1
|
Hao Y, Wang Y, Zhang L, Liu F, Jin Y, Long J, Chen S, Duan G, Yang H. Advances in antibacterial activity of zinc oxide nanoparticles against Staphylococcus aureus (Review). Biomed Rep 2024; 21:161. [PMID: 39268408 PMCID: PMC11391181 DOI: 10.3892/br.2024.1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Nanoparticles (NPs) are one of the promising strategies to deal with bacterial infections. As the main subset of NPs, metal and metal oxide NPs show destructive power against bacteria by releasing metal ions, direct contact of cell membranes and antibiotic delivery. Recently, a number of researchers have focused on the antibacterial activity of zinc oxide nanoparticles (ZnO NPs) against Staphylococcus aureus (S. aureus). Currently, there is a lack of a comprehensive review on ZnO NPs against S. aureus. Therefore, in this review, the antibacterial activity against S. aureus of ZnO NPs made by various synthetic methods was summarized, particularly the green synthetic ZnO NPs. The synergistic antibacterial effect against S. aureus of ZnO NPs with antibiotics was also summarized. Furthermore, the present review also emphasized the enhanced activities against S. aureus of ZnO nanocomposites, nano-hybrids and functional ZnO NPs.
Collapse
Affiliation(s)
- Yuqing Hao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Li Zhang
- Department of Infectious diseases, Xinyang Center for Disease Control and Prevention, Xinyang, Henan 464000, P.R. China
| | - Fang Liu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
2
|
Nadeem T, Kaleem M, Minhas LA, Batool S, Sattar MM, Bashir R, Mumtaz AS. Biogenic synthesis and characterization of antimicrobial, antioxidant, and antihemolytic zinc oxide nanoparticles from Desertifilum sp. TN-15 cell extract. DISCOVER NANO 2024; 19:161. [PMID: 39356402 PMCID: PMC11447203 DOI: 10.1186/s11671-024-04076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/30/2024] [Indexed: 10/03/2024]
Abstract
Cyanobacteria, being a prominent category of phototrophic organism, exhibit substantial potential as a valuable source of bioactive compounds and phytonutrients, including liposomes, amino derivatives, proteins, and carotenoids. In this investigation, a polyphasic approach was employed to isolate and characterize a newly discovered cyanobacterial strain from a rice field in the Garh Moor district of Jhang. Desertifilum sp. TN-15, a unique and less explored cyanobacterial strain, holds significant promise as a novel candidate for the synthesis of nanoparticles. This noticeable research gap underscores the novelty and untapped potential of Desertifilum sp. TN-15 in the field of nanomedicine. The characterization of the biogenically synthesized ZnO-NPs involved the application of diverse analytical techniques. Ultraviolet-visible spectroscopy revealed a surface plasmon resonance peak at 298 nm. Fourier transform infrared spectral analysis was utilized to confirm the involvement of biomolecules in the biogenic synthesis and stability. Scanning electron microscopy was employed to probe the surface morphology of the biogenic ZnO-NPs unveiling their size of 94.80 nm and star-shaped. Furthermore, X-ray diffraction analysis substantiated the crystalline nature of ZnO-NPs, with a crystalline size measuring 46 nm. To assess the physical stability of ZnO-NPs, zeta potential and dynamic light scattering measurements were conducted, yielding values of + 31.6 mV, and 94.80 nm, respectively, indicative of favorable stability. The antibacterial capabilities of Desertifilum sp. TN-15 are attributed to its abundance of bioactive components, including proteins, liposomes, amino derivatives, and carotenoids. Through the synthesis of zinc oxide nanoparticles (ZnO-NPs) with this strain, we have effectively used these chemicals to generate nanoparticles that exhibit noteworthy antibacterial activity against Staphylococcus aureus (MIC: 30.05 ± 0.003 µg/ml). Additionally, the ZnO-NPs displayed potent antifungal activity and antioxidant properties, as well as significant antihemolytic effects on red blood cells (IC50: 4.8 µg/ml). Cytotoxicity assessment using brine shrimps revealed an IC50 value of 3.1 µg/ml. The multifaceted actions of the biogenically synthesized ZnO-NPs underscore their potential applications in pharmacological and therapeutic fields. This study proposes a novel method for ZnO-NPs production utilizing the recently identified cyanobacterial strain Desertifilum sp. TN-15, highlighting the growing significance of biological systems in the environmentally friendly fabrication of metallic oxide nanomaterials.
