1
|
Yang L, Wang H, Yang Y, Li Y. Self-healing cellulose-based hydrogels: From molecular design to multifarious applications. Carbohydr Polym 2025; 347:122738. [PMID: 39486967 DOI: 10.1016/j.carbpol.2024.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 11/04/2024]
Abstract
Self-healing cellulose-based hydrogels (SHCHs) exhibit wide-ranging potential applications in the fields of biomedicine, environmental management, energy storage, and smart materials due to their unique physicochemical properties and biocompatibility. This review delves into the molecular design principles, performance characteristics, and diverse applications of SHCHs. Firstly, the molecular structure and physicochemical properties of cellulose are analyzed, along with strategies for achieving self-healing properties through molecular design, with particular emphasis on the importance of self-healing mechanisms. Subsequently, methods for optimizing the performance of SHCHs through chemical modification, composite reinforcement, stimulus responsiveness, and functional integration technologies are discussed in detail. Furthermore, applications of SHCHs in drug delivery, tissue engineering, wound healing, smart sensing, supercapacitors, electronic circuits, anti-counterfeiting systems, oil/water separation, and food packaging are explored. Finally, future research directions for SHCHs are outlined, including the innovative development of new SHCHs, in-depth elucidation of cooperative strengthening mechanisms, a further expansion of application scope, and the establishment of intelligent systems. This review provides researchers with a comprehensive overview of SHCHs and serves as a reference and guide for future research and development.
Collapse
Affiliation(s)
- Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Yanpeng Li
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| |
Collapse
|
2
|
Zhang M, Shen H, Hakobyan K, Jiang Z, Liang K, Xu J. Robust Hydrogel Actuators Functioning in Multi-Environments Enabled by Thermo-Responsive Polymer Nanoparticle Coatings on Hydrogel Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400534. [PMID: 38597736 DOI: 10.1002/smll.202400534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Hydrogel actuators with anisotropic structures exhibit reversible responsiveness upon the trigger of various external stimuli, rendering them promising for applications in many fields including artificial muscles and soft robotics. However, their effective operation across multiple environments remains a persistent challenge, even for widely studied thermo-responsive polymers like poly(N-isopropyl acrylamide) (PNIPAm). Current attempts to address this issue are hindered by complex synthetic procedures or specific substrates. This study introduces a straightforward methodology to grow a thin, dense PNIPAm nanoparticle layer on diverse hydrogel surfaces, creating a highly temperature-sensitive hydrogel actuator. This actuator demonstrates adaptability across various environments, including water, oil, and open air, owing to its distinct structure facilitating self-water circulation during actuation. The thin PNIPAm layer consists of interconnected PNIPAm nanoparticles synthesized via in situ interfacial precipitation polymerization, seamlessly bonded to the hydrogel substrate through an interfacial layer containing hybrid hydrogel/PNIPAm nanoparticles. This unique anisotropic structure ensures exceptional structural stability without interfacial delamination, even enduring harsh treatments such as freezing, ultrasonic irradiation, and prolonged water immersion. Remarkably, PNIPAm films on hydrogel surfaces which enable programmable 3D actuation can also be precisely patterned. This synthetic approach opens a novel pathway for fabricating advanced hydrogel actuators with broad-ranging applications.
Collapse
Affiliation(s)
- Mengnan Zhang
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Haokun Shen
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Karen Hakobyan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Zhen Jiang
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Sydney, NSW, 2522, Australia
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Ghelardini MM, Geisler M, Weigel N, Hankwitz JP, Hauck N, Schubert J, Fery A, Tracy JB, Thiele J. 3D-Printed Hydrogels as Photothermal Actuators. Polymers (Basel) 2024; 16:2032. [PMID: 39065349 PMCID: PMC11281285 DOI: 10.3390/polym16142032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Thermoresponsive hydrogels were 3D-printed with embedded gold nanorods (GNRs), which enable shape change through photothermal heating. GNRs were functionalized with bovine serum albumin and mixed with a photosensitizer and poly(N-isopropylacrylamide) (PNIPAAm) macromer, forming an ink for 3D printing by direct ink writing. A macromer-based approach was chosen to provide good microstructural homogeneity and optical transparency of the unloaded hydrogel in its swollen state. The ink was printed into an acetylated gelatin hydrogel support matrix to prevent the spreading of the low-viscosity ink and provide mechanical stability during printing and concurrent photocrosslinking. Acetylated gelatin hydrogel was introduced because it allows for melting and removal of the support structure below the transition temperature of the crosslinked PNIPAAm structure. Convective and photothermal heating were compared, which both triggered the phase transition of PNIPAAm and induced reversible shrinkage of the hydrogel-GNR composite for a range of GNR loadings. During reswelling after photothermal heating, some structures formed an internally buckled state, where minor mechanical agitation recovered the unbuckled structure. The BSA-GNRs did not leach out of the structure during multiple cycles of shrinkage and reswelling. This work demonstrates the promise of 3D-printed, photoresponsive structures as hydrogel actuators.
Collapse
Affiliation(s)
- Melanie M. Ghelardini
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.M.G.)
| | - Martin Geisler
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Niclas Weigel
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Jameson P. Hankwitz
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.M.G.)
| | - Nicolas Hauck
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Jonas Schubert
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Andreas Fery
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
- Institute of Physical Chemistry and Polymer Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Joseph B. Tracy
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.M.G.)
| | - Julian Thiele
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
- Institute of Chemistry, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
4
|
Wang ZJ, Lin J, Nakajima T, Gong JP. Hydrogel morphogenesis induced by force-controlled growth. Proc Natl Acad Sci U S A 2024; 121:e2402587121. [PMID: 38923994 PMCID: PMC11228514 DOI: 10.1073/pnas.2402587121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Morphogenesis is one of the most marvelous natural phenomena. The morphological characteristics of biological organs develop through growth, which is often triggered by mechanical force. In this study, we propose a bioinspired strategy for hydrogel morphogenesis through force-controlled chemical reaction and growth under isothermal conditions. We adopted a double network (DN) hydrogel with sacrificial bonds. Applying mechanical force to the gel caused deformation and sacrificial bond rupture. By supplying monomers to the gel, the radicals generated by the bond rupture triggered the formation of a new network inside the deformed gel. This new network conferred plasticity to the elastic gel, allowing it to maintain its deformed shape, along with increased volume and strength. We demonstrated that sheet-shaped DN hydrogels rapidly adopted various three-dimensional shapes at ambient temperature when subjected to forces such as drawing and blowing. This mechanism enables morphogenesis of elastic hydrogels and will promote the application of these materials in biomedical fields and soft machines.
Collapse
Affiliation(s)
- Zhi Jian Wang
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
| | - Ji Lin
- Center for Mechanics Plus under Extreme Environments, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
| | - Tasuku Nakajima
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
5
|
Jiang T, Zhang Y, Jiang J, Liu ZW, Liu ZT, Li G. UV Light-Mediated Hydrolytic Reaction to Develop Magnetic Hydrogel Actuators with Spatially Distributed Ferriferous Oxide Microparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308352. [PMID: 38433397 DOI: 10.1002/smll.202308352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Magnetic hydrogel actuators are developed by incorporating magnetic fillers into the hydrogel matrix. Regulating the distribution of these fillers is key to the exhibited functionalities but is still challenging. Here a facile way to spatially synthesize ferrosoferric oxide (Fe3O4) microparticles in situ in a thermal-responsive hydrogel is reported. This method involves the photo-reduction of Fe3+ ions coordinated with carboxylate groups in polymer chains, and the hydrolytic reaction of the reduced Fe2+ ions with residual Fe3+ ions. By controlling the irradiation time and position, the concentration of Fe3O4 microparticles can be spatially controlled, and the resulting Fe3O4 pattern enables the hydrogel to exhibit complex locomotion driven by magnet, temperature, and NIR light. This method is convenient and extendable to other hydrogel systems to realize more complicated magneto-responsive functionalities.
