1
|
Liu X, Sun Y, Gao Y, Zhang X, Li X, Zheng W, Liu M, Zhao T, Yuan XA, Yue M, Liu Z. Anticancer behavior of cyclometallated iridium(III)-tributyltin(IV) carboxylate schiff base complexes with aggregation-induced emission. J Inorg Biochem 2025; 262:112767. [PMID: 39486100 DOI: 10.1016/j.jinorgbio.2024.112767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Cyclometallated iridium(III) and organotin(IV) carboxylate complexes have shown potential application value in the field of anticancer. However, the widespread aggregation-caused quenching (ACQ) effect of these complexes is not conducive to the exploration of their targeting and anticancer mechanism, and the idea of aggregation-induced emission (AIE) effect can effectively solve this problem. Then, AIE-activated cyclometallated iridium(III)-tributyltin(IV) carboxylate Schiff base complexes were designed and prepared in this study. Complexes exhibited AIE effect in highly concentrated solution or aggregative state, which facilitated the investigation of subcellular tissue targeting (mitochondria) and cell morphology. Compared with cyclometallated iridium(III) complex and tributyltin(IV) carboxylate monomers, these complexes showed the better in-vitro anti-proliferative activity toward A549 cells, confirming the favorable synergistic anticancer activity. Even for A549/DDP (cisplatin-resistance) cells, these complexes also exhibited the better activity. In addition, complexes showed a mitochondrial apoptotic pathway. Therefore, cyclometallated iridium(III)-tributyltin(IV) carboxylate Schiff base complexes can be used as the potential substitutes for platinum-based drugs and gain further application.
Collapse
Affiliation(s)
- Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Yiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuan Gao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xinru Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaoshuang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Wenya Zheng
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mengxian Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ting Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mingbo Yue
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
2
|
Zhi YS, Chen T, Liang BF, Jiang S, Yao DH, He ZD, Li CY, He L, Pan ZY. Endoplasmic reticulum-targeted iridium(III) photosensitizer induces pyroptosis for augmented tumor immunotherapy. J Inorg Biochem 2024; 260:112695. [PMID: 39153452 DOI: 10.1016/j.jinorgbio.2024.112695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
An ideal tumor treatment strategy involves therapeutic approaches that can enhance the immunogenicity of the tumor microenvironment while simultaneously eliminating the primary tumor. A cholic acid-modified iridium(III) (Ir3) photosensitizer, targeted to the endoplasmic reticulum (ER), has been reported to exhibit potent type I and type II photodynamic therapeutic effects against triple-negative breast cancer (MDA-MB-231). This photosensitizer induces pyroptotic cell death mediated by gasdermin E (GSDME) through photodynamic means and enhances tumor immunotherapy. Mechanistic studies have revealed that complex Ir3 induces characteristics of damage-related molecular patterns (DAMPs) in MDA-MB-231 breast cancer cells under light conditions. These include cell-surface calreticulin (CRT) eversion, extracellular high mobility group box 1 (HMGB1) and ATP release, accompanied by ER stress and increased reactive oxygen species (ROS). Consequently, complex Ir3 promotes dendritic cell maturation and antigen presentation under light conditions, fully activates T cell-dependent immune response in vivo, and ultimately eliminates distant tumors while destroying primary tumors. In conclusion, immune regulation and targeted intervention mediated by metal complexes represent a new and promising approach to tumor therapy. This provides an effective strategy for the development of combined targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Yun-Shi Zhi
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Tie Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bin-Fa Liang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shan Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Da-Hong Yao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zhen-Dan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Chen-Yang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zheng-Yin Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China..
| |
Collapse
|
3
|
Szymaszek P, Tyszka-Czochara M, Ortyl J. Iridium(III) complexes as novel theranostic small molecules for medical diagnostics, precise imaging at a single cell level and targeted anticancer therapy. Eur J Med Chem 2024; 276:116648. [PMID: 38968786 DOI: 10.1016/j.ejmech.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Medical applications of iridium (III) complexes include their use as state-of-the-art theranostic agents - molecules that combine therapeutic and diagnostic functions into a single entity. These complexes offer a promising avenue in medical diagnostics, precision imaging at single-cell resolution and targeted anticancer therapy due to their unique properties. In this review we report a short summary of their application in medical diagnostics, imaging at single-cell level and targeted anticancer therapy. The exceptional photophysical properties of Iridium (III) complexes, including their brightness and photostability, make them excellent candidates for bioimaging. They can be used to image cellular processes and the microenvironment within single cells with unprecedented clarity, aiding in the understanding of disease mechanisms at the molecular level. Moreover the iridium (III) complexes can be designed to selectively target cancer cells,. Upon targeting, these complexes can act as photosensitizers for photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon light activation to induce cell death. The integration of diagnostic and therapeutic capabilities in Iridium (III) complexes offers the potential for a holistic approach to cancer treatment, enabling not only the precise eradication of cancer cells but also the real-time monitoring of treatment efficacy and disease progression. This aligns with the goals of personalized medicine, offering hope for more effective and less invasive cancer treatment strategies.
Collapse
Affiliation(s)
- Patryk Szymaszek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
| | | | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, 30-348, Kraków, Poland; Photo4Chem ltd., Juliusza Lea 114/416A-B, 31-133, Kraków, Poland.
| |
Collapse
|
4
|
Du LQ, Yang Y, Ruan L, Sun S, Mo DY, Cai JY, Liang H, Shu S, Qin QP. Insights into the antineoplastic activity and mechanisms of action of coumarin-coordinated 8-hydroxyquinoline ruthenium(II/III) compounds. J Inorg Biochem 2024; 259:112659. [PMID: 38976937 DOI: 10.1016/j.jinorgbio.2024.112659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Ruthenium(II/III) coordination compounds have gained widespread attention as chemotherapy drugs, photosensitizers, and photodynamic therapy reagents. Herein, a family of 11 novel coumarin-coordinated 8-hydroxyquinoline ruthenium(II/III) compounds, i.e., [RuII2(μ2-Cl)2(QL1a)2(DMSO)4] (YNU-4a = Yulin Normal University-4a), [RuII2(μ2-Cl)2(QL1b)2(DMSO)4] (YNU-4b), [RuII2(μ2-Cl)2(QL1c)2(DMSO)4] (YNU-4c), [RuII2(μ2-Cl)2(QL1d)2(DMSO)4]⋅2CH3OH (YNU-4d), [RuII(QL1e)2(DMSO)2] (YNU-4e), [RuIII(QL1e)2(QL3a)] (YNU-4f), [RuIII(QL1e)2(QL3b)] (YNU-4g), [RuIII(QL1e)2(QL3c)] (YNU-4h), [RuIICl2(H-QL3a)2(DMSO)2] (YNU-4i), [RuIICl2(H-QL3b)2(DMSO)2] (YNU-4j), and [RuIICl2(H-QL3c)2(DMSO)2] (YNU-4k), featuring the coligands 5,7-diiodo-8-hydroxyquinoline (H-QL1a), 5,7-dichloro-8-quinolinol (H-QL1b), 5-chloro-7-iodo-8-hydroxyquinolin (H-QL1c), 5,7-dibromo-8-hydroxyquinoline (H-QL1d), and 5,7-dichloro-8-hydroxy-2-methylquinoline (H-QL1e) and the main ligands 6,7-dichloro-3-pyridin-2-yl-chromen-2-one (H-QL3a), 6-bromo-3-pyridin-2-yl-chromen-2-one (H-QL3b), and 6-chloro-3-pyridin-2-yl-chromen-2-one (H-QL3c), respectively. The structure of compounds YNU-4a-YNU-4k was fully confirmed by conducting various spectroscopic analyses. The anticancer activity of YNU-4a-YNU-4k was evaluated in cisplatin-resistant A549/DDP lung cancer cells (LC549) versus normal embryonic kidney (HEK293) cells. Notably, compound YNU-4f bearing QL1e and QL3a ligands showed a more pronounced antiproliferative effect against LC549 cells (IC50 = 1.75 ± 0.09 μM) with high intrinsic selectivity toward LC549 cancer cells than YNU-4a-YNU-4e, H-QL1a-H-QL1e, cisplatin (PDD), YNU-4g-YNU-4k, and H-QL3a-H-QL3c. Additionally, a colocalization assay analysis of YNU-4e and YNU-4f showed that these two ruthenium(II/III) compounds were subcellularly accumulated in the mitochondria and other regions of the cytoplasm, where they induce mitophagy, adenosine triphosphate (ATP) reduction, mitochondrial respiratory chain complex I/IV(RC1/RC4) inhibition, and mitochondrial dysfunction. Accordingly, compounds YNU-4a-YNU-4k can be regarded as mitophagy inductors for the eradication of cisplatin-resistant LC549 cancer cells.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Yan Yang
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China; School of food and chemical engineering, Liuzhou Institute of Technology, Liuzhou, Guangxi 545000, China
| | - Li Ruan
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Song Sun
- School of food and chemical engineering, Liuzhou Institute of Technology, Liuzhou, Guangxi 545000, China
| | - Dong-Yin Mo
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Jin-Yuan Cai
- School of food and chemical engineering, Liuzhou Institute of Technology, Liuzhou, Guangxi 545000, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Sai Shu
- School of food and chemical engineering, Liuzhou Institute of Technology, Liuzhou, Guangxi 545000, China
| | - Qi-Pin Qin
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| |
Collapse
|
5
|
Li G, Chen J, Xie Y, Yang Y, Niu Y, Chen X, Zeng X, Zhou L, Liu Y. White light increases anticancer effectiveness of iridium(III) complexes toward lung cancer A549 cells. J Inorg Biochem 2024; 259:112652. [PMID: 38945112 DOI: 10.1016/j.jinorgbio.2024.112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Anticancer activity has been extensively studies. In this article, three ligands 2-(6-bromobenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (BDIP), 2-(7-methoxybenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (MDIP), 2-(6-nitrobenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (NDIP) and their iridium(III) complexes: [Ir(ppy)2(BDIP)](PF6) (ppy = deprotonated 2-phenylpyridine, 3a), [Ir(ppy)2(MDIP)](PF6) (3b) and [Ir(ppy)2(NDIP)](PF6) (3c) were synthesized. The cytotoxicity of 3a, 3b, 3c against Huh7, A549, BEL-7402, HepG2, HeLa, and non-cancer NIH3T3 was tested using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. The results obtained from the MTT test stated clearly that these complexes demonstrated moderate or non-cytotoxicity toward Huh7, BEL-7402, HepG2 and HeLa except A549 cells. To improve the anticancer efficacy, we used white light to irradiate the mixture of cells and complexes for 30 min, the anticancer activity of the complexes was greatly enhanced. Particularly, 3a and 3b exhibited heightened capability to inhibit A549 cells proliferation with IC50 (half maximal inhibitory concentration) values of 0.7 ± 0.3 μM and 1.8 ± 0.1 μM, respectively. Cellular uptake has shown that 3a and 3b can be accumulated in the cytoplasm. Wound healing and colony forming showed that 3a and 3b significantly hinder the cell migration and growth in the S phase. The complexes open mitochondrial permeability transition pore (MPTP) channel and cause the decrease of membrane potential, release of cytochrome C, activation of caspase 3, and finally lead to apoptosis. In addition, 3a and 3b cause autophagy, increase the lipid peroxidation and lead to ferroptosis. Also, 3a and 3b increase the expression of calreticulin (CRT), high mobility group box 1 (HMGB1), heat shock protein 70 (HSP70), thereby inducing immunogenic cell death.