Collapse
Affiliation(s)
- Taswar Nadeem
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Kaleem
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Lubna Anjum Minhas
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saima Batool
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Muzamil Sattar
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rifat Bashir
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Abdul Samad Mumtaz
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
3
|
Es-Haghi A, Amiri MS, Taghavizadeh Yazdi ME. Ferula latisecta gels for synthesis of zinc/silver binary nanoparticles: antibacterial effects against gram-negative and gram-positive bacteria and physicochemical characteristics. BMC Biotechnol 2024; 24:51. [PMID: 39090578 PMCID: PMC11292920 DOI: 10.1186/s12896-024-00878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
This study explores the potential antibacterial applications of zinc oxide nanoparticles (ZnO NPs) enhanced with silver (Ag) using plant gel (ZnO-AgO NPs). The problem addressed is the increasing prevalence of pathogenic bacteria and the need for new, effective antimicrobial agents. ZnO NPs possess distinctive physicochemical properties that enable them to selectively target bacterial cells. Their small size and high surface area-to-volume ratio allow efficient cellular uptake and interaction with bacterial cells. In this study, the average size of the synthesized ZnO-Ag nanoparticles was 77.1 nm, with a significant standard deviation of 33.7 nm, indicating a wide size distribution. The nanoparticles demonstrated remarkable antibacterial efficacy against gram-negative and gram-positive bacteria, with inhibition zones of 14.33 mm for E. coli and 15.66 mm for B. subtilis at a concentration of 300 µg/ml. Minimum inhibitory concentrations (MIC) were determined to be 100 µg/ml for E. coli and 75 µg/ml for S. saprophyticus. Additionally, ZnO-Ag NPs exhibited excellent biocompatibility, making them appropriate for various pharmacological uses. This study utilizes Ferula latisecta gels, offering a sustainable and eco-friendly approach to nanoparticle synthesis. Incorporating of Ag into ZnO NPs significantly enhances their antimicrobial properties, with the combined results showing great inhibition effects on pathogenic microbes. The findings suggest that ZnO-Ag NPs could be a promising candidate for addressing the challenges posed by drug-resistant bacterial infections and enhancing antimicrobial treatments.
Collapse
Affiliation(s)
- Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | | | | |
Collapse
|
4
|
Hamida RS, AlMotwaa SM, Al-Otaibi WA, Alqhtani HA, Ali MA, Bin-Meferij MM. Apoptotic Induction by Biosynthesized Gold Nanoparticles Using Phormidesmis communis Strain AB_11_10 against Osteosarcoma Cancer. Biomedicines 2024; 12:1570. [PMID: 39062143 PMCID: PMC11274524 DOI: 10.3390/biomedicines12071570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Phormidesmis communis strain AB_11_10 was isolated and identified using microscopy and 16s rRNA sequencing, and its phytochemical constituents were determined using liquid chromatography-quadrupole time-of-flight mass spectrometry. The isolate had a segmented filamentous shape with a blue-green color. Many biomolecules, including organic compounds, amino acids, and fatty acids, were detected. P. communis strain AB_11_10 was used to synthesize gold nanoparticles (Ph-AuNPs) by adjusting the optimum reaction conditions. The concentration, algal/precursor ratio, temperature, reaction time, and pH significantly influenced the synthesis of the Ph-AuNPs. Mixing 1 mL of 0.5 mM of HAuCl4 with 1 mL of algal extract and exposing the mixture to 100 °C for 30 min at pH 5.6 were the optimum conditions for the biosynthesis of Ph-AuNPs at a wavelength of 524.5 nm. The Ph-AuNPs were characterized using TEM, SEM, EDX, and mapping Zeta sizer and FTIR. The Ph-AuNPs had quasi-spherical to triangular shapes with an average diameter of 9.6 ± 4.3 nm. Ph-AuNPs composed of 76.10 ± 3.14% of Au and trace amounts of carbon and oxygen were detected, indicating that the P. communis strain AB_11_10 successfully synthesized Ph-AuNPs. The hydrodynamic diameter of the Ph-AuNPs was 28.5 nm, and their potential charge was -17.7 mV. O-H, N-H, C=C, N-O, C-H, and C-O were coated onto the surfaces of the Ph-AuNPs. These groups correspond to algal phytochemicals, which may have been the main reducing and stabilizing substances during the Ph-AuNP synthesis. The therapeutic activity of the Ph-AuNPs against osteosarcoma cancers was examined in MG-63 and SAOS-2 cell lines, while their biocompatibility was tested against Vero cell lines using a sulforhodamine B assay. The Ph-AuNPs had potent antitumor activity against the MG-63 and SAOS-2 cells, with a low toxicity toward Vero cells. Flow cytometry and cell cycle arrest analyses revealed that the Ph-AuNPs enhanced the apoptotic pathway and arrested the cell cycle in the MG-63 and SAOS-2 cells. P. communis strain AB_11_10 provides a new source to synthesize small, stable, and biocompatible AuNPs that act as apoptotic enhancers in osteosarcoma.