Collapse
Affiliation(s)
- Tongxin Jiang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Yingying Zhang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Jinqiang Jiang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Zhao-Tie Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Guo Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| |
Collapse
|
6
|
Yang L, Zhang Y, Cai W, Tan J, Hansen H, Wang H, Chen Y, Zhu M, Mu J. Electrochemically-driven actuators: from materials to mechanisms and from performance to applications. Chem Soc Rev 2024; 53:5956-6010. [PMID: 38721851 DOI: 10.1039/d3cs00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Soft actuators, pivotal for converting external energy into mechanical motion, have become increasingly vital in a wide range of applications, from the subtle engineering of soft robotics to the demanding environments of aerospace exploration. Among these, electrochemically-driven actuators (EC actuators), are particularly distinguished by their operation through ion diffusion or intercalation-induced volume changes. These actuators feature notable advantages, including precise deformation control under electrical stimuli, freedom from Carnot efficiency limitations, and the ability to maintain their actuated state with minimal energy use, akin to the latching state in skeletal muscles. This review extensively examines EC actuators, emphasizing their classification based on diverse material types, driving mechanisms, actuator configurations, and potential applications. It aims to illuminate the complicated driving mechanisms of different categories, uncover their underlying connections, and reveal the interdependencies among materials, mechanisms, and performances. We conduct an in-depth analysis of both conventional and emerging EC actuator materials, casting a forward-looking lens on their trajectories and pinpointing areas ready for innovation and performance enhancement strategies. We also navigate through the challenges and opportunities within the field, including optimizing current materials, exploring new materials, and scaling up production processes. Overall, this review aims to provide a scientifically robust narrative that captures the current state of EC actuators and sets a trajectory for future innovation in this rapidly advancing field.
Collapse
Affiliation(s)
- Lixue Yang
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Yiyao Zhang
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Wenting Cai
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| | - Junlong Tan
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Heather Hansen
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
- Shanghai Dianji University, 201306, Shanghai, China
| | - Yan Chen
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Jiuke Mu
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| |
Collapse
|
7
|
Long S, Liu C, Ren H, Hu Y, Chen C, Huang Y, Li X. NIR-Mediated Deformation from a CNT-Based Bilayer Hydrogel. Polymers (Basel) 2024; 16:1152. [PMID: 38675070 PMCID: PMC11053785 DOI: 10.3390/polym16081152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Shape-shifting polymers are widely used in various fields such as intelligent switches, soft robots and sensors, which require both multiple stimulus-response functions and qualified mechanical strength. In this study, a novel near-infrared-light (NIR)-responsible shape-shifting hydrogel system was designed and fabricated through embedding vinylsilane-modified carbon nanotubes (CNTs) into particle double-network (P-DN) hydrogels by micellar copolymerisation. The dispersed brittle Poly(sodium 2-acrylamido-2-methylpropane-1-sulfonate) (PNaAMPS) network of the microgels can serve as sacrificial bonds to toughen the hydrogels, and the CNTs endow it with NIR photothermal conversion ability. The results show that the CNTs embedded in the P-DN hydrogels present excellent mechanical strength, i.e., a fracture strength of 312 kPa and a fracture strain of 357%. Moreover, an asymmetric bilayer hydrogel, where the active layer contains CNTs, can achieve 0°-110° bending deformation within 10 min under NIR irradiation and can realise complex deformation movement. This study provides a theoretical and experimental basis for the design and manufacture of photoresponsive soft actuators.
Collapse
Affiliation(s)
- Shijun Long
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (C.L.); (H.R.); (Y.H.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Chang Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (C.L.); (H.R.); (Y.H.); (Y.H.)
| | - Han Ren
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (C.L.); (H.R.); (Y.H.); (Y.H.)
| | - Yali Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (C.L.); (H.R.); (Y.H.); (Y.H.)
| | - Chao Chen
- Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China;
| | - Yiwan Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (C.L.); (H.R.); (Y.H.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Xuefeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (C.L.); (H.R.); (Y.H.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
8
|
Farrukh A, Nayab S. Shape Memory Hydrogels for Biomedical Applications. Gels 2024; 10:270. [PMID: 38667689 PMCID: PMC11049586 DOI: 10.3390/gels10040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The ability of shape memory polymers to change shape upon external stimulation makes them exceedingly useful in various areas, from biomedical engineering to soft robotics. Especially, shape memory hydrogels (SMHs) are well-suited for biomedical applications due to their inherent biocompatibility, excellent shape morphing performance, tunable physiochemical properties, and responsiveness to a wide range of stimuli (e.g., thermal, chemical, electrical, light). This review provides an overview of the unique features of smart SMHs from their fundamental working mechanisms to types of SMHs classified on the basis of applied stimuli and highlights notable clinical applications. Moreover, the potential of SMHs for surgical, biomedical, and tissue engineering applications is discussed. Finally, this review summarizes the current challenges in synthesizing and fabricating reconfigurable hydrogel-based interfaces and outlines future directions for their potential in personalized medicine and clinical applications.
Collapse
Affiliation(s)
- Aleeza Farrukh
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| | - Sana Nayab
- Institute of Chemistry, Quaid-i-Azam Campus, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
9
|
Long S, Chen F, Ren H, Hu Y, Chen C, Huang Y, Li X. Ion-Cross-Linked Hybrid Photochromic Hydrogels with Enhanced Mechanical Properties and Shape Memory Behaviour. Polymers (Basel) 2024; 16:1031. [PMID: 38674950 PMCID: PMC11054056 DOI: 10.3390/polym16081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Shape-shifting polymers usually require not only reversible stimuli-responsive ability, but also strong mechanical properties. A novel shape-shifting photochromic hydrogel system was designed and fabricated by embedding hydrophobic spiropyran (SP) into double polymeric network (DN) through micellar copolymerisation. Here, sodium alginate (Alg) and poly acrylate-co-methyl acrylate-co-spiropyran (P(SA-co-MA-co-SPMA)) were employed as the first network and the second network, respectively, to realise high mechanical strength. After being soaked in the CaCl2 solution, the carboxyl groups in the system underwent metal complexation with Ca2+ to enhance the hydrogel. Moreover, after the hydrogel was exposed to UV-light, the closed isomer of spiropyran in the hydrogel network could be converted into an open zwitterionic isomer merocyanine (MC), which was considered to interact with Ca2+ ions. Interestingly, Ca2+ and UV-light responsive programmable shape of the copolymer hydrogel could recover to its original form via immersion in pure water. Given its excellent metal ion and UV light stimuli-responsive and mechanical properties, the hydrogel has potential applications in the field of soft actuators.
Collapse
Affiliation(s)
- Shijun Long
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Fan Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
| | - Han Ren
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
| | - Yali Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
| | - Chao Chen
- Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Yiwan Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Xuefeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
10
|
Lu G, Tang R, Nie J, Zhu X. Photocuring 3D Printing of Hydrogels: Techniques, Materials, and Applications in Tissue Engineering and Flexible Devices. Macromol Rapid Commun 2024; 45:e2300661. [PMID: 38271638 DOI: 10.1002/marc.202300661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Photocuring 3D printing of hydrogels, with sophisticated, delicate structures and biocompatibility, attracts significant attention by researchers and possesses promising application in the fields of tissue engineering and flexible devices. After years of development, photocuring 3D printing technologies and hydrogel inks make great progress. Herein, the techniques of photocuring 3D printing of hydrogels, including direct ink writing (DIW), stereolithography (SLA), digital light processing (DLP), continuous liquid interface production (CLIP), volumetric additive manufacturing (VAM), and two photon polymerization (TPP) are reviewed. Further, the raw materials for hydrogel inks (photocurable polymers, monomers, photoinitiators, and additives) and applications in tissue engineering and flexible devices are also reviewed. At last, the current challenges and future perspectives of photocuring 3D printing of hydrogels are discussed.
