, particularly examining how the cytoskeleton's remodeling and related cellular processes such as cell migration and invasion in response to environmental stimuli due to collagen content. Utilizing one murine fibrosarcoma and one osteosarcoma cell line we employed atomic force microscopy, immunostaining, advanced image processing, in vitro cellular assays, and molecular techniques to investigate cells' cytoskeleton remodeling in response to varying collagen concentration. Our study focused on how alterations in collagen content affects the cytoskeletal dynamics and correlate with changes in gene expression profiles relevant to metastasis and an aggressive cancer phenotypes. Our findings indicate that despite their shared classification, fibrosarcoma and osteosarcoma cells display distinct biophysical properties and respond differently to mechanical forces. Notably, this difference in cellular behavior renders mechanical properties a potent novel biomarkers. Furthermore, the metastasis-related identified genes related to metastatic capability, could be potential therapeutic targets. This study highlights the significance of understanding the unique traits of sarcoma cells to improve diagnostic precision and expand therapeutic strategies, for this rare type of cancer.
Collapse
Affiliation(s)
- Katerina Polemidiotou
- Cancer Mechanobiology & Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus/EUC Research Centre, 2404 Nicosia, Cyprus.
| | - Shruti G Kulkarni
- Institute of Biophysics, University of Bremen, 28359 Bremen, Germany.
| | - Renata Szydlak
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, PL-30688 Krakow, Poland.
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | - Manfred Radmacher
- Institute of Biophysics, University of Bremen, 28359 Bremen, Germany.
| | - Vasiliki Gkretsi
- Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia, Cyprus.
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus.
| | - Andreas Stylianou
- Cancer Mechanobiology & Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus/EUC Research Centre, 2404 Nicosia, Cyprus; Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus.
| |
Collapse
|
4
|
O’Dowling AT, Rodriguez BJ, Gallagher TK, Thorpe SD. Machine learning and artificial intelligence: Enabling the clinical translation of atomic force microscopy-based biomarkers for cancer diagnosis. Comput Struct Biotechnol J 2024; 24:661-671. [PMID: 39525667 PMCID: PMC11543504 DOI: 10.1016/j.csbj.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
The influence of biomechanics on cell function has become increasingly defined over recent years. Biomechanical changes are known to affect oncogenesis; however, these effects are not yet fully understood. Atomic force microscopy (AFM) is the gold standard method for measuring tissue mechanics on the micro- or nano-scale. Due to its complexity, however, AFM has yet to become integrated in routine clinical diagnosis. Artificial intelligence (AI) and machine learning (ML) have the potential to make AFM more accessible, principally through automation of analysis. In this review, AFM and its use for the assessment of cell and tissue mechanics in cancer is described. Research relating to the application of artificial intelligence and machine learning in the analysis of AFM topography and force spectroscopy of cancer tissue and cells are reviewed. The application of machine learning and artificial intelligence to AFM has the potential to enable the widespread use of nanoscale morphologic and biomechanical features as diagnostic and prognostic biomarkers in cancer treatment.
Collapse
Affiliation(s)
- Aidan T. O’Dowling
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Department of Hepatobiliary and Transplant Surgery, St Vincent’s University Hospital, Dublin, Ireland
| | - Brian J. Rodriguez
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- UCD School of Physics, University College Dublin, Dublin, Ireland
| | - Tom K. Gallagher
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- Department of Hepatobiliary and Transplant Surgery, St Vincent’s University Hospital, Dublin, Ireland
| | - Stephen D. Thorpe
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Deptuła P, Łysik D, Wolak P, Król G, Paprocka P, Bijak P, Ziembicka D, Mystkowska J, Bucki R. Mechanical Properties of Inflamed Appendix Tissues. Biomedicines 2024; 12:2588. [PMID: 39595154 PMCID: PMC11591559 DOI: 10.3390/biomedicines12112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Histopathological examination enables visualization of morphological changes in cells and tissues. In recent years, there has been increasing interest in assessing the mechanical properties of tissues that cannot be determined by standard histopathological examinations. Mechanobiology is crucial in human physiology and holds promise for uncovering new diagnostic markers for disease processes such as carcinogenesis and inflammation. In this study, we concentrated on measuring the mechanical properties of appendix biopsy specimens to identify potential mechanomarkers of inflammation. Appendix tissues provided the opportunity to measure mechanical properties both with an atomic force microscope and a shear rheometer. Methods: The atomic force microscope AFM-NanoWizard 4 BioScience JPK/Bruker was used for the evaluation of the elastic modulus (i.e., Young's modulus) of appendix tissues. Young's modulus was derived from the Hertz-Sneddon model applied to force-indentation curves. The rheological properties of macroscopic samples were measured on a parallel-plate, strain-controlled shear rheometer Anton Paar MCR302. Results: The data collected suggest that elasticity, expressed as Young's modulus and the storage modulus, could be considered a marker indicating appendix tissue inflammation. Young's modulus of inflamed appendix tissues was found to be significantly lower than that of healthy ones, with an average reduction of 67%. Furthermore, it was observed that inflamed appendix tissues, in comparison to healthy ones, respond differently under varying axial and shear stresses, enabling their identification. Conclusions: Our findings suggest that the specific mechanical properties of inflamed vermiform appendices could serve as novel mechanomarkers for the early detection and monitoring of appendicitis.
Collapse
Affiliation(s)
- Piotr Deptuła
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, PL-15222 Białystok, Poland;
| | - Dawid Łysik
- Institute of Biomedical Engineering, Bialystok University of Technology, PL-15351 Białystok, Poland; (D.Ł.); (J.M.)
| | - Przemysław Wolak
- Faculty of Medicine, Collegium Medicum, Jan Kochanowski University, PL-25369 Kielce, Poland;
- Department of Pediatric Surgery, Urology and Traumatology, Provincial Hospital in Kielce, PL-25736 Kielce, Poland
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (G.K.); (P.P.); (P.B.)
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (G.K.); (P.P.); (P.B.)
| | - Piotr Bijak
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (G.K.); (P.P.); (P.B.)
| | - Dominika Ziembicka
- Department of Public Health, Medical University of Bialystok, PL-15089 Białystok, Poland;
| | - Joanna Mystkowska
- Institute of Biomedical Engineering, Bialystok University of Technology, PL-15351 Białystok, Poland; (D.Ł.); (J.M.)
| | - Robert Bucki
- Faculty of Medicine, Collegium Medicum, Jan Kochanowski University, PL-25369 Kielce, Poland;
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Białystok, Poland
| |
Collapse
|
6
|
Liu X, Zheng X. Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:6359. [PMID: 39409403 PMCID: PMC11478560 DOI: 10.3390/s24196359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024]
Abstract
Cellular heterogeneity plays a significant role in understanding biological processes, such as cell cycle and disease progression. Microfluidics has emerged as a versatile tool for manipulating single cells and analyzing their heterogeneity with the merits of precise fluid control, small sample consumption, easy integration, and high throughput. Specifically, integrating microfluidics with electrical techniques provides a rapid, label-free, and non-invasive way to investigate cellular heterogeneity at the single-cell level. Here, we review the recent development of microfluidic-based electrical strategies for single-cell manipulation and analysis, including dielectrophoresis- and electroporation-based single-cell manipulation, impedance- and AC electrokinetic-based methods, and electrochemical-based single-cell detection methods. Finally, the challenges and future perspectives of the microfluidic-based electrical techniques for single-cell analysis are proposed.
Collapse
Affiliation(s)
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
7
|
Kontomaris SV, Malamou A, Stylianou A. Accurate Modelling of AFM Force-Indentation Curves with Blunted Indenters at Small Indentation Depths. MICROMACHINES 2024; 15:1209. [PMID: 39459083 PMCID: PMC11509629 DOI: 10.3390/mi15101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
When testing biological samples with atomic force microscopy (AFM) nanoindentation using pyramidal indenters, Sneddon's equation is commonly used for data processing, approximating the indenter as a perfect cone. While more accurate models treat the AFM tip as a blunted cone or pyramid, these are complex and lack a direct relationship between applied force and indentation depth, complicating data analysis. This paper proposes a new equation derived from simple mathematical processes and physics-based criteria. It is accurate for small indentation depths and serves as a viable alternative to complex classical approaches. The proposed equation has been validated for ℎ < 3R (where h is the indentation depth and R is the tip radius) and confirmed through simulations with blunted conical and pyramidal indenters, as well as experiments on prostate cancer cells. It is a reliable method for experiments where the tip radius cannot be ignored, such as in shallow indentations on thin samples to avoid substrate effects.
Collapse
Affiliation(s)
- Stylianos Vasileios Kontomaris
- Cancer Mechanobiology and Applied Biophysics Group, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus;
| | - Anna Malamou
- School of Electrical and Computer Engineering, National Technical University of Athens, 15773 Athens, Greece;
| | - Andreas Stylianou
- Cancer Mechanobiology and Applied Biophysics Group, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus;
| |
Collapse
|
8
|
Mpekris F, Panagi M, Charalambous A, Voutouri C, Stylianopoulos T. Modulating cancer mechanopathology to restore vascular function and enhance immunotherapy. Cell Rep Med 2024; 5:101626. [PMID: 38944037 PMCID: PMC11293360 DOI: 10.1016/j.xcrm.2024.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/12/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
Solid tumor pathology, characterized by abnormalities in the tumor microenvironment (TME), challenges therapeutic effectiveness. Mechanical factors, including increased tumor stiffness and accumulation of intratumoral forces, can determine the success of cancer treatments, defining the tumor's "mechanopathology" profile. These abnormalities cause extensive vascular compression, leading to hypoperfusion and hypoxia. Hypoperfusion hinders drug delivery, while hypoxia creates an unfavorable TME, promoting tumor progression through immunosuppression, heightened metastatic potential, drug resistance, and chaotic angiogenesis. Strategies targeting TME mechanopathology, such as vascular and stroma normalization, hold promise in enhancing cancer therapies with some already advancing to the clinic. Normalization can be achieved using anti-angiogenic agents, mechanotherapeutics, immune checkpoint inhibitors, engineered bacterial therapeutics, metronomic nanomedicine, and ultrasound sonopermeation. Here, we review the methods developed to rectify tumor mechanopathology, which have even led to cures in preclinical models, and discuss their bench-to-bedside translation, including the derivation of biomarkers from tumor mechanopathology for personalized therapy.