Collapse
Affiliation(s)
| | - Sahar M. AlMotwaa
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Waad A. Al-Otaibi
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Haifa A. Alqhtani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Abdelaal Ali
- Plant Production Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY) New Borg El-Arab, Alexandria 21934, Egypt
| | - Mashael Mohammed Bin-Meferij
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
5
|
Verma N, Kaushal P, Sidhu AK. Harnessing biological synthesis: Zinc oxide nanoparticles for plant biotic stress management. Front Chem 2024; 12:1432469. [PMID: 39055042 PMCID: PMC11269107 DOI: 10.3389/fchem.2024.1432469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Crop growth and yield are negatively impacted by increased biotic stress in the agricultural sector due to increasing global warming and changing climatic patterns. The host plant's machinery is exploited by biotic stress, which is caused by organisms like bacteria, fungi, viruses, insects, nematodes, and mites. This results in nutrient deprivation, increased reactive oxygen species and disturbances in physiological, morphological, and molecular processes. Although used widely, conventional disease management strategies like breeding, intercropping, and chemical fertilizers have drawbacks in terms of time commitment and environmental impact. An environmentally beneficial substitute is offered by the developing field of nanotechnology, where nanoparticles such as zinc oxide are gaining popularity due to their potential applications as antimicrobials and nano-fertilizers. This review delves into the biological synthesis of ZnO nanoparticles employing plants and microbes, function of ZnO nanoparticles in biotic stress mitigation, elucidating their effectiveness and toxicological implications in agricultural. This study supports a cautious approach, stressing the prudent application of ZnO nanoparticles to avoid possible toxicity, in line with the larger global agenda to end hunger, guarantee food security, and advance sustainable agriculture.
Collapse
Affiliation(s)
- Naveen Verma
- Department of Biotechnology, Khalsa College, Amritsar, India
| | - Priya Kaushal
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
6
|
Mehmood S, Ou W, Ahmed W, Bundschuh J, Rizwan M, Mahmood M, Sultan H, Alatalo JM, Elnahal ASM, Liu W, Li W. ZnO nanoparticles mediated by Azadirachta indica as nano fertilizer: Improvement in physiological and biochemical indices of Zea mays grown in Cr-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122755. [PMID: 37852317 DOI: 10.1016/j.envpol.2023.122755] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
The current investigation aimed at evaluating the impact of Azadirachta indica-mediated zinc oxide nanoparticles (Ai-ZnONPs) on the growth and biochemical characteristics of maize (sweet glutinous 3000) under exposure to 50 mg kg-1Ai-ZnONPs with Cr (VI) concentrations of 50 and 100 mg kg-1. The results indicate that plants exposed to Cr (VI) only experienced a decline in growth parameters. Conversely, the inclusion of Ai-ZnONPs caused a noteworthy increase in physiological traits. Specifically, shoot and root fresh weight increased by 28.02% and 16.51%, and 63.11% and 97.91%, respectively, when compared to Cr-50 and 100 treatments. Additionally, the SPAD chlorophyll of the shoot increased by 91.08% and 15.38% compared to Cr-50 and 100 treatments, respectively. Moreover, the antioxidant enzyme traits of plant shoot and root, such as superoxide dismutase (SOD 7.44% and 2.70%, and 4.45% and 3.53%), catalase (CAT 1.18% and 3.20%, and 5.03% and 5.78%), and peroxidase (POD 0.31% and 5.55%, and 4.72% and 3.61%), exhibited significant increases in Cr 50 and 100 treatments, respectively. The addition of Ai-ZnONPs to the soil also enhanced soil nutrient status and reduced Cr (VI) concentrations by 40.69% and 19.82% compared to Cr-50 and 100 treated soils. These findings suggest that Ai-ZnONPs can trigger the activation of biochemical pathways that enable biomass accumulation in meristematic cells. Further investigations are required to elucidate the mechanisms involved in growth promotion.