Collapse
Affiliation(s)
- Gechang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yufeng Xie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, 510317, PR China.
| | - Yajie Niu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaolan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiandong Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lin Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Li Y, Liu B, Zheng Y, Hu M, Liu LY, Li CR, Zhang W, Lai YX, Mao ZW. Photoinduction of Ferroptosis and cGAS-STING Activation by a H 2S-Responsive Iridium(III) Complex for Cancer-Specific Therapy. J Med Chem 2024; 67:16235-16247. [PMID: 39250558 DOI: 10.1021/acs.jmedchem.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Triggering ferroptosis represents a promising anticancer therapeutic strategy, but the development of a selective ferroptosis inducer for cancer-specific therapy remains a great challenge. Herein, a H2S-responsive iridium(III) complex NA-Ir has been well-designed as a ferroptosis inducer. NA-Ir could selectively light up H2S-rich cancer cells, primarily localize in mitochondria, intercalate into mitochondrial DNA (mtDNA), and induce mtDNA damage, exhibiting higher anticancer activity under light irradiation. Mechanistic studies showed that NA-Ir-mediated PDT triggered lipid peroxidation and glutathione peroxidase 4 downregulation through ROS production and GSH depletion, resulting in ferroptosis through multiple pathways. Moreover, the intense mtDNA damage can activate the cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) pathway, leading to ferritinophagy and further ferroptosis. RNA-sequencing analysis showed that NA-Ir-mediated PDT mainly affects the expression of genes related to ferroptosis, autophagy, and cancer immunity. This study demonstrates the first cancer-specific example with ferroptosis and cGAS-STING activation, which provides a new strategy for multimodal synergistic therapy.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Ben Liu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Meng Hu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Cai-Rong Li
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Yu-Xiao Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
7
|
Sookai S, Perumal S, Kaur M, Munro OQ. Pt(II) Bis(pyrrole-imine) complexes: Luminescent probes and cytotoxicity in MCF-7 cells†. J Inorg Biochem 2024; 258:112617. [PMID: 38805758 DOI: 10.1016/j.jinorgbio.2024.112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Four Pt(II) bis(pyrrole-imine) Schiff base chelates (1-4) were synthesised by previously reported methods, through a condensation reaction, and the novel crystal structure of 2,2'-{propane-1,3-diylbis[nitrilo(E)methylylidene]}bis(pyrrol-1-ido)platinum(II) (1) was obtained. Pt(II) complexes 1-4 exhibited phosphorescence, with increased luminescence in anaerobic solvents or when bound to human serum albumin (HSA). One of the complexes shows a 15.6-fold increase in quantum yield when bound to HSA and could be used to detect HSA concentrations as low as 5 nM. Pt(II) complexes 1-3 was investigated as potential theranostic agents in MCF-7 breast cancer cells, but only complex 3 exhibited cytotoxicity when irradiated with UV light (λ355nmExcitation). Interestingly, the cytotoxicity of complex 1 was unresponsive to UV light irradiation. This indicates that only complex 3 can be considered a potential photosensitising agent.
Collapse
Affiliation(s)
- Sheldon Sookai
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa.
| | - Shanen Perumal
- School of Molecular and Cell Biology, University of Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Guo J, Yang WT, Mai FY, Liang JR, Luo J, Zhou MC, Yu DD, Wang YL, Li CG. Unravelling oncosis: morphological and molecular insights into a unique cell death pathway. Front Immunol 2024; 15:1450998. [PMID: 39281670 PMCID: PMC11393741 DOI: 10.3389/fimmu.2024.1450998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Programmed cell death (PCD) is a fundamental biological process for maintaining cellular equilibrium and regulating development, health, and disease across all living organisms. Among the various types of PCD, apoptosis plays a pivotal role in numerous diseases, notably cancer. Cancer cells frequently develop mechanisms to evade apoptosis, increasing resistance to standard chemotherapy treatments. This resistance has prompted extensive research into alternative mechanisms of programmed cell death. One such pathway is oncosis, characterized by significant energy consumption, cell swelling, dilation of the endoplasmic reticulum, mitochondrial swelling, and nuclear chromatin aggregation. Recent research suggests that oncosis can impact conditions such as chemotherapeutic cardiotoxicity, myocardial ischemic injury, stroke, and cancer, mediated by specific oncosis-related proteins. In this review, we provide a detailed examination of the morphological and molecular features of oncosis and discuss various natural or small molecule compounds that can induce this type of cell death. Additionally, we summarize the current understanding of the molecular mechanisms underlying oncosis and its role in both normal physiology and pathological conditions. These insights aim to illuminate future research directions and propose innovative strategies for leveraging oncosis as a therapeutic tool against human diseases and cancer resistance.
Collapse
Affiliation(s)
- Jie Guo
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Wen-Tao Yang
- Pain Department of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Feng-Yi Mai
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Jing-Rong Liang
- Pain Department of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Jiao Luo
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ming-Chao Zhou
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Dong-Dong Yu
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yu-Long Wang
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Chen-Guang Li
- Pain Department of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| |
Collapse
|
9
|
Lv A, Li G, Zhang P, Tao R, Li X, Ren X, Li P, Liu X, Yuan XA, Liu Z. Design and anticancer behaviour of cationic/neutral half-sandwich iridium(III) imidazole-phenanthroline/phenanthrene complexes. J Inorg Biochem 2024; 257:112612. [PMID: 38761579 DOI: 10.1016/j.jinorgbio.2024.112612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Considerable attention has been devoted to the exploration of organometallic iridium(III) (IrIII) complexes for their potential as metallic anticancer drugs. In this study, twelve half-sandwich IrIII imidazole-phenanthroline/phenanthrene complexes were prepared and characterized. Complexes exhibited promising in-vitro anti-proliferative activity, and some are obviously superior to cisplatin towards A549 cells. These complexes possessed suitable fluorescence, and a non-energy-dependent uptake pathway was identified, subsequently leading to their accumulation in the lysosome and the lysosomal damage. Additionally, complexes could inhibit the cell cycle (G1-phase) and catalyze intracellular NADH oxidation, thus substantiating the elevation of intracellular reactive oxygen species (ROS) level, which confirming the oxidative mechanism. Western blotting further confirmed that complexes could induce A549 cell apoptosis through the lysosomal-mitochondrial anticancer pathway, which was inconsistent with cisplatin. In summary, these complexes offer fresh concepts for the development of organometallic non‑platinum anticancer drugs.
Collapse
Affiliation(s)
- Ao Lv
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Guangxiao Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Pei Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Rui Tao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xiaoshuang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xueyan Ren
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Peixuan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
10
|
Li HM, Wang MM, Su Y, Fang HB, Su Z. Mitochondria-Targeting Metallodrugs for Cancer Therapy: Perspectives from Cell Death Modes. ChemMedChem 2024; 19:e202400120. [PMID: 38696276 DOI: 10.1002/cmdc.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Mitochondria, recognized as the cellular powerhouses, are indispensable organelles responsible for crucial cellular processes, such as energy metabolism, material synthesis, and signaling transduction. Their intricate involvement in a broad spectrum of diseases, particularly cancer, has propelled the exploration of mitochondria-targeting treatment as a promising strategy for cancer therapy. Since the groundbreaking discovery of cisplatin, the trajectory of research on the development of metal complexes have been marked by continuous advancement, giving rise to a diverse array of metallodrugs characterized by variations in ligand types, metal center properties, and oxidation states. By specifically targeting mitochondria, these metallodrugs exhibit the remarkable ability to elicit various programmed cell death pathways, encompassing apoptosis, autophagy, and ferroptosis. This review primarily focuses on recent developments in transition metal-based mitochondria-targeting agents, offering a comprehensive exploration of their capacity to induce distinct cell death modes. The aim is not only to disseminate knowledge but also to stimulate an active field of research toward new clinical applications and novel anticancer mechanisms.
Collapse
Affiliation(s)
- Hao-Ming Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210013, P. R. China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P. R. China
| | - Hong-Bao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
11
|
Feng T, Tang Z, Shu J, Wu X, Jiang H, Chen Z, Chen Y, Ji L, Chao H. A Cyclometalated Ruthenium(II) Complex Induces Oncosis for Synergistic Activation of Innate and Adaptive Immunity. Angew Chem Int Ed Engl 2024; 63:e202405679. [PMID: 38771671 DOI: 10.1002/anie.202405679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
An optimal cancer chemotherapy regimen should effectively address the drug resistance of tumors while eliciting antitumor-immune responses. Research has shown that non-apoptotic cell death, such as pyroptosis and ferroptosis, can enhance the immune response. Despite this, there has been limited investigation and reporting on the mechanisms of oncosis and its correlation with immune response. Herein, we designed and synthesized a Ru(II) complex that targeted the nucleus and mitochondria to induce cell oncosis. Briefly, the Ru(II) complex disrupts the nucleus and mitochondria DNA, which active polyADP-ribose polymerase 1, accompanied by ATP consumption and porimin activation. Concurrently, mitochondrial damage and endoplasmic reticulum stress result in the release of Ca2+ ions and increased expression of Calpain 1. Subsequently, specific pore proteins porimin and Calpain 1 promote cristae destruction or vacuolation, ultimately leading to cell membrane rupture. The analysis of RNA sequencing demonstrates that the Ru(II) complex can initiate the oncosis-associated pathway and activate both innate and adaptive immunity. In vivo experiments have confirmed that oncosis promotes dendritic cell maturation and awakens adaptive cytotoxic T lymphocytes but also activates the innate immune by inducing the polarization of macrophages towards an M1 phenotype.
Collapse
Affiliation(s)
- Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zixin Tang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jun Shu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xianbo Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zhuoli Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
12
|
Maji S, Debnath B, Panda S, Manna T, Maity A, Dayaramani R, Nath R, Khan SA, Akhtar MJ. Anticancer Potential of the S-Heterocyclic Ring Containing Drugs and its Bioactivation to Reactive Metabolites. Chem Biodivers 2024; 21:e202400473. [PMID: 38723201 DOI: 10.1002/cbdv.202400473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Sulfur-containing heterocyclic derivatives have been disclosed for binding with a wide range of cancer-specific protein targets. Various interesting derivatives of sulfur-containing heterocyclics such as benzothiazole, thiazole, thiophene, thiazolidinedione, benzothiophene, and phenothiazine, etc have been shown to inhibit diverse signaling pathways implicated in cancer. Significant progress has also been made in molecular targeted therapy against specific enzymes such as kinase receptors due to potential binding interactions inside the ATP pocket. Sulfur-containing heterocyclic ring metal complexes i. e., benzothiazole, thiazole, thiophene, benzothiophene and phenothiazines are among the most promising active anticancer compounds. However, sulfur heteroaromatic rings, particularly thiophene, are of high structural alert due to their metabolism to reactive metabolites. The mere presence of a structural alert itself does not determine compound toxicity therefore, this review focuses on some specific findings that shed light on factors influencing the toxicity. In the current review, synthetic strategies of introducing the sulfur core ring in the synthesized derivatives are discussed with their structure-activity relationships to enhance our understanding of toxicity mechanisms and develop safer therapeutic options. The sulfur-containing marketed anticancer drugs included in this review direct the synthesis of novel compounds and will help in the development of potent, safer sulfur-based anticancer drugs in near future.