Collapse
Affiliation(s)
- Guoqiang Lu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruifen Tang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Nie
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoqun Zhu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Mandal A, Chatterjee K. 4D printing for biomedical applications. J Mater Chem B 2024; 12:2985-3005. [PMID: 38436200 DOI: 10.1039/d4tb00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
While three-dimensional (3D) printing excels at fabricating static constructs, it fails to emulate the dynamic behavior of native tissues or the temporal programmability desired for medical devices. Four-dimensional (4D) printing is an advanced additive manufacturing technology capable of fabricating constructs that can undergo pre-programmed changes in shape, property, or functionality when exposed to specific stimuli. In this Perspective, we summarize the advances in materials chemistry, 3D printing strategies, and post-printing methodologies that collectively facilitate the realization of temporal dynamics within 4D-printed soft materials (hydrogels, shape-memory polymers, liquid crystalline elastomers), ceramics, and metals. We also discuss and present insights about the diverse biomedical applications of 4D printing, including tissue engineering and regenerative medicine, drug delivery, in vitro models, and medical devices. Finally, we discuss the current challenges and emphasize the importance of an application-driven design approach to enable the clinical translation and widespread adoption of 4D printing.
Collapse
Affiliation(s)
- Arkodip Mandal
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| |
Collapse
|
12
|
Xiang T, Guo Q, Jia L, Yin T, Huang W, Zhang X, Zhou S. Multifunctional Hydrogels for the Healing of Diabetic Wounds. Adv Healthc Mater 2024; 13:e2301885. [PMID: 37702116 DOI: 10.1002/adhm.202301885] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/10/2023] [Indexed: 09/14/2023]
Abstract
The healing of diabetic wounds is hindered by various factors, including bacterial infection, macrophage dysfunction, excess proinflammatory cytokines, high levels of reactive oxygen species, and sustained hypoxia. These factors collectively impede cellular behaviors and the healing process. Consequently, this review presents intelligent hydrogels equipped with multifunctional capacities, which enable them to dynamically respond to the microenvironment and accelerate wound healing in various ways, including stimuli -responsiveness, injectable self-healing, shape -memory, and conductive and real-time monitoring properties. The relationship between the multiple functions and wound healing is also discussed. Based on the microenvironment of diabetic wounds, antibacterial, anti-inflammatory, immunomodulatory, antioxidant, and pro-angiogenic strategies are combined with multifunctional hydrogels. The application of multifunctional hydrogels in the repair of diabetic wounds is systematically discussed, aiming to provide guidelines for fabricating hydrogels for diabetic wound healing and exploring the role of intelligent hydrogels in the therapeutic processes.
Collapse
Affiliation(s)
- Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qianru Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tianyu Yin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wei Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xinyu Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
13
|
Sinad KVG, Ebubechukwu RC, Chu CK. Recent advances in double network hydrogels based on naturally-derived polymers: synthesis, properties, and biological applications. J Mater Chem B 2023; 11:11460-11482. [PMID: 38047404 DOI: 10.1039/d3tb00773a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hydrogels composed of naturally-derived biopolymers have garnered significant research interest due to the bioavailability and biocompatibility of starting materials. However, translating these advantages to practical use is challenged by limitations of mechanical properties and stability of the resulting materials. The development of double network (DN) hydrogels has led to greatly enhanced mechanical properties and shows promise toward broadening the applications of conventional synthetic or natural hydrogels. This review highlights recently developed protein-based and polysaccharide-based DN hydrogels. For each biopolymer, we focus on a subset of DN hydrogels centered around a theme related to synthetic design or applications. Network structures and crosslinking mechanisms that endow enhanced mechanical properties and performance to the materials are discussed. Important applications, including tissue engineering, drug delivery, bioadhesives, wound healing, and wearable sensors, that arise from the inherent properties of the natural polymer or its combination with other materials are also emphasized. Finally, we discuss ongoing challenges to stimulate the discovery of new design principles for the future of DN hydrogels based on naturally-derived polymers for biological applications.
Collapse
Affiliation(s)
| | - Ruth C Ebubechukwu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA.
| | - Crystal K Chu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA.
| |
Collapse
|
14
|
Xiong X, Wang H, Xue L, Cui J. Self-Growing Organic Materials. Angew Chem Int Ed Engl 2023; 62:e202306565. [PMID: 37432074 DOI: 10.1002/anie.202306565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
The growth of living systems is ubiquitous. Living organisms can continually update their sizes, shapes, and properties to meet various environmental challenges. Such a capability is also demonstrated by emerging self-growing materials that can incorporate externally provided compounds to grow as living organisms. In this Minireview, we summarize these materials in terms of six aspects. First, we discuss their essential characteristics, then describe the strategies for enabling crosslinked organic materials to self-grow from nutrient solutions containing polymerizable compounds. The developed examples are grouped into five categories based on their molecular mechanisms. We then explain the mechanism of mass transport within polymer networks during growth, which is critical for controlling the shape and morphology of the grown products. Afterwards, simulation models built to explain the interesting phenomena observed in self-growing materials are discussed. The development of self-growing materials is accompanied by various applications, including tuning bulk properties, creating textured surfaces, growth-induced self-healing, 4D printing, self-growing implants, actuation, self-growing structural coloration, and others. These examples are then summed up. Finally, we discuss the opportunities brought by self-growing materials and their facing challenges.
Collapse
Affiliation(s)
- Xinhong Xiong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Hong Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jiaxi Cui
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| |
Collapse
|
15
|
Nishimura SN, Sato D, Koga T. Mechanically Tunable Hydrogels with Self-Healing and Shape Memory Capabilities from Thermo-Responsive Amino Acid-Derived Vinyl Polymers. Gels 2023; 9:829. [PMID: 37888402 PMCID: PMC10606565 DOI: 10.3390/gels9100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
In this study, we report the fabrication and characterization of self-healing and shape-memorable hydrogels, the mechanical properties of which can be tuned via post-polymerization crosslinking. These hydrogels were constructed from a thermo-responsive poly(N-acryloyl glycinamide) (NAGAm) copolymer containing N-acryloyl serine methyl ester (NASMe) units (5 mol%) that were readily synthesized via conventional radical copolymerization. This transparent and free-standing hydrogel is produced via multiple hydrogen bonds between PNAGAm chains by simply dissolving the polymer in water at a high temperature (~90 °C) and then cooling it. This hydrogel exhibited moldability and self-healing properties. The post-polymerization crosslinking of the amino acid-derived vinyl copolymer network with glutaraldehyde, which acts as a crosslinker between the hydroxy groups of the NASMe units, tuned mechanical properties such as viscoelasticity and tensile strength. The optimal crosslinker concentration efficiently improved the viscoelasticity. Moreover, these hydrogels exhibited shape fixation (~60%)/memory (~100%) behavior owing to the reversible thermo-responsiveness (upper critical solution temperature-type) of the PNAGAm units. Our multifunctional hydrogel, with moldable, self-healing, mechanical tunability via post-polymerization crosslinking, and shape-memorable properties, has considerable potential for applications in engineering and biomedical materials.
Collapse
Affiliation(s)
- Shin-nosuke Nishimura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan;
| | | | - Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan;
| |
Collapse
|
16
|
Razzaq MY, Balk M, Mazurek-Budzyńska M, Schadewald A. From Nature to Technology: Exploring Bioinspired Polymer Actuators via Electrospinning. Polymers (Basel) 2023; 15:4029. [PMID: 37836078 PMCID: PMC10574948 DOI: 10.3390/polym15194029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Nature has always been a source of inspiration for the development of novel materials and devices. In particular, polymer actuators that mimic the movements and functions of natural organisms have been of great interest due to their potential applications in various fields, such as biomedical engineering, soft robotics, and energy harvesting. During recent years, the development and actuation performance of electrospun fibrous meshes with the advantages of high permeability, surface area, and easy functional modification, has received extensive attention from researchers. This review covers the recent progress in the state-of-the-art electrospun actuators based on commonly used polymers such as stimuli-sensitive hydrogels, shape-memory polymers (SMPs), and electroactive polymers. The design strategies inspired by nature such as hierarchical systems, layered structures, and responsive interfaces to enhance the performance and functionality of these actuators, including the role of biomimicry to create devices that mimic the behavior of natural organisms, are discussed. Finally, the challenges and future directions in the field, with a focus on the development of more efficient and versatile electrospun polymer actuators which can be used in a wide range of applications, are addressed. The insights gained from this review can contribute to the development of advanced and multifunctional actuators with improved performance and expanded application possibilities.