Collapse
Affiliation(s)
- Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Antonia Charalambous
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
9
|
Beton-Mysur K, Surmacki J, Brożek-Płuska B. Raman-AFM-fluorescence-guided impact of linoleic and eicosapentaenoic acids on subcellular structure and chemical composition of normal and cancer human colon cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124242. [PMID: 38581725 DOI: 10.1016/j.saa.2024.124242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
The regular overconsumption of high-energy food (rich in lipids and sugars) results in elevated nutrient absorption in intestine and consequently excessive accumulation of lipids in many organs e.g.: liver, adipose tissue, muscles. In the long term this can lead to obesity and obesity-associated diseases e.g. type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease, inflammatory bowel disease (IBD). In the presented paper based on RI data we have proved that Raman maps can be used successfully for subcellular structures visualization and analysis of fatty acids impact on morphology and chemical composition of human colon single cells - normal and cancer. Based on Raman data we have investigated the changes related to endoplasmic reticulum, mitochondria, lipid droplets and nucleus. Analysis of ratios calculated based on Raman bands typical for proteins (1256, 1656 cm-1), lipids (1304, 1444 cm-1) and nucleic acids (750 cm-1) has confirmed for endoplasmic reticulum the increased activity of this organelle in lipoproteins synthesis upon FAs supplementation; for LDs the changes of desaturation of accumulated lipids with the highest unsaturation level for CaCo-2 cells upon EPA supplementation; for mitochondria the stronger effect of FAs supplementation was observed for CaCo-2 cells confirming the increased activity of this organelle responsible for energy production necessary for tumor development; the weakest impact of FAs supplementation was observed for nucleus for both types of cells and both types of acids. Fluorescence imaging was used for the investigations of changes in LDs/ER morphology. Our measurements have shown the increased area of LDs/ER for CaCo-2 cancer cells, and the strongest effect was noticed for CaCo-2 cells upon EPA supplementation. The increased participation of lipid structures for all types of cells upon FAs supplementation has been confirmed also by AFM studies. The lowest YM values have been observed for CaCo-2 cells including samples treated with FAs.
Collapse
Affiliation(s)
- Karolina Beton-Mysur
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Jakub Surmacki
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Beata Brożek-Płuska
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
10
|
Chang Z, Li LY, Shi ZJ, Liu W, Xu GK. Beyond stiffness: Multiscale viscoelastic features as biomechanical markers for assessing cell types and states. Biophys J 2024; 123:1869-1881. [PMID: 38835167 PMCID: PMC11267428 DOI: 10.1016/j.bpj.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Cell mechanics are pivotal in regulating cellular activities, diseases progression, and cancer development. However, the understanding of how cellular viscoelastic properties vary in physiological and pathological stimuli remains scarce. Here, we develop a hybrid self-similar hierarchical theory-microrheology approach to accurately and efficiently characterize cellular viscoelasticity. Focusing on two key cell types associated with livers fibrosis-the capillarized liver sinusoidal endothelial cells and activated hepatic stellate cells-we uncover a universal two-stage power-law rheology characterized by two distinct exponents, αshort and αlong. The mechanical profiles derived from both exponents exhibit significant potential for discriminating among diverse cells. This finding suggests a potential common dynamic creep characteristic across biological systems, extending our earlier observations in soft tissues. Using a tailored hierarchical model for cellular mechanical structures, we discern significant variations in the viscoelastic properties and their distribution profiles across different cell types and states from the cytoplasm (elastic stiffness E1 and viscosity η), to a single cytoskeleton fiber (elastic stiffness E2), and then to the cell level (transverse expansion stiffness E3). Importantly, we construct a logistic-regression-based machine-learning model using the dynamic parameters that outperforms conventional cell-stiffness-based classifiers in assessing cell states, achieving an area under the curve of 97% vs. 78%. Our findings not only advance a robust framework for monitoring intricate cell dynamics but also highlight the crucial role of cellular viscoelasticity in discerning cell states across a spectrum of liver diseases and prognosis, offering new avenues for developing diagnostic and therapeutic strategies based on cellular viscoelasticity.
Collapse
Affiliation(s)
- Zhuo Chang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Li-Ya Li
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhi-Jun Shi
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenjia Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Guang-Kui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
11
|
Lima I, Silva A, Sousa F, Ferreira W, Freire R, de Oliveira C, de Sousa J. Measuring the viscoelastic relaxation function of cells with a time-dependent interpretation of the Hertz-Sneddon indentation model. Heliyon 2024; 10:e30623. [PMID: 38770291 PMCID: PMC11103437 DOI: 10.1016/j.heliyon.2024.e30623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
The Hertz-Sneddon elastic indentation model is widely adopted in the biomechanical investigation of living cells and other soft materials using atomic force microscopy despite the explicit viscoelastic nature of these materials. In this work, we demonstrate that an exact analytical viscoelastic force model for power-law materials, can be interpreted as a time-dependent Hertz-Sneddon-like model. Characterizing fibroblasts (L929) and osteoblasts (OFCOLII) demonstrates the model's accuracy. Our results show that the difference between Young's modulus E Y obtained by fitting force curves with the Hertz-Sneddon model and the effective Young's modulus derived from the viscoelastic force model is less than 3%, even when cells are probed at large forces where nonlinear deformation effects become significant. We also propose a measurement protocol that involves probing samples at different indentation speeds and forces, enabling the construction of the average viscoelastic relaxation function of samples by conveniently fitting the force curves with the Hertz-Sneddon model.
Collapse
Affiliation(s)
- I.V.M. Lima
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, 60440-900, Ceará, Brazil
| | - A.V.S. Silva
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, 60440-900, Ceará, Brazil
- Instituto Federal do Rio Grande do Norte, Pau dos Ferros, 59900-000, Rio Grande do Norte, Brazil
| | - F.D. Sousa
- Núcleo de Biologia Experimental, Universidade de Fortaleza, Fortaleza, 60811-905, Ceará, Brazil
| | - W.P. Ferreira
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, 60440-900, Ceará, Brazil
| | - R.S. Freire
- Central Analítica, Universidade Federal do Ceará, Fortaleza, 60440-900, Ceará, Brazil
| | - C.L.N. de Oliveira
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, 60440-900, Ceará, Brazil
| | - J.S. de Sousa
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, 60440-900, Ceará, Brazil
| |
Collapse
|
12
|
Hartmann B, Fleischhauer L, Nicolau M, Jensen THL, Taran FA, Clausen-Schaumann H, Reuten R. Profiling native pulmonary basement membrane stiffness using atomic force microscopy. Nat Protoc 2024; 19:1498-1528. [PMID: 38429517 DOI: 10.1038/s41596-024-00955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/27/2023] [Indexed: 03/03/2024]
Abstract
Mammalian cells sense and react to the mechanics of their immediate microenvironment. Therefore, the characterization of the biomechanical properties of tissues with high spatial resolution provides valuable insights into a broad variety of developmental, homeostatic and pathological processes within living organisms. The biomechanical properties of the basement membrane (BM), an extracellular matrix (ECM) substructure measuring only ∼100-400 nm across, are, among other things, pivotal to tumor progression and metastasis formation. Although the precise assignment of the Young's modulus E of such a thin ECM substructure especially in between two cell layers is still challenging, biomechanical data of the BM can provide information of eminent diagnostic potential. Here we present a detailed protocol to quantify the elastic modulus of the BM in murine and human lung tissue, which is one of the major organs prone to metastasis. This protocol describes a streamlined workflow to determine the Young's modulus E of the BM between the endothelial and epithelial cell layers shaping the alveolar wall in lung tissues using atomic force microscopy (AFM). Our step-by-step protocol provides instructions for murine and human lung tissue extraction, inflation of these tissues with cryogenic cutting medium, freezing and cryosectioning of the tissue samples, and AFM force-map recording. In addition, it guides the reader through a semi-automatic data analysis procedure to identify the pulmonary BM and extract its Young's modulus E using an in-house tailored user-friendly AFM data analysis software, the Center for Applied Tissue Engineering and Regenerative Medicine processing toolbox, which enables automatic loading of the recorded force maps, conversion of the force versus piezo-extension curves to force versus indentation curves, calculation of Young's moduli and generation of Young's modulus maps, where the pulmonary BM can be identified using a semi-automatic spatial filtering tool. The entire protocol takes 1-2 d.
Collapse
Affiliation(s)
- Bastian Hartmann
- Munich University of Applied Sciences, Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, Munich, Germany
- Center for Nanoscience, Munich, Germany
| | - Lutz Fleischhauer
- Munich University of Applied Sciences, Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, Munich, Germany
- Center for Nanoscience, Munich, Germany
| | - Monica Nicolau
- Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas Hartvig Lindkær Jensen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Florin-Andrei Taran
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Hauke Clausen-Schaumann
- Munich University of Applied Sciences, Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, Munich, Germany.
- Center for Nanoscience, Munich, Germany.
| | - Raphael Reuten
- Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany.
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Wong CA, Fraticelli Guzmán NS, Read AT, Hedberg-Buenz A, Anderson MG, Feola AJ, Sulchek T, Ethier CR. A method for analyzing AFM force mapping data obtained from soft tissue cryosections. J Biomech 2024; 168:112113. [PMID: 38648717 PMCID: PMC11128031 DOI: 10.1016/j.jbiomech.2024.112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Atomic force microscopy (AFM) is a valuable tool for assessing mechanical properties of biological samples, but interpretations of measurements on whole tissues can be difficult due to the tissue's highly heterogeneous nature. To overcome such difficulties and obtain more robust estimates of tissue mechanical properties, we describe an AFM force mapping and data analysis pipeline to characterize the mechanical properties of cryosectioned soft tissues. We assessed this approach on mouse optic nerve head and rat trabecular meshwork, cornea, and sclera. Our data show that the use of repeated measurements, outlier exclusion, and log-normal data transformation increases confidence in AFM mechanical measurements, and we propose that this methodology can be broadly applied to measuring soft tissue properties from cryosections.