Collapse
Affiliation(s)
- Sumit Maji
- Department of Pharmacy, Bharat Technology, Uluberia-711316, Howrah, West Bengal, India
| | - Biplab Debnath
- Department of Pharmacy, Bharat Technology, Uluberia-711316, Howrah, West Bengal, India
| | - Shambo Panda
- Department of Pharmacy, Bharat Technology, Uluberia-711316, Howrah, West Bengal, India
| | - Tanusree Manna
- Department of Pharmacy, Bharat Technology, Uluberia-711316, Howrah, West Bengal, India
| | - Arindam Maity
- JIS University, Agarpara Campus, Kolkata-81, Nilgunj Road, Agarpara, Kolkata-700109, India
| | - Richa Dayaramani
- Silver Oak Institute of Pharmacy and Research, Silver Oak University, Ahmedabad, India
| | - Rajarshi Nath
- Department of Pharmacy, Bharat Technology, Uluberia-711316, Howrah, West Bengal, India
- JIS University, Agarpara Campus, Kolkata-81, Nilgunj Road, Agarpara, Kolkata-700109, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Sultanate of Oman
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Sultanate of Oman
| |
Collapse
|
13
|
Xie K, Lu XY, Zhu H, Zhu LY, Li RT, Ye RR. Iridium(III) complexes conjugated with naproxen exhibit potent anti-tumor activities by inducing mitochondrial damage, modulating inflammation, and enhancing immunity. Dalton Trans 2024; 53:8772-8780. [PMID: 38712840 DOI: 10.1039/d4dt00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A series of Ir(III)-naproxen (NPX) conjugates with the molecular formula [Ir(C^N)2bpy(4-CH2ONPX-4'-CH2ONPX)](PF6) (Ir-NPX-1-3) were designed and synthesized, including C^N = 2-phenylpyridine (ppy, Ir-NPX-1), 2-(2-thienyl)pyridine (thpy, Ir-NPX-2) and 2-(2,4-difluorophenyl)pyridine (dfppy, Ir-NPX-3). Cytotoxicity tests showed that Ir-NPX-1-3 exhibited excellent antitumor activity, especially in A549R cells. The cellular uptake experiment showed that the complexes were mainly localized in mitochondria, and induced apoptosis in A549R cells by damaging the structure and function of mitochondria. The main manifestations are a decrease in the mitochondrial membrane potential (MMP), an increase in reactive oxygen species (ROS) levels, and cell cycle arrest. Furthermore, Ir-NPX-1-3 could inhibit the migration and colony formation of cancer cells, demonstrating potential anti-metastatic ability. Finally, the anti-inflammatory and immunological applications of Ir-NPX-1-3 were verified. The downregulation of cyclooxygenase-2 (COX-2) and programmed death-ligand 1 (PD-L1) expression levels and the release of immunogenic cell death (ICD) related signaling molecules such as damage-associated molecular patterns (DAMPs) (cell surface calreticulin (CRT), high mobility group box 1 (HMGB1), and adenosine triphosphate (ATP)) indicate that these Ir(III) -NPX conjugates are novel ICD inducers with synergistic effects in multiple anti-tumor pathways.
Collapse
Affiliation(s)
- Kai Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Xing-Yun Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Hou Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Lin-Yuan Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| |
Collapse
|
14
|
Yang J, Wang MM, Deng DP, Lin H, Su Y, Shao CX, Li SH, Yu ZH, Liu HK, Su Z. Consolidating Organometallic Complex Ir-CA Empowers Mitochondria-Directed Chemotherapy against Resistant Cancer via Stemness and Metastasis Inhibition. Inorg Chem 2024; 63:5235-5245. [PMID: 38452249 DOI: 10.1021/acs.inorgchem.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Cancer treatment has faced severe obstacles due to the smart biological system of cancer cells. Herein, we report a three-in-one agent Ir-CA via attenuation of cancer cell stemness with the down-regulated biomarker CD133 expression from the mitochondria-directed chemotherapy. Over 80% of Ir-CA could accumulate in mitochondria, result in severe mitochondrial dysfunctions, and subsequently initiate mitophagy and cell cycle arrest to kill cisplatin-resistant A549R cells. In vitro and in vivo antimetastatic experiments demonstrated that Ir-CA can effectively inhibit metastasis with down-regulated MMP-2/MMP-9. RNA seq analysis and Western blotting indicated that Ir-CA also suppresses the GSTP1 expression to decrease the intracellular Pt-GS adducts, resulting in the detoxification and resensitization to cisplatin of A549R cells. In vivo evaluation indicated that Ir-CA restrains the tumor growth and has minimal side effects and superior biocompatibility. This work not only provides the first three-in-one agent to attenuate cancer cell stemness and simultaneously realize anticancer, antimetastasis, and conquer metallodrug resistance but also demonstrates the effectiveness of the mitochondria-directed strategy in cancer treatment.
Collapse
Affiliation(s)
- Jin Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dong-Ping Deng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hai Lin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Chen-Xu Shao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Si-Hui Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zheng-Hong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
15
|
Li W, Li T, Pan Y, Li S, Xu G, Zhang Z, Liang H, Yang F. Designing a Mitochondria-Targeted Theranostic Cyclometalated Iridium(III) Complex: Overcoming Cisplatin Resistance and Inhibiting Tumor Metastasis through Necroptosis and Immune Response. J Med Chem 2024; 67:3843-3859. [PMID: 38442035 DOI: 10.1021/acs.jmedchem.3c02227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
To develop a potential theranostic metal agent to reverse the resistance of cancer cells to cisplatin and effectively inhibit tumor growth and metastasis, we proposed to design a cyclometalated iridium (Ir) complex based on the properties of the tumor environment (TME). To the end, we designed and synthesized a series of Ir(III) 2-hydroxy-1-naphthaldehyde thiosemicarbazone complexes by modifying the hydrogen atom(s) of the N-3 position of 2-hydroxy-1-naphthaldehyde thiosemicarbazone compounds and the structure of cyclometalated Ir(III) dimers and then investigated their structure-activity and structure-fluorescence relationships to obtain an Ir(III) complex (Ir5) with remarkable fluorescence and cytotoxicity to cancer cells. Ir5 not only possesses mitochondria-targeted properties but also overcomes cisplatin resistance and effectively inhibits tumor growth and metastasis in vivo. Besides, we confirmed the anticancer mechanisms of Ir5 acting on different components in the TME: directly killing liver cancer cells by inducing necroptosis and activating the necroptosis-related immune response.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Ting Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Ying Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
16
|
Xiong K, Lin X, Kou J, Wei F, Shen J, Chen Y, Ji L, Chao H. Apoferritin-Cu(II) Nanoparticles Induce Oncosis in Multidrug-Resistant Colon Cancer Cells. Adv Healthc Mater 2024; 13:e2302564. [PMID: 38073257 DOI: 10.1002/adhm.202302564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Multidrug resistance (MDR) limits the application of clinical chemotherapeutic drugs. There is an urgent need to develop non-apoptosis-inducing agents that circumvent drug resistance. Herein, four therapeutic copper complexes encapsulated in natural nanocarrier apoferritin (AFt-Cu1-4) are reported. Although they are isomers, they exhibit significantly different organelle distributions and cell death mechanisms. AFt-Cu1 and AFt-Cu3 accumulate in the cytoplasm and induce autophagy, whereas AFt-Cu2 and AFt-Cu4 can quickly enter the nucleus and trigger oncosis. Excitedly, AFt-Cu2 and AFt-Cu4 show a strong tumor growth inhibition effect in mice models bearing multidrug-resistant colon xenograft via intravenous injection. To the best of the authors' knowledge, this is the first example of metal-based nucleus-targeted oncosis inducers overcoming multidrug resistance in vivo.
Collapse
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xinlin Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Junfeng Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jinchao Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
17
|
Kasparkova J, Hernández-García A, Kostrhunova H, Goicuría M, Novohradsky V, Bautista D, Markova L, Santana MD, Brabec V, Ruiz J. Novel 2-(5-Arylthiophen-2-yl)-benzoazole Cyclometalated Iridium(III) dppz Complexes Exhibit Selective Phototoxicity in Cancer Cells by Lysosomal Damage and Oncosis. J Med Chem 2024; 67:691-708. [PMID: 38141031 PMCID: PMC10788912 DOI: 10.1021/acs.jmedchem.3c01978] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
A second-generation series of biscyclometalated 2-(5-aryl-thienyl)-benzimidazole and -benzothiazole Ir(III) dppz complexes [Ir(C^N)2(dppz)]+, Ir1-Ir4, were rationally designed and synthesized, where the aryl group attached to the thienyl ring was p-CF3C6H4 or p-Me2NC6H4. These new Ir(III) complexes were assessed as photosensitizers to explore the structure-activity correlations for their potential use in biocompatible anticancer photodynamic therapy. When irradiated with blue light, the complexes exhibited high selective potency across several cancer cell lines predisposed to photodynamic therapy; the benzothiazole derivatives (Ir1 and Ir2) were the best performers, Ir2 being also activatable with green or red light. Notably, when irradiated, the complexes induced leakage of lysosomal content into the cytoplasm of HeLa cancer cells and induced oncosis-like cell death. The capability of the new Ir complexes to photoinduce cell death in 3D HeLa spheroids has also been demonstrated. The investigated Ir complexes can also catalytically photo-oxidate NADH and photogenerate 1O2 and/or •OH in cell-free media.
Collapse
Affiliation(s)
- Jana Kasparkova
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - Alba Hernández-García
- Departamento
de Química Inorgánica, Universidad de Murcia, and Biomedical
Research Institute of Murcia (IMIB-Arrixaca), Murcia E-30100, Spain
| | - Hana Kostrhunova
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - Marta Goicuría
- Departamento
de Química Inorgánica, Universidad de Murcia, and Biomedical
Research Institute of Murcia (IMIB-Arrixaca), Murcia E-30100, Spain
| | - Vojtěch Novohradsky
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | | | - Lenka Markova
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - María Dolores Santana
- Departamento
de Química Inorgánica, Universidad de Murcia, and Biomedical
Research Institute of Murcia (IMIB-Arrixaca), Murcia E-30100, Spain
| | - Viktor Brabec
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad de Murcia, and Biomedical
Research Institute of Murcia (IMIB-Arrixaca), Murcia E-30100, Spain
| |
Collapse
|
18
|
Liu X, Lv A, Zhang P, Chang J, Dong R, Liu M, Liu J, Huang X, Yuan XA, Liu Z. The anticancer application of half-sandwich iridium(III) ferrocene-thiosemicarbazide Schiff base complexes. Dalton Trans 2024; 53:552-563. [PMID: 38054240 DOI: 10.1039/d3dt02879h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Ferrocenyl derivatives and organometallic iridium(III) complexes have been prospective substitutes for platinum-based anticancer drugs. Eight half-sandwich iridium(III) ferrocene-thiosemicarbazide (Fc-TSC) Schiff base anticancer complexes were prepared in this study. These complexes displayed a dimeric structure and exhibited a particular fluorescence due to the "enol" orientation of the TSC pro-ligand. An energy-dependent pathway of the uptake mechanism was ascertained, which ended in the lysosome and led to lysosome damage and apoptosis. Flow cytometry confirmed that the complexes could block the cell cycle (G1 phase) and improve the levels of intracellular reactive oxygen species, indicating an anticancer mechanism of oxidation. Then, a lysosomal-mitochondrial anticancer pathway was verified through western blotting. In vivo toxicity assays confirmed that these complexes showed better anti-migration ability and less toxicity in comparison to cisplatin. Thus, these complexes provide a new strategy for the design of non-platinum organometallic anticancer drugs.