Collapse
Affiliation(s)
- Muhammad Yasar Razzaq
- Institut für Kunststofftechnologie und Recycling e. V., Gewerbepark 3, D-6369 Südliches Anhalt, Germany
| | - Maria Balk
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, D-14513 Teltow, Germany
| | | | - Anke Schadewald
- Institut für Kunststofftechnologie und Recycling e. V., Gewerbepark 3, D-6369 Südliches Anhalt, Germany
| |
Collapse
|
17
|
Ding H, Liu J, Shen X, Li H. Advances in the Preparation of Tough Conductive Hydrogels for Flexible Sensors. Polymers (Basel) 2023; 15:4001. [PMID: 37836050 PMCID: PMC10575238 DOI: 10.3390/polym15194001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The rapid development of tough conductive hydrogels has led to considerable progress in the fields of tissue engineering, soft robots, flexible electronics, etc. Compared to other kinds of traditional sensing materials, tough conductive hydrogels have advantages in flexibility, stretchability and biocompatibility due to their biological structures. Numerous hydrogel flexible sensors have been developed based on specific demands for practical applications. This review focuses on tough conductive hydrogels for flexible sensors. Representative tactics to construct tough hydrogels and strategies to fulfill conductivity, which are of significance to fabricating tough conductive hydrogels, are briefly reviewed. Then, diverse tough conductive hydrogels are presented and discussed. Additionally, recent advancements in flexible sensors assembled with different tough conductive hydrogels as well as various designed structures and their sensing performances are demonstrated in detail. Applications, including the wearable skins, bionic muscles and robotic systems of these hydrogel-based flexible sensors with resistive and capacitive modes are discussed. Some perspectives on tough conductive hydrogels for flexible sensors are also stated at the end. This review will provide a comprehensive understanding of tough conductive hydrogels and will offer clues to researchers who have interests in pursuing flexible sensors.
Collapse
Affiliation(s)
- Hongyao Ding
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (H.D.)
| | - Jie Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (H.D.)
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (H.D.)
| | - Hui Li
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
18
|
Patel DK, Patil TV, Ganguly K, Dutta SD, Lim KT. Nanocellulose-assisted 3D-printable, transparent, bio-adhesive, conductive, and biocompatible hydrogels as sensors and moist electric generators. Carbohydr Polym 2023; 315:120963. [PMID: 37230632 DOI: 10.1016/j.carbpol.2023.120963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Transparent hydrogels have found increasing applications in wearable electronics, printable devices, and tissue engineering. Integrating desired properties, such as conductivity, mechanical strength, biocompatibility, and sensitivity, in one hydrogel remains challenging. To address these challenges, multifunctional hydrogels of methacrylate chitosan, spherical nanocellulose, and β-glucan with distinct physicochemical characteristics were combined to develop multifunctional composite hydrogels. The nanocellulose facilitated the self-assembly of the hydrogel. The hydrogels exhibited good printability and adhesiveness. Compared with the pure methacrylated chitosan hydrogel, the composite hydrogels exhibited improved viscoelasticity, shape memory, and conductivity. The biocompatibility of the composite hydrogels was monitored using human bone marrow-derived stem cells. Their motion-sensing potential was analyzed on different parts of the human body. The composite hydrogels also possessed temperature-responsiveness and moisture-sensing abilities. These results suggest that the developed composite hydrogels demonstrate excellent potential to fabricate 3D-printable devices for sensing and moist electric generator applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tejal V Patil
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
19
|
Yun R, Che J, Liu Z, Yan X, Qi M. A novel electric stimulus-responsive micro-actuator for powerful biomimetic motions. NANOSCALE 2023; 15:12933-12943. [PMID: 37482766 DOI: 10.1039/d3nr01866k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Limited by the surface-to-volume ratio of structural materials, it is a great challenge to achieve high output performance in a millimetre-sized actuator. Traditional rigid actuators can achieve higher vibration frequencies above the centimetre size, but their working performance will be greatly reduced below the millimetre size, and even cannot maintain the vibration. A micro-actuator is highly essential for the miniaturisation of bionic robots. In this work, we present a novel driving principle by utilising the plasmonic thermal energy generated by electric stimulation to drive the vibration of the micro-actuator. In the design, the micro-actuator is composed of two chambers and elastic elements, which is similar to the design of a micro-piston. By utilising the thermal energy of the plasma, the actuator can generate high-frequency vibration (resonant frequency of 140 Hz), and the simple structural design can achieve a large vibration amplitude on a millimetre scale. Based on this powerful actuator, several applications are presented, such as fast crawling and jumping. The good performance of the electric stimulus-responsive micro-actuator suggests promising applications ranging from millimetre-scale robots in confined spaces to detection, search and rescue.
Collapse
Affiliation(s)
- Ruide Yun
- School of Energy and Power Engineering, Beihang University, Beijing, China.
| | - Jingyu Che
- School of Energy and Power Engineering, Beihang University, Beijing, China.
| | - Zhiwei Liu
- School of Energy and Power Engineering, Beihang University, Beijing, China.
| | - Xiaojun Yan
- School of Energy and Power Engineering, Beihang University, Beijing, China.
| | - Mingjing Qi
- School of Energy and Power Engineering, Beihang University, Beijing, China.
| |
Collapse
|
20
|
Ihlenburg RBJ, Petracek D, Schrank P, Davari MD, Taubert A, Rothenstein D. Identification of the First Sulfobetaine Hydrogel-Binding Peptides via Phage Display Assay. Macromol Rapid Commun 2023; 44:e2200896. [PMID: 36703485 DOI: 10.1002/marc.202200896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Indexed: 01/28/2023]
Abstract
Using the M13 phage display, a series of 7- and 12-mer peptides which interact with new sulfobetaine hydrogels are identified. Two peptides each from the 7- and 12-mer peptide libraries bind to the new sulfobetaine hydrogels with high affinity compared to the wild-type phage lacking a dedicated hydrogel binding peptide. This is the first report of peptides binding to zwitterionic sulfobetaine hydrogels and the study therefore opens up the pathway toward new phage or peptide/hydrogel hybrids with high application potential.
Collapse
Affiliation(s)
- Ramona B J Ihlenburg
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - David Petracek
- Department Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, D-70569, Stuttgart, Germany
| | - Paul Schrank
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Dirk Rothenstein
- Department Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, D-70569, Stuttgart, Germany
| |
Collapse
|
21
|
Zhu Y, Haghniaz R, Hartel MC, Mou L, Tian X, Garrido PR, Wu Z, Hao T, Guan S, Ahadian S, Kim HJ, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Advances in Bioinspired Hydrogels: Materials, Devices, and Biosignal Computing. ACS Biomater Sci Eng 2023; 9:2048-2069. [PMID: 34784170 PMCID: PMC10823919 DOI: 10.1021/acsbiomaterials.1c00741] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The remarkable ability of biological systems to sense and adapt to complex environmental conditions has inspired new materials and novel designs for next-generation wearable devices. Hydrogels are being intensively investigated for their versatile functions in wearable devices due to their superior softness, biocompatibility, and rapid stimulus response. This review focuses on recent strategies for developing bioinspired hydrogel wearable devices that can accommodate mechanical strain and integrate seamlessly with biological systems. We will provide an overview of different types of bioinspired hydrogels tailored for wearable devices. Next, we will discuss the recent progress of bioinspired hydrogel wearable devices such as electronic skin and smart contact lenses. Also, we will comprehensively summarize biosignal readout methods for hydrogel wearable devices as well as advances in powering and wireless data transmission technologies. Finally, current challenges facing these wearable devices are discussed, and future directions are proposed.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Lei Mou
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Xinyu Tian
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pamela Rosario Garrido
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Electric and Electronic Engineering, Technological Institute of Merida, Merida, Yucatan 97118, Mexico
| | - Zhuohong Wu
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Taige Hao
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Shenghan Guan
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
22
|
Cassel de Camps C, Mok S, Ashby E, Li C, Lépine P, Durcan TM, Moraes C. Compressive molding of engineered tissues via thermoresponsive hydrogel devices. LAB ON A CHIP 2023; 23:2057-2067. [PMID: 36916609 DOI: 10.1039/d3lc00007a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biofabrication of tissues requires sourcing appropriate combinations of cells, and then arranging those cells into a functionally-useful construct. Recently, organoids with diverse cell populations have shown great promise as building blocks from which to assemble more complex structures. However, organoids typically adopt spherical or uncontrolled morphologies, which intrinsically limit the tissue structures that can be produced using this bioassembly technique. Here, we develop microfabricated smart hydrogel platforms in thermoresponsive poly(N-isopropylacrylamide) to compressively mold microtissues such as spheroids or organoids into customized forms, on demand. These Compressive Hydrogel Molders (CHyMs) compact at cell culture temperatures to force loaded tissues into a new shape, and then expand to release the tissues for downstream applications. As a first demonstration, breast cancer spheroids were biaxially compacted in cylindrical cavities, and uniaxially compacted in rectangular ones. Spheroid shape changes persisted after the tissues were released from the CHyMs. We then demonstrate long-term molding of spherical brain organoids in ring-shaped CHyMs over one week. Fused bridges formed only when brain organoids were encased in Matrigel, and the resulting ring-shaped organoids expressed tissue markers that correspond with expected differentiation profiles. These results demonstrate that tissues differentiate appropriately even during long-term molding in a CHyM. This platform hence provides a new tool to shape pre-made tissues as desired, via temporary compression and release, allowing an exploration of alternative organoid geometries as building blocks for bioassembly applications.
