1
|
Wang D, Wang Y. Identification of protein partners for small molecules reshapes the understanding of nonalcoholic steatohepatitis and drug discovery. Life Sci 2024; 356:123031. [PMID: 39226989 DOI: 10.1016/j.lfs.2024.123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
AIMS Nonalcoholic steatohepatitis (NASH) is the severe subtype of nonalcoholic fatty diseases (NAFLD) with few options for treatment. Patients with NASH exhibit partial responses to the current therapeutics and adverse effects. Identification of the binding proteins for the drugs is essential to understanding the mechanism and adverse effects of the drugs and fuels the discovery of potent and safe drugs. This paper aims to critically discuss recent advances in covalent and noncovalent approaches for identifying binding proteins that mediate NASH progression, along with an in-depth analysis of the mechanisms by which these targets regulate NASH. MATERIALS AND METHODS A literature search was conducted to identify the relevant studies in the database of PubMed and the American Chemical Society. The search covered articles published from January 1990 to July 2024, using the search terms with keywords such as NASH, benzophenone, diazirine, photo-affinity labeling, thermal protein profiling, CETSA, target identification. KEY FINDINGS The covalent approaches utilize drugs modified with diazirine and benzophenone to covalently crosslink with the target proteins, which facilitates the purification and identification of target proteins. In addition, they map the binding sites in the target proteins. By contrast, noncovalent approaches identify the binding targets of unmodified drugs in the intact cell proteome. The advantages and limitations of both approaches have been compared, along with a comprehensive analysis of recent innovations that further enhance the efficiency and specificity. SIGNIFICANCE The analyses of the applicability of these approaches provide novel tools to delineate NASH pathogenesis and promote drug discovery.
Collapse
Affiliation(s)
- Danyi Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
2
|
Tanimoto H, Tomohiro T. Spot the difference in reactivity: a comprehensive review of site-selective multicomponent conjugation exploiting multi-azide compounds. Chem Commun (Camb) 2024; 60:12062-12100. [PMID: 39302239 DOI: 10.1039/d4cc03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Going beyond the conventional approach of pairwise conjugation between two molecules, the integration of multiple components onto a central scaffold molecule is essential for the development of high-performance molecular materials with multifunctionality. This approach also facilitates the creation of functionalized molecular probes applicable in diverse fields ranging from pharmaceuticals to polymeric materials. Among the various click functional groups, the azido group stands out as a representative click functional group due to its steric compactness, high reactivity, handling stability, and easy accessibility in the context of multi-azide scaffolds. However, the azido groups in multi-azide scaffolds have not been well exploited for site-specific use in molecular conjugation. In fact, multi-azide compounds have been well used to conjugate to the same multiple fragments. To circumvent problems of promiscuous and random coupling of multiple different fragments to multiple azido positions, it is imperative to distinguish specific azido positions and use them orthogonally for molecular conjugation. This review outlines methods and strategies to exploit specific azide positions for molecular conjugation in the presence of multiple azido groups. Illustrative examples covering di-, tri- and tetraazide click scaffolds are included.
Collapse
Affiliation(s)
- Hiroki Tanimoto
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
3
|
Joshi R, Hawkridge AM. Investigation and Development of the BODIPY-Embedded Isotopic Signature for Chemoproteomics Labeling and Targeted Profiling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2440-2447. [PMID: 39279661 PMCID: PMC11457305 DOI: 10.1021/jasms.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
A common goal in mass spectrometry-based chemoproteomics is to directly measure the site of conjugation between the target protein and the small molecule ligand. However, these experiments are inherently challenging due to the low abundance of labeled proteins and the difficulty in identifying modification sites using standard proteomics software. Reporter tags that either generate signature fragment ions or isotopically encode target peptides can be used for the preemptive discovery of labeled peptides even in the absence of identification. We investigated the potential of BODIPY FL azide as a click chemistry enabled chemoproteomics reagent due to the presence of boron and the unique 1:4 natural abundance ratio of 10B:11B. The isotopes of boron encode BODIPY-labeled peptides with a predictable pattern between the monoisotopic (M) and M+1 peaks. BODIPY-labeled peptides were identified in MS1 spectra using an R script that filters for the signature 10B:11B intensity ratio and mass defect. Application of the boron detection script resulted in three times the labeled peptide coverage achieved for a BODIPY-conjugated BSA sample compared with untargeted data-dependent acquisition sequencing. Furthermore, we used the inherent HF neutral loss signature from BODIPY to assist with BODIPY-modified peptide identification. Finally, we demonstrate the application of this approach using the BODIPY-conjugated BSA sample spiked into a complex E. coli. digest. In summary, our results show that the commercially available BODIPY FL azide clicked to alkyne-labeled peptides provides a unique isotopic signature for pinpointing the site(s) of modification with the added potential for on- or off-line UV or fluorescence detection.
Collapse
Affiliation(s)
- Rachel Joshi
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23219, United States
| | - Adam M. Hawkridge
- Department
of Pharmaceutics, Virginia Commonwealth
University, Richmond, Virginia 23298-0533, United States
| |
Collapse
|
4
|
Wosińska-Hrydczuk M, Yaghoobi Anzabi M, Przeździecki J, Danylyuk O, Chaładaj W, Gryko D. Unique Reactivity of Triazolyl Diazoacetates under Photochemical Conditions. ACS ORGANIC & INORGANIC AU 2024; 4:418-423. [PMID: 39132018 PMCID: PMC11311451 DOI: 10.1021/acsorginorgau.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 08/13/2024]
Abstract
Under light irradiation, aryldiazo acetates can generate either singlet or triplet carbenes depending on the reaction conditions, but heteroaryl diazo compounds have remained underexplored in this context. Herein, we found that triazolyl diazoacetates exhibit higher reactivity than their aryl counterparts. They even react with dichloromethane (DCM), a common, inert solvent, for photoreactions involving diazo reagents, giving halogenated products. Theoretical studies show that all reactions involve carbenes but progress via different pathways depending on the solvent used.
Collapse
Affiliation(s)
| | - Mohadese Yaghoobi Anzabi
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Przeździecki
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Oksana Danylyuk
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Chaładaj
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dorota Gryko
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
5
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
6
|
Nakashima T, Iwanabe T, Tanimoto H, Tomohiro T. Fluorescent Labeling of a Target Protein with an Alkyl Diazirine Photocrosslinker Bearing a Cinnamate Moiety. Chem Asian J 2024:e202400288. [PMID: 38641560 DOI: 10.1002/asia.202400288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024]
Abstract
A novel fluorogenic alkyl diazirine photocrosslinker bearing an o-hydroxycinnamate moiety has been developed for identification of the targets of bioactive molecules. The o-hydroxycinnamate moiety can be converted to the corresponding 7-hydroxycoumarin derivative, which should be created on the interacting site within the photocaptured target protein. The label yield and fluorescence intensity have been immensely improved in comparison with our previous aromatic crosslinkers to facilitate target identification in small quantities.
Collapse
Affiliation(s)
- Taikai Nakashima
- Laboratory of Biorecognition Chemistry, Faculty of Pharmaceutical Sciences, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takumi Iwanabe
- Laboratory of Biorecognition Chemistry, Faculty of Pharmaceutical Sciences, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiroki Tanimoto
- Laboratory of Biorecognition Chemistry, Faculty of Pharmaceutical Sciences, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takenori Tomohiro
- Laboratory of Biorecognition Chemistry, Faculty of Pharmaceutical Sciences, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
7
|
Walrant A, Sachon E. Photoaffinity labeling coupled to MS to identify peptide biological partners: Secondary reactions, for better or for worse? MASS SPECTROMETRY REVIEWS 2024. [PMID: 38576378 DOI: 10.1002/mas.21880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Affinity photolabeling is a smart method to study noncovalent and transient interactions and provide a submolecular picture of the contacts between interacting partners. In this review, we will focus on the identification of peptide partners using photoaffinity labeling coupled to mass spectrometry in different contexts such as in vitro with a purified potential partner, in model systems such as model membranes, and with live cells using both targeted and nontargeted proteomics studies. Different biological partners will be described, among which glycoconjugates, oligonucleotides, peptides, proteins, and lipids, with the photoreactive label inserted either on the peptide of interest or on the potential partner. Particular attention will be paid to the observation and characterization of specific rearrangements following the photolabeling reaction, which can help characterize photoadducts and provide a better understanding of the interacting systems and environment.