Collapse
Affiliation(s)
- Cydney A Wong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - A Thomas Read
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Adam Hedberg-Buenz
- Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA
| | - Michael G Anderson
- Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA
| | - Andrew J Feola
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Department of Ophthalmology, Emory University, Atlanta, GA; Center for Visual & Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Department of Ophthalmology, Emory University, Atlanta, GA.
| |
Collapse
|
14
|
Medina-Ramirez IE, Macias-Diaz JE, Masuoka-Ito D, Zapien JA. Holotomography and atomic force microscopy: a powerful combination to enhance cancer, microbiology and nanotoxicology research. DISCOVER NANO 2024; 19:64. [PMID: 38594446 PMCID: PMC11003950 DOI: 10.1186/s11671-024-04003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Modern imaging strategies are paramount to studying living systems such as cells, bacteria, and fungi and their response to pathogens, toxicants, and nanomaterials (NMs) as modulated by exposure and environmental factors. The need to understand the processes and mechanisms of damage, healing, and cell survivability of living systems continues to motivate the development of alternative imaging strategies. Of particular interest is the use of label-free techniques (microscopy procedures that do not require sample staining) that minimize interference of biological processes by foreign marking substances and reduce intense light exposure and potential photo-toxicity effects. This review focuses on the synergic capabilities of atomic force microscopy (AFM) as a well-developed and robust imaging strategy with demonstrated applications to unravel intimate details in biomedical applications, with the label-free, fast, and enduring Holotomographic Microscopy (HTM) strategy. HTM is a technique that combines holography and tomography using a low intensity continuous illumination laser to investigate (quantitatively and non-invasively) cells, microorganisms, and thin tissue by generating three-dimensional (3D) images and monitoring in real-time inner morphological changes. We first review the operating principles that form the basis for the complementary details provided by these techniques regarding the surface and internal information provided by HTM and AFM, which are essential and complimentary for the development of several biomedical areas studying the interaction mechanisms of NMs with living organisms. First, AFM can provide superb resolution on surface morphology and biomechanical characterization. Second, the quantitative phase capabilities of HTM enable superb modeling and quantification of the volume, surface area, protein content, and mass density of the main components of cells and microorganisms, including the morphology of cells in microbiological systems. These capabilities result from directly quantifying refractive index changes without requiring fluorescent markers or chemicals. As such, HTM is ideal for long-term monitoring of living organisms in conditions close to their natural settings. We present a case-based review of the principal uses of both techniques and their essential contributions to nanomedicine and nanotoxicology (study of the harmful effects of NMs in living organisms), emphasizing cancer and infectious disease control. The synergic impact of the sequential use of these complementary strategies provides a clear drive for adopting these techniques as interdependent fundamental tools.
Collapse
Affiliation(s)
- Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico.
| | - J E Macias-Diaz
- Department of Mathematics and Physics, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - David Masuoka-Ito
- Department of Stomatology, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
15
|
Kulkarni T, Robinson OM, Dutta A, Mukhopadhyay D, Bhattacharya S. Machine learning-based approach for automated classification of cell and extracellular matrix using nanomechanical properties. Mater Today Bio 2024; 25:100970. [PMID: 38312803 PMCID: PMC10835007 DOI: 10.1016/j.mtbio.2024.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Fibrosis characterized by excess accumulation of extracellular matrix (ECM) due to complex cell-ECM interactions plays a pivotal role in pathogenesis. Herein, we employ the pancreatic ductal adenocarcinoma (PDAC) model to investigate dynamic alterations in nanomechanical attributes arising from the cell-ECM interactions to study the fibrosis paradigm. Several segregated studies performed on cellular and ECM components fail to recapitulate their complex collaboration. We utilized collagen and fibronectin, the two most abundant PDAC ECM components, and studied their nanomechanical attributes. We demonstrate alteration in morphology and nanomechanical attributes of collagen with varying thicknesses of collagen gel. Furthermore, by mixing collagen and fibronectin in various stoichiometry, their nanomechanical attributes were observed to vary. To demonstrate the dynamicity and complexity of cell-ECM, we utilized Panc-1 and AsPC-1 cells with or without collagen. We observed that Panc-1 and AsPC-1 cells interact differently with collagen and vice versa, evident from their alteration in nanomechanical properties. Further, using nanomechanics data, we demonstrate that ML-based techniques were able to classify between ECM as well as cell, and cell subtypes in the presence/absence of collagen with higher accuracy. This work demonstrates a promising avenue to explore other ECM components facilitating deeper insights into tumor microenvironment and fibrosis paradigm.
Collapse
Affiliation(s)
- Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Olivia-Marie Robinson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Ayan Dutta
- School of Computing, University of North Florida, Jacksonville, FL, 32224 USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| |
Collapse
|
16
|
Xue Y, Ma Y, Sun Z, Liu X, Zhang M, Zhang J, Xi N. Identification and Measurement of Biomarkers at Single Microorganism Level for In Situ Monitoring Deep Ultraviolet Disinfection Process. IEEE Trans Nanobioscience 2024; 23:242-251. [PMID: 37676797 DOI: 10.1109/tnb.2023.3312754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Since the COVID-19 disease has been further aggravated, the prevention of pathogen transmission becomes a vital issue to restrain casualties. Recent research outcomes have shown the possibilities of the viruses existing on inanimate surfaces up to few days, which carry the risk of touch propagation of the disease. Deep ultraviolet germicide irradiation (UVGI) with the wavelength of 255-280nm has been verified to efficiently disinfect various types of bacteria and virus, which could prevent the aggravation of pandemic spread. Even though considerable experiments and approaches have been applied to evaluate the disinfection effects, there are only few reports about how the individual bio-organism behaves after ultraviolet C (UVC) irradiation, especially in the aspect of mechanical changes. Furthermore, since the standard pathway of virus transmission and reproduction requires the host cell to assemble and transport newly generated virus, the dynamic response of infectious cell is always the vital aspect of virology study. In this work, high power LEDs array has been established with 270nm UVC irradiation to evaluate disinfection capability on various types of bio-organism, and incubator embedded atomic force microscopy (AFM) is used to investigate the single bacterium and virus under UVGI. The real-time tracking of the living Vero cells infected with adenovirus has also been presented in this study. The results show that after sufficient UVGI, the outer shell of bacteria and viruses remain intact in structure, however the bio-organisms lost the capability of reproduction and normal metabolism. The experiment results also indicate that once the host cell is infected with adenovirus, the rapid production of newborn virus capsid will gradually destroy the cellular normal metabolism and lose mechanical integrity.
Collapse
|
17
|
Massey A, Stewart J, Smith C, Parvini C, McCormick M, Do K, Cartagena-Rivera AX. Mechanical properties of human tumour tissues and their implications for cancer development. NATURE REVIEWS. PHYSICS 2024; 6:269-282. [PMID: 38706694 PMCID: PMC11066734 DOI: 10.1038/s42254-024-00707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 05/07/2024]
Abstract
The mechanical properties of cells and tissues help determine their architecture, composition and function. Alterations to these properties are associated with many diseases, including cancer. Tensional, compressive, adhesive, elastic and viscous properties of individual cells and multicellular tissues are mostly regulated by reorganization of the actomyosin and microtubule cytoskeletons and extracellular glycocalyx, which in turn drive many pathophysiological processes, including cancer progression. This Review provides an in-depth collection of quantitative data on diverse mechanical properties of living human cancer cells and tissues. Additionally, the implications of mechanical property changes for cancer development are discussed. An increased knowledge of the mechanical properties of the tumour microenvironment, as collected using biomechanical approaches capable of multi-timescale and multiparametric analyses, will provide a better understanding of the complex mechanical determinants of cancer organization and progression. This information can lead to a further understanding of resistance mechanisms to chemotherapies and immunotherapies and the metastatic cascade.
Collapse
Affiliation(s)
- Andrew Massey
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jamie Stewart
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally: Jamie Stewart, Chynna Smith
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally: Jamie Stewart, Chynna Smith
| | - Cameron Parvini
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Moira McCormick
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kun Do
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Alexander X. Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Zeng J, Zhang Y, Xu R, Chen H, Tang X, Zhang S, Yang H. Nanomechanical-based classification of prostate tumor using atomic force microscopy. Prostate 2023; 83:1591-1601. [PMID: 37759151 DOI: 10.1002/pros.24617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND The loss of mechanical homeostasis between tumor cells and microenvironment is an important factor in tumor metastasis. In the process, mechanical forces affect cell proliferation, differentiation, migration and tissue development. AIMS Using high spatial resolution of Atomic force microscopy (AFM) technology, our study provides the direct measurement of the nanomechanical properties of prostate cancer clinical tissue specimens. MATERIALS AND METHODS AFM was used to determine the biomechanical properties of prostate tissue with different grade scores. K-means clustering method and fuzzy C-means were used to distinguish the cellular component in prostate tissue from non-cellular component based on their viscoelasticity. Futhermore, AFM measurements in vitro cells, including metastatic prostate cells (PC-3) and normal human prostate cells (PZ-HPV-7) were carried out. RESULTS The Young's modulus was decreased in prostate cancer progression, and the elasticity of cellular component in prostate cancer tissue was smaller than that of normal prostate tissue. PC-3 cells were softer than PZ-HPV-7 cells. Further mechanism investigation showed that the difference in modulus between cancerous and normal prostate tissue may be associated with a greater actin cytoskeleton distribution inside the cancer cells. CONCLUSION The results suggests that the nanomechanical properties can classify the prostate tumor, which could be used as an index for the identification and classification of cancer at cellular level.
Collapse
Affiliation(s)
- Jinshu Zeng
- Department of Ultrasound Imaging, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Ultrasound Imaging, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yan Zhang
- Key Laboratory of Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| | - Renfeng Xu
- Key Laboratory of Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| | - Huitin Chen
- Department of Ultrasound Imaging, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Ultrasound Imaging, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoqiong Tang
- Key Laboratory of Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hongqin Yang
- Key Laboratory of Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| |
Collapse
|
19
|
Wong CA, Fraticelli Guzmán NS, Read AT, Hedberg-Buenz A, Anderson MG, Feola AJ, Sulchek T, Ethier CR. A Method for Analyzing AFM Force Mapping Data Obtained from Soft Tissue Cryosections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566263. [PMID: 38014311 PMCID: PMC10680563 DOI: 10.1101/2023.11.08.566263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Atomic force microscopy (AFM) is a valuable tool for assessing mechanical properties of biological samples, but interpretations of measurements on whole tissues can be difficult due to the tissue's highly heterogeneous nature. To overcome such difficulties and obtain more robust estimates of tissue mechanical properties, we describe an AFM force mapping and data analysis pipeline to characterize the mechanical properties of cryosectioned soft tissues. We assessed this approach on mouse optic nerve head and rat trabecular meshwork, cornea, and sclera. Our data show that the use of repeated measurements, outlier exclusion, and log-normal data transformation increases confidence in AFM mechanical measurements, and we propose that this methodology can be broadly applied to measuring soft tissue properties from cryosections.