Collapse
Affiliation(s)
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
| | - Emily Ashby
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
| | - Chen Li
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
| | - Paula Lépine
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montréal, H3A 2B4 QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montréal, H3A 2B4 QC, Canada
| | - Christopher Moraes
- Department of Biomedical Engineering, McGill University, Montréal, H3A 2B4 QC, Canada.
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, H4A 3J1, QC, Canada
| |
Collapse
|
23
|
Hu Q, Luo X, Tohl D, Pham ATT, Raston C, Tang Y. Hydrogel-Film-Fabricated Fluorescent Biosensors with Aggregation-Induced Emission for Albumin Detection through the Real-Time Modulation of a Vortex Fluidic Device. Molecules 2023; 28:molecules28073244. [PMID: 37050007 PMCID: PMC10096627 DOI: 10.3390/molecules28073244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Hydrogels have various promising prospects as a successful platform for detecting biomarkers, and human serum albumin (HSA) is an important biomarker in the diagnosis of kidney diseases. However, the difficult-to-control passive diffusion kinetics of hydrogels is a major factor affecting detection performance. This study focuses on using hydrogels embedded with aggregation-induced emission (AIE) fluorescent probe TC426 to detect HSA in real time. The vortex fluidic device (VFD) technology is used as a rotation strategy to control the reaction kinetics and micromixing during measurement. The results show that the introduction of VFD could significantly accelerate its fluorescence response and effectively improve the diffusion coefficient, while VFD processing could regulate passive diffusion into active diffusion, offering a new method for future sensing research.
Collapse
Affiliation(s)
- Qi Hu
- Australia-China Joint Research Centre on Personal Health Technologies, Medical Device Research Institute, Flinders University, Adelaide, SA 5042, Australia
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Xuan Luo
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Damian Tohl
- Australia-China Joint Research Centre on Personal Health Technologies, Medical Device Research Institute, Flinders University, Adelaide, SA 5042, Australia
| | - Anh Tran Tam Pham
- Australia-China Joint Research Centre on Personal Health Technologies, Medical Device Research Institute, Flinders University, Adelaide, SA 5042, Australia
| | - Colin Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Youhong Tang
- Australia-China Joint Research Centre on Personal Health Technologies, Medical Device Research Institute, Flinders University, Adelaide, SA 5042, Australia
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
24
|
Mahmoud DB, Schulz‐Siegmund M. Utilizing 4D Printing to Design Smart Gastroretentive, Esophageal, and Intravesical Drug Delivery Systems. Adv Healthc Mater 2023; 12:e2202631. [PMID: 36571721 PMCID: PMC11468531 DOI: 10.1002/adhm.202202631] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The breakthrough of 3D printing in biomedical research has paved the way for the next evolutionary step referred to as four dimensional (4D) printing. This new concept utilizes the time as the fourth dimension in addition to the x, y, and z axes with the idea to change the configuration of a printed construct with time usually in response to an external stimulus. This can be attained through the incorporation of smart materials or through a preset smart design. The 4D printed constructs may be designed to exhibit expandability, flexibility, self-folding, self-repair or deformability. This review focuses on 4D printed devices for gastroretentive, esophageal, and intravesical delivery. The currently unmet needs and challenges for these application sites are tried to be defined and reported on published solution concepts involving 4D printing. In addition, other promising application sites that may similarly benefit from 4D printing approaches such as tracheal and intrauterine drug delivery are proposed.
Collapse
Affiliation(s)
- Dina B. Mahmoud
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
- Department of PharmaceuticsEgyptian Drug Authority12311GizaEgypt
| | - Michaela Schulz‐Siegmund
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
| |
Collapse
|
25
|
Liang H, Wei Y, Ji Y. Magnetic-responsive Covalent Adaptable Networks. Chem Asian J 2023; 18:e202201177. [PMID: 36645376 DOI: 10.1002/asia.202201177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Covalent adaptable networks (CANs) are reprocessable polymers whose structural arrangement is based on the recombination of dynamic covalent bonds. Composite materials prepared by incorporating magnetic particles into CANs attract much attention due to their remote and precise control, fast response speed, high biological safety and strong penetration of magnetic stimuli. These properties often involve magnetothermal effect and direct magnetic-field guidance. Besides, some of them can also respond to light, electricity or pH values. Thus, they are favorable for soft actuators since various functions are achieved such as magnetic-assisted self-healing (heating or at ambient temperature), welding (on land or under water), shape-morphing, and so on. Although magnetic CANs just start to be studied in recent two years, their advances are promised to expand the practical applications in both cutting-edge academic and engineering fields. This review aims to summarize recent progress in magnetic-responsive CANs, including their design, synthesis and application.
Collapse
Affiliation(s)
- Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University Chung-Li, 32023, Taiwan, P. R. China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
26
|
Ho C, Wang C, Wu T, Kuan C, Liu Y, Wang T. Peptide-functionalized double network hydrogel with compressible shape memory effect for intervertebral disc regeneration. Bioeng Transl Med 2023; 8:e10447. [PMID: 36925718 PMCID: PMC10013763 DOI: 10.1002/btm2.10447] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022] Open
Abstract
As a prominent approach to treat intervertebral disc (IVD) degeneration, disc transplantation still falls short to fully reconstruct and restore the function of native IVD. Here, we introduce an IVD scaffold consists of a cellulose-alginate double network hydrogel-based annulus fibrosus (AF) and a cellulose hydrogel-based nucleus pulposus (NP). This scaffold mimics native IVD structure and controls the delivery of Growth Differentiation Factor-5 (GDF-5), which induces differentiation of endogenous mesenchymal stem cells (MSCs). In addition, this IVD scaffold has modifications on MSC homing peptide and RGD peptide which facilitate the recruitment of MSCs to injured area and enhances their cell adhesion property. The benefits of this double network hydrogel are high compressibility, shape memory effect, and mechanical strength comparable to native IVD. In vivo animal study demonstrates successful reconstruction of injured IVD including both AF and NP. These findings suggest that this double network hydrogel can serve as a promising approach to IVD regeneration with other potential biomedical applications.