Collapse
Affiliation(s)
- Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ao Lv
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Pei Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jiaying Chang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ruixiao Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Mengxian Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jiayi Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiaoqing Huang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
19
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Chen L, Tang H, Chen W, Wang J, Zhang S, Gao J, Chen Y, Zhu X, Huang Z, Chen J. Mitochondria-targeted cyclometalated iridium (III) complexes: Dual induction of A549 cells apoptosis and autophagy. J Inorg Biochem 2023; 249:112397. [PMID: 37844533 DOI: 10.1016/j.jinorgbio.2023.112397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
In this study, we synthesized 4 cyclometalated iridium complexes using N-(1,10-phenanthrolin-5-yl)picolinamide (PPA) as the main ligand, denoted as [Ir(ppy)2PPA]PF6 (ppy = 2-phenylpyridine, Ir1), [Ir(bzq)2PPA]PF6 (bzq = benzo[h]quinoline, Ir2), [Ir(dfppy)2PPA]PF6 (dfppy = 2-(3,5-difluorophenyl)pyridine, Ir3), and [Ir(thpy)2PPA]PF6 (thpy = 2-(thiophene-2-yl)pyridine, Ir4). Compared to cisplatin and oxaliplatin, all four complexes exhibited significant anti-tumor activity. Among them, Ir2 demonstrated higher cytotoxicity against A549 cells, with an IC50 value of 1.6 ± 0.2 μM. The experimental results indicated that Ir2 primarily localized in the mitochondria, inducing a large amount of reactive oxygen species (ROS) generation, that decreased in mitochondrial membrane potential (MMP), reduced ATP production, and further impaired mitochondrial function, leading to cytochrome c release. Additionally, Ir2 caused cell cycle arrest at the S phase and induced apoptosis through the AKT-mediated signaling pathway. Further investigations revealed that Ir2 could simultaneously induce both apoptosis and autophagy in A549 cells, with the latter acting as a non-protective mechanism that promoted cell death. More importantly, Ir2 exhibited low toxicity to both normal LO2 cells in vitro and zebrafish embryos in vivo. Consequently, these newly developed Ir(III) complexes show great potential in the development of novel and low-toxicity anticancer agents.
Collapse
Affiliation(s)
- Lanmei Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Hong Tang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Weigang Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China
| | - Jie Wang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China
| | - Shenting Zhang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Jie Gao
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China
| | - Yu Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China
| | - Xufeng Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China.
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China.
| | - Jincan Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China.
| |
Collapse
|
21
|
Hu M, Zhou XL, Xiao TX, Hao L, Li Y. Inducing and monitoring mitochondrial pH changes with an iridium(III) complex via two-photon lifetime imaging. Dalton Trans 2023; 52:15859-15865. [PMID: 37828856 DOI: 10.1039/d3dt02541a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Real-time monitoring of mitochondrial dynamic changes plays a key role in the development of mitochondria-targeted anticancer theranostic agents. In this work, a pH-responsive and mitochondria-targeted cyclometalated iridium(III) complex MitoIr-NH has been explored as a novel anticancer agent. MitoIr-NH displayed pH-responsive phosphorescence intensity and lifetime, accumulated in mitochondria, showed higher antiproliferative activity and induced a series of mitochondria-related events. Moreover, MitoIr-NH could simultaneously induce mitophagy and quantitatively monitor mitochondrial pH changes through two-photon phosphorescence lifetime imaging microscopy (TPPLIM) in a real-time manner.
Collapse
Affiliation(s)
- Meng Hu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Xin-Lan Zhou
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Tian-Xin Xiao
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
22
|
Wang W, Wang P, Liao X, Yang B, Gao C, Yang J. A Series of Planar Phosphorescent Cyclometalated Platinum(II) Complexes as New Anticancer Theranostic Agents That Induce Oncosis. J Med Chem 2023; 66:13103-13115. [PMID: 37724909 DOI: 10.1021/acs.jmedchem.3c01126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Herein, four planar cyclometalated platinum(II) complexes with a main ligand of enlarged aromatic rings have been assessed as effective anticancer theranostic agents for the first time. With an increased number of aromatic rings in the N∧N ligand, 1a-1d exhibit increased lipophilicity and cytotoxicity selectivity. The intensity of the Pt-Pt interaction of each complex can be indicated by an enhanced near-infrared (NIR) emission in phosphate-buffered saline (PBS), their binding activity with biomolecules of bovine serum albumin (BSA) is accompanied by a vivid turn-on green emission, and the intensity gradually decreased from 1a to 1d, which is consistent with the docking of two complexes with BSA. Both "turn-on" NIR and green emission of 1d can be mainly observed in nuclei of living cell within 24 h, while two phosphorescence traces of 1b were recorded in lysosomes by confocal imaging. Moreover, 1d shows the highest efficiency in inducing oncosis of Hela cells, and the relative process was investigated.
Collapse
Affiliation(s)
- Wenting Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Pengchao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Jing Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
23
|
Zhang H, Wang P, Huang N, Zhao L, Su Y, Li L, Bian S, Sawan M. Single neurons on microelectrode array chip: manipulation and analyses. Front Bioeng Biotechnol 2023; 11:1258626. [PMID: 37829565 PMCID: PMC10565505 DOI: 10.3389/fbioe.2023.1258626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Chips-based platforms intended for single-cell manipulation are considered powerful tools to analyze intercellular interactions and cellular functions. Although the conventional cell co-culture models could investigate cell communication to some extent, the role of a single cell requires further analysis. In this study, a precise intercellular interaction model was built using a microelectrode array [microelectrode array (MEA)]-based and dielectrophoresis-driven single-cell manipulation chip. The integrated platform enabled precise manipulation of single cells, which were either trapped on or transferred between electrodes. Each electrode was controlled independently to record the corresponding cellular electrophysiology. Multiple parameters were explored to investigate their effects on cell manipulation including the diameter and depth of microwells, the geometry of cells, and the voltage amplitude of the control signal. Under the optimized microenvironment, the chip was further evaluated using 293T and neural cells to investigate the influence of electric field on cells. An examination of the inappropriate use of electric fields on cells revealed the occurrence of oncosis. In the end of the study, electrophysiology of single neurons and network of neurons, both differentiated from human induced pluripotent stem cells (iPSC), was recorded and compared to demonstrate the functionality of the chip. The obtained preliminary results extended the nature growing model to the controllable level, satisfying the expectation of introducing more elaborated intercellular interaction models.
Collapse
Affiliation(s)
- Hongyong Zhang
- Zhejiang University, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Pengbo Wang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Huang
- School of Life Science, Westlake University, Hangzhou, China
| | - Lingrui Zhao
- School of Life Science, Westlake University, Hangzhou, China
| | - Yi Su
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sumin Bian
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Mohamad Sawan
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Borutzki Y, Skos L, Gerner C, Meier‐Menches SM. Exploring the Potential of Metal-Based Candidate Drugs as Modulators of the Cytoskeleton. Chembiochem 2023; 24:e202300178. [PMID: 37345897 PMCID: PMC10946712 DOI: 10.1002/cbic.202300178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
During recent years, accumulating evidence suggested that metal-based candidate drugs are promising modulators of cytoskeletal and cytoskeleton-associated proteins. This was substantiated by the identification and validation of actin, vimentin and plectin as targets of distinct ruthenium(II)- and platinum(II)-based modulators. Despite this, structural information about molecular interaction is scarcely available. Here, we compile the scattered reports about metal-based candidate molecules that influence the cytoskeleton, its associated proteins and explore their potential to interfere in cancer-related processes, including proliferation, invasion and the epithelial-to-mesenchymal transition. Advances in this field depend crucially on determining binding sites and on gaining comprehensive insight into molecular drug-target interactions. These are key steps towards establishing yet elusive structure-activity relationships.
Collapse
Affiliation(s)
- Yasmin Borutzki
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Doctoral School of ChemistryUniversity of Vienna1090ViennaAustria
| | - Lukas Skos
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Doctoral School of ChemistryUniversity of Vienna1090ViennaAustria
| | - Christopher Gerner
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University Vienna1090ViennaAustria
| | - Samuel M. Meier‐Menches
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University Vienna1090ViennaAustria
| |
Collapse
|
25
|
Enslin LE, Purkait K, Pozza MD, Saubamea B, Mesdom P, Visser HG, Gasser G, Schutte-Smith M. Rhenium(I) Tricarbonyl Complexes of 1,10-Phenanthroline Derivatives with Unexpectedly High Cytotoxicity. Inorg Chem 2023; 62:12237-12251. [PMID: 37489813 PMCID: PMC10410611 DOI: 10.1021/acs.inorgchem.3c00730] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Indexed: 07/26/2023]
Abstract
Eight rhenium(I) tricarbonyl aqua complexes with the general formula fac-[Re(CO)3(N,N'-bid)(H2O)][NO3] (1-8), where N,N'-bid is (2,6-dimethoxypyridyl)imidazo[4,5-f]1,10-phenanthroline (L1), (indole)imidazo[4,5-f]1,10-phenanthroline (L2), (5-methoxyindole)-imidazo[4,5-f]1,10-phenanthroline (L3), (biphenyl)imidazo[4,5-f]1,10-phenanthroline (L4), (fluorene)imidazo[4,5-f]1,10-phenanthroline (L5), (benzo[b]thiophene)imidazo[4,5-f]1,10-phenanthroline (L6), (5-bromothiazole)imidazo[4,5-f]1,10-phenanthroline (L7), and (4,5-dimethylthiophene)imidazo[4,5-f]1,10-phenanthroline (L8), were synthesized and characterized using 1H and 13C{1H} NMR, FT-IR, UV/Vis absorption spectroscopy, and ESI-mass spectrometry, and their purity was confirmed by elemental analysis. The stability of the complexes in aqueous buffer solution (pH 7.4) was confirmed by UV/Vis spectroscopy. The cytotoxicity of the complexes (1-8) was then evaluated on prostate cancer cells (PC3), showing a low nanomolar to low micromolar in vitro cytotoxicity. Worthy of note, three of the Re(I) tricarbonyl complexes showed very low (IC50 = 30-50 nM) cytotoxic activity against PC3 cells and up to 26-fold selectivity over normal human retinal pigment epithelial-1 (RPE-1) cells. The cytotoxicity of both complexes 3 and 6 was lowered under hypoxic conditions in PC3 cells. However, the compounds were still 10 times more active than cisplatin in these conditions. Additional biological experiments were then performed on the most selective complexes (complexes 3 and 6). Cell fractioning experiments followed by ICP-MS studies revealed that 3 and 6 accumulate mostly in the mitochondria and nucleus, respectively. Despite the respective mitochondrial and nuclear localization of 3 and 6, 3 did not trigger the apoptosis pathways for cell killing, whereas 6 can trigger apoptosis but not as a major pathway. Complex 3 induced a paraptosis pathway for cell killing while 6 did not induce any of our other tested pathways, namely, necrosis, paraptosis, and autophagy. Both complexes 3 and 6 were found to be involved in mitochondrial dysfunction and downregulated the ATP production of PC3 cells. To the best of our knowledge, this report presents some of the most cytotoxic Re(I) carbonyl complexes with exceptionally low nanomolar cytotoxic activity toward prostate cancer cells, demonstrating further the future viability of utilizing rhenium in the fight against cancer.