Collapse
Affiliation(s)
- Astrid Walrant
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, Paris, France
| | - Emmanuelle Sachon
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, Paris, France
- Sorbonne Université, Mass Spectrometry Sciences Sorbonne Université, MS3U platform, Fédération de Chimie moléculaire de Paris centre, Paris, France
| |
Collapse
|
8
|
Chandel AKS, Sreedevi Madhavikutty A, Okada S, Qiming Z, Inagaki NF, Ohta S, Ito T. Injectable, shear-thinning, photocrosslinkable, and tissue-adhesive hydrogels composed of diazirine-modified hyaluronan and dendritic polyethyleneimine. Biomater Sci 2024; 12:1454-1464. [PMID: 38223981 DOI: 10.1039/d3bm01279d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
In the present study, we report the first synthesis of diazirine-modified hyaluronic acid (HA-DAZ). In addition, we also produced a precursor polymer solution composed of HA-DAZ and dendritic polyethyleneimine (DPI) that showed strong shear-thinning properties. Furthermore, its viscosity was strongly reduced (i.e., from 5 × 105 mPa s at 10-3 s-1 to 6 × 101 mPa s at 103 s-1), substantially, which enhanced solution injectability using a 21 G needle. After ultraviolet irradiation at 365 nm and 6 mW cm-2, the HA-DAZ/DPI solution achieved rapid gelation, as measured using the stirring method, and its gelation time decreased from 200 s to 9 s as the total concentrations of HA-DAZ and DPI increased. Following UV irradiation, the storage modulus increased from 40 to 200 Pa. In addition, reversible sol-gel transition and self-healing properties were observed even after UV irradiation. This suggests that the HA-DAZ/DPI hydrogel was crosslinked in multiple ways, i.e., via covalent bonding between the diazirine and amine groups and via intermolecular interactions, including hydrogen bonding, electrostatic interactions, and hydrophobic interactions. A lap shear test showed that the HA-DAZ/DPI hydrogel exhibited strong adhesiveness as a fibrin glue following UV irradiation. Finally, the HA-DAZ/DPI hydrogel showed higher tissue reinforcement than fibrin glue in an ex vivo burst pressure test of the porcine esophageal mucosa.
Collapse
Affiliation(s)
- Arvind K Singh Chandel
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Athira Sreedevi Madhavikutty
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Saki Okada
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Zhang Qiming
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Natsuko F Inagaki
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Seiichi Ohta
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Radiology and Biomedical Engineering, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Tsuda M, Morita T, Morita Y, Takaya J, Nakamura H. Methylene Insertion into Nitrogen-Heteroatom Single Bonds of 1,2-Azoles via a Zinc Carbenoid: An Alternative Tool for Skeletal Editing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307563. [PMID: 38148471 PMCID: PMC10933618 DOI: 10.1002/advs.202307563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Indexed: 12/28/2023]
Abstract
The nitrogen-heteroatom single bonds of 1,2-azoles and isoxazolines underwent methylene insertion in the presence of CH2 I2 (6 equiv.) and diethylzinc (3 equiv.) to produce a wide variety of the ring-expanded six-membered heterocycles. Density functional theory calculations suggest that the methylene insertion proceeds via cleavage of nitrogen-heteroatom single bonds followed by ring closure.
Collapse
Affiliation(s)
- Masato Tsuda
- School of Life Science and TechnologyTokyo Institute of Technology4259 Nagatsuta‐cho Midori‐kuYokohama226–8501Japan
| | - Taiki Morita
- School of Life Science and TechnologyTokyo Institute of Technology4259 Nagatsuta‐cho Midori‐kuYokohama226–8501Japan
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology4259 Nagatsuta‐cho Midori‐kuYokohama226–8501Japan
| | - Yuto Morita
- Department of ChemistrySchool of ScienceTokyo Institute of TechnologyO‐okayamaMeguro‐kuTokyo152–8551Japan
| | - Jun Takaya
- Department of ChemistrySchool of ScienceTokyo Institute of TechnologyO‐okayamaMeguro‐kuTokyo152–8551Japan
| | - Hiroyuki Nakamura
- School of Life Science and TechnologyTokyo Institute of Technology4259 Nagatsuta‐cho Midori‐kuYokohama226–8501Japan
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology4259 Nagatsuta‐cho Midori‐kuYokohama226–8501Japan
| |
Collapse
|
10
|
Lisauskaitė M, Nixon GL, Woodley CM, Berry NG, Coninckx A, Qie LC, Leung SC, Taramelli D, Basilico N, Parapini S, Ward SA, Vadas O, Soldati-Favre D, Hong WD, O'Neill PM. Design, synthesis and modelling of photoreactive chemical probes for investigating target engagement of plasmepsin IX and X in Plasmodium falciparum. RSC Chem Biol 2024; 5:19-29. [PMID: 38179191 PMCID: PMC10763550 DOI: 10.1039/d3cb00109a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/27/2023] [Indexed: 01/06/2024] Open
Abstract
The emergence of Plasmodium parasite resistance to current front-line antimalarial treatments poses a serious threat to global malaria control and highlights the necessity for the development of therapeutics with novel targets and mechanisms of action. Plasmepsins IX and X (PMIX/PMX) have been recognised as highly promising targets in Plasmodium due to their contribution to parasite's pathogenicity. Recent research has demonstrated that dual PMIX/PMX inhibition results in the impairment of multiple parasite's life cycle stages, which is an important feature in drug resistance prevention. Herein we report novel hydroxyethylamine photoaffinity labelling (PAL) probes, designed for PMIX/PMX target engagement and proteomics experiments in Plasmodium parasites. The prepared probes have both a photoreactive group (diazirine or benzophenone) for covalent attachment to target proteins, and a terminal alkyne handle allowing their use in bioorthogonal ligation. One of the synthesised benzophenone probes was shown to be highly promising as demonstrated by its outstanding antimalarial potency (IC50 = 15 nM versus D10 P. falciparum) and its inhibitory effect against PfPMX in an enzymatic assay. Molecular docking and molecular dynamics studies show that the inclusion of the benzophenone and alkyne handle does not alter the binding mode compared to the parent compound. The photoaffinity probe can be used in future chemical proteomics studies to allow hydroxyethylamine drug scaffold target identification and validation in Plasmodium. We expect our findings to act as a tool for future investigations on PMIX/PMX inhibition in antimalarial drug discovery.
Collapse
Affiliation(s)
| | - Gemma L Nixon
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | | | - Neil G Berry
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Andy Coninckx
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - L Charlie Qie
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Suet C Leung
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DISFEB), Università degli Studi di Milano 20133 Milano Italy
- Affiliated to Centro Interuniversitario di Ricerche sulla Malaria/Italian Malaria Network (CIRM-IMN), Università degli Studi di Camerino Italy
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano 20133 Milano Italy
- Affiliated to Centro Interuniversitario di Ricerche sulla Malaria/Italian Malaria Network (CIRM-IMN), Università degli Studi di Camerino Italy
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano 20133 Milano Italy
- Affiliated to Centro Interuniversitario di Ricerche sulla Malaria/Italian Malaria Network (CIRM-IMN), Università degli Studi di Camerino Italy
| | - Stephen A Ward
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine Liverpool L3 5QA UK
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, CMU, 1 rue Michel-Servet CH-1211 Genève 4 Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, CMU, 1 rue Michel-Servet CH-1211 Genève 4 Switzerland
| | - W David Hong
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| |
Collapse
|
11
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
12
|
Orłowska K, Łuczak K, Krajewski P, Santiago JV, Rybicka-Jasińska K, Gryko D. Unlocking the reactivity of diazo compounds in red light with the use of photochemical tools. Chem Commun (Camb) 2023. [PMID: 37997166 DOI: 10.1039/d3cc05174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Structurally diversified diazoalkanes can be activated under red light irradiation relying on direct photolysis, photosensitization or photoredox catalysis.