Collapse
Affiliation(s)
- Chia‐Yu Ho
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Chen‐Chie Wang
- Department of Orthopedic SurgeryTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
- Department of Orthopedics, School of MedicineTzu Chi UniversityHualienTaiwan
| | - Tsung‐Chiao Wu
- Department of Orthopedic SurgeryTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Chen‐Hsiang Kuan
- Division of Plastic Surgery, Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Clinical Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Research Center for Developmental Biology and Regenerative MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yu‐Chung Liu
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Tzu‐Wei Wang
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
27
|
Patel DK, Ganguly K, Dutta SD, Patil TV, Randhawa A, Lim KT. Highly stretchable, adhesive, and biocompatible hydrogel platforms of tannic acid functionalized spherical nanocellulose for strain sensors. Int J Biol Macromol 2023; 229:105-122. [PMID: 36587632 DOI: 10.1016/j.ijbiomac.2022.12.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
The development of multifunctional wearable electronic devices has received considerable attention because of their attractive applications. However, integrating multifunctional abilities into one component remains a challenge. To address this, we have developed a tannic acid-functionalized spherical nanocellulose/polyvinyl alcohol composite hydrogel using borax as a crosslinking agent for strain-sensing applications. The hydrogel demonstrates improved mechanical and recovery strengths and maintains its mechanical strength under freezing conditions. The hydrogels show ultra-stretching, adhesive, self-healing, and conductive properties, making them ideal candidates for developing strain-based wearable devices. The hydrogel exhibits good sensitivity with a 4.75 gauge factor. The cytotoxicity of the developed hydrogels was monitored with human dermal fibroblast cells by WST-8 assay in vitro. The antibacterial potential of the hydrogels was evaluated using Escherichia coli. The hydrogels demonstrate enhanced antibacterial ability than the control. Therefore, the developed multifunctional hydrogels with desirable properties are promising platforms for strain sensor devices.
Collapse
Affiliation(s)
- Dinesh K Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tejal V Patil
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Aayushi Randhawa
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
28
|
Fan GL, Wang SW, Zhang YY, Liu ZT, Liu ZW, Wang L, Jiang JQ, Li G. Programmable Thermo-Responsive Actuation of Hydrogels via Light-Guided Surface Growth of Active Layers on Shape Memory Substrates. Macromol Rapid Commun 2023; 44:e2200705. [PMID: 36461768 DOI: 10.1002/marc.202200705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/03/2022] [Indexed: 12/05/2022]
Abstract
Hydrogel shape memory and actuating functionalities are heavily pursued and have found great potential in various application fields. However, their combination for more flexible and complicated morphing behaviors is still challenging. Herein, it is reported that by controlling the light-initiated polymerization of active hydrogel layers on shape memory hydrogel substrates, advanced morphing behaviors based on programmable hydrogel shapes and actuating trajectories are realized. The formation and photo-reduction-induced dissociation of Fe3+ -carboxylate coordination endow the hydrogel substrates with the shape memory functionality. The photo-reduced Fe2+ ions can diffuse from the substrates into the monomer solutions to initiate the polymerization of the thermally responsive active layers, whose actuating temperatures and amplitudes can be facially tuned by controlling their thicknesses and compositions. One potential application, a shape-programmable 3D hook that can lift an object with a specific shape, is also unveiled. The demonstrated strategy is extendable to other hydrogel systems to realize more versatile and complicated actuating behaviors.
Collapse
Affiliation(s)
- Guang-Lin Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 71006, China.,Sichuan Dongshu New Materials Co., Ltd., Deyang, Sichuan Province, 618000, China
| | - Shu-Wei Wang
- Shanxi Xinhua Chemical Defense Equipment Research Institute Co., Ltd., Taiyuan, Shanxi Province, 030008, China
| | - Ying-Ying Zhang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 71006, China
| | - Zhao-Tie Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 71006, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 71006, China
| | - Lei Wang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 71006, China
| | - Jin-Qiang Jiang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 71006, China
| | - Guo Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 71006, China
| |
Collapse
|
29
|
Li W, Guan Q, Li M, Saiz E, Hou X. Nature's strategy to construct tough responsive hydrogel actuators and their applications. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
30
|
A Mechanically Strong Shape-memory Organohydrogel Based on Dual Hydrogen bonding and Gelator-induced Solidification Effect. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
31
|
Bonardd S, Nandi M, Hernández García JI, Maiti B, Abramov A, Díaz Díaz D. Self-Healing Polymeric Soft Actuators. Chem Rev 2023; 123:736-810. [PMID: 36542491 PMCID: PMC9881012 DOI: 10.1021/acs.chemrev.2c00418] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Natural evolution has provided multicellular organisms with sophisticated functionalities and repair mechanisms for surviving and preserve their functions after an injury and/or infection. In this context, biological systems have inspired material scientists over decades to design and fabricate both self-healing polymeric materials and soft actuators with remarkable performance. The latter are capable of modifying their shape in response to environmental changes, such as temperature, pH, light, electrical/magnetic field, chemical additives, etc. In this review, we focus on the fusion of both types of materials, affording new systems with the potential to revolutionize almost every aspect of our modern life, from healthcare to environmental remediation and energy. The integration of stimuli-triggered self-healing properties into polymeric soft actuators endow environmental friendliness, cost-saving, enhanced safety, and lifespan of functional materials. We discuss the details of the most remarkable examples of self-healing soft actuators that display a macroscopic movement under specific stimuli. The discussion includes key experimental data, potential limitations, and mechanistic insights. Finally, we include a general table providing at first glance information about the nature of the external stimuli, conditions for self-healing and actuation, key information about the driving forces behind both phenomena, and the most important features of the achieved movement.
Collapse
Affiliation(s)
- Sebastian Bonardd
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Mridula Nandi
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - José Ignacio Hernández García
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Binoy Maiti
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Alex Abramov
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| | - David Díaz Díaz
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| |
Collapse
|
32
|
Liu E, Xia X, Chen Q, Xu S. Gradient hydrogel actuator with fast response and self-recovery in air. J Mater Chem B 2023; 11:560-564. [PMID: 36598010 DOI: 10.1039/d2tb02471c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The driving principle of a thermal-responsive hydrogel that loses water at high temperature and absorbs water at low temperature limits its application in an aqueous environment. Here, a gradient hydrogel actuator was developed by introducing sodium hyaluronate into poly(N-isopropylacrylamide) hydrogel by an asymmetric mold method. The hydrogel exhibited a fast response above the LCST in air and unusual self-recovery without the need for further temperature stimuli. The actuation behavior was related to conversion from free water to bound water and water retention within the gradient matrix. The self-recovery mechanism was explored. This work provides a new insight into designing bionic hydrogels applied in a non-aqueous environment.
Collapse
Affiliation(s)
- E Liu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xuehuan Xia
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Qiuyue Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Shimei Xu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
33
|
Huysecom AS, Thielemans W, Moldenaers P, Cardinaels R. A Generalized Mechano-statistical Transient Network Model for Unravelling the Network Topology and Elasticity of Hydrophobically Associating Multiblock Copolymers in Aqueous Solutions. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- An-Sofie Huysecom
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500Kortrijk, Belgium
| | - Paula Moldenaers
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
| | - Ruth Cardinaels
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
- Processing and Performance of Materials, Department of Mechanical Engineering, TU Eindhoven, Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
34
|
Hydrogen bonding dissipating hydrogels: The influence of network structure design on structure–property relationships. J Colloid Interface Sci 2023; 630:638-653. [DOI: 10.1016/j.jcis.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/25/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
35
|
Ejeromedoghene O, Zuo X, Oderinde O, Yao F, Adewuyi S, Fu G. Photochromic Behavior of Inorganic Superporous Hydrogels Fabricated from Different Reacting Systems of Polymeric Deep Eutectic Solvents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Zou Y, Guo J, Liu Y, Du Y, Pu Y, Wang D. Process intensified synthesis of luminescent poly(9,9-dioctylfluorene- alt-benzothiadiazole) and polyvinyl alcohol based shape memory polymeric nanocomposite sensors toward cold chain logistics information monitoring. Polym Chem 2023. [DOI: 10.1039/d2py01588a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Luminescent shape memory polymeric nanocomposite sensors prepared using poly(9,9-dioctylfluorene-alt-benzothiadiazole) and polyvinyl alcohol for cold chain logistics information monitoring.