Collapse
Affiliation(s)
- Cydney A Wong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | | | - A Thomas Read
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Adam Hedberg-Buenz
- Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA
| | - Michael G Anderson
- Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA
| | - Andrew J Feola
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
- Department of Ophthalmology, Emory University, Atlanta, GA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta GA
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Ophthalmology, Emory University, Atlanta, GA
| |
Collapse
|
20
|
Ren K, Feng J, Bi H, Sun Q, Li X, Han D. AFM-Based Poroelastic@Membrane Analysis of Cells and its Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303610. [PMID: 37403276 DOI: 10.1002/smll.202303610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/09/2023] [Indexed: 07/06/2023]
Abstract
Cell mechanics is an emerging field of research for translational medicine. Here, the cell is modeled as poroelastic cytoplasm wrapped by tensile membrane (poroelastic@membrane model) and is characterized by the atomic force microscopy (AFM). The parameters of cytoskeleton network modulus EC , cytoplasmic apparent viscosity ηC , and cytoplasmic diffusion coefficient DC are used to describe the mechanical behavior of cytoplasm, and membrane tension γ is used to evaluate the cell membrane. Poroelastic@membrane analysis of breast cells and urothelial cells show that non-cancer cells and cancer cells have different distribution regions and distribution trends in the four-dimensional space composed of EC , ηC . From non-cancer to cancer cells, there is often a trend of γ, EC , ηC decreases and DC increases. Patients with urothelial carcinoma at different malignant stages can be distinguished at high sensitivity and specificity by analyzing the urothelial cells from tissue or urine. However, sampling directly from tumor tissues is an invasive method, may lead to undesirable consequences. Thus, AFM-based poroelastic@membrane analysis of urothelial cells from urine may provide a non-invasive and no-bio-label method to detecting urothelial carcinoma.
Collapse
Affiliation(s)
- Keli Ren
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Haidian, Beijing, 100191, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou Distric, Beijing, 100190, China
| | - Jiantao Feng
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16, Nanxiao street, Dongzhimen, Dongcheng, Beijing, 100700, China
| | - Hai Bi
- Department of Urology, Peking University Third Hospital, 49 North Garden Rd., Haidian, Beijing, 100191, China
| | - Quanmei Sun
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Haidian, Beijing, 100191, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou Distric, Beijing, 100190, China
| | - Xiang Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Haidian, Beijing, 100191, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou Distric, Beijing, 100190, China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Haidian, Beijing, 100191, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou Distric, Beijing, 100190, China
| |
Collapse
|
21
|
Chang Z, Zhang L, Hang JT, Liu W, Xu GK. Viscoelastic Multiscale Mechanical Indexes for Assessing Liver Fibrosis and Treatment Outcomes. NANO LETTERS 2023; 23:9618-9625. [PMID: 37793647 PMCID: PMC10603793 DOI: 10.1021/acs.nanolett.3c03341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Understanding liver tissue mechanics, particularly in the context of liver pathologies like fibrosis, cirrhosis, and carcinoma, holds pivotal significance for assessing disease severity and prognosis. Although the static mechanical properties of livers have been gradually studied, the intricacies of their dynamic mechanics remain enigmatic. Here, we characterize the dynamic creep responses of healthy, fibrotic, and mesenchymal stem cells (MSCs)-treated fibrotic lives. Strikingly, we unearth a ubiquitous two-stage power-law rheology of livers across different time scales with the exponents and their distribution profiles highly correlated to liver status. Moreover, our self-similar hierarchical theory effectively captures the delicate changes in the dynamical mechanics of livers. Notably, the viscoelastic multiscale mechanical indexes (i.e., power-law exponents and elastic stiffnesses of different hierarchies) and their distribution characteristics prominently vary with liver fibrosis and MSCs therapy. This study unveils the viscoelastic characteristics of livers and underscores the potential of proposed mechanical criteria for assessing disease evolution and prognosis.
Collapse
Affiliation(s)
- Zhuo Chang
- Laboratory
for Multiscale Mechanics and Medical Science, Department of Engineering
Mechanics, State Key Laboratory for Strength and Vibration of Mechanical
Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Liqiang Zhang
- Institute
for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Jiu-Tao Hang
- Laboratory
for Multiscale Mechanics and Medical Science, Department of Engineering
Mechanics, State Key Laboratory for Strength and Vibration of Mechanical
Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenjia Liu
- Institute
for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Guang-Kui Xu
- Laboratory
for Multiscale Mechanics and Medical Science, Department of Engineering
Mechanics, State Key Laboratory for Strength and Vibration of Mechanical
Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
22
|
Beton-Mysur K, Brożek-Płuska B. A new modality for cholesterol impact tracking in colon cancer development - Raman imaging, fluorescence and AFM studies combined with chemometric analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5199-5217. [PMID: 37781815 DOI: 10.1039/d3ay01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Obesity, alcohol consumption, smoking, high consumption of red or processed meat and a diet with low fibre, fruit, and vegetable intake increase CRC risk. Despite advances in surgery (the basic treatment for recovery), chemotherapy, and radiotherapy, CRC remains the second leading cause of cancer-related deaths in the world. Therefore the social importance of this problem stimulates research aimed at developing new tools for rapid CRC diagnosis and analysis of CRC risk factors. Considering the association between the cholesterol level and CRC, we hypothesize that cholesterol spectroscopic and AFM (atomic force microscopy) studies combined with chemometric analysis can be new, powerful tools used to visualize the cholesterol distribution, estimate cholesterol content and determine its influence on the biochemical and nanomechanical properties of colon cells. Our paper presents the analysis of human colon tissues: normal and cancer and human colon single cells normal CCD18-Co and cancer CaCo-2 in the physiological state and CaCo-2 upon mevastatin supplementation. Based on vibrational features we have shown that Raman spectroscopy and imaging allow cholesterol content in human colon tissues and human colon single cells of both types to be tracked and allow the effectiveness of mevastatin in the mevalonate pathway modulation and disruption of the cholesterol level to be proven. All observations have been confirmed by chemometric analysis including principal component analysis (PCA) and partial least squares discriminant analysis (PLSDA). The positive impact of statins on cholesterol content has also been studied by using fluorescence microscopy and atomic force microscopy (AFM). A significant increase in Young modulus as a mechanomarker for CaCo-2 human cancer colon cells upon mevastatin supplementation compared to CCD18-Co human normal colon cells was observed. This paper is one of the first reports about the use of Raman spectroscopic techniques in cholesterol investigations and the first one about cholesterol investigation using Raman spectroscopy (RS) on human cells ex vivo in the context of colon cancer development.
Collapse
Affiliation(s)
- K Beton-Mysur
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - B Brożek-Płuska
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
23
|
Kontomaris SV, Stylianou A, Chliveros G, Malamou A. A New Elementary Method for Determining the Tip Radius and Young's Modulus in AFM Spherical Indentations. MICROMACHINES 2023; 14:1716. [PMID: 37763878 PMCID: PMC10536531 DOI: 10.3390/mi14091716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Atomic force microscopy (AFM) is a powerful tool for characterizing biological materials at the nanoscale utilizing the AFM nanoindentation method. When testing biological materials, spherical indenters are typically employed to reduce the possibility of damaging the sample. The accuracy of determining Young's modulus depends, among other factors, on the calibration of the indenter, i.e., the determination of the tip radius. This paper demonstrates that the tip radius can be approximately calculated using a single force-indentation curve on an unknown, soft sample without performing any additional experimental calibration process. The proposed method is based on plotting a tangent line on the force indentation curve at the maximum indentation depth. Subsequently, using equations that relate the applied force, maximum indentation depth, and the tip radius, the calculation of the tip radius becomes trivial. It is significant to note that the method requires only a single force-indentation curve and does not necessitate knowledge of the sample's Young's modulus. Consequently, the determination of both the sample's Young's modulus and the tip radius can be performed simultaneously. Thus, the experimental effort is significantly reduced. The method was tested on 80 force-indentation curves obtained on an agarose gel, and the results were accurate.
Collapse
Affiliation(s)
- Stylianos Vasileios Kontomaris
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece;
- BioNanoTec Ltd., Nicosia 2043, Cyprus
| | - Andreas Stylianou
- School of Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Georgios Chliveros
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece;
| | - Anna Malamou
- Independent Power Transmission Operator S.A. (IPTO), 10443 Athens, Greece;
| |
Collapse
|
24
|
Kapnisis K, Stylianou A, Kokkinidou D, Martin A, Wang D, Anderson PG, Prokopi M, Papastefanou C, Brott BC, Lemons JE, Anayiotos A. Multilevel Assessment of Stent-Induced Inflammation in the Adjacent Vascular Tissue. ACS Biomater Sci Eng 2023; 9:4747-4760. [PMID: 37480152 PMCID: PMC10428095 DOI: 10.1021/acsbiomaterials.3c00540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
A recent U.S. Food and Drug Administration report presented the currently available scientific information related to biological response to metal implants. In this work, a multilevel approach was employed to assess the implant-induced and biocorrosion-related inflammation in the adjacent vascular tissue using a mouse stent implantation model. The implications of biocorrosion on peri-implant tissue were assessed at the macroscopic level via in vivo imaging and histomorphology. Elevated matrix metalloproteinase activity, colocalized with the site of implantation, and histological staining indicated that stent surface condition and implantation time affect the inflammatory response and subsequent formation and extent of neointima. Hematological measurements also demonstrated that accumulated metal particle contamination in blood samples from corroded-stetted mice causes a stronger immune response. At the cellular level, the stent-induced alterations in the nanostructure, cytoskeleton, and mechanical properties of circulating lymphocytes were investigated. It was found that cells from corroded-stented samples exhibited higher stiffness, in terms of Young's modulus values, compared to noncorroded and sham-stented samples. Nanomechanical modifications were also accompanied by cellular remodeling, through alterations in cell morphology and stress (F-actin) fiber characteristics. Our analysis indicates that surface wear and elevated metal particle contamination, prompted by corroded stents, may contribute to the inflammatory response and the multifactorial process of in-stent restenosis. The results also suggest that circulating lymphocytes could be a novel nanomechanical biomarker for peri-implant tissue inflammation and possibly the early stage of in-stent restenosis. Large-scale studies are warranted to further investigate these findings.