Collapse
Affiliation(s)
- Katarzyna Orłowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | - Klaudia Łuczak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | - Piotr Krajewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | - João V Santiago
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | | | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| |
Collapse
|
13
|
Wright MH. Chemical biology tools for protein labelling: insights into cell-cell communication. Biochem J 2023; 480:1445-1457. [PMID: 37732646 PMCID: PMC10586760 DOI: 10.1042/bcj20220309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Multicellular organisms require carefully orchestrated communication between and within cell types and tissues, and many unicellular organisms also sense their context and environment, sometimes coordinating their responses. This review highlights contributions from chemical biology in discovering and probing mechanisms of cell-cell communication. We focus on chemical tools for labelling proteins in a cellular context and how these can be applied to decipher the target receptor of a signalling molecule, label a receptor of interest in situ to understand its biology, provide a read-out of protein activity or interactions in downstream signalling pathways, or discover protein-protein interactions across cell-cell interfaces.
Collapse
Affiliation(s)
- Megan H. Wright
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
14
|
Petri L, Ábrányi-Balogh P, Csorba N, Keeley A, Simon J, Ranđelović I, Tóvári J, Schlosser G, Szabó D, Drahos L, Keserű GM. Activation-Free Sulfonyl Fluoride Probes for Fragment Screening. Molecules 2023; 28:molecules28073042. [PMID: 37049805 PMCID: PMC10096327 DOI: 10.3390/molecules28073042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
SuFEx chemistry is based on the unique reactivity of the sulfonyl fluoride group with a range of nucleophiles. Accordingly, sulfonyl fluorides label multiple nucleophilic amino acid residues, making these reagents popular in both chemical biology and medicinal chemistry applications. The reactivity of sulfonyl fluorides nominates this warhead chemotype as a candidate for an external, activation-free general labelling tag. Here, we report the synthesis and characterization of a small sulfonyl fluoride library that yielded the 3-carboxybenzenesulfonyl fluoride warhead for tagging tractable targets at nucleophilic residues. Based on these results, we propose that coupling diverse fragments to this warhead would result in a library of sulfonyl fluoride bits (SuFBits), available for screening against protein targets. SuFBits will label the target if it binds to the core fragment, which facilitates the identification of weak fragments by mass spectrometry.
Collapse
Affiliation(s)
- László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Noémi Csorba
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Aaron Keeley
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | - József Simon
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Research Centre for Natural Sciences, MS Metabolomics Research Group, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | | | - József Tóvári
- Department of Experimental Pharmacology and National Tumor Biology Laboratory POB 21, National Institute of Oncology, 1525 Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary
| | - Dániel Szabó
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| |
Collapse
|
15
|
Field DH, White JS, Warriner SL, Wright MH. A fluorescent photoaffinity probe for formyl peptide receptor 1 labelling in living cells. RSC Chem Biol 2023; 4:216-222. [PMID: 36908701 PMCID: PMC9994102 DOI: 10.1039/d2cb00199c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Fluorescent ligands for G-protein coupled receptors (GPCRs) are valuable tools for studying the expression, pharmacology and modulation of these therapeutically important proteins in living cells. Here we report a fluorescent photoaffinity probe for Formyl peptide receptor 1 (FPR1), a critical component of the innate immune response to bacterial infection and a promising target in inflammatory diseases. We demonstrate that the probe binds and covalently crosslinks to FPR1 with good specificity at nanomolar concentrations in living cells and is a useful tool for visualisation and characterisation of this receptor.
Collapse
Affiliation(s)
- Devon H Field
- Astbury Centre for Structural Molecular Biology, and the School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| | - Jack S White
- Astbury Centre for Structural Molecular Biology, and the School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| | - Stuart L Warriner
- Astbury Centre for Structural Molecular Biology, and the School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| | - Megan H Wright
- Astbury Centre for Structural Molecular Biology, and the School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
16
|
Moon SH, Hwang HJ, Jeon HR, Park SJ, Bae IS, Yang YJ. Photocrosslinkable natural polymers in tissue engineering. Front Bioeng Biotechnol 2023; 11:1127757. [PMID: 36970625 PMCID: PMC10037533 DOI: 10.3389/fbioe.2023.1127757] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Natural polymers have been widely used in scaffolds for tissue engineering due to their superior biocompatibility, biodegradability, and low cytotoxicity compared to synthetic polymers. Despite these advantages, there remain drawbacks such as unsatisfying mechanical properties or low processability, which hinder natural tissue substitution. Several non-covalent or covalent crosslinking methods induced by chemicals, temperatures, pH, or light sources have been suggested to overcome these limitations. Among them, light-assisted crosslinking has been considered as a promising strategy for fabricating microstructures of scaffolds. This is due to the merits of non-invasiveness, relatively high crosslinking efficiency via light penetration, and easily controllable parameters, including light intensity or exposure time. This review focuses on photo-reactive moieties and their reaction mechanisms, which are widely exploited along with natural polymer and its tissue engineering applications.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Jin Hwang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Ryeong Jeon
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Sol Ji Park
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - In Sun Bae
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
- *Correspondence: Yun Jung Yang,
| |
Collapse
|
17
|
Hogan JM, Lee PS, Wong SC, West SM, Morishige WH, Bee C, Tapia GC, Rajpal A, Strop P, Dollinger G. Residue-Level Characterization of Antibody Binding Epitopes Using Carbene Chemical Footprinting. Anal Chem 2023; 95:3922-3931. [PMID: 36791402 DOI: 10.1021/acs.analchem.2c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Characterization of antibody binding epitopes is an important factor in therapeutic drug discovery, as the binding site determines and drives antibody pharmacology and pharmacokinetics. Here, we present a novel application of carbene chemical footprinting with mass spectrometry for identification of antibody binding epitopes at the single-residue level. Two different photoactivated diazirine reagents provide complementary labeling information allowing structural refinement of the antibody binding interface. We applied this technique to map the epitopes of multiple MICA and CTLA-4 antibodies and validated the findings with X-ray crystallography and yeast surface display epitope mapping. The characterized epitopes were used to understand biolayer interferometry-derived competitive binding results at the structural level. We show that carbene footprinting provides fast and high-resolution epitope information critical in the antibody selection process and enables mechanistic understanding of function to accelerate the drug discovery process.
Collapse
Affiliation(s)
- Jason M Hogan
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Peter S Lee
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Susan C Wong
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Sean M West
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Winse H Morishige
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Christine Bee
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Gamze Camdere Tapia
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Arvind Rajpal
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Pavel Strop
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Gavin Dollinger
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| |
Collapse
|
18
|
Orłowska K, Santiago JV, Krajewski P, Kisiel K, Deperasińska I, Zawada K, Chaładaj W, Gryko D. UV Light Is No Longer Required for the Photoactivation of 1,3,4-Oxadiazolines. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Katarzyna Orłowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - João V. Santiago
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Krajewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kacper Kisiel
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Irena Deperasińska
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32, 02-668 Warsaw, Poland
| | - Katarzyna Zawada
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Physical Chemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
19
|
Kornii Y, Shablykin O, Tarasiuk T, Stepaniuk O, Matvienko V, Aloshyn D, Zahorodniuk N, Sadkova IV, Mykhailiuk PK. Fluorinated Aliphatic Diazirines: Preparation, Characterization, and Model Photolabeling Studies. J Org Chem 2023; 88:1-17. [PMID: 36399052 DOI: 10.1021/acs.joc.2c02262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The previously unknown difluoromethyl diazirines and the previously neglected trifluoromethyl-aliphatic diazirines were synthesized and characterized. Model photolabeling experiments and biological studies showed that these compounds could indeed be used as photoaffinity labels.