Collapse
Affiliation(s)
- Lucy E. Enslin
- Department
of Chemistry, University of the Free State, Bloemfontein 9301, South Africa
| | - Kallol Purkait
- Chimie
ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for
Inorganic Chemistry, F-75005 Paris, France
| | - Maria Dalla Pozza
- Chimie
ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for
Inorganic Chemistry, F-75005 Paris, France
| | - Bruno Saubamea
- Plateforme
Imagerie Cellulaire et Moléculaire, Faculté de Pharmacie, Université Paris Cité, F-75270 Paris, France
| | - Pierre Mesdom
- Chimie
ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for
Inorganic Chemistry, F-75005 Paris, France
| | - Hendrik G. Visser
- Department
of Chemistry, University of the Free State, Bloemfontein 9301, South Africa
| | - Gilles Gasser
- Chimie
ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for
Inorganic Chemistry, F-75005 Paris, France
| | | |
Collapse
|
26
|
Zhang D, Yuan R, Pan J, Fan Q, Sun K, Xu Z, Gao X, Wang Q, He J, Ye Y, Mu Z, Leng J, Gao H. Dihydrotanshinone Triggers Porimin-Dependent Oncosis by ROS-Mediated Mitochondrial Dysfunction in Non-Small-Cell Lung Cancer. Int J Mol Sci 2023; 24:11953. [PMID: 37569328 PMCID: PMC10419281 DOI: 10.3390/ijms241511953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer death. Non-small-cell lung cancer (NSCLC) accounts for the majority of lung cancer diagnoses. Dihydrotanshinone (DHT) is a compound extract from Salvia miltiorrhiza, which has favorable anti-inflammatory and anti-cancer activities. However, the role of DHT in NSCLC has not been fully studied. The anti-cancer drugs used for treating lung cancer often lead to apoptosis; however, the drug resistance of apoptosis restricts the effect of these drugs. Oncosis is a passive form of cell death that is different from apoptosis. It is characterized by cell swelling, and Porimin is a specific marker for oncosis. In this study, the role of DHT in mediating oncosis in A549 cells was investigated. In vitro, the MTS assay was used to detect cell activity after DHT treatment. Microscopy and electron microscopy were used to observe cell morphology changes. Western blotting was used to detect protein expression. Flow cytometry was used to detect intracellular reactive oxygen species (ROS) level, calcium ion (Ca2+) level, and cell mortality. The intracellular Lactic dehydrogenase (LDH) level was detected by an LDH detection kit after DHT treatment. The ATP level was detected using an ATP detection kit. In vivo, Lewis lung cancer (LLC) xenograft mice were used to evaluate the anti-tumor effect of DHT. Hematoxylin and eosin (HE) staining was used to detect the pathology of lung cancer tumors. The detection of Porimin in the tumor tissues of the mice after DHT administration was assessed by immunohistochemistry (IHC). The results of this study showed that DHT treatment changed the cell morphology; destroyed the mitochondrial structure; increased the expression of Porimin; increased the levels of LDH, ROS, and Ca2+; decreased the mitochondrial membrane potential and ATP level; and played an anti-tumor role in vitro by mediating oncosis in A549 cells. The in vivo studies showed that DHT could effectively inhibit tumor growth. The results of protein detection and IHC detection in the tumor tissues showed that the expression of Porimin was increased and that oncosis occurred in the tumor tissues of mice. DHT triggered Porimin-dependent oncosis by ROS-mediated mitochondrial dysfunction in NSCLC. The in vivo studies showed that DHT could inhibit tumor growth in LLC xenograft mice by triggering oncosis. This study indicates the potential for DHT to treat NSCLC.
Collapse
Affiliation(s)
- Dongjie Zhang
- College of Basic Medical, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jiaping Pan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qiumei Fan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Kaili Sun
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhipeng Xu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiang Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qinqin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yaqing Ye
- College of Basic Medical, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhengrong Mu
- College of Basic Medical, Guangxi Medical University, Nanning 530200, China
| | - Jing Leng
- College of Basic Medical, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
27
|
Wang C, Sun Y, Huang S, Wei Z, Tan J, Wu C, Chen Q, Zhang X. Self-Immolative Photosensitizers for Self-Reported Cancer Phototheranostics. J Am Chem Soc 2023. [PMID: 37216494 DOI: 10.1021/jacs.3c01666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photosensitizers to precise target and change fluorescence upon light illumination could accurately self-report where and when the photosensitizers work, enabling us to visualize the therapeutic process and precisely regulate treatment outcomes, which is the unremitting pursuit of precision and personalized medicine. Here, we report self-immolative photosensitizers by adopting a strategy of light-manipulated oxidative cleavage of C═C bonds that can generate a burst of reactive oxygen species, to cleave to release self-reported red-emitting products and trigger nonapoptotic cell oncosis. Strong electron-withdrawing groups are found to effectively suppress the C═C bond cleavage and phototoxicity via studying the structure-activity relationship, allowing us to elaborate NG1-NG5 that could temporarily inactivate the photosensitizer and quench the fluorescence by different glutathione (GSH)-responsive groups. Thereinto, NG2 with 2-cyano-4-nitrobenzene-1-sulfonyl group displays excellent GSH responsiveness than the other four. Surprisingly, NG2 shows better reactivity with GSH in weakly acidic condition, which inspires the application in weakly acidic tumor microenvironment where GSH elevates. To this end, we further synthesize NG-cRGD by anchoring integrin αvβ3 binding cyclic pentapeptide (cRGD) for tumor targeting. In A549 xenografted tumor mice, NG-cRGD successfully deprotects to restore near-infrared fluorescence because of elevated GSH in tumor site, which is subsequently cleaved upon light irradiation releasing red-emitting products to report photosensitizer working, while effectively ablating tumors via triggered oncosis. The advanced self-immolative organic photosensitizer may accelerate the development of self-reported phototheranostics in future precision oncology.
Collapse
Affiliation(s)
- Chunfei Wang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yongjie Sun
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Shaojuan Huang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Zixiang Wei
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Jingyun Tan
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang Chen
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China
| |
Collapse
|
28
|
Gao H, Cao Z, Liu H, Chen L, Bai Y, Wu Q, Yu X, Wei W, Wang M. Multifunctional nanomedicines-enabled chemodynamic-synergized multimodal tumor therapy via Fenton and Fenton-like reactions. Theranostics 2023; 13:1974-2014. [PMID: 37064867 PMCID: PMC10091877 DOI: 10.7150/thno.80887] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 04/18/2023] Open
Abstract
Chemodynamic therapy (CDT) is well-known for using the tumor microenvironment to activate the Fenton reaction or Fenton-like reaction to generate strong oxidative hydroxyl radicals for tumor-specific treatment. It is highly selective and safe, without depth limitation of tissue penetration, and shows its potential as a new green therapeutic method with great clinical application. However, the catalytic efficiency of reagents involved in the Fenton reaction is severely affected by the inherent microenvironmental limitations of tumors and the strict Fenton reaction-dependent conditions. With the increasing application of nanotechnology in the medical field, combined therapies based on different types of functional nanomaterials have opened up new avenues for the development of next-generation CDT-enhanced system. This review will comprehensively exemplify representative results of combined therapies of CDT with other antitumor therapies such as chemotherapy, phototherapy, sonodynamic therapy, radiation therapy, magnetic hyperthermia therapy, immunotherapy, starvation therapy, gas therapy, gene therapy, oncosis therapy, or a combination thereof for improving antitumor efficiency from hundreds of the latest literature, introduce strategies such as the ingenious design of nanomedicines and tumor microenvironment regulations to enhance the combination therapy, and further summarize the challenges and future perspective of CDT-based multimodal anticancer therapy.
Collapse
Affiliation(s)
- Haiyan Gao
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, P. R. China
| | - Zhiping Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, 999077, China
| | - Huanhuan Liu
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, P. R. China
| | - Lijuan Chen
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, P. R. China
| | - Yan Bai
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, P. R. China
| | - Qingxia Wu
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, P. R. China
| | - Xuan Yu
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, P. R. China
| | - Wei Wei
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, P. R. China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, P. R. China
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, 450003, P. R. China
| |
Collapse
|
29
|
Guo J, Niu K, Ma BF, Sun LN, Fang QW, An JX. Electroacupuncture ameliorates surgery-induced spatial memory deficits by promoting mitophagy in rats. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:74. [PMID: 36819507 PMCID: PMC9929787 DOI: 10.21037/atm-22-6262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/10/2023] [Indexed: 01/30/2023]
Abstract
Background This study sought to explore the mechanism underlying the therapeutic effects of electroacupuncture (EA) on spatial memory deficits caused by surgery. Methods Hepatic apex resection was performed under propofol-based total intravenous anesthesia. Male Sprague-Dawley rats were subjected to EA treatment or EA + mitochondrial division inhibitor-1 (mdivi-1) treatment once a day for three consecutive days after surgery. The Morris water maze test was used to evaluate the spatial memory of the rats after surgery. Tissue from the hippocampus of each rat was frozen and used for transcriptomic and proteomic analyses to identify potential targets for EA treatment. Western blotting was used to confirm the protein expression levels. The levels of reactive oxygen species (ROS) and adenosine triphosphate (ATP) were detected using commercial kits. The rat mitochondria were then isolated, and the activity of mitochondrial complex V was assessed. Results EA attenuated surgery-induced spatial memory deficits on postoperative day 3, while these effects were reversed by treatment with the mdivi-1 (P<0.05). Ribonucleic acid (RNA)-sequencing revealed that EA upregulated multiple metabolic pathways and the phosphatidylinositol 3‑kinas/protein kinase B signaling pathway. The proteomic and western blotting results suggested that the EA treatment substantially downregulated coiled-coil-helix-coiled-coil-helix domain containing 3 (ChChd3) expression in the hippocampus. The EA treatment significantly increased the autophagy-related protein levels, including phosphatase and tensin homolog-induced kinase 1, Parkin, MAP1LC3 (LC3), and Beclin1, and inhibited the production of ROS and inflammatory cytokine interleukin-1β in the hippocampus (P<0.05). Conclusions These results suggest that EA ameliorates postoperative spatial memory deficits and protects hippocampus from oxidative stress and inflammation through enhanced autophagy in an animal model of perioperative neurocognitive disorders (PNDs).
Collapse
Affiliation(s)
- Jian Guo
- School of Anesthesiology, Weifang Medical University, Weifang, China;,Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China;,Department of Anesthesiology, Yan’an People’s Hospital, Yan’an, China
| | - Kun Niu
- Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China;,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Anesthesiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Bao-Feng Ma
- School of Anesthesiology, Weifang Medical University, Weifang, China;,Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Li-Na Sun
- School of Anesthesiology, Weifang Medical University, Weifang, China;,Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Qi-Wu Fang
- Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Jian-Xiong An
- School of Anesthesiology, Weifang Medical University, Weifang, China;,Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China;,Department of Anesthesiology, Pain and Sleep Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
30
|
Wang X, Zhang C, Madji R, Voros C, Mazères S, Bijani C, Deraeve C, Cuvillier O, Gornitzka H, Maddelein ML, Hemmert C. N-Heterocyclic Carbene-Iridium Complexes as Photosensitizers for In Vitro Photodynamic Therapy to Trigger Non-Apoptotic Cell Death in Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020691. [PMID: 36677751 PMCID: PMC9861386 DOI: 10.3390/molecules28020691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
A series of seven novel iridium complexes were synthetized and characterized as potential photosensitizers for photodynamic therapy (PDT) applications. Among them, four complexes were evaluated in vitro for their anti-proliferative activity with and without irradiation on a panel of five cancer cell lines, namely PC-3 (prostate cancer), T24 (bladder cancer), MCF7 (breast cancer), A549 (lung cancer) and HeLa (cervix cancer), and two non-cancerous cell models (NIH-3T3 fibroblasts and MC3T3 osteoblasts). After irradiation at 458 nm, all tested complexes showed a strong selectivity against cancer cells, with a selectivity index (SI) ranging from 8 to 34 compared with non-cancerous cells. The cytotoxic effect of all these complexes was found to be independent of the anti-apoptotic protein Bcl-xL. The compound exhibiting the best selectivity, complex 4a, was selected for further investigations. Complex 4a was mainly localized in the mitochondria. We found that the loss of cell viability and the decrease in ATP and GSH content induced by complex 4a were independent of both Bcl-xL and caspase activation, leading to a non-apoptotic cell death. By counteracting the intrinsic or acquired resistance to apoptosis associated with cancer, complex 4a could be an interesting therapeutic alternative to be studied in preclinical models.