Collapse
Affiliation(s)
- Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Wenjie Ou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Jochen Bundschuh
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350, QLD, Australia
| | | | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Haider Sultan
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Ahmed S M Elnahal
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Wenjie Liu
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China.
| |
Collapse
|
7
|
Vosoughian N, Asadbeygi M, Mohammadi A, Soudi MR. Green synthesis of zinc oxide nanoparticles using novel bacterium strain (Bacillus subtilis NH1-8) and their in vitro antibacterial and antibiofilm activities against Salmonellatyphimurium. Microb Pathog 2023; 185:106457. [PMID: 37993074 DOI: 10.1016/j.micpath.2023.106457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are used in a range of applications, including food packaging, preservation, and storage. In the current investigation, extracellular green synthesis of ZnO NPs through an simple, eco-friendly, and rapid approach using a novel bacterial strain (Bacillus subtilis NH1-8) was studied. To assess the morphological, optical, and structural properties of ZnO NPs, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, and X-ray diffraction (XRD) techniques were carried out. In addition, disk diffusion, minimum bactericidal concentration (MBC), and minimum inhibitory concentration (MIC) methods were performed to determine the antibacterial activity of ZnO NPs. The average size of biosynthesized ZnO NPs was 39 nm, exhibiting semi-spherical, which was confirmed by TEM analyses. The UV-vis spectroscopy exhibited the absorption peak at 200-800nm. The ZnO NPs have shown effective antimicrobial and antibiofilm activities against S. typhimurium. Thus, biosynthesized ZnO NPs could be exploited as a breakthrough technology in the surface coating of food containers and cans to minimize contamination by S. typhimurium.
Collapse
Affiliation(s)
- Nikta Vosoughian
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran
| | - Mastoore Asadbeygi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran
| | - Ali Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran.
| | - Mohammad Reza Soudi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran
| |
Collapse
|
8
|
Asif N, Amir M, Fatma T. Recent advances in the synthesis, characterization and biomedical applications of zinc oxide nanoparticles. Bioprocess Biosyst Eng 2023; 46:1377-1398. [PMID: 37294320 PMCID: PMC10251335 DOI: 10.1007/s00449-023-02886-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) have become the widely used metal oxide nanoparticles and drawn the interest of global researchers due to their biocompatibility, low toxicity, sustainability and cost-effective properties. Due to their unique optical and chemical properties, it emerges as a potential candidate in the fields of optical, electrical, food packaging and biomedical applications. Biological methods using green or natural routes are more environmentally friendly, simple and less use of hazardous techniques than chemical and/or physical methods in the long run. In addition, ZnONPs are less harmful and biodegradable while having the ability to greatly boost pharmacophore bioactivity. They play an important role in cell apoptosis because they enhance the generation of reactive oxygen species (ROS) and release zinc ions (Zn2+), causing cell death. Furthermore, these ZnONPs work well in conjunction with components that aid in wound healing and biosensing to track minute amounts of biomarkers connected to a variety of illnesses. Overall, the present review discusses the synthesis and most recent developments of ZnONPs from green sources including leaves, stems, bark, roots, fruits, flowers, bacteria, fungi, algae and protein, as well as put lights on their biomedical applications such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, antiviral, wound healing, and drug delivery, and modes of action associated. Finally, the future perspectives of biosynthesized ZnONPs in research and biomedical applications are discussed.