Collapse
Affiliation(s)
- Yurii Kornii
- Enamine Ltd., Oleksandra Matrosova Street 23, Kyiv 01103, Ukraine.,V.P.Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, Kyiv 02094, Ukraine
| | - Oleg Shablykin
- Enamine Ltd., Oleksandra Matrosova Street 23, Kyiv 01103, Ukraine.,V.P.Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, Kyiv 02094, Ukraine
| | - Taras Tarasiuk
- Enamine Ltd., Oleksandra Matrosova Street 23, Kyiv 01103, Ukraine
| | | | | | - Danylo Aloshyn
- Enamine Ltd., Oleksandra Matrosova Street 23, Kyiv 01103, Ukraine.,Bienta, Chervonotkatska 78, Kyiv 02094, Ukraine
| | - Nataliia Zahorodniuk
- Enamine Ltd., Oleksandra Matrosova Street 23, Kyiv 01103, Ukraine.,Bienta, Chervonotkatska 78, Kyiv 02094, Ukraine
| | - Iryna V Sadkova
- Enamine Ltd., Oleksandra Matrosova Street 23, Kyiv 01103, Ukraine
| | | |
Collapse
|
20
|
Hassan AA, Wozniak JM, Vilen Z, Li W, Jadhav A, Parker CG, Huang ML. Chemoproteomic mapping of human milk oligosaccharide (HMO) interactions in cells. RSC Chem Biol 2022; 3:1369-1374. [PMID: 36544572 PMCID: PMC9709932 DOI: 10.1039/d2cb00176d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are a family of unconjugated soluble glycans found in human breast milk that exhibit a myriad of biological activity. While recent studies have uncovered numerous biological functions for HMOs (antimicrobial, anti-inflammatory & probiotic properties), the receptors and protein binding partners involved in these processes are not well characterized. This can be attributed largely in part to the low affinity and transient nature of soluble glycan-protein interactions, precluding the use of traditional characterization techniques to survey binding partners in live cells. Here, we present the use of synthetic photoactivatable HMO probes to capture, enrich and identify HMO protein targets in live cells using mass spectrometry-based chemoproteomics. Following initial validation studies using purified lectins, we profiled the targets of HMO probes in live mouse macrophages. Using this strategy, we mapped hundreds of HMO binding partners across multiple cellular compartments, including many known glycan-binding proteins as well as numerous proteins previously not known to bind glycans. We expect our findings to inform future investigations of the diverse roles of how HMOs may regulate protein function.
Collapse
Affiliation(s)
- Abdullah A Hassan
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Jacob M Wozniak
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Zak Vilen
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Weichao Li
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Appaso Jadhav
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Christopher G Parker
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Mia L Huang
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| |
Collapse
|
21
|
Trowbridge AD, Seath CP, Rodriguez-Rivera FP, Li BX, Dul BE, Schwaid AG, Buksh BF, Geri JB, Oakley JV, Fadeyi OO, Oslund RC, Ryu KA, White C, Reyes-Robles T, Tawa P, Parker DL, MacMillan DWC. Small molecule photocatalysis enables drug target identification via energy transfer. Proc Natl Acad Sci U S A 2022; 119:e2208077119. [PMID: 35969791 PMCID: PMC9407219 DOI: 10.1073/pnas.2208077119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Over half of new therapeutic approaches fail in clinical trials due to a lack of target validation. As such, the development of new methods to improve and accelerate the identification of cellular targets, broadly known as target ID, remains a fundamental goal in drug discovery. While advances in sequencing and mass spectrometry technologies have revolutionized drug target ID in recent decades, the corresponding chemical-based approaches have not changed in over 50 y. Consigned to outdated stoichiometric activation modes, modern target ID campaigns are regularly confounded by poor signal-to-noise resulting from limited receptor occupancy and low crosslinking yields, especially when targeting low abundance membrane proteins or multiple protein target engagement. Here, we describe a broadly general platform for photocatalytic small molecule target ID, which is founded upon the catalytic amplification of target-tag crosslinking through the continuous generation of high-energy carbene intermediates via visible light-mediated Dexter energy transfer. By decoupling the reactive warhead tag from the small molecule ligand, catalytic signal amplification results in unprecedented levels of target enrichment, enabling the quantitative target and off target ID of several drugs including (+)-JQ1, paclitaxel (Taxol), dasatinib (Sprycel), as well as two G-protein-coupled receptors-ADORA2A and GPR40.
Collapse
Affiliation(s)
| | - Ciaran P. Seath
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544
| | | | - Beryl X. Li
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544
| | - Barbara E. Dul
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | | | - Benito F. Buksh
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544
| | - Jacob B. Geri
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544
| | - James V. Oakley
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544
| | | | - Rob C. Oslund
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141
| | - Keun Ah Ryu
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141
| | - Cory White
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141
| | | | - Paul Tawa
- Pharmacology, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Dann L. Parker
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033
| | | |
Collapse
|
22
|
Photoaffinity labeling and bioorthogonal ligation: Two critical tools for designing "Fish Hooks" to scout for target proteins. Bioorg Med Chem 2022; 62:116721. [PMID: 35358862 DOI: 10.1016/j.bmc.2022.116721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
Small molecules remain an important category of therapeutic agents. Their binding to different proteins can lead to both desired and undesired biological effects. Identification of the proteins that a drug binds to has become an important step in drug development because it can lead to safer and more effective drugs. Parent bioactive molecules can be converted to appropriate probes that allow for visualization and identification of their target proteins. Typically, these probes are designed and synthesized utilizing some or all of five major tools; a photoactivatable group, a reporter tag, a linker, an affinity tag, and a bioorthogonal handle. This review covers two of the most challenging tools, photoactivation and bioorthogonal ligation. We provide a historical and theoretical background along with synthetic routes to prepare them. In addition, the review provides comparative analyses of the available tools that can assist decision making when designing such probes. A survey of most recent literature reports is included as well to identify recent trends in the field.
Collapse
|
23
|
He T, Cui PL, Liu J, Feng C, Wang JP. Production of a Natural Dihydropteroate Synthase and Development of a Signal-Amplified Pseudo-Immunoassay for the Determination of Sulfonamides in Pork. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3023-3032. [PMID: 35225617 DOI: 10.1021/acs.jafc.2c00337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, a type of magnetic photoaffinity-labeled activity-based protein profiling probe for sulfonamide drugs was first synthesized for the purpose of capturing the natural dihydropteroate synthase of Escherichia coli by using simple incubation and magnetic separation. After characterization of its identity with LC-ESI-MS/MS, this enzyme was used as a recognition reagent to develop a direct competitive pseudo-ELISA for the determination of the residues of 40 sulfonamides in pork. Because of the use of streptavidin-horseradish peroxidase and biotinylated horseradish peroxidase as a signal-amplified system, the limits of detection for the 40 drugs were in the range of 0.001-0.016 ng/mL. Compared to the steps in a conventional assay formation, the operation steps were the same, but the sensitivities increased 32-88-fold. Furthermore, the assay performances were better than the previously reported immunoassays performances for sulfonamides. Therefore, this method could be used as a practical tool for multiscreening the trace levels of sulfonamides residues in food samples.
Collapse
Affiliation(s)
- Tong He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Peng Lei Cui
- College of Science, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jing Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Cheng Feng
- College of Science, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jian Ping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
- Veterinary Biological Technology Innovation Center of Hebei Province, Baoding, Hebei 071000, China
| |
Collapse
|
24
|
Fazekas TJ, Alty JW, Neidhart EK, Miller AS, Leibfarth FA, Alexanian EJ. Diversification of aliphatic C-H bonds in small molecules and polyolefins through radical chain transfer. Science 2022; 375:545-550. [PMID: 35113718 PMCID: PMC8889563 DOI: 10.1126/science.abh4308] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability to selectively introduce diverse functionality onto hydrocarbons is of substantial value in the synthesis of both small molecules and polymers. Herein, we report an approach to aliphatic carbon-hydrogen bond diversification using radical chain transfer featuring an easily prepared O-alkenylhydroxamate reagent, which upon mild heating facilitates a range of challenging or previously undeveloped aliphatic carbon-hydrogen bond functionalizations of small molecules and polyolefins. This broad reaction platform enabled the functionalization of postconsumer polyolefins in infrastructure used to process plastic waste. Furthermore, the chemoselective placement of ionic functionality onto a branched polyolefin using carbon-hydrogen bond functionalization upcycled the material from a thermoplastic into a tough elastomer with the tensile properties of high-value polyolefin ionomers.
Collapse
Affiliation(s)
- Timothy J Fazekas
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jill W Alty
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eliza K Neidhart
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Austin S Miller
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erik J Alexanian
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
25
|
Ollevier T, Carreras V. Emerging Applications of Aryl Trifluoromethyl Diazoalkanes and Diazirines in Synthetic Transformations. ACS ORGANIC & INORGANIC AU 2022; 2:83-98. [PMID: 36855460 PMCID: PMC9954246 DOI: 10.1021/acsorginorgau.1c00027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aryl trifluoromethyl diazoalkanes and diazirines have become unique as reactants in synthetic methodology. As privileged compounds containing CF3 groups and ease of synthetic access, aryl trifluoromethyl diazoalkanes and diazirines have been highlighted for their versatility in applications toward a wide range of synthetic transformations. This Perspective highlights the synthetic applications of these reactants as precursors of stabilized metal carbenes, i.e., donor-acceptor-substituted ones.