Collapse
Affiliation(s)
- Xing Wang
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Chen Zhang
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Ryma Madji
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Camille Voros
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Christian Bijani
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Céline Deraeve
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Olivier Cuvillier
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| | - Heinz Gornitzka
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| | - Marie-Lise Maddelein
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| | - Catherine Hemmert
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| |
Collapse
|
31
|
Xiang H, Shen X, Chen E, Chen W, Song Z. Construction and validation of a novel algorithm based on oncosis-related lncRNAs comprising the immune landscape and prediction of colorectal cancer prognosis. Oncol Lett 2022; 25:63. [PMID: 36644148 PMCID: PMC9827452 DOI: 10.3892/ol.2022.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) has high morbidity and mortality, particularly if diagnosed at an advanced stage. Although there have been several studies on CRC, few have investigated the relationship between oncosis and CRC. Thus, the purpose of the present study was to identify oncosis-related long noncoding RNAs (lncRNAs) and to establish a clinical prognostic model. Original data were acquired from The Cancer Genome Atlas database and PubMed. Differentially expressed oncosis-related lncRNAs (DEorlncRNAs) were identified and were subsequently formed into pairs. Next, a series of tests and analyses, including both univariate and multivariate analyses, as well as Lasso and Cox regression analyses, were performed to establish a receiver operating characteristic curve. A cut-off point was subsequently used to divide the samples into groups labelled as high- or low-risk. Thus, a model was established and evaluated in several dimensions. Six pairs of DEorlncRNAs associated with prognosis according to the algorithm were screened out and the CRC cases were divided into high- and low-risk groups. Significant differences between patients in the different risk groups were observed for several traits, including survival outcomes, clinical pathology characteristics, immune cell infiltration status and drug sensitivity. In addition, PCR and flow cytometry were performed to further verify the model. In summary, a new risk model algorithm based on six pairs of DEorlncRNAs in CRC, which does not require specific data regarding the level of gene expression, was established and validated. This algorithm may be used to predict patient prognosis, immune cell infiltration and drug sensitivity.
Collapse
Affiliation(s)
- Haoyi Xiang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China,Zhejiang University School of Medicine, Hangzhou, Zhejiang 310011, P.R. China
| | - Xuning Shen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China,Zhejiang University School of Medicine, Hangzhou, Zhejiang 310011, P.R. China
| | - Engeng Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China,Professor Wei Chen, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, Zhejiang 310012, P.R. China, E-mail:
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China,Correspondence to: Professor Zhangfa Song, Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, 3 Qingchun East Road, Hangzhou, Zhejiang 310016, P.R. China, E-mail:
| |
Collapse
|
32
|
Luo M, Ji J, Yang K, Li H, Kang L. The role of autophagy in the treatment of colon cancer by chlorin e6 photodynamic therapy combined with oxaliplatin. Photodiagnosis Photodyn Ther 2022; 40:103082. [PMID: 36028170 DOI: 10.1016/j.pdpdt.2022.103082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Photodynamic therapy is a tumour treatment method. Its mechanism mainly induces apoptosis, autophagy, and other ways to cause cell death. Therefore, this study aims to evaluate the therapeutic effect of chlorine e6 photodynamic therapy (Ce6-PDT) combined with oxaliplatin (L-OHP) in colon cancer and to investigate the role of autophagy in L-OHP treatment and Ce6-PDT combined with L-OHP in colon cancer. METHODS CCK-8 assay, Scratch wound healing assay, and Western Blot (WB) were used to identify drug-resistant colon cancer cell line SW620/L-OHP. Annexin V/FITC assay, laser confocal double immunofluorescence staining method and WB were employed to investigate the apoptosis and autophagy changes in Ce6-PDT combined with L-OHP. RESULTS Drug resistance cells SW620/L-OHP were developed under the continuous multi-generation of L-OHP treatment, and the expression of ATP-binding cassette subfamily B member 1 (ABCB1) and ATG5 proteins were increased. The results of immunofluorescence showed that LC3B accumulated in SW620 cells and SW620/L-OHP cells under the treatment of L-OHP. The WB results indicated that LC3B and ATG5 protein expression was increasing in SW620 cells and SW620/L-OHP cells. Inhibition of L-OHP-induced autophagy reduces SW620 cells and SW620/L-OHP cells' viability while increasing apoptosis and the Pro Caspase-3 protein expression. The combination of Ce6-PDT and L-OHP decreased the cell viability, the cell migration ability, the Bcl-2 protein expression, and increased the apoptosis rate, Pro Caspase-3 protein expression in SW620 cells. CONCLUSIONS L-OHP can cause SW620 cells drug resistance. Autophagy plays a protective role in the L-OHP treatment of SW620 cells and SW620/L-OHP cells, and inhibition of autophagy can increase the efficacy of L-OHP. Ce6-PDT combined with L-OHP can further improve the tumor's therapeutic effect, and autophagy inhibition can improve the efficacy of combined therapy.
Collapse
Affiliation(s)
- Mengyu Luo
- College of Public Health, Xinjiang Medical University, No 567, SHangde North Road, SHuimogou District, Urumqi, Xinjiang, China; Key Laboratory of Special Environment and Health Research in Xinjiang, China
| | - Jiayin Ji
- College of Public Health, Xinjiang Medical University, No 567, SHangde North Road, SHuimogou District, Urumqi, Xinjiang, China; Key Laboratory of Special Environment and Health Research in Xinjiang, China
| | - Kaizhen Yang
- The First People's Hospital of Urumqi, Urumqi, Xinjiang, China
| | - Hongxia Li
- College of Public Health, Xinjiang Medical University, No 567, SHangde North Road, SHuimogou District, Urumqi, Xinjiang, China; Key Laboratory of Special Environment and Health Research in Xinjiang, China
| | - Ling Kang
- College of Public Health, Xinjiang Medical University, No 567, SHangde North Road, SHuimogou District, Urumqi, Xinjiang, China; Key Laboratory of Special Environment and Health Research in Xinjiang, China.
| |
Collapse
|
33
|
Ortega-Forte E, Hernández-García S, Vigueras G, Henarejos-Escudero P, Cutillas N, Ruiz J, Gandía-Herrero F. Potent anticancer activity of a novel iridium metallodrug via oncosis. Cell Mol Life Sci 2022; 79:510. [PMID: 36066676 PMCID: PMC9448686 DOI: 10.1007/s00018-022-04526-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Oncosis (from Greek ónkos, meaning "swelling") is a non-apoptotic cell death process related to energy depletion. In contrast to apoptosis, which is the main form of cell death induced by anticancer drugs, oncosis has been relatively less explored but holds potential to overcome drug resistance phenomena. In this study, we report a novel rationally designed mitochondria-targeted iridium(III) complex (OncoIr3) with advantageous properties as a bioimaging agent. OncoIr3 exhibited potent anticancer activity in vitro against cancer cells and displayed low toxicity to normal dividing cells. Flow cytometry and fluorescence-based assays confirmed an apoptosis-independent mechanism involving energy depletion, mitochondrial dysfunction and cellular swelling that matched with the oncotic process. Furthermore, a Caenorhabditis elegans tumoral model was developed to test this compound in vivo, which allowed us to prove a strong oncosis-derived antitumor activity in animals (with a 41% reduction of tumor area). Indeed, OncoIr3 was non-toxic to the nematodes and extended their mean lifespan by 18%. Altogether, these findings might shed new light on the development of anticancer metallodrugs with non-conventional modes of action such as oncosis, which could be of particular interest for the treatment of apoptosis-resistant cancers.
Collapse
Affiliation(s)
- Enrique Ortega-Forte
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| | - Gloria Vigueras
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| | - Natalia Cutillas
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| |
Collapse
|
34
|
Phosphorescent Ir(III) Complexes for Biolabeling and Biosensing. Top Curr Chem (Cham) 2022; 380:35. [PMID: 35948820 DOI: 10.1007/s41061-022-00389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/27/2022] [Indexed: 10/15/2022]
Abstract
Cyclometalated Ir(III) complexes exhibit strong phosphorescence emission with lifetime of submicroseconds to several microseconds at room temperature. Their synthetic versatility enables broad control of physical properties, such as charge and lipophilicity, as well as emission colors. These favorable properties have motivated the use of Ir(III) complexes in luminescent bioimaging applications. This review examines the recent progress in the development of phosphorescent biolabels and sensors based on Ir(III) complexes. It begins with a brief introduction about the basic principles of the syntheses and photophysical processes of cyclometalated Ir(III) complexes. Focus is placed on illustrating the broad imaging utility of Ir(III) complexes. Phosphorescent labels illuminating intracellular organelles, including mitochondria, lysosomes, and cell membranes, are summarized. Ir(III) complexes capable of visualization of tumor spheroids and parasites are also introduced. Facile chemical modification of the cyclometalating ligands endows the Ir(III) complexes with strong sensing ability. Sensors of temperature, pH, CO2, metal ions, anions, biosulfur species, reactive oxygen species, peptides, and viscosity have recently been added to the molecular imaging tools. This diverse utility demonstrates the potential of phosphorescent Ir(III) complexes toward bioimaging applications.
Collapse
|
35
|
Wang MM, Li HM, Deng DP, Su Y, Su Z. Anticancer performance of Ir(III)-based anticancer agents in the treatment of cisplatin resistant cancer cells. ChemMedChem 2022; 17:e202200273. [PMID: 35726053 DOI: 10.1002/cmdc.202200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Indexed: 11/07/2022]
Abstract
The resistance to cisplatin of cancer cells have dramatically blocked its further application in the practical treatment. The generation of cisplatin resistance was a complicated physiological process, even several mechanisms have been reported. New metal-based agents with distinct anticancer mechanisms were still highly desired. In this concept, we have described Ir(III)-based anticancer agents and the underlying anticancer mechanisms, which could inhibit the antiproliferation of cisplatin resistant tumors. This work could benefit the society to develop more effective Ir(III)-based agents to combat cisplatin resistance.