Collapse
Affiliation(s)
- Konstantinos Kapnisis
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Andreas Stylianou
- School
of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Department
of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Despoina Kokkinidou
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Adam Martin
- Department
of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Dezhi Wang
- Department
of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Peter G. Anderson
- Department
of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Marianna Prokopi
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | | | - Brigitta C. Brott
- Department
of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Jack E. Lemons
- Department
of Biomedical Engineering, University of
Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Andreas Anayiotos
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
25
|
Lorenc E, Varinelli L, Chighizola M, Brich S, Pisati F, Guaglio M, Baratti D, Deraco M, Gariboldi M, Podestà A. Correlation between biological and mechanical properties of extracellular matrix from colorectal peritoneal metastases in human tissues. Sci Rep 2023; 13:12175. [PMID: 37500685 PMCID: PMC10374531 DOI: 10.1038/s41598-023-38763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Peritoneal metastases (PM) are common routes of dissemination for colorectal cancer (CRC) and remain a lethal disease with a poor prognosis. The properties of the extracellular matrix (ECM) are important in cancer development; studying their changes is crucial to understand CRC-PM development. We studied the elastic properties of ECMs derived from human samples of normal and neoplastic PM by atomic force microscopy (AFM); results were correlated with patient clinical data and expression of ECM components related to metastatic spread. We show that PM progression is accompanied by stiffening of the ECM, increased cancer associated fibroblasts (CAF) activity and increased deposition and crosslinking in neoplastic matrices; on the other hand, softer regions are also found in neoplastic ECMs on the same scales. Our results support the hypothesis that local changes in the normal ECM can create the ground for growth and spread from the tumour of invading metastatic cells. We have found correlations between the mechanical properties (relative stiffening between normal and neoplastic ECM) of the ECM and patients' clinical data, like age, sex, presence of protein activating mutations in BRAF and KRAS genes and tumour grade. Our findings suggest that the mechanical phenotyping of PM-ECM has the potential to predict tumour development.
Collapse
Affiliation(s)
- Ewelina Lorenc
- Dipartimento di Fisica "Aldo Pontremoli" and CIMaINa, Università degli Studi di Milano, via G. Celoria 16, 20133, Milan, Italy
| | - Luca Varinelli
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Matteo Chighizola
- Dipartimento di Fisica "Aldo Pontremoli" and CIMaINa, Università degli Studi di Milano, via G. Celoria 16, 20133, Milan, Italy
| | - Silvia Brich
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Federica Pisati
- Histopathology Unit, Cogentech Ltd. Benefit Corporation with a Sole Shareholder, via Adamello 16, 20139, Milan, Italy
| | - Marcello Guaglio
- Peritoneal Surface Malignancies Unit, Colon and Rectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Dario Baratti
- Peritoneal Surface Malignancies Unit, Colon and Rectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Marcello Deraco
- Peritoneal Surface Malignancies Unit, Colon and Rectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Manuela Gariboldi
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy.
| | - Alessandro Podestà
- Dipartimento di Fisica "Aldo Pontremoli" and CIMaINa, Università degli Studi di Milano, via G. Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
26
|
Safaei S, Sajed R, Shariftabrizi A, Dorafshan S, Saeednejad Zanjani L, Dehghan Manshadi M, Madjd Z, Ghods R. Tumor matrix stiffness provides fertile soil for cancer stem cells. Cancer Cell Int 2023; 23:143. [PMID: 37468874 PMCID: PMC10357884 DOI: 10.1186/s12935-023-02992-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Matrix stiffness is a mechanical characteristic of the extracellular matrix (ECM) that increases from the tumor core to the tumor periphery in a gradient pattern in a variety of solid tumors and can promote proliferation, invasion, metastasis, drug resistance, and recurrence. Cancer stem cells (CSCs) are a rare subpopulation of tumor cells with self-renewal, asymmetric cell division, and differentiation capabilities. CSCs are thought to be responsible for metastasis, tumor recurrence, chemotherapy resistance, and consequently poor clinical outcomes. Evidence suggests that matrix stiffness can activate receptors and mechanosensor/mechanoregulator proteins such as integrin, FAK, and YAP, modulating the characteristics of tumor cells as well as CSCs through different molecular signaling pathways. A deeper understanding of the effect of matrix stiffness on CSCs characteristics could lead to development of innovative cancer therapies. In this review, we discuss how the stiffness of the ECM is sensed by the cells and how the cells respond to this environmental change as well as the effect of matrix stiffness on CSCs characteristics and also the key malignant processes such as proliferation and EMT. Then, we specifically focus on how increased matrix stiffness affects CSCs in breast, lung, liver, pancreatic, and colorectal cancers. We also discuss how the molecules responsible for increased matrix stiffness and the signaling pathways activated by the enhanced stiffness can be manipulated as a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Ahmad Shariftabrizi
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Division of Nuclear Medicine, Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Masoumeh Dehghan Manshadi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| |
Collapse
|
27
|
Sievers J, Mahajan V, Welzel PB, Werner C, Taubenberger A. Precision Hydrogels for the Study of Cancer Cell Mechanobiology. Adv Healthc Mater 2023; 12:e2202514. [PMID: 36826799 PMCID: PMC11468035 DOI: 10.1002/adhm.202202514] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Indexed: 02/25/2023]
Abstract
Cancer progression is associated with extensive remodeling of the tumor microenvironment (TME), resulting in alterations of biochemical and biophysical cues that affect both cancer and stromal cells. In particular, the mechanical characteristics of the TME extracellular matrix undergo significant changes. Bioengineered polymer hydrogels can be instrumental to systematically explore how mechanically changed microenvironments impact cancer cell behavior, including proliferation, survival, drug resistance, and invasion. This article reviews studies that have explored the impact of different mechanical cues of the cells' 3D microenvironment on cancer cell behavior using hydrogel-based in vitro models. In particular, advanced engineering strategies are highlighted for tailored hydrogel matrices recapitulating the TME's micrometer- and sub-micrometer-scale architectural and mechanical features, while accounting for its intrinsically heterogenic and dynamic nature. It is anticipated that such precision hydrogel systems will further the understanding of cancer mechanobiology.
Collapse
Affiliation(s)
- Jana Sievers
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Vaibhav Mahajan
- Center for Molecular and Cellular Bioengineering (CMCB)BIOTECTU Dresden01307DresdenGermany
| | - Petra B. Welzel
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center of Regenerative Therapies Dresden and Cluster of Excellence Physics of LifeTU Dresden01062DresdenGermany
| | - Anna Taubenberger
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center for Molecular and Cellular Bioengineering (CMCB)BIOTECTU Dresden01307DresdenGermany
| |
Collapse
|
28
|
Arthur P, Kandoi S, Sun L, Kalvala A, Kutlehria S, Bhattacharya S, Kulkarni T, Nimma R, Li Y, Lamba DA, Singh M. Biophysical, Molecular and Proteomic Profiling of Human Retinal Organoid-Derived Exosomes. Pharm Res 2023; 40:801-816. [PMID: 36002615 PMCID: PMC10576571 DOI: 10.1007/s11095-022-03350-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE There is a growing interest in extracellular vesicles (EVs) for ocular applications as therapeutics, biomarkers, and drug delivery vehicles. EVs secreted from mesenchymal stem cells (MSCs) have shown to provide therapeutic benefits in ocular conditions. However, very little is known about the properties of bioreactor cultured-3D human retinal organoids secreted EVs. This study provides a comprehensive morphological, nanomechanical, molecular, and proteomic characterization of retinal organoid EVs and compares it with human umbilical cord (hUC) MSCs. METHODS The morphology and nanomechanical properties of retinal organoid EVs were assessed using Nanoparticle tracking analysis (NTA) and Atomic force microscopy (AFM). Gene expression analysis of exosome biogenesis of early and late retinal organoids were compared using qPCR. The protein profile of the EVs were analyzed with proteomic tools. RESULTS NTA indicated the average size of EV as 100-250 nm. A high expression of exosome biogenesis genes was observed in late retinal organoids EVs. Immunoblot analysis showed highly expressed exosomal markers in late retinal organoids EVs compared to early retinal organoids EVs. Protein profiling of retinal organoid EVs displayed a higher differential expression of retinal function-related proteins and EV biogenesis proteins than hUCMSC EVs, implicating that the use of retinal organoid EVs may have a superior therapeutic effect on retinal disorders. CONCLUSION This study provides supplementary knowledge on the properties of retinal organoid EVs and suggests their potential use in the diagnostic and therapeutic treatments for ocular diseases.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmacological Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Sangeetha Kandoi
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Anil Kalvala
- College of Pharmacy and Pharmacological Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Shallu Kutlehria
- College of Pharmacy and Pharmacological Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo College of Medicine and Science, Jacksonville, FL, USA
- Department of Physiology and Biomedical Engineering, Mayo College of Medicine and Science, Jacksonville, FL, USA
| | - Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo College of Medicine and Science, Jacksonville, FL, USA
| | - Ramesh Nimma
- College of Pharmacy and Pharmacological Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA.
| | - Deepak A Lamba
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA.
| | - Mandip Singh
- College of Pharmacy and Pharmacological Sciences, Florida A&M University, Tallahassee, FL, USA.