Collapse
|
26
|
Xia WQ, Cui PL, Wang JP, Liu J. Synthesis of photoaffinity labeled activity-based protein profiling probe and production of natural TetR protein for immunoassay of tetracyclines in milk. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Abstract
Here, we introduce carbocations (R3C+) as laser-initiated footprinting reagents for proteins. We screened seven candidates and selected trifluomethoxy benzyl bromide (TFBB) as an effective precursor for the electrophilic trifluomethoxy benzyl carbocation (TFB+) under laser (248 nm) irradiation on the fast photochemical oxidation of proteins (FPOP) platform. Initial results demonstrate that this electrophilic cation reagent affords residue coverage of nucleophilic amino acids including H, W, M, and S. Further, the addition of TFB+ increases the hydrophobicity of the peptides so that separation of isomeric peptide products by reversed-phase LC is improved, suggesting opportunities for subresidue footprinting. Comparison of apo- and holo-myoglobin footprints shows that the TFB+ footprinting is sensitive to protein conformational change and solvent accessibility. Interestingly, because the TFB+ is amphiphilic, the reagent can potentially footprint membrane proteins as demonstrated for vitamin K epoxide reductase (VKOR) stabilized in a micelle. Not only does footprinting of the extra-membrane domain occur, but also some footprinting of the hydrophobic transmembrane domain is achieved owing to the interaction of TFB+ with the micelle. Carbocation precursors are stable and amenable for tailoring their properties and those of the incipient carbocation, enabling targeting their soluble or membrane-associated or embedded regions and distinguishing between the extra- and trans-membrane domains of membrane proteins.
Collapse
Affiliation(s)
- Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Shuang Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
28
|
Podvalnyy NM, Chesnov S, Nanni P, Gut M, Holland JP, Hennet T. Synthesis of photoactivable oligosaccharide derivatives from 1,2-cyclic carbamate building blocks and study of their interaction with carbohydrate-binding proteins. Carbohydr Res 2021; 508:108399. [PMID: 34298358 DOI: 10.1016/j.carres.2021.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Despite the broad occurrence of carbohydrate-protein interactions in biology, the low binding affinities of such interactions hamper the characterization of carbohydrate binding sites in the absence of three-dimensional structural models. To allow the identification of proteins interacting with specific carbohydrate epitopes, we have developed new photoactivable oligosaccharide probes. Oligosaccharides containing the 1,2-cyclic carbamate group were attached to building blocks with a primary amino group to yield the corresponding urea derivatives. Cyclic carbamates of lactose, and 3- and 2'-fucosyl lactose, were used for the conjugation with building blocks containing photoactivable diazirine, benzophenone or aryl azido groups. The resulting oligosaccharide derivatives were tested for binding to Erythrina cristagalli lectin (ECL), Aleuria aurantia lectin (AAL) and Ulex europaeus agglutinin-I (UEA I). We found that ligands containing an aryl azido photoactivable group were successfully attached to lectins. The photoactivation reaction preserved lectin integrity, as no sign of protein degradation was visible. Mass spectrometric analysis confirmed the covalent binding of between one to three oligosaccharide probes, which matched with the expected carbohydrate-binding properties of the lectins tested. The conjugation of cyclic carbamate-derivatized oligosaccharides with photoactivable aryl azido groups thus represents a convenient approach to study protein-carbohydrate interactions.
Collapse
Affiliation(s)
| | - Serge Chesnov
- Functional Genomics Center Zurich, ETH Zurich / University of Zurich, Zurich, Switzerland
| | - Paolo Nanni
- Functional Genomics Center Zurich, ETH Zurich / University of Zurich, Zurich, Switzerland
| | - Melanie Gut
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Jason P Holland
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Thomas RP, Heap RE, Zappacosta F, Grant EK, Pogány P, Besley S, Fallon DJ, Hann MM, House D, Tomkinson NCO, Bush JT. A direct-to-biology high-throughput chemistry approach to reactive fragment screening. Chem Sci 2021; 12:12098-12106. [PMID: 34667575 PMCID: PMC8457371 DOI: 10.1039/d1sc03551g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Methods for rapid identification of chemical tools are essential for the validation of emerging targets and to provide medicinal chemistry starting points for the development of new medicines. Here, we report a screening platform that combines 'direct-to-biology' high-throughput chemistry (D2B-HTC) with photoreactive fragments. The platform enabled the rapid synthesis of >1000 PhotoAffinity Bits (HTC-PhABits) in 384-well plates in 24 h and their subsequent screening as crude reaction products with a protein target without purification. Screening the HTC-PhABit library with carbonic anhydrase I (CAI) afforded 7 hits (0.7% hit rate), which were found to covalently crosslink in the Zn2+ binding pocket. A powerful advantage of the D2B-HTC screening platform is the ability to rapidly perform iterative design-make-test cycles, accelerating the development and optimisation of chemical tools and medicinal chemistry starting points with little investment of resource.
Collapse
Affiliation(s)
- Ross P Thomas
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Rachel E Heap
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | | | - Emma K Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Peter Pogány
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Stephen Besley
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David J Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Michael M Hann
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David House
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Jacob T Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
30
|
Silvestri IP, Colbon PJJ. The Growing Importance of Chirality in 3D Chemical Space Exploration and Modern Drug Discovery Approaches for Hit-ID: Topical Innovations. ACS Med Chem Lett 2021; 12:1220-1229. [PMID: 34413951 PMCID: PMC8366003 DOI: 10.1021/acsmedchemlett.1c00251] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Modern-day drug discovery is now blessed with a wide range of high-throughput hit identification (hit-ID) strategies that have been successfully validated in recent years, with particular success coming from high-throughput screening, fragment-based lead discovery, and DNA-encoded library screening. As screening efficiency and throughput increases, this enables the viable exploration of increasingly complex three-dimensional (3D) chemical structure space, with a realistic chance of identifying highly specific hit ligands with increased target specificity and reduced attrition rates in preclinical and clinical development. This minireview will explore the impact of an improved design of multifunctionalized, sp3-rich, stereodefined scaffolds on the (virtual) exploration of 3D chemical space and the specific requirements for different hit-ID technologies.
Collapse
Affiliation(s)
- Ilaria Proietti Silvestri
- Department of Chemistry University
of Liverpool, Liverpool ChiroChem, Ltd., Crown Street, Liverpool L69 7ZD, United
Kingdom
| | - Paul J. J. Colbon
- Department of Chemistry University
of Liverpool, Liverpool ChiroChem, Ltd., Crown Street, Liverpool L69 7ZD, United
Kingdom
| |
Collapse
|
31
|
Ibert Q, Cauwel M, Glachet T, Tite T, Le Nahenec‐Martel P, Lohier J, Renard P, Franck X, Reboul V, Sabot C. One‐Pot Synthesis of Diazirines and
15
N
2
‐Diazirines from Ketones, Aldehydes and Derivatives: Development and Mechanistic Insight. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Quentin Ibert
- Normandie Univ ENSICAEN, UNICAEN, CNRS, LCMT 6 Boulevard du Maréchal Juin 14050 Caen Cedex
| | - Madeleine Cauwel
- Normandie Univ CNRS, UNIROUEN, INSA Rouen, COBRA 76000 Rouen France
| | - Thomas Glachet
- Normandie Univ ENSICAEN, UNICAEN, CNRS, LCMT 6 Boulevard du Maréchal Juin 14050 Caen Cedex
| | - Tony Tite
- Normandie Univ CNRS, UNIROUEN, INSA Rouen, COBRA 76000 Rouen France
| | | | - Jean‐François Lohier
- Normandie Univ ENSICAEN, UNICAEN, CNRS, LCMT 6 Boulevard du Maréchal Juin 14050 Caen Cedex
| | | | - Xavier Franck
- Normandie Univ CNRS, UNIROUEN, INSA Rouen, COBRA 76000 Rouen France
| | - Vincent Reboul
- Normandie Univ ENSICAEN, UNICAEN, CNRS, LCMT 6 Boulevard du Maréchal Juin 14050 Caen Cedex
| | - Cyrille Sabot
- Normandie Univ CNRS, UNIROUEN, INSA Rouen, COBRA 76000 Rouen France
| |
Collapse
|
32
|
Tachrim ZP, Wang L, Murai Y, Hashimoto M. New Trends in Diaziridine Formation and Transformation (a Review). Molecules 2021; 26:4496. [PMID: 34361648 PMCID: PMC8348119 DOI: 10.3390/molecules26154496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
This review focuses on diaziridine, a high strained three-membered heterocycle with two nitrogen atoms that plays an important role as one of the most important precursors of diazirine photoaffinity probes, as well as their formation and transformation. Recent research trends can be grouped into three categories, based on whether they have examined non-substituted, N-monosubstituted, or N,N-disubstituted diaziridines. The discussion expands on the conventional methods for recent applications, the current spread of studies, and the unconventional synthesis approaches arising over the last decade of publications.