Collapse
Affiliation(s)
| | | | | | - Yan Su
- Nanjing Normal University, Chemistry, CHINA
| | - Zhi Su
- Nanjing Normal University, Chemistry, Wenyuan Rd. #1, 210093, Nanjing, CHINA
| |
Collapse
|
36
|
Komarnicka UK, Kozieł S, Skórska-Stania A, Kyzioł A, Tisato F. Synthesis, physicochemical characterization and antiproliferative activity of phosphino Ru(II) and Ir(III) complexes. Dalton Trans 2022; 51:8605-8617. [PMID: 35615959 DOI: 10.1039/d2dt01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we present the synthesis of new complexes based on ruthenium(II) (Ru(η6-p-cymene)Cl2PPh2CH2OH (RuPOH) and Ru(η6-p-cymene)Cl2P(p-OCH3Ph)2CH2OH (RuMPOH)) and iridium(III) (Ir(η5-Cp*)Cl2P(p-OCH3Ph)2CH2OH (IrMPOH) and Ir(η5-Cp*)Cl2PPh2CH2OH (IrPOH)) containing phosphine ligands with/without methoxy motifs on phenyl rings (P(p-OCH3Ph)2CH2OH (MPOH) and PPh2CH2OH (POH)). The complexes were characterized by mass spectrometry, NMR spectroscopy (1D: 1H, 13C{1H}, and 31P{1H} and 2D: HMQC, HMBC, and COSY NMR) and elemental analysis. All the complexes were structurally identified by single-crystal X-ray diffraction analysis. The Ru(II) and Ir(III) complexes have a typical piano-stool geometry with an η6-coordinated arene (RuII complexes) or η5-coordinated (IrIII compounds) and three additional sites of ligation occupied by two chloride ligands and the phosphine ligand. Oxidation of NADH to NAD+ with high efficiency was catalyzed by complexes containing P(p-OCH3Ph)2CH2OH (IrMPOH and RuMPOH). The catalytic property might have important future applications in biological and medical fields like production of reactive oxygen species (ROS). Furthermore, the redox activity of the complexes was confirmed by cyclic voltamperometry. Biochemical assays demonstrated the ability of Ir(III) and Ru(II) complexes to induce significant cytotoxicity in various cancer cell lines. Furthermore, we found that RuPOH and RuMPOH selectively inhibit the proliferation of skin cancer cells (WM266-4; IC50, after 24 h: av. 48.3 μM; after 72 h: av. 10.2 μM) while Ir(III) complexes were found to be moderate against prostate cancer cells (DU145).
Collapse
Affiliation(s)
- Urszula K Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | | | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | | |
Collapse
|
37
|
Lu JJ, Ma XR, Xie K, Yang PX, Li RT, Ye RR. Novel heterobimetallic Ir(III)-Re(I) complexes: design, synthesis and antitumor mechanism investigation. Dalton Trans 2022; 51:7907-7917. [PMID: 35535974 DOI: 10.1039/d2dt00719c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The reasonable design of binuclear or multinuclear metal complexes has demonstrated their potential advantages in the anticancer field. Herein, three heterobimetallic Ir(III)-Re(I) complexes, [Ir(C^N)2LRe(CO)3DIP](PF6)2 (C^N = 2-phenylpyridine (ppy, in IrRe-1), 2-(2-thienyl)pyridine (thpy, in IrRe-2) and 2-(2,4-difluorophenyl)pyridine (dfppy, in IrRe-3); L = pyridylimidazo[4,5-f][1,10]phenanthroline; DIP = 4,7-diphenyl-1,10-phenanthroline), were designed and synthesized. The heterobimetallic IrRe-1-3 complexes show pH-sensitive emission properties, which can be used for specific imaging of lysosomes. Additionally, IrRe-1-3 display higher cytotoxicity against tested tumor cell lines than the clinical chemotherapeutic drug cisplatin. Further mechanisms indicate that IrRe-1-3 can induce apoptosis and autophagy, increase intracellular reactive oxygen species (ROS), depolarize the mitochondrial membrane (MMP), block the cell cycle at the G0/G1 phase and inhibit cell migration. To the best of our knowledge, this is the first example of the synthesis of heterobimetallic Ir(III)-Re(I) complexes with superior anticancer activities and evaluation of their anticancer mechanisms.
Collapse
Affiliation(s)
- Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Kai Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Pei-Xin Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| |
Collapse
|
38
|
Chen H, Zhou C, Hu Z, Sang M, Ni S, Wu J, Pan Q, Tong J, Liu K, Li N, Zhu L, Xu G. Construction of an algorithm based on oncosis-related LncRNAs comprising the molecular subtypes and a risk assessment model in lung adenocarcinoma. J Clin Lab Anal 2022; 36:e24461. [PMID: 35476781 PMCID: PMC9169186 DOI: 10.1002/jcla.24461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Background As an important non‐apoptotic cell death method, oncosis has been reported to be closely associated with tumors in recent years. However, few research reported the relationship between oncosis and lung cancer. Methods In this study, we established an oncosis‐based algorithm comprised of cluster grouping and a risk assessment model to predict the survival outcomes and related tumor immunity of patients with lung adenocarcinomas (LUAD). We selected 11 oncosis‐related lncRNAs associated with the prognosis (CARD8‐AS1, LINC00941, LINC01137, LINC01116, AC010980.2, LINC00324, AL365203.2, AL606489.1, AC004687.1, HLA‐DQB1‐AS1, and AL590226.1) to divide the LUAD patients into different clusters and different risk groups. Compared with patients in clsuter1, patients in cluster2 had a survival advantage and had a relatively more active tumor immunity. Subsequently, we constructed a risk assessment model to distinguish between patients into different risk groups, in which low‐risk patients tend to have a better prognosis. GO enrichment analysis revealed that the risk assessment model was closely related to immune activities. In addition, low‐risk patients tended to have a higher content of immune cells and stromal cells in tumor microenvironment, higher expression of PD‐1, CTLA‐4, HAVCR2, and were more sensitive to immune checkpoint inhibitors (ICIs), including PD‐1/CTLA‐4 inhibitors. The risk score had a significantly positive correlation with tumor mutation burden (TMB). The survival curve of the novel oncosis‐based algorithm suggested that low‐risk patients in cluster2 have the most obvious survival advantage. Conclusion The novel oncosis‐based algorithm investigated the prognosis and the related tumor immunity of patients with LUAD, which could provide theoretical support for customized individual treatment for LUAD patients.
Collapse
Affiliation(s)
- Hang Chen
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Chongchang Zhou
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zeyang Hu
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Menglu Sang
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Saiqi Ni
- Department of Urology, Ningbo City First Hospital, Ningbo, China
| | - Jiacheng Wu
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Qiaoling Pan
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Jingtao Tong
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Ni Li
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Linwen Zhu
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Guodong Xu
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
39
|
Challenges and opportunities in the development of metal-based anticancer theranostic agents. Biosci Rep 2022; 42:231168. [PMID: 35420649 PMCID: PMC9109461 DOI: 10.1042/bsr20212160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Around 10 million fatalities were recorded worldwide in 2020 due to cancer and statistical projections estimate the number to increase by 60% in 2040. With such a substantial rise in the global cancer burden, the disease will continue to impose a huge socio-economic burden on society. Currently, the most widely used clinical treatment modality is cytotoxic chemotherapy using platinum drugs which is used to treat variety of cancers. Despite its clinical success, critical challenges like resistance, off-target side effects and cancer variability often reduce its overall therapeutic efficiency. These challenges require faster diagnosis, simultaneous therapy and a more personalized approach toward cancer management. To this end, small-molecule ‘theranostic’ agents have presented a viable solution combining diagnosis and therapy into a single platform. In this review, we present a summary of recent efforts in the design and optimization of metal-based small-molecule ‘theranostic’ anticancer agents. Importantly, we highlight the advantages of a theranostic candidate over the purely therapeutic or diagnostic agent in terms of evaluation of its biological properties.
Collapse
|
40
|
Ye M, Huang WQ, Li ZX, Wang CX, Liu T, Chen Y, Hor CHH, Man WL, Ni WX. Osmium(VI) nitride triggers mitochondria-induced oncosis and apoptosis. Chem Commun (Camb) 2022; 58:2468-2471. [PMID: 35024704 DOI: 10.1039/d1cc05148b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report a new osmium(VI) nitrido complex bearing a nonplanar tetradentate ligand with potent anticancer activity. This complex causes mitochondrial damage, which induces liver cancer cell death via oncosis and apoptosis. This is the first osmium-based anticancer candidate that induces oncosis.
Collapse
Affiliation(s)
- Meng Ye
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Wan-Qiong Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Zi-Xin Li
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Chuan-Xian Wang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Tao Liu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China.
| | - YunZhou Chen
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P. R. China
| | | | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P. R. China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
- Clinical Research Centre, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| |
Collapse
|
41
|
Paprocka R, Wiese-Szadkowska M, Janciauskiene S, Kosmalski T, Kulik M, Helmin-Basa A. Latest developments in metal complexes as anticancer agents. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214307] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Pyroptosis-Mediated Periodontal Disease. Int J Mol Sci 2021; 23:ijms23010372. [PMID: 35008798 PMCID: PMC8745163 DOI: 10.3390/ijms23010372] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Pyroptosis is a caspase-dependent process relevant to the understanding of beneficial host responses and medical conditions for which inflammation is central to the pathophysiology of the disease. Pyroptosis has been recently suggested as one of the pathways of exacerbated inflammation of periodontal tissues. Hence, this focused review aims to discuss pyroptosis as a pathological mechanism in the cause of periodontitis. The included articles presented similarities regarding methods, type of cells applied, and cell stimulation, as the outcomes also point to the same direction considering the cellular events. The collected data indicate that virulence factors present in the diseased periodontal tissues initiate the inflammasome route of tissue destruction with caspase activation, cleavage of gasdermin D, and secretion of interleukins IL-1β and IL-18. Consequently, removing periopathogens’ virulence factors that trigger pyroptosis is a potential strategy to combat periodontal disease and regain tissue homeostasis.
Collapse
|
43
|
Shao M, Yao M, Liu X, Gao C, Liu W, Guo J, Zong J, Sun X, Liu Z. In Vitro and In Vivo of Triphenylamine-Appended Fluorescent Half-Sandwich Iridium(III) Thiosemicarbazones Antitumor Complexes. Inorg Chem 2021; 60:17063-17073. [PMID: 34709784 DOI: 10.1021/acs.inorgchem.1c02250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Half-sandwiched structure iridium(III) complexes appear to be an attractive organometallic antitumor agents in recent years. Here, four triphenylamine-modified fluorescent half-sandwich iridium(III) thiosemicarbazone (TSC) antitumor complexes were developed. Because of the "enol" configuration of the TSC ligands, these complexes formed a unique dimeric configuration. Aided by the appropriate fluorescence properties, studies found that complexes could enter tumor cells in an energy-dependent mode, accumulate in lysosomes, and result in the damage of lysosome integrity. Complexes could block the cell cycle, improve the levels of intrastitial reactive oxygen species, and lead to apoptosis, which followed an antitumor mechanism of oxidation. Compared with cisplatin, the antitumor potential in vivo and vitro confirmed that Ir4 could effectively inhibit tumor growth. Meanwhile, Ir4 could avoid detectable side effects in the experiments of safety evaluation. Above all, half-sandwich iridium(III) TSC complexes are expected to be an encouraging candidate for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Mingxiao Shao
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Meimei Yao
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Chao Gao
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Weiyan Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jinghang Guo
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jiawen Zong
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xinzhuo Sun
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
44
|
Wang K, Shao X, Tian Z, Liu L, Zhang C, Tan C, Zhang J, Ling P, Liu F, Chen Q, Diao J, Mao Z. A Continuous Add-On Probe Reveals the Nonlinear Enlargement of Mitochondria in Light-Activated Oncosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004566. [PMID: 34197052 PMCID: PMC8425930 DOI: 10.1002/advs.202004566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/03/2021] [Indexed: 05/25/2023]
Abstract
Oncosis, depending on DNA damage and mitochondrial swelling, is an important approach for treating cancer and other diseases. However, little is known about the behavior of mitochondria during oncosis, due to the lack of probes for in situ visual illumination of the mitochondrial membrane and mtDNA. Herein, a mitochondrial lipid and mtDNA dual-labeled probe, MitoMN, and a continuous add-on assay, are designed to image the dynamic process of mitochondria in conditions that are unobservable with current mitochondrial probes. Meanwhile, the MitoMN can induce oncosis in a light-activated manner, which results in the enlargement of mitochondria and the death of cancer cells. Using structured illumination microscopy (SIM), MitoMN-stained mitochondria with a dual-color response reveals, for the first time, how swelled mitochondria interacts and fuses with each other for a nonlinear enlargement to accelerate oncosis into an irreversible stage. With this sign of irreversible oncosis revealed by MitoMN, oncosis can be segregated into three stages, including before oncosis, initial oncosis, and accelerated oncosis.