| |
Collapse
|
29
|
Pancreatic Cancer Presents Distinct Nanomechanical Properties During Progression. Ann Biomed Eng 2023:10.1007/s10439-023-03168-3. [PMID: 36813931 DOI: 10.1007/s10439-023-03168-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 02/11/2023] [Indexed: 02/24/2023]
Abstract
Cancer progression is closely related to changes in the structure and mechanical properties of the tumor microenvironment (TME). In many solid tumors, including pancreatic cancer, the interplay among the different components of the TME leads to a desmoplastic reaction mainly due to collagen overproduction. Desmoplasia is responsible for the stiffening of the tumor, poses a major barrier to effective drug delivery and has been associated with poor prognosis. The understanding of the involved mechanisms in desmoplasia and the identification of nanomechanical and collagen-based properties that characterize the state of a particular tumor can lead to the development of novel diagnostic and prognostic biomarkers. In this study, in vitro experiments were conducted using two human pancreatic cell lines. Morphological and cytoskeleton characteristics, cells' stiffness and invasive properties were assessed using optical and atomic force microscopy techniques and cell spheroid invasion assay. Subsequently, the two cell lines were used to develop orthotopic pancreatic tumor models. Tissue biopsies were collected at different times of tumor growth for the study of the nanomechanical and collagen-based optical properties of the tissue using Atomic Force Microscopy (AFM) and picrosirius red polarization microscopy, respectively. The results from the in vitro experiments demonstrated that the more invasive cells are softer and present a more elongated shape with more oriented F-actin stress fibers. Furthermore, ex vivo studies of orthotopic tumor biopsies on MIAPaCa-2 and BxPC-3 murine tumor models highlighted that pancreatic cancer presents distinct nanomechanical and collagen-based optical properties relevant to cancer progression. The stiffness spectrums (in terms of Young's modulus values) showed that the higher elasticity distributions were increasing during cancer progression mainly due desmoplasia (collagen overproduction), while a lower elasticity peak was evident - due to cancer cells softening - on both tumor models. Optical microscopy studies highlighted that collagen content increases while collagen fibers tend to form align patterns. Consequently, during cancer progression nanomechanical and collagen-based optical properties alter in relation to changes in collagen content. Therefore, they have the potential to be used as novel biomarkers for assessing and monitoring tumor progression and treatment outcomes.
Collapse
|
30
|
Kontomaris SV, Stylianou A, Georgakopoulos A, Malamou A. 3D AFM Nanomechanical Characterization of Biological Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:395. [PMID: 36770357 PMCID: PMC9920073 DOI: 10.3390/nano13030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Atomic Force Microscopy (AFM) is a powerful tool enabling the mechanical characterization of biological materials at the nanoscale. Since biological materials are highly heterogeneous, their mechanical characterization is still considered to be a challenging procedure. In this paper, a new approach that leads to a 3-dimensional (3D) nanomechanical characterization is presented based on the average Young's modulus and the AFM indentation method. The proposed method can contribute to the clarification of the variability of the mechanical properties of biological samples in the 3-dimensional space (variability at the x-y plane and depth-dependent behavior). The method was applied to agarose gels, fibroblasts, and breast cancer cells. Moreover, new mathematical methods towards a quantitative mechanical characterization are also proposed. The presented approach is a step forward to a more accurate and complete characterization of biological materials and could contribute to an accurate user-independent diagnosis of various diseases such as cancer in the future.
Collapse
Affiliation(s)
- Stylianos Vasileios Kontomaris
- BioNanoTec Ltd., 2043 Nicosia, Cyprus
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece
| | - Andreas Stylianou
- School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | - Anastasios Georgakopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Anna Malamou
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| |
Collapse
|
31
|
Kontomaris SV, Stylianou A, Chliveros G, Malamou A. Determining Spatial Variability of Elastic Properties for Biological Samples Using AFM. MICROMACHINES 2023; 14:mi14010182. [PMID: 36677243 PMCID: PMC9862197 DOI: 10.3390/mi14010182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 05/29/2023]
Abstract
Measuring the mechanical properties (i.e., elasticity in terms of Young's modulus) of biological samples using Atomic Force Microscopy (AFM) indentation at the nanoscale has opened new horizons in studying and detecting various pathological conditions at early stages, including cancer and osteoarthritis. It is expected that AFM techniques will play a key role in the future in disease diagnosis and modeling using rigorous mathematical criteria (i.e., automated user-independent diagnosis). In this review, AFM techniques and mathematical models for determining the spatial variability of elastic properties of biological materials at the nanoscale are presented and discussed. Significant issues concerning the rationality of the elastic half-space assumption, the possibility of monitoring the depth-dependent mechanical properties, and the construction of 3D Young's modulus maps are also presented.
Collapse
Affiliation(s)
- Stylianos Vasileios Kontomaris
- BioNanoTec Ltd., Nicosia 2043, Cyprus
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece
| | - Andreas Stylianou
- School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Georgios Chliveros
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece
| | - Anna Malamou
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| |
Collapse
|
32
|
Burgo TL, Pereira GKR, Iglesias BA, Moreira KS, Valandro LF. AFM advanced modes for dental and biomedical applications. J Mech Behav Biomed Mater 2022; 136:105475. [PMID: 36195052 DOI: 10.1016/j.jmbbm.2022.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/18/2022]
Abstract
Several analytical methods have been employed to elucidate bonding mechanisms between dental hard tissues, luting agents and restorative materials. Atomic Force Microscopy (AFM) imaging that has been extensively used in materials science, but its full capabilities are poorly explored by dental research community. In fact, commonly used to obtain topographic images of different surfaces, it turns out that AFM is an underestimated technique considering that there are dozens of basic and advanced modes that are scarcely used to explain properties of biomaterials. Thus, this paper addresses the use of phase-contrast imaging, force-distance curves, nanomechanical and Kelvin probe force techniques during AFM analysis to explore topological, nanomechanical and electrical properties of Y-TZP samples modified by different surface treatments, which has been widely used to promote adhesive enhancements to such substrate. The AFM methods are capable of access erstwhile inaccessible properties of Y-TZP which allowed us to describe its adhesive properties correctly. Thus, AFM technique emerges as a key tool to investigate the complex nature of biomaterials and highlighting its inherent interdisciplinarity that can be successfully used for bridging fragmented disciplines such as solid-state physics, microbiology and dental sciences.
Collapse
Affiliation(s)
- ThiagoA L Burgo
- Department of Chemistry and Environmental Sciences, Ibilce, São Paulo State University (Unesp), São Jose do Rio Preto, São Paulo State, Brazil.
| | - Gabriel Kalil Rocha Pereira
- MSciD and Ph.D. Post-Graduate Program in Oral Science, Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul State, Brazil.
| | - Bernardo Almeida Iglesias
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul State, Brazil.
| | - Kelly S Moreira
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul State, Brazil.
| | - Luiz Felipe Valandro
- MSciD and Ph.D. Post-Graduate Program in Oral Science, Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul State, Brazil.
| |
Collapse
|
33
|
Stylianou A, Mpekris F, Voutouri C, Papoui A, Constantinidou A, Kitiris E, Kailides M, Stylianopoulos T. Nanomechanical properties of solid tumors as treatment monitoring biomarkers. Acta Biomater 2022; 154:324-334. [PMID: 36244596 DOI: 10.1016/j.actbio.2022.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Many tumors, such as types of sarcoma and breast cancer, stiffen as they grow in a host healthy tissue, while individual cancer cells are becoming softer. Tumor stiffening poses major pathophysiological barriers to the effective delivery of drugs and compromises treatment efficacy. It has been established that normalization of the mechanical properties of a tumor by targeting components of the tumor microenvironment (TME) enhances the delivery of anti-cancer agents and consequently the therapeutic outcome. Consequently, there is an urgent need for the development of biomarkers, which characterize the mechanical state of a particular tumor for the development of personalized treatments or for monitoring therapeutic strategies that target the TME. In this work, Atomic Force Microscopy (AFM) was used to assess human and murine nanomechanical properties from tumor biopsies. In the case of murine tumor models, the nanomechanical properties during tumor progression were measured and a TME normalization drug (tranilast) along with chemotherapy doxorubicin were employed in order to investigate whether AFM has the ability to capture changes in the nanomechanical properties of a tumor during treatment. The nanomechanical data were further correlated with ex vivo characterization of structural components of the TME. The results highlighted that nanomechanical properties alter during cancer progression and AFM measurements are sensitive enough to capture even small alterations during different types of treatments, namely normalization and chemotherapy. The identification of unique AFM-based nanomechanical properties can lead to the development of biomarkers for treatment prediction and monitoring. STATEMENT OF SIGNIFICANCE: Cancer progression is associated with vast remodeling of the tumor microenvironment resulting in changes in the mechanical properties of the tissue. Indeed, many tumors stiffen as they grow and this stiffening compromises treatment efficacy. As a result, a number of treatments target tumor microenvironment in order to normalize its mechanical properties. Consequently, there is an urgent need for the development of innovative tools that can assess the mechanical properties of a particular tumor and monitor tumor progression and treatment outcomes. This work highlights the use of atomic force microscopy (AFM) for assessing the elasticity spectrum of solid tumors at different stages and during treatment. This knowledge is essential for the development of AFM-based nanomechanical biomarkers for treatment prediction and monitoring.
Collapse
Affiliation(s)
- Andreas Stylianou
- Cancer Mechanobiology and Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus, Cyprus; European University Research Centre Ltd, Nicosia, Cyprus; Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus.