Collapse
Affiliation(s)
- Zetryana Puteri Tachrim
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
- Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan Puspiptek, Serpong, South Tangerang 15314, Banten, Indonesia
| | - Lei Wang
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuta Murai
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
- Frontier Research Center for Post-Genome Science and Technology, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan
| | - Makoto Hashimoto
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
| |
Collapse
|
33
|
Suto N, Kamoshita S, Hosoya S, Sakurai K. Exploration of the Reactivity of Multivalent Electrophiles for Affinity Labeling: Sulfonyl Fluoride as a Highly Efficient and Selective Label. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nanako Suto
- Department of Bioengineering and Life Science Tokyo University of Agriculture and Technology 4-24-16, Naka-cho, Koganei-shi Tokyo 184-8588 Japan
| | - Shione Kamoshita
- Department of Bioengineering and Life Science Tokyo University of Agriculture and Technology 4-24-16, Naka-cho, Koganei-shi Tokyo 184-8588 Japan
| | - Shoichi Hosoya
- Institute of Research Tokyo Medical and Dental University 1-5-45, Yushima, Bunkyo-ku Tokyo 113-8510 Japan
| | - Kaori Sakurai
- Department of Bioengineering and Life Science Tokyo University of Agriculture and Technology 4-24-16, Naka-cho, Koganei-shi Tokyo 184-8588 Japan
| |
Collapse
|
34
|
Zheng YQ, Liu Y, Zhong D, Nikzad S, Liu S, Yu Z, Liu D, Wu HC, Zhu C, Li J, Tran H, Tok JBH, Bao Z. Monolithic optical microlithography of high-density elastic circuits. Science 2021; 373:88-94. [PMID: 34210882 DOI: 10.1126/science.abh3551] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Polymeric electronic materials have enabled soft and stretchable electronics. However, the lack of a universal micro/nanofabrication method for skin-like and elastic circuits results in low device density and limited parallel signal recording and processing ability relative to silicon-based devices. We present a monolithic optical microlithographic process that directly micropatterns a set of elastic electronic materials by sequential ultraviolet light-triggered solubility modulation. We fabricated transistors with channel lengths of 2 micrometers at a density of 42,000 transistors per square centimeter. We fabricated elastic circuits including an XOR gate and a half adder, both of which are essential components for an arithmetic logic unit. Our process offers a route to realize wafer-level fabrication of complex, high-density, and multilayered elastic circuits with performance rivaling that of their rigid counterparts.
Collapse
Affiliation(s)
- Yu-Qing Zheng
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yuxin Liu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shayla Nikzad
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shuhan Liu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zhiao Yu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Deyu Liu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hung-Chin Wu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chenxin Zhu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jinxing Li
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Helen Tran
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Suto N, Kamoshita S, Hosoya S, Sakurai K. Exploration of the Reactivity of Multivalent Electrophiles for Affinity Labeling: Sulfonyl Fluoride as a Highly Efficient and Selective Label. Angew Chem Int Ed Engl 2021; 60:17080-17087. [PMID: 34060195 DOI: 10.1002/anie.202104347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/16/2021] [Indexed: 12/23/2022]
Abstract
Here we explored the reactivity of a set of multivalent electrophiles cofunctionalized with a carbohydrate ligand on gold nanoparticles to achieve efficient affinity labeling for target protein analysis. Evaluation of the reactivity and selectivity of the electrophiles against three different cognate binding proteins identified arylsulfonyl fluoride as the most efficient protein-reactive group in this study. We demonstrated that multivalent arylsulfonyl fluoride probe 4 at 50 nm concentration achieved selective affinity labeling and enrichment of a model protein PNA in cell lysate, which was more effective than photoaffinity probe 1 with arylazide group. Labeling site analysis by LC-MS/MS revealed that the nanoparticle-immobilized arylsulfonyl fluoride group can target multiple amino acid residues around the ligand binding site of the target proteins. Our study highlights the utility of arylsulfonyl fluoride as a highly effective multivalent affinity label suitable for covalently capturing unknown target proteins.
Collapse
Affiliation(s)
- Nanako Suto
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shione Kamoshita
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shoichi Hosoya
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kaori Sakurai
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| |
Collapse
|
36
|
Laselva O, Qureshi Z, Zeng ZW, Petrotchenko EV, Ramjeesingh M, Hamilton CM, Huan LJ, Borchers CH, Pomès R, Young R, Bear CE. Identification of binding sites for ivacaftor on the cystic fibrosis transmembrane conductance regulator. iScience 2021; 24:102542. [PMID: 34142049 PMCID: PMC8184517 DOI: 10.1016/j.isci.2021.102542] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Ivacaftor (VX-770) was the first cystic fibrosis transmembrane conductance regulator (CFTR) modulatory drug approved for the treatment of patients with cystic fibrosis. Electron cryomicroscopy (cryo-EM) studies of detergent-solubilized CFTR indicated that VX-770 bound to a site at the interface between solvent and a hinge region in the CFTR protein conferred by transmembrane (tm) helices: tm4, tm5, and tm8. We re-evaluated VX-770 binding to CFTR in biological membranes using photoactivatable VX-770 probes. One such probe covalently labeled CFTR at two sites as determined following trypsin digestion and analysis by tandem-mass spectrometry. One labeled peptide resides in the cytosolic loop 4 of CFTR and the other is located in tm8, proximal to the site identified by cryo-EM. Complementary data from functional and molecular dynamic simulation studies support a model, where VX-770 mediates potentiation via multiple sites in the CFTR protein.
Collapse
Affiliation(s)
- Onofrio Laselva
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Zafar Qureshi
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Zhi-Wei Zeng
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Evgeniy V. Petrotchenko
- Segal Cancer Proteomics Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Mohabir Ramjeesingh
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | | | - Ling-Jun Huan
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Régis Pomès
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Robert Young
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Christine E. Bear
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
Walrant A, Sachon E. Photolabeling Strategies to Study Membranotropic Peptides Interacting with Lipids and Proteins in Membranes. Bioconjug Chem 2021; 32:1503-1514. [PMID: 34160213 DOI: 10.1021/acs.bioconjchem.1c00291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membranotropic peptides is a class of peptides that exert their biological action at the level of cell membranes. Understanding how they interact with their different membrane binding partners (lipids, proteins, and/or glycoconjugates) is important to decipher their mechanism of action. Affinity photolabeling is a powerful method to study noncovalent interactions and provide a submolecular picture of the contacts between two interacting partners. In this review, we give a panorama of photolabeling-based studies of the interactions between membranotropic peptides and membranes using either photoreactive lipids or peptides.
Collapse
Affiliation(s)
- Astrid Walrant
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
| | - Emmanuelle Sachon
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France.,Sorbonne Université, Mass Spectrometry Sciences Sorbonne University, MS3U platform, UFR 926, UFR 927, 75005, Paris, France
| |
Collapse
|
38
|
Bexis P, Arno MC, Bell CA, Thomas AW, Dove AP. Thermally-induced hyperbranching of bromine-containing polyesters by insertion of in situ generated chain-end carbenes. Chem Commun (Camb) 2021; 57:4275-4278. [PMID: 33913987 DOI: 10.1039/d1cc00821h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hyperbranched, biodegradable PCL-based polymers are obtained through a random but invasive migration of an in situ generated carbene end group which is unmasked via the thermolysis of its precursor diazirine moiety. These hyperbranched cores are used as macroinitiators for 'grafting-from' polymerisation using controlled radical polymerisation to achieve amphiphilic copolymers which can subsequently be self-assembled into spherical core-shell micelles.