Collapse
Affiliation(s)
- Yuanzuo Zou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingzhou Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yinglu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yudi Du
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Pu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
37
|
Choe A, Kwon Y, Shin YE, Yeom J, Kim J, Ko H. Adaptive IR- and Water-Gating Textiles Based on Shape Memory Fibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55217-55226. [PMID: 36448211 DOI: 10.1021/acsami.2c15974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thermoregulation is an essential function of the human body for adapting to the surrounding temperature. Stimuli-responsive smart textiles can provide effective protection of the human skin temperature from a continuously changing environment. Herein, we develop a smart textile based on shape memory polymer (SMP) fibers for adaptive regulation of IR and water transmission on human skin. An SMP textile is fabricated with hierarchical micro/nanoporous structures to enhance thermal insulation performance, and silver nanowires are coated on one side to provide asymmetric IR reflectivity and hydrophilicity. The porous SMP textile shows great tunability of thermal insulation and asymmetric wettability by deformation and recovery of the shape and structure in response to stimuli. The degree of thermal insulation is controlled by 65.7% of the original value, and the surface temperature of the SMP textile on a hot plate is successfully controlled in the IR images due to adaptive IR reflectivity. Additionally, the directional transportation of water droplets can be switched on/off according to the shape of the SMP textiles, which can be employed for sweat removal from the human skin. This IR- and water-gating smart textile can provide a feasible strategy for protecting the human skin from external environmental changes.
Collapse
Affiliation(s)
- Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Yeju Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Young-Eun Shin
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeeyoon Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
38
|
Qie H, Wang Z, Ren J, Lü S, Liu M. A tough shape memory hydrogel strain sensor based on gelatin grafted polypyrrole. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Konishi S, Park J, Urakawa O, Osaki M, Yamaguchi H, Harada A, Inoue T, Matsuba G, Takashima Y. Multi-energy dissipation mechanisms in supramolecular hydrogels with fast and slow relaxation modes. SOFT MATTER 2022; 18:7369-7379. [PMID: 36124981 DOI: 10.1039/d2sm00735e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reversible cross-links by non-covalent bonds have been widely used to produce supramolecular hydrogels that are both tough and functional. While various supramolecular hydrogels with several kinds of reversible cross-links have been designed for many years, a universal design that would allow control of mechanical and functional properties remains unavailable. The physical properties of reversible cross-links are usually quantified by thermodynamics, dynamics, and bond energies. Herein, we investigated the relationship between the molecular mobility and mechanical toughness of supramolecular hydrogels consisting of two kinetically distinct reversible cross-links via host-guest interactions. The molecular mobility was quantified as the second-order average relaxation time (〈τ〉w) of the reversible cross-links. We discovered that hydrogels combining fast (〈τ〉w = 1.8 or 18 s) and slowly (〈τ〉w = 6.6 × 103 or 9.5 × 103 s) reversible cross-links showed increased toughness compared to hydrogels with only one type of cross-link because relaxation processes in the former occurred with wide timescales.
Collapse
Affiliation(s)
- Subaru Konishi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Osamu Urakawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Motofumi Osaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Akira Harada
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tadashi Inoue
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Go Matsuba
- Graduate School of Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Leray N, Talantikite M, Villares A, Cathala B. Xyloglucan-cellulose nanocrystal-chitosan double network hydrogels for soft actuators. Carbohydr Polym 2022; 293:119753. [DOI: 10.1016/j.carbpol.2022.119753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
41
|
Zhang Z, Wang Y, Wang Q, Shang L. Smart Film Actuators for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105116. [PMID: 35038215 DOI: 10.1002/smll.202105116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Taking inspiration from the extremely flexible motion abilities in natural organisms, soft actuators have emerged in the past few decades. Particularly, smart film actuators (SFAs) demonstrate unique superiority in easy fabrication, tailorable geometric configurations, and programmable 3D deformations. Thus, they are promising in many biomedical applications, such as soft robotics, tissue engineering, delivery system, and organ-on-a-chip. In this review, the latest achievements of SFAs applied in biomedical fields are summarized. The authors start by introducing the fabrication techniques of SFAs, then shift to the topology design of SFAs, followed by their material selections and distinct actuating mechanisms. After that, their biomedical applications are categorized in practical aspects. The challenges and prospects of this field are finally discussed. The authors believe that this review can boost the development of soft robotics, biomimetics, and human healthcare.
Collapse
Affiliation(s)
- Zhuohao Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qiao Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
42
|
Wang S, Ong PJ, Liu S, Thitsartarn W, Tan MJBH, Suwardi A, Zhu Q, Loh XJ. Recent advances in host-guest supramolecular hydrogels for biomedical applications. Chem Asian J 2022; 17:e202200608. [PMID: 35866560 DOI: 10.1002/asia.202200608] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Indexed: 11/09/2022]
Abstract
The recognition-directed host-guest interaction is recognized as a valuable tool for creating supramolecular polymers. Functional hydrogels constructed through the dynamic and reversible host-guest complexation are endowed with a great many appealing features, such as superior self-healing, injectability, flexibility, stimuli-responsiveness and biocompatibility, which are crucial for biological and medicinal applications. With numerous topological structures and host-guest combinations established previously, recent breakthroughs in this area mostly focus on further improvement and fine-tuning of various properties for practical utilizations. The current contribution provides a comprehensive overview of the latest developments in host-guest supramolecular hydrogels, with a particular emphasis on the innovative molecular-level design strategies and hydrogel formation methodologies targeting at a wide range of active biomedical domains, including drug delivery, 3D printing, wound healing, tissue engineering, artificial actuators, biosensors, etc. Furthermore, a brief conclusion and discussion on the steps forward to bring these smart hydrogels to clinical practice is also presented.
Collapse
Affiliation(s)
- Suxi Wang
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Pin Jin Ong
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Songlin Liu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | | | - Ady Suwardi
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Qiang Zhu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, 2 Fusionopolis Way, 138634, Singapore, SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| |
Collapse
|
43
|
Koga T, Oatari Y, Motoda H, Nishimura SN, Sasaki Y, Okamoto Y, Yamamoto D, Shioi A, Higashi N. Star-Shaped Peptide-Polymer Hybrids as Fast pH-Responsive Supramolecular Hydrogels. Biomacromolecules 2022; 23:2941-2950. [PMID: 35714282 DOI: 10.1021/acs.biomac.2c00411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Significant challenges have gone into the design of smart hydrogels, with numerous potential applications in the industrial, cosmetic, and biomedical fields. Herein, we report the synthesis of novel 4-arm self-assembling peptide-polyethylene glycol (PEG) hybrid star-shaped polymers and their comprehensive hydrogel properties. β-sheet-forming oligopeptides with alternating hydrophobic Leu/ionizable Glu repeats and Cys residues were successfully conjugated to 4-arm PEG via a thiol-maleimide click reaction. The hybrid star-shaped polymers demonstrated good cytocompatibility and reversible β-sheet (lightly acidic pH)-to-random coil (neutral and basic pH) transition in dilute aqueous solutions. At increasing polymer concentrations up to 0.5 wt %, the star-shaped polymers formed transparent hydrogels with shear-thinning and self-healing behaviors via β-sheet self-assembly, as well as a conformation-dependent gel-sol transition. Interestingly, the star-shaped polymers responded rapidly to pH changes, causing gelation to occur rapidly within a few seconds from the change in pH. Hydrogel characteristics could be modulated by manipulating the length and net charge of the peptide blocks. Furthermore, these star-shaped polymers served as satisfactory network scaffolds that could respond to dynamic environmental changes in the pH-oscillation system, owing to their excellent gelation capability and pH sensitivity. As such, they are highly favorable for diverse applications, such as pH-responsive controlled release.