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus
| | - Antonia Papoui
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus
| | - Anastasia Constantinidou
- Medical School, University of Cyprus, Cyprus; Bank of Cyprus Oncology Center, Cyprus; Cyprus Cancer Research Institute, Cyprus
| | | | | | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus.
| |
Collapse
|
34
|
Kontomaris S, Stylianou A, Georgakopoulos A, Malamou A. Is it mathematically correct to fit AFM data (obtained on biological materials) to equations arising from Hertzian mechanics? Micron 2022; 164:103384. [DOI: 10.1016/j.micron.2022.103384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
35
|
Makarova N, Kalaparthi V, Seluanov A, Gorbunova V, Dokukin ME, Sokolov I. Correlation of cell mechanics with the resistance to malignant transformation in naked mole rat fibroblasts. NANOSCALE 2022; 14:14594-14602. [PMID: 36155714 PMCID: PMC9731726 DOI: 10.1039/d2nr01633h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Naked mole rats (NMRs) demonstrate exceptional longevity and resistance to cancer. Using a biochemical approach, it was previously shown that the treatment of mouse fibroblast cells with RasV12 oncogene and SV40 Large T antigen (viral oncoprotein) led to malignant transformations of cells. In contrast, NMR fibroblasts were resistant to malignant transformations upon this treatment. Here we demonstrate that atomic force microscopy (AFM) can provide information which is in agreement with the above finding, and further, adds unique information about the physical properties of cells that is impossible to obtain by other existing techniques. AFM indentation data were collected from individual cells and subsequently processed through the brush model to obtain information about the mechanics of the cell body (absolute values of the effective Young's moduli). Furthermore, information about the physical properties of the pericellular layer surrounding the cells was obtained. We found a statistically significant decrease in the rigidity of mouse cells after the treatment, whereas there was no significant change found in the rigidity of NMR cells upon the treatment. We also found that the treatment caused a substantial increase in a long part of the pericellular layer in NMR cells only (the long brush was defined as having a size of >10 microns). The mouse cells and smaller brush did not show statistically significant changes upon treatment. The observed change in cell mechanics is in agreement with the frequently observed decrease in cell rigidity during progression towards cancer. The change in the pericellular layer due to the malignant transformation of fibroblast cells has practically not been studied, though it was shown that the removal of part of the pericellular layer of NMR fibroblasts made the cells susceptible to malignant transformation. Although it is plausible to speculate that the observed increase in the long part of the brush layer of NMR cells might help cells to resist malignant transformations, the significance of the observed change in the pericellular layer is yet to be understood. As of now, we can conclude that changes in cell mechanics might be used as an indication of the resistance of NMR cells to malignant transformations.
Collapse
Affiliation(s)
- Nadezda Makarova
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
| | | | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, 14627, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, 14627, USA
| | - Maxim E Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
- NanoScience Solutions, Inc., Arlington, VA 22203, USA
- Sarov Physics and Technology Institute, MEPhI, Sarov, Russian Federation
| | - Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Physics, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
36
|
Su Z, Chen Z, Ma K, Chen H, Ho JWK. Molecular determinants of intrinsic cellular stiffness in health and disease. Biophys Rev 2022; 14:1197-1209. [PMID: 36345276 PMCID: PMC9636357 DOI: 10.1007/s12551-022-00997-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022] Open
Abstract
In recent years, the role of intrinsic biophysical features, especially cellular stiffness, in diverse cellular and disease processes is being increasingly recognized. New high throughput techniques for the quantification of cellular stiffness facilitate the study of their roles in health and diseases. In this review, we summarized recent discovery about how cellular stiffness is involved in cell stemness, tumorigenesis, and blood diseases. In addition, we review the molecular mechanisms underlying the gene regulation of cellular stiffness in health and disease progression. Finally, we discussed the current understanding on how the cytoskeleton structure and the regulation of these genes contribute to cellular stiffness, highlighting where the field of cellular stiffness is headed.
Collapse
Affiliation(s)
- Zezhuo Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| | - Zhenlin Chen
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Kun Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055 China
| | - Joshua W. K. Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| |
Collapse
|
37
|
Nanomechanical and Morphological AFM Mapping of Normal Tissues and Tumors on Live Brain Slices Using Specially Designed Embedding Matrix and Laser-Shaped Cantilevers. Biomedicines 2022; 10:biomedicines10071742. [PMID: 35885046 PMCID: PMC9313344 DOI: 10.3390/biomedicines10071742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Cell and tissue nanomechanics has been intriguingly introduced into biomedical research, not only complementing traditional immunophenotyping and molecular analysis, but also bringing unexpected new insights for clinical diagnostics and bioengineering. However, despite the progress in the study of individual cells in culture by atomic force microscopy (AFM), its application for mapping live tissues has a number of technical limitations. Here, we elaborate a new technique to study live slices of normal brain tissue and tumors by combining morphological and nanomechanical AFM mapping in high throughput scanning mode, in contrast to the typically utilized force spectroscopy mode based on single-point probe application. This became possible due to the combined use of an appropriate embedding matrix for vibratomy and originally modified AFM probes. The embedding matrix composition was carefully developed by regulating the amounts of agar and collagen I to reach optimal viscoelastic properties for obtaining high-quality live slices that meet AFM requirements. AFM tips were rounded by irradiating them with focused nanosecond laser pulses, while the resulting tip morphology was verified by scanning electron microscopy. Live slices preparation and AFM investigation take only 55 min and could be combined with a vital cell tracer analysis or immunostaining, thus making it promising for biomedical research and clinical diagnostics.
Collapse
|
38
|
Mechanical Properties of the Extracellular Environment of Human Brain Cells Drive the Effectiveness of Drugs in Fighting Central Nervous System Cancers. Brain Sci 2022; 12:brainsci12070927. [PMID: 35884733 PMCID: PMC9313046 DOI: 10.3390/brainsci12070927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
The evaluation of nanomechanical properties of tissues in health and disease is of increasing interest to scientists. It has been confirmed that these properties, determined in part by the composition of the extracellular matrix, significantly affect tissue physiology and the biological behavior of cells, mainly in terms of their adhesion, mobility, or ability to mutate. Importantly, pathophysiological changes that determine disease development within the tissue usually result in significant changes in tissue mechanics that might potentially affect the drug efficacy, which is important from the perspective of development of new therapeutics, since most of the currently used in vitro experimental models for drug testing do not account for these properties. Here, we provide a summary of the current understanding of how the mechanical properties of brain tissue change in pathological conditions, and how the activity of the therapeutic agents is linked to this mechanical state.
Collapse
|
39
|
Tokajuk J, Deptuła P, Piktel E, Daniluk T, Chmielewska S, Wollny T, Wolak P, Fiedoruk K, Bucki R. Cathelicidin LL-37 in Health and Diseases of the Oral Cavity. Biomedicines 2022; 10:1086. [PMID: 35625823 PMCID: PMC9138798 DOI: 10.3390/biomedicines10051086] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
The mechanisms for maintaining oral cavity homeostasis are subject to the constant influence of many environmental factors, including various chemicals and microorganisms. Most of them act directly on the oral mucosa, which is the mechanical and immune barrier of the oral cavity, and such interaction might lead to the development of various oral pathologies and systemic diseases. Two important players in maintaining oral health or developing oral pathology are the oral microbiota and various immune molecules that are involved in controlling its quantitative and qualitative composition. The LL-37 peptide is an important molecule that upon release from human cathelicidin (hCAP-18) can directly perform antimicrobial action after insertion into surface structures of microorganisms and immunomodulatory function as an agonist of different cell membrane receptors. Oral LL-37 expression is an important factor in oral homeostasis that maintains the physiological microbiota but is also involved in the development of oral dysbiosis, infectious diseases (including viral, bacterial, and fungal infections), autoimmune diseases, and oral carcinomas. This peptide has also been proposed as a marker of inflammation severity and treatment outcome.
Collapse
Affiliation(s)
- Joanna Tokajuk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
- Dentistry and Medicine Tokajuk, Zelazna 9/7, 15-297 Bialystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222 Białystok, Poland;
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Sylwia Chmielewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| |
Collapse
|
40
|
Zhang Y, Ju T, Gao M, Song Z, Xu H, Wang Z, Wang Y. Electrical characterization of tumor-derived exosomes by conductive atomic force microscopy. NANOTECHNOLOGY 2022; 33:295103. [PMID: 35051909 DOI: 10.1088/1361-6528/ac4d57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The physical properties of tumor-derived exosomes have gained much attention because they are helpful to better understand the exosomes in biomedicine. In this study, the conductive atomic force microscopy (C-AFM) was employed to perform the electrical characterizations of exosomes, and it obtained the topography and current images of samples simultaneously. The exosomes were absorbed onto the mica substrates coated with a gold film of 20 nm thick for obtaining the current images of samples by C-AFM in air. The results showed that the single exosomes had the weak conductivity. Furthermore, the currents on exosomes were measured at different bias voltages and pH conditions. It illustrated that the conductivity of exosomes was affected by external factors such as bias voltages and solutions with different pH values. In addition, the electrical responses of low and high metastatic potential cell-derived exosomes were also compared under different voltages and pH conditions. This work is important for better understanding the physical properties of tumor-derived exosomes and promoting the clinical applications of tumor-derived exosomes.
Collapse
Affiliation(s)
- Yu Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Tuoyu Ju
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Mingyan Gao
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zhengxun Song
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Hongmei Xu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| | - Ying Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| |
Collapse
|
41
|
Simpson JD, Ray A, Koehler M, Mohammed D, Alsteens D. Atomic force microscopy applied to interrogate nanoscale cellular chemistry and supramolecular bond dynamics for biomedical applications. Chem Commun (Camb) 2022; 58:5072-5087. [PMID: 35315846 DOI: 10.1039/d1cc07200e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding biological interactions at a molecular level grants valuable information relevant to improving medical treatments and outcomes. Among the suite of technologies available, Atomic Force Microscopy (AFM) is unique in its ability to quantitatively probe forces and receptor-ligand interactions in real-time. The ability to assess the formation of supramolecular bonds and intermediates in real-time on surfaces and living cells generates important information relevant to understanding biological phenomena. Combining AFM with fluorescence-based techniques allows for an unprecedented level of insight not only concerning the formation and rupture of bonds, but understanding medically relevant interactions at a molecular level. As the ability of AFM to probe cells and more complex models improves, being able to assess binding kinetics, chemical topographies, and garner spectroscopic information will likely become key to developing further improvements in fields such as cancer, nanomaterials, and virology. The rapid response to the COVID-19 crisis, producing information regarding not just receptor affinities, but also strain-dependent efficacy of neutralizing nanobodies, demonstrates just how viable and integral to the pre-clinical development of information AFM techniques are in this era of medicine.
Collapse
Affiliation(s)
- Joshua D Simpson
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Danahe Mohammed
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| |
Collapse
|
42
|
Brás MM, Sousa SR, Carneiro F, Radmacher M, Granja PL. Mechanobiology of Colorectal Cancer. Cancers (Basel) 2022; 14:1945. [PMID: 35454852 PMCID: PMC9028036 DOI: 10.3390/cancers14081945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, the mechanobiology of colorectal cancer (CRC) are discussed. Mechanotransduction of CRC is addressed considering the relationship of several biophysical cues and biochemical pathways. Mechanobiology is focused on considering how it may influence epithelial cells in terms of motility, morphometric changes, intravasation, circulation, extravasation, and metastization in CRC development. The roles of the tumor microenvironment, ECM, and stroma are also discussed, taking into account the influence of alterations and surface modifications on mechanical properties and their impact on epithelial cells and CRC progression. The role of cancer-associated fibroblasts and the impact of flow shear stress is addressed in terms of how it affects CRC metastization. Finally, some insights concerning how the knowledge of biophysical mechanisms may contribute to the development of new therapeutic strategies and targeting molecules and how mechanical changes of the microenvironment play a role in CRC disease are presented.