Collapse
Affiliation(s)
- Panagiotis Bexis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK and School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Maria C Arno
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. and Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Craig A Bell
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK and Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anthony W Thomas
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
39
|
Korovesis D, Beard HA, Mérillat C, Verhelst SHL. Probes for Photoaffinity Labelling of Kinases. Chembiochem 2021; 22:2206-2218. [PMID: 33544409 DOI: 10.1002/cbic.202000874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/05/2021] [Indexed: 11/06/2022]
Abstract
Protein kinases, one of the largest enzyme superfamilies, regulate many physiological and pathological processes. They are drug targets for multiple human diseases, including various cancer types. Probes for the photoaffinity labelling of kinases are important research tools for the study of members of this enzyme superfamily. In this review, we discuss the design principles of these probes, which are mainly derived from inhibitors targeting the ATP pocket. Overall, insights from crystal structures guide the placement of photoreactive groups and detection tags. This has resulted in a wide variety of probes, of which we provide a comprehensive overview. We also discuss several areas of application of these probes, including the identification of targets and off-targets of kinase inhibitors, mapping of their binding sites, the development of inhibitor screening assays, the imaging of kinases, and identification of protein binding partners.
Collapse
Affiliation(s)
- Dimitris Korovesis
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Hester A Beard
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Christel Mérillat
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Steven H L Verhelst
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium.,AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Strasse 6b, 44227, Dortmund, Germany
| |
Collapse
|
40
|
Bonneure E, De Baets A, De Decker S, Van den Berge K, Clement L, Vyverman W, Mangelinckx S. Altering the Sex Pheromone Cyclo(l-Pro-l-Pro) of the Diatom Seminavis robusta towards a Chemical Probe. Int J Mol Sci 2021; 22:1037. [PMID: 33494376 PMCID: PMC7865345 DOI: 10.3390/ijms22031037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
As a major group of algae, diatoms are responsible for a substantial part of the primary production on the planet. Pennate diatoms have a predominantly benthic lifestyle and are the most species-rich diatom group, with members of the raphid clades being motile and generally having heterothallic sexual reproduction. It was recently shown that the model species Seminavis robusta uses multiple sexual cues during mating, including cyclo(l-Pro-l-Pro) as an attraction pheromone. Elaboration of the pheromone-detection system is a key aspect in elucidating pennate diatom life-cycle regulation that could yield novel fundamental insights into diatom speciation. This study reports the synthesis and bio-evaluation of seven novel pheromone analogs containing small structural alterations to the cyclo(l-Pro-l-Pro) pheromone. Toxicity, attraction, and interference assays were applied to assess their potential activity as a pheromone. Most of our analogs show a moderate-to-good bioactivity and low-to-no phytotoxicity. The pheromone activity of azide- and diazirine-containing analogs was unaffected and induced a similar mating behavior as the natural pheromone. These results demonstrate that the introduction of confined structural modifications can be used to develop a chemical probe based on the diazirine- and/or azide-containing analogs to study the pheromone-detection system of S. robusta.
Collapse
Affiliation(s)
- Eli Bonneure
- Department of Green Chemistry and Technology—SynBioC, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (E.B.); (A.D.B.)
| | - Amber De Baets
- Department of Green Chemistry and Technology—SynBioC, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (E.B.); (A.D.B.)
| | - Sam De Decker
- Department of Biology—Protistology and Aquatic Ecology, Faculty of Sciences, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium; (S.D.D.); (W.V.)
| | - Koen Van den Berge
- Department of Applied Mathematics, Computer Science and Statistics, Faculty of Sciences, Ghent University, Krijgslaan 281/S9, 9000 Ghent, Belgium; (K.V.d.B.); (L.C.)
| | - Lieven Clement
- Department of Applied Mathematics, Computer Science and Statistics, Faculty of Sciences, Ghent University, Krijgslaan 281/S9, 9000 Ghent, Belgium; (K.V.d.B.); (L.C.)
| | - Wim Vyverman
- Department of Biology—Protistology and Aquatic Ecology, Faculty of Sciences, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium; (S.D.D.); (W.V.)
| | - Sven Mangelinckx
- Department of Green Chemistry and Technology—SynBioC, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (E.B.); (A.D.B.)
| |
Collapse
|
41
|
White ER, Leace DM, Bedell VM, Bhanu NV, Garcia BA, Dailey WP, Eckenhoff RG. Synthesis and Characterization of a Diazirine-Based Photolabel of the Nonanesthetic Fropofol. ACS Chem Neurosci 2021; 12:176-183. [PMID: 33355437 PMCID: PMC7948515 DOI: 10.1021/acschemneuro.0c00667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms of general anesthetics have been debated in the literature for many years and continue to be of great interest. As anesthetic molecules are notoriously difficult to study due to their low binding affinities and multitude of binding partners, it is advantageous to have additional tools to study these interactions. Fropofol is a hydroxyl to fluorine-substituted propofol analogue that is able to antagonize the actions of propofol. Understanding fropofol's ability to antagonize propofol would facilitate further characterization of the binding interactions of propofol that may contribute to its anesthetic actions. However, the study of fropofol's molecular interactions has many of the same difficulties as its parent compound. Here, we present the synthesis and characterization of ortho-azi-fropofol (AziFo) as a suitable photoaffinity label (PAL) of fropofol that can be used to covalently label proteins of interest to characterize fropofol's binding interactions and their contribution to general anesthetic antagonism.
Collapse
Affiliation(s)
- E Railey White
- Perelman School of Medicine, Department of Anesthesiology and Critical Care, University of Pennsylvania, John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - David M Leace
- Perelman School of Medicine, Department of Anesthesiology and Critical Care, University of Pennsylvania, John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Victoria M Bedell
- Perelman School of Medicine, Department of Anesthesiology and Critical Care, University of Pennsylvania, John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Natarajan V Bhanu
- Perelman School of Medicine, Department of Biochemistry and Biophysics, Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A Garcia
- Perelman School of Medicine, Department of Biochemistry and Biophysics, Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - William P Dailey
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roderic G Eckenhoff
- Perelman School of Medicine, Department of Anesthesiology and Critical Care, University of Pennsylvania, John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
42
|
Raynal L, Rose NC, Donald JR, Spicer CD. Photochemical Methods for Peptide Macrocyclisation. Chemistry 2021; 27:69-88. [PMID: 32914455 PMCID: PMC7821122 DOI: 10.1002/chem.202003779] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Indexed: 12/19/2022]
Abstract
Photochemical reactions have been the subject of renewed interest over the last two decades, leading to the development of many new, diverse and powerful chemical transformations. More recently, these developments have been expanded to enable the photochemical macrocyclisation of peptides and small proteins. These constructs benefit from increased stability, structural rigidity and biological potency over their linear counterparts, providing opportunities for improved therapeutic agents. In this review, an overview of both the established and emerging methods for photochemical peptide macrocyclisation is presented, highlighting both the limitations and opportunities for further innovation in the field.
Collapse
Affiliation(s)
- Laetitia Raynal
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Nicholas C. Rose
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - James R. Donald
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Christopher D. Spicer
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
43
|
Pasquer QTL, Tsakoumagkos IA, Hoogendoorn S. From Phenotypic Hit to Chemical Probe: Chemical Biology Approaches to Elucidate Small Molecule Action in Complex Biological Systems. Molecules 2020; 25:E5702. [PMID: 33287212 PMCID: PMC7730769 DOI: 10.3390/molecules25235702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/22/2023] Open
Abstract
Biologically active small molecules have a central role in drug development, and as chemical probes and tool compounds to perturb and elucidate biological processes. Small molecules can be rationally designed for a given target, or a library of molecules can be screened against a target or phenotype of interest. Especially in the case of phenotypic screening approaches, a major challenge is to translate the compound-induced phenotype into a well-defined cellular target and mode of action of the hit compound. There is no "one size fits all" approach, and recent years have seen an increase in available target deconvolution strategies, rooted in organic chemistry, proteomics, and genetics. This review provides an overview of advances in target identification and mechanism of action studies, describes the strengths and weaknesses of the different approaches, and illustrates the need for chemical biologists to integrate and expand the existing tools to increase the probability of evolving screen hits to robust chemical probes.