Collapse
Affiliation(s)
- Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yuta Oatari
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Hideki Motoda
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Shin-Nosuke Nishimura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yoko Sasaki
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yasunao Okamoto
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Daigo Yamamoto
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Akihisa Shioi
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
44
|
Huang Z, Wei C, Dong L, Wang A, Yao H, Guo Z, Mi S. Fluid-driven Hydrogel Actuators with an Origami Structure. iScience 2022; 25:104674. [PMID: 35856021 PMCID: PMC9287195 DOI: 10.1016/j.isci.2022.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
Owing to the innate good biocompatibility, tissue-like softness and other unique properties, hydrogels are of particular interest as promising compliant materials for biomimetic soft actuators. However, the actuation diversity of hydrogel actuators is always restricted by their structure design and fabrication methods. Herein, origami structures were introduced to the design of fluid-driven hydrogel actuators to achieve diverse actuation movements, and a facile fabrication strategy based on removable templates and inside-out diffusion-induced in situ hydrogel crosslinking was adopted. As a result, three types of modular cuboid actuator units (CAUs) achieved linear motion, bending, and twisting. Moreover, combinations of multiple CAUs achieved different actuation modes, including actuation decoupling, superposition, and reprogramming. The diverse actuation functionality would enable new possibilities in application fields for hydrogel soft actuators. Several simple application demos, such as grippers for grasping tasks and a multi-way circuit switch, demonstrated their potential for further applications. Origami structures were introduced to fluid-driven hydrogel actuators Three types of cuboid actuator units (CAUs) achieved linear motion, bending, and twisting A fabrication strategy was based on removable templates and in situ formation Combinations of multiple CAUs achieved different actuation modes
Collapse
|
45
|
Li Z, Cai J, Wei M, Chen J. An UV-photo and ionic dual responsive interpenetrating network hydrogel with shape memory and self-healing properties. RSC Adv 2022; 12:15105-15114. [PMID: 35693233 PMCID: PMC9116958 DOI: 10.1039/d2ra00619g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Shape memory hydrogels have attracted extensive attention in fields such as artificial tissues, biomimetic devices and diagnostics, and intelligent biosensors. However, the practical applications were hindered by the absence of self-healing capability and multi-stimuli-responsiveness. To address these issues, we developed a shape memory hydrogel with self-healing and dual stimuli-response performance. The hydrogel system was constructed via an interpenetrating network consisting of in situ radical polymerization and host-guest interaction. The hydrogel exhibited rapid self-healing property, which can be stretched after self-healing for 1 min at 25 °C. Besides, the hydrogel displayed varied swelling performance in different light or solvent conditions. Moreover, the hydrogel showed a dual stimuli-responsive shape memory effect to ultraviolet (UV) light and ionic strength in 1 min. Such a shape memory hydrogel with self-healing ability and multi-stimuli-responsive properties will offer an option toward intelligent soft materials for biomedical and bionic research.
Collapse
Affiliation(s)
- Ziyi Li
- The First Dongguan Affiliated Hospital of Guangdong Medical University, The Second Clinical Medical College, Guangdong Medical University Dongguan 523808 China
| | - Jiwei Cai
- The First Dongguan Affiliated Hospital of Guangdong Medical University, The Second Clinical Medical College, Guangdong Medical University Dongguan 523808 China
| | - Miaohan Wei
- The First Dongguan Affiliated Hospital of Guangdong Medical University, The Second Clinical Medical College, Guangdong Medical University Dongguan 523808 China
| | - Juncheng Chen
- The First Dongguan Affiliated Hospital of Guangdong Medical University, The Second Clinical Medical College, Guangdong Medical University Dongguan 523808 China
| |
Collapse
|
46
|
Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG. Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109198. [PMID: 34951494 DOI: 10.1002/adma.202109198] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The rapid development of 3D printing has led to considerable progress in the field of biomedical engineering. Notably, 4D printing provides a potential strategy to achieve a time-dependent physical change within tissue scaffolds or replicate the dynamic biological behaviors of native tissues for smart tissue regeneration and the fabrication of medical devices. The fabricated stimulus-responsive structures can offer dynamic, reprogrammable deformation or actuation to mimic complex physical, biochemical, and mechanical processes of native tissues. Although there is notable progress made in the development of the 4D printing approach for various biomedical applications, its more broad-scale adoption for clinical use and tissue engineering purposes is complicated by a notable limitation of printable smart materials and the simplistic nature of achievable responses possible with current sources of stimulation. In this review, the recent progress made in the field of 4D printing by discussing the various printing mechanisms that are achieved with great emphasis on smart ink mechanisms of 4D actuation, construct structural design, and printing technologies, is highlighted. Recent 4D printing studies which focus on the applications of tissue/organ regeneration and medical devices are then summarized. Finally, the current challenges and future perspectives of 4D printing are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
47
|
Paikar A, Novichkov AI, Hanopolskyi AI, Smaliak VA, Sui X, Kampf N, Skorb EV, Semenov SN. Spatiotemporal Regulation of Hydrogel Actuators by Autocatalytic Reaction Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106816. [PMID: 34910837 DOI: 10.1002/adma.202106816] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Regulating hydrogel actuators with chemical reaction networks is instrumental for constructing life-inspired smart materials. Herein, hydrogel actuators are engineered that are regulated by the autocatalytic front of thiols. The actuators consist of two layers. The first layer, which is regular polyacrylamide hydrogel, is in a strained conformation. The second layer, which is polyacrylamide hydrogel with disulfide crosslinks, maintains strain in the first layer. When thiols released by the autocatalytic front reduce disulfide crosslinks, the hydrogel actuates by releasing the mechanical strain in the first layer. The autocatalytic front is sustained by the reaction network, which uses thiouronium salts, disulfides of β-aminothiols, and maleimide as starting components. The gradual actuation by the autocatalytic front enables movements such as gradual unrolling, screwing, and sequential closing of "fingers." This actuation also allows the transmission of chemical signals in a relay fashion and the conversion of a chemical signal to an electrical signal. Locations and times of spontaneous initiation of autocatalytic fronts can be preprogrammed in the spatial distribution of the reactants in the hydrogel. To approach the functionality of living matter, the actuators triggered by an autocatalytic front can be integrated into smart materials regulated by chemical circuits.
Collapse
Affiliation(s)
- Arpita Paikar
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alexander I Novichkov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Anton I Hanopolskyi
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Viktoryia A Smaliak
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Xiaomeng Sui
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Nir Kampf
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, Saint Petersburg, 191002, Russia
| | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
48
|
Simeth NA, de Mendoza P, Dubach VRA, Stuart MCA, Smith JW, Kudernac T, Browne WR, Feringa BL. Photoswitchable architecture transformation of a DNA-hybrid assembly at the microscopic and macroscopic scale. Chem Sci 2022; 13:3263-3272. [PMID: 35414864 PMCID: PMC8926171 DOI: 10.1039/d1sc06490h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Molecular recognition-driven self-assembly employing single-stranded DNA (ssDNA) as a template is a promising approach to access complex architectures from simple building blocks. Oligonucleotide-based nanotechnology and soft-materials benefit from the high information storage density, self-correction, and memory function of DNA. Here we control these beneficial properties with light in a photoresponsive biohybrid hydrogel, adding an extra level of function to the system. An ssDNA template was combined with a complementary photo-responsive unit to reversibly switch between various functional states of the supramolecular assembly using a combination of light and heat. We studied the structural response of the hydrogel at both the microscopic and macroscopic scale using a combination of UV-vis absorption and CD spectroscopy, as well as fluorescence, transmission electron, and atomic force microscopy. The hydrogels grown from these supramolecular self-assembly systems show remarkable shape-memory properties and imprinting shape-behavior while the macroscopic shape of the materials obtained can be further manipulated by irradiation.
Collapse
Affiliation(s)
- Nadja A Simeth
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Paula de Mendoza
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Victor R A Dubach
- Groningen Biomolecular Sciences and Biotechnology, Faculty for Science and Engineering, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Marc C A Stuart
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Groningen Biomolecular Sciences and Biotechnology, Faculty for Science and Engineering, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Julien W Smith
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Tibor Kudernac
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
49
|
Adelnia H, Ensandoost R, Shebbrin Moonshi S, Gavgani JN, Vasafi EI, Ta HT. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110974] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Liu D, Yin G, Le X, Chen T. Supramolecular topological hydrogels: from material design to applications. Polym Chem 2022. [DOI: 10.1039/d2py00243d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular topological hydrogels are constructed by introducing different dynamic topological structures into polymeric networks and thus exhibit a wide variety of stimuli-responsive properties and versatile applications.
Collapse
Affiliation(s)
- Depeng Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Guangqiang Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|