Collapse
Affiliation(s)
- Maria Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-465 Porto, Portugal
- Serviço de Patologia, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manfred Radmacher
- Institute for Biophysics, University of Bremen, 28334 Bremen, Germany
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
43
|
Benech JC, Romanelli G. Atomic force microscopy indentation for nanomechanical characterization of live pathological cardiovascular/heart tissue and cells. Micron 2022; 158:103287. [DOI: 10.1016/j.micron.2022.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/10/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
|
44
|
Esfahani AM, Minnick G, Rosenbohm J, Zhai H, Jin X, Tajvidi Safa B, Brooks J, Yang R. Microfabricated platforms to investigate cell mechanical properties. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2021.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Yu W, Sharma S, Rao E, Rowat AC, Gimzewski JK, Han D, Rao J. Cancer cell mechanobiology: a new frontier for cancer research. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:10-17. [PMID: 39035217 PMCID: PMC11256617 DOI: 10.1016/j.jncc.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022] Open
Abstract
The study of physical and mechanical features of cancer cells, or cancer cell mechanobiology, is a new frontier in cancer research. Such studies may enhance our understanding of the disease process, especially mechanisms associated with cancer cell invasion and metastasis, and may help the effort of developing diagnostic biomarkers and therapeutic drug targets. Cancer cell mechanobiological changes are associated with the complex interplay of activation/inactivation of multiple signaling pathways, which can occur at both the genetic and epigenetic levels, and the interactions with the cancer microenvironment. It has been shown that metastatic tumor cells are more compliant than morphologically similar benign cells in actual human samples. Subsequent studies from us and others further demonstrated that cell mechanical properties are strongly associated with cancer cell invasive and metastatic potential, and thus may serve as a diagnostic marker of detecting cancer cells in human body fluid samples. In this review, we provide a brief narrative of the molecular mechanisms underlying cancer cell mechanobiology, the technological platforms utilized to study cancer cell mechanobiology, the status of cancer cell mechanobiological studies in various cancer types, and the potential clinical applications of cancer cell mechanobiological study in cancer early detection, diagnosis, and treatment.
Collapse
Affiliation(s)
- Weibo Yu
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Shivani Sharma
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Elizabeth Rao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California at Los Angeles, California, USA
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California at Los Angeles, California, USA
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing, China
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| |
Collapse
|
46
|
Kontomaris SV, Stylianou A, Malamou A. Is It Possible to Directly Determine the Radius of a Spherical Indenter Using Force Indentation Data on Soft Samples? SCANNING 2022; 2022:6463063. [PMID: 35265251 PMCID: PMC8872683 DOI: 10.1155/2022/6463063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
An important factor affecting the accuracy of Young's modulus calculation in Atomic Force Microscopy (AFM) indentation experiments is the determination of the dimensions of the indenter. This procedure is usually performed using AFM calibration gratings or Scanning Electron Microscopy (SEM) imaging. However, the aforementioned procedure is frequently omitted because it requires additional equipment. In this paper, a new approach is presented that focused on the calibration of spherical indenters without the need of special equipment but instead using force indentation data on soft samples. Firstly, the question whether it is mathematically possible to simultaneously calculate the indenter's radius and the Young's modulus of the tested sample (under the restriction that the sample presents a linear elastic response) using the same force indentation data is discussed. Using a simple mathematical approach, it was proved that the aforementioned procedure is theoretically valid. In addition, to test this method in real indentation experiments agarose gels were used. Multiple measurements on different agarose gels showed that the calibration of a spherical indenter is possible and can be accurately performed. Thus, the indenter's radius and the soft sample's Young's modulus can be determined using the same force indentation data. It is also important to note that the provided accuracy is similar to the accuracy obtained when using AFM calibration gratings. The major advantage of this paper is that it provides a method for the simultaneous determination of the indenter's radius and the sample's Young's modulus without requiring any additional equipment.
Collapse
Affiliation(s)
- S. V. Kontomaris
- Metropolitan College, Faculty of Engineering and Architecture, Athens, Greece
- BioNanoTec LTD, Nicosia, Cyprus
| | - A. Stylianou
- School of Science, European University Cyprus, Cyprus
| | - A. Malamou
- Radar Systems and Remote Sensing Lab of School of Electrical & Computer Engineering of National Technical University of Athens, Greece
| |
Collapse
|
47
|
Panzetta V, Musella I, Fusco S, Netti PA. ECM Mechanoregulation in Malignant Pleural Mesothelioma. Front Bioeng Biotechnol 2022; 10:797900. [PMID: 35237573 PMCID: PMC8883334 DOI: 10.3389/fbioe.2022.797900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023] Open
Abstract
Malignant pleural mesothelioma is a relatively rare, but devastating tumor, because of the difficulties in providing early diagnosis and effective treatments with conventional chemo- and radiotherapies. Patients usually present pleural effusions that can be used for diagnostic purposes by cytological analysis. This effusion cytology may take weeks or months to establish and has a limited sensitivity (30%-60%). Then, it is becoming increasingly urgent to develop alternative investigative methods to support the diagnosis of mesothelioma at an early stage when this cancer can be treated successfully. To this purpose, mechanobiology provides novel perspectives into the study of tumor onset and progression and new diagnostic tools for the mechanical characterization of tumor tissues. Here, we report a mechanical and biophysical characterization of malignant pleural mesothelioma cells as additional support to the diagnosis of pleural effusions. In particular, we examined a normal mesothelial cell line (Met5A) and two epithelioid mesothelioma cell lines (REN and MPP89), investigating how malignant transformation can influence cellular function like proliferation, cell migration, and cell spreading area with respect to the normal ones. These alterations also correlated with variations in cytoskeletal mechanical properties that, in turn, were measured on substrates mimicking the stiffness of patho-physiological ECM.
Collapse
Affiliation(s)
- Valeria Panzetta
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| | - Ida Musella
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Paolo A. Netti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| |
Collapse
|
48
|
Shmelev ME, Titov SI, Belousov AS, Farniev VM, Zhmenia VM, Lanskikh DV, Penkova AO, Kumeiko VV. Cell and Tissue Nanomechanics: From Early Development to Carcinogenesis. Biomedicines 2022; 10:345. [PMID: 35203554 PMCID: PMC8961777 DOI: 10.3390/biomedicines10020345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cell and tissue nanomechanics, being inspired by progress in high-resolution physical mapping, has recently burst into biomedical research, discovering not only new characteristics of normal and diseased tissues, but also unveiling previously unknown mechanisms of pathological processes. Some parallels can be drawn between early development and carcinogenesis. Early embryogenesis, up to the blastocyst stage, requires a soft microenvironment and internal mechanical signals induced by the contractility of the cortical actomyosin cytoskeleton, stimulating quick cell divisions. During further development from the blastocyst implantation to placenta formation, decidua stiffness is increased ten-fold when compared to non-pregnant endometrium. Organogenesis is mediated by mechanosignaling inspired by intercellular junction formation with the involvement of mechanotransduction from the extracellular matrix (ECM). Carcinogenesis dramatically changes the mechanical properties of cells and their microenvironment, generally reproducing the structural properties and molecular organization of embryonic tissues, but with a higher stiffness of the ECM and higher cellular softness and fluidity. These changes are associated with the complete rearrangement of the entire tissue skeleton involving the ECM, cytoskeleton, and the nuclear scaffold, all integrated with each other in a joint network. The important changes occur in the cancer stem-cell niche responsible for tumor promotion and metastatic growth. We expect that the promising concept based on the natural selection of cancer cells fixing the most invasive phenotypes and genotypes by reciprocal regulation through ECM-mediated nanomechanical feedback loop can be exploited to create new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Mikhail E. Shmelev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Sergei I. Titov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Andrei S. Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Vladislav M. Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Valeriia M. Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Daria V. Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Alina O. Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Vadim V. Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
49
|
Setia A, Bhatia J, Bhattacharya S. An Overview of Acute Flaccid Myelitis. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:774-794. [PMID: 34823462 DOI: 10.2174/1871527320666211125101424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Acute Flaccid Myelitis is defined by the presence of Acute Flaccid Paralysis (AFP) and a spinal cord lesion on magnetic resonance imaging that is primarily limited to the grey matter. AFM is a difficult situation to deal with when you have a neurologic illness. According to the Centers for Disease Control and Prevention (CDC), a large number of cases were discovered in the United States in 2014, with 90% of cases occurring in children. Although the exact cause of AFM is unknown, mounting evidence suggests a link between AFM and enterovirus D68 (EV-D68). In 2014, an outbreak of AFM was discovered in the United States. The condition was initially linked to polioviruses; however, it was later found that the viruses were caused by non-polioviruses Enteroviruses D-68 (EV-D68). The number of cases has increased since 2014, and the disease has been declared pandemic in the United States. The sudden onset of muscle weakness, usually in an arm or leg, as well as pain throughout the body, the change in patient's facial expression (facial weakness), and shortness of breath, ingesting, and speaking are all common symptoms in patients suffering from neurologic disease. This article includes graphic and histogram representations of reported AFM incidents and criteria for causality, epidemiology, various diagnostic approaches, signs and symptoms, and various investigational guidelines. It also includes key statements about recent clinical findings related to AFM disease.
Collapse
Affiliation(s)
- Aseem Setia
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab-142001, India
| | - Jasween Bhatia
- Department of Masters in Public Health Science, Symbiosis Institute of Health Science, Pune-411042, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management Shirpur, SVKM\'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
50
|
Tian Y, Lin W, Qu K, Wang Z, Zhu X. Insights into cell classification based on combination of multiple cellular mechanical phenotypes by using machine learning algorithm. J Mech Behav Biomed Mater 2022; 128:105097. [DOI: 10.1016/j.jmbbm.2022.105097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/26/2021] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
|