Collapse
Affiliation(s)
- Kang‐Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistryState Key Laboratory of Oncology in South ChinaSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Xintian Shao
- Institute of Materia MedicaShandong First Medical University & Shandong Academy of Medical SciencesJinan250000P. R. China
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnati45267USA
- Shandong Academy of Pharmaceutical ScienceKey Laboratory of BiopharmaceuticalsEngineering Laboratory of Polysaccharide DrugsNational‐Local Joint Engineering Laboratory of Polysaccharide DrugsJinan250101P. R. China
| | - Zhiqi Tian
- Department of Molecular Genetics, Biochemistry, and MicrobiologyUniversity of Cincinnati College of MedicineCincinnati45267USA
| | - Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistryState Key Laboratory of Oncology in South ChinaSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Chengying Zhang
- Institute of Materia MedicaShandong First Medical University & Shandong Academy of Medical SciencesJinan250000P. R. China
- Shandong Academy of Pharmaceutical ScienceKey Laboratory of BiopharmaceuticalsEngineering Laboratory of Polysaccharide DrugsNational‐Local Joint Engineering Laboratory of Polysaccharide DrugsJinan250101P. R. China
- School of Pharmaceutical SciencesShandong UniversityJinan250101P. R. China
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistryState Key Laboratory of Oncology in South ChinaSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Jie Zhang
- Advanced Medical Research Institute/Translational Medicine Core Facility of Advanced Medical Research InstituteShandong UniversityJinan250101P. R. China
| | - Peixue Ling
- Shandong Academy of Pharmaceutical ScienceKey Laboratory of BiopharmaceuticalsEngineering Laboratory of Polysaccharide DrugsNational‐Local Joint Engineering Laboratory of Polysaccharide DrugsJinan250101P. R. China
- School of Pharmaceutical SciencesShandong UniversityJinan250101P. R. China
| | - Fei Liu
- Shandong Academy of Pharmaceutical ScienceKey Laboratory of BiopharmaceuticalsEngineering Laboratory of Polysaccharide DrugsNational‐Local Joint Engineering Laboratory of Polysaccharide DrugsJinan250101P. R. China
- School of Pharmaceutical SciencesShandong UniversityJinan250101P. R. China
| | - Qixin Chen
- Institute of Materia MedicaShandong First Medical University & Shandong Academy of Medical SciencesJinan250000P. R. China
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnati45267USA
- Shandong Academy of Pharmaceutical ScienceKey Laboratory of BiopharmaceuticalsEngineering Laboratory of Polysaccharide DrugsNational‐Local Joint Engineering Laboratory of Polysaccharide DrugsJinan250101P. R. China
| | - Jiajie Diao
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnati45267USA
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistryState Key Laboratory of Oncology in South ChinaSun Yat‐Sen UniversityGuangzhou510275P. R. China
| |
Collapse
|
45
|
Xiong K, Zhou Y, Karges J, Du K, Shen J, Lin M, Wei F, Kou J, Chen Y, Ji L, Chao H. Autophagy-Dependent Apoptosis Induced by Apoferritin-Cu(II) Nanoparticles in Multidrug-Resistant Colon Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38959-38968. [PMID: 34379404 DOI: 10.1021/acsami.1c07223] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapy continues to be the most commonly applied strategy for cancer. Despite the impressive clinical success obtained with several drugs, increasing numbers of (multi)drug-resistant tumors are reported. To overcome this shortcoming, novel drug candidates and delivery systems are urgently needed. Herein, a therapeutic copper polypyridine complex encapsulated in natural nanocarrier apoferritin is reported. The generated nanoparticles showed higher cytotoxicity toward various (drug-resistant) cancer cell lines than noncancerous cells. The study of the mechanism revealed that the compound triggers cell autophagy-dependent apoptosis. Promisingly, upon injection of the nanodrug conjugate into the bloodstream of a mouse model bearing a multidrug-resistant colon tumor, a strong tumor growth inhibition effect was observed. To date, this is the first study describing the encapsulation of a copper complex in apoferritin that acts by autophagy-dependent apoptosis.
Collapse
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ying Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Kejie Du
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jinchao Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Mingwei Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Junfeng Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
46
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
47
|
Shen J, Karges J, Xiong K, Chen Y, Ji L, Chao H. Cancer cell membrane camouflaged iridium complexes functionalized black-titanium nanoparticles for hierarchical-targeted synergistic NIR-II photothermal and sonodynamic therapy. Biomaterials 2021; 275:120979. [PMID: 34166910 DOI: 10.1016/j.biomaterials.2021.120979] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
The diagnosis and treatment of cancer is one of the biggest medical challenges of the century. Despite significant improvements, there remains an urgent need for novel anticancer procedures. Among the most promising approaches, increasing attention has been devoted towards photothermal and sonodynamic therapy in which sensitizers are activated upon light/ultrasound radiation to generate a cytotoxic effect. While these methods have undoubtedly shown a high therapeutic success, these techniques are intrinsically limited. Herein, the functionalization of black-titanium nanoparticle with iridium complexes and cancer cell membranes in a nanoplatform for hierarchical targeted synergistic photothermal and sonodynamic cancer imaging and therapy is proposed. The particles showed to generate efficiently heat upon irradiation and catalytically form reactive oxygen species upon ultrasound radiation. The nanoparticle formulation demonstrated to selectively localize in the mitochondria as well as to preferentially accumulate in cancerous over non-cancerous cells as well as in the tumor inside a mouse model, presenting a hierarchical targeting strategy. Upon synergistic irradiation at 1064 nm and ultrasound radiation, the nanoparticles were able to act as an imaging agent and identify the tumor site with high spatial resolution as well as act as a therapeutic agent and completely eradicate a tumor inside a mouse model.
Collapse
Affiliation(s)
- Jinchao Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, United States
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China; MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, PR China.
| |
Collapse
|
48
|
Zhang L, Geng Y, Li L, Tong X, Liu S, Liu X, Su Z, Xie Z, Zhu D, Bryce MR. Rational design of iridium-porphyrin conjugates for novel synergistic photodynamic and photothermal therapy anticancer agents. Chem Sci 2021; 12:5918-5925. [PMID: 35342539 PMCID: PMC8874234 DOI: 10.1039/d1sc00126d] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Near-infrared (NIR) emitters are important probes for biomedical applications. Nanoparticles (NPs) incorporating mono- and tetranuclear iridium(iii) complexes attached to a porphyrin core have been synthesized. They possess deep-red absorbance, long-wavelength excitation (635 nm) and NIR emission (720 nm). TD-DFT calculations demonstrate that the iridium-porphyrin conjugates herein combine the respective advantages of small organic molecules and transition metal complexes as photosensitizers (PSs): (i) the conjugates retain the long-wavelength excitation and NIR emission of porphyrin itself; (ii) the conjugates possess highly effective intersystem crossing (ISC) to obtain a considerably more long-lived triplet photoexcited state. These photoexcited states do not have the usual radiative behavior of phosphorescent Ir(iii) complexes, and they play a very important role in promoting the singlet oxygen (1O2) and heat generation required for photodynamic therapy (PDT) and photothermal therapy (PTT). The tetranuclear 4-Ir NPs exhibit high 1O2 generation ability, outstanding photothermal conversion efficiency (49.5%), good biocompatibility, low half-maximal inhibitory concentration (IC50) (0.057 μM), excellent photothermal imaging and synergistic PDT and PTT under 635 nm laser irradiation. To our knowledge this is the first example of iridium-porphyrin conjugates as PSs for photothermal imaging-guided synergistic PDT and PTT treatment in vivo.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University 5268 Renmin Street Changchun Jilin Province 130024 P. R. China
| | - Yun Geng
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University 5268 Renmin Street Changchun Jilin Province 130024 P. R. China
| | - Lijuan Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University 5268 Renmin Street Changchun Jilin Province 130024 P. R. China
| | - Xiaofan Tong
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University 5268 Renmin Street Changchun Jilin Province 130024 P. R. China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xingman Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University 5268 Renmin Street Changchun Jilin Province 130024 P. R. China
| | - Zhongmin Su
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University 5268 Renmin Street Changchun Jilin Province 130024 P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Dongxia Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University 5268 Renmin Street Changchun Jilin Province 130024 P. R. China
| | - Martin R Bryce
- Department of Chemistry, Durham University Durham DH1 3LE UK
| |
Collapse
|
49
|
Xu Y, Wang X, Song K, Du J, Liu J, Miao Y, Li Y. BSA-encapsulated cyclometalated iridium complexes as nano-photosensitizers for photodynamic therapy of tumor cells. RSC Adv 2021; 11:15323-15331. [PMID: 35424038 PMCID: PMC8698255 DOI: 10.1039/d1ra01740c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy is a promising treatment method. The development of suitable photosensitizers can improve therapeutic efficacy. Herein, we report three iridium complexes (Ir1, Ir2, and Ir3), and encapsulate them within bovine serum albumin (BSA) to form nano-photosensitizers (Ir1@BSA, Ir2@BSA, and Ir3@BSA) for photodynamic therapy (PDT) of tumor cells. In the structures of Ir(iii) complexes, we use the pyrazine heterocycle as part of the C^N ligands and explore the effect of different ligands on the ability to generate singlet oxygen (1O2) by changing the conjugation length of the ligand and increasing the coplanarity of the ligand. Besides, the fabricated nano-photosensitizers are beneficial to improve water dispersibility and increase cellular uptake ability. Through studying photophysical properties, 1O2 generation capacity, and cellular uptake performance, the results show that Ir1@BSA has the best photodynamic therapeutic effect on 4T1 tumor cells. This study provides an effective research basis for the further design of new nano-photosensitizers. Three new iridium complexes were synthesized and fabricated with BSA to form nano-photosensitizers, which can catalyze oxygen to produce singlet oxygen to achieve photodynamic therapy of tumor cells.![]()
Collapse
Affiliation(s)
- Yao Xu
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xiang Wang
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Kang Song
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jun Du
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jinliang Liu
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuhao Li
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
50
|
Yuan H, Han Z, Chen Y, Qi F, Fang H, Guo Z, Zhang S, He W. Ferroptosis Photoinduced by New Cyclometalated Iridium(III) Complexes and Its Synergism with Apoptosis in Tumor Cell Inhibition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014959] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hao Yuan
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Zhong Han
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Fen Qi
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Hongbao Fang
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| |
Collapse
|