Collapse
Affiliation(s)
| | | | - Sascha Hoogendoorn
- Department of Organic Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Genève, Switzerland; (Q.T.L.P.); (I.A.T.)
| |
Collapse
|
44
|
Dai SY, Yang D. A Visible and Near-Infrared Light Activatable Diazocoumarin Probe for Fluorogenic Protein Labeling in Living Cells. J Am Chem Soc 2020; 142:17156-17166. [PMID: 32870680 DOI: 10.1021/jacs.0c08068] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemical modification of proteins in living cells permits valuable glimpses into the molecular interactions that underpin dynamic cellular events. While genetic engineering methods are often preferred, selective labeling of endogenous proteins in a complex intracellular milieu with chemical approaches represents a significant challenge. In this study, we report novel diazocoumarin compounds that can be photoactivated by visible (430-490 nm) and near-infrared light (800 nm) irradiation to photo-uncage reactive carbene intermediates, which could subsequently undergo an insertion reaction with concomitant fluorescence "turned on". With these new molecules in hand, we have developed a new approach for rapid, selective, and fluorogenic labeling of endogenous protein in living cells. By using CA-II and eDHFR as model proteins, we demonstrated that subcellular localization of proteins can be precisely visualized by live-cell imaging and protein levels can be reliably quantified in multiple cell types using flow cytometry. Dynamic protein regulations such as hypoxia-induced CA-IX accumulation can also be detected. In addition, by two-photon excitation with an 800 nm laser, cell-selective labeling can also be achieved with spatially controlled irradiation. Our method circumvents the cytotoxicity of UV light and obviates the need for introducing external reporters with "click chemistries". We believe that this approach of fluorescence labeling of endogenous protein by bioorthogonal photoirradiation opens up exciting opportunities for discoveries and mechanistic interrogation in chemical biology.
Collapse
Affiliation(s)
- Sheng-Yao Dai
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
45
|
Wilkinson IVL, Terstappen GC, Russell AJ. Combining experimental strategies for successful target deconvolution. Drug Discov Today 2020; 25:S1359-6446(20)30373-1. [PMID: 32971235 DOI: 10.1016/j.drudis.2020.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Investment in phenotypic drug discovery has led to increased demand for rapid and robust target deconvolution to aid successful drug development. Although methods for target identification and mechanism of action (MoA) discovery are flourishing, they typically lead to lists of putative targets. Validating which target(s) are involved in the therapeutic mechanism of a compound poses a significant challenge, requiring direct binding, target engagement, and functional studies in relevant physiological contexts. A combination of orthogonal approaches can allow target identification beyond the proteome as well as aid prioritisation for resource-intensive target validation studies.
Collapse
Affiliation(s)
- Isabel V L Wilkinson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Georg C Terstappen
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3PQ, UK
| | - Angela J Russell
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3PQ, UK.
| |
Collapse
|
46
|
Miyajima R, Sakai K, Otani Y, Wadatsu T, Sakata Y, Nishikawa Y, Tanaka M, Yamashita Y, Hayashi M, Kondo K, Hayashi T. Novel Tetrafunctional Probes Identify Target Receptors and Binding Sites of Small-Molecule Drugs from Living Systems. ACS Chem Biol 2020; 15:2364-2373. [PMID: 32786265 DOI: 10.1021/acschembio.0c00335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant advancement of chemoproteomics has contributed to uncovering the mechanism of action (MoA) of small-molecule drugs by characterizing drug-protein interactions in living systems. However, cell-membrane proteins such as G protein-coupled receptors (GPCRs) and ion channels, due to their low abundance and unique biophysical properties associated with multiple transmembrane domains, can present challenges for proteome-wide mapping of drug-receptor interactions. Herein, we describe the development of novel tetrafunctional probes, consisting of (1) a ligand of interest, (2) 2-aryl-5-carboxytetrazole (ACT) as a photoreactive group, (3) a hydrazine-labile cleavable linker, and (4) biotin for enrichment. In live cell labeling studies, we demonstrated that the ACT-based probe showed superior reactivity and selectivity for labeling on-target GPCR by mass spectrometry analysis compared with control probes including diazirine-based probes. By leveraging ACT-based cleavable probes, we further identified a set of representative ionotropic receptors, targeted by CNS drugs, with remarkable selectivity and precise binding site information from mouse brain slices. We anticipate that the robust chemoproteomic platform using the ACT-based cleavable probe coupled with phenotypic screening should promote identification of pharmacologically relevant target receptors of drug candidates and ultimately development of first-in-class drugs with novel MoA.
Collapse
Affiliation(s)
- Rin Miyajima
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Koji Sakai
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Yuki Otani
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Takashi Wadatsu
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Yasuyo Sakata
- The Time-Limited Research Project for MSM, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Yuki Nishikawa
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Masaki Tanaka
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Yu Yamashita
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Mikayo Hayashi
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Kazumi Kondo
- Pharmaceutical Business Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Takashi Hayashi
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| |
Collapse
|
47
|
Kohl B, Brüderlin M, Ritz D, Schmidt A, Hiller S. Protocol for High-Yield Production of Photo-Leucine-Labeled Proteins in Escherichia coli. J Proteome Res 2020; 19:3100-3108. [PMID: 32412763 DOI: 10.1021/acs.jproteome.0c00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UV-cross-linking mass spectrometry is an emerging technique to obtain structural information of biomacromolecules and their complexes in vivo and in vitro. In particular, certain photo-reactive amino acids (pA) such as photo-leucine (pLeu) and photo-methionine can provide unique short-distance information on the structural core regions of proteins. Here, we present a protocol for high-yield incorporation of pLeu in proteins recombinantly expressed in Escherichia coli. The protein of interest is expressed at high cell densities, which reduces the required amount of the pA by a factor of 10, as compared to the standard protocols, while maintaining high incorporation rates. For the two chaperones, trigger factor and SecB, up to 3 mg of pLeu-labeled protein were thus obtained from 100 mL of cell culture, with label incorporation rates of up to 34%. For trigger factor, UV-induced cross-linking leads to the identification of 12 cross-links that are in agreement with the published three-dimensional structures. The accessibility of milligram amounts of pLeu-labeled proteins at low costs will be highly useful to address structural biology questions.
Collapse
Affiliation(s)
- Bastian Kohl
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Mitchell Brüderlin
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Danilo Ritz
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| |
Collapse
|
48
|
Hassan MM, Olaoye OO. Recent Advances in Chemical Biology Using Benzophenones and Diazirines as Radical Precursors. Molecules 2020; 25:E2285. [PMID: 32414020 PMCID: PMC7288102 DOI: 10.3390/molecules25102285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
The use of light-activated chemical probes to study biological interactions was first discovered in the 1960s, and has since found many applications in studying diseases and gaining deeper insight into various cellular mechanisms involving protein-protein, protein-nucleic acid, protein-ligand (drug, probe), and protein-co-factor interactions, among others. This technique, often referred to as photoaffinity labelling, uses radical precursors that react almost instantaneously to yield spatial and temporal information about the nature of the interaction and the interacting partner(s). This review focuses on the recent advances in chemical biology in the use of benzophenones and diazirines, two of the most commonly known light-activatable radical precursors, with a focus on the last three years, and is intended to provide a solid understanding of their chemical and biological principles and their applications.
Collapse
Affiliation(s)
- Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Olasunkanmi O. Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
49
|
Hill JR, Coll RC, Schroder K, Robertson AA. Design, synthesis and evaluation of an NLRP3 inhibitor diazirine photoaffinity probe. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Dalton SE, Campos S. Covalent Small Molecules as Enabling Platforms for Drug Discovery. Chembiochem 2020; 21:1080-1100. [DOI: 10.1002/cbic.201900674] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel E. Dalton
- Astex Pharmaceuticals 436 Cambridge Science Park Milton Road Cambridge CB4 0QA UK
| | - Sebastien Campos
- PharmaronDrug Discovery Services Europe Hertford Road Hoddesdon Hertfordshire EN11 9BU UK
| |
Collapse
|