Collapse
Affiliation(s)
- Nida Asif
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
9
|
El Faroudi L, Saadi L, Barakat A, Mansori M, Abdelouahdi K, Solhy A. Facile and Sustainable Synthesis of ZnO Nanoparticles: Effect of Gelling Agents on ZnO Shapes and Their Photocatalytic Performance. ACS OMEGA 2023; 8:24952-24963. [PMID: 37483179 PMCID: PMC10357430 DOI: 10.1021/acsomega.3c01491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023]
Abstract
The present work involves investigating an unexplored soft-chemical method for synthesizing nanostructured ZnO through biopolymer gelation. Our objective was to exploit (i) the difference in the gelation mechanism of four tested biopolymers, namely, alginate, chitosan, carboxymethylcellulose (CMC), and pectin and (ii) numerous experimental parameters that govern this process in order to allow the control of the growth of nanostructured ZnO, with a view to using the prepared oxides as photocatalysts for the oxidation of the Orange G dye. So, the effect of biopolymer's nature on the microstructural, morphological, and textural properties was examined by thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field-emission gun-scanning electron microscopy-high resolution (FEG-SEM) with energy-dispersive spectrometry (SEM-EDS), ultraviolet-visible (UV-vis) spectroscopy, and N2 adsorption/desorption. As-prepared oxides were crystallized in a hexagonal wurtzite structure, with a clear difference in their morphologies. The sample prepared by using chitosan has a specific surface area of around 36.8 m2/g in the form of aggregated and agglomerated nanostructured minirods and thus shows the best photocatalytic performance with 99.3% degradation of the Orange G dye in 180 min.
Collapse
Affiliation(s)
- Loubna El Faroudi
- IMED-Lab,
FST-Marrakech, University Cadi Ayyad, Av. A. Khattabi, BP 549, 40000 Marrakech, Morocco
| | - Latifa Saadi
- IMED-Lab,
FST-Marrakech, University Cadi Ayyad, Av. A. Khattabi, BP 549, 40000 Marrakech, Morocco
| | - Abdellatif Barakat
- IATE,
Montpellier University, INRAE, Agro Institut, 34060 Montpellier France
- Mohamed
VI Polytechnic University, Lot 660—Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mohammed Mansori
- IMED-Lab,
FST-Marrakech, University Cadi Ayyad, Av. A. Khattabi, BP 549, 40000 Marrakech, Morocco
| | - Karima Abdelouahdi
- IMED-Lab,
FST-Marrakech, University Cadi Ayyad, Av. A. Khattabi, BP 549, 40000 Marrakech, Morocco
| | - Abderrahim Solhy
- IATE,
Montpellier University, INRAE, Agro Institut, 34060 Montpellier France
| |
Collapse
|
10
|
Ciani M, Adessi A. Cyanoremediation and phyconanotechnology: cyanobacteria for metal biosorption toward a circular economy. Front Microbiol 2023; 14:1166612. [PMID: 37323915 PMCID: PMC10266413 DOI: 10.3389/fmicb.2023.1166612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Cyanobacteria are widespread phototrophic microorganisms that represent a promising biotechnological tool to satisfy current sustainability and circularity requirements. They are potential bio-factories of a wide range of compounds that can be exploited in several fields including bioremediation and nanotechnology sectors. This article aims to illustrate the most recent trends in the use of cyanobacteria for the bioremoval (i.e., cyanoremediation) of heavy metals and metal recovery and reuse. Heavy metal biosorption by cyanobacteria can be combined with the consecutive valorization of the obtained metal-organic materials to get added-value compounds, including metal nanoparticles, opening the field of phyconanotechnology. It is thus possible that the use of combined approaches could increase the environmental and economic feasibility of cyanobacteria-based processes, promoting the transition toward a circular economy.
Collapse
|
11
|
Aboul-Soud MAM, Siddique R, Fozia F, Ullah A, Rashid Y, Ahmad I, Zaghloul NSS, Al-Rejaie SS, Mohany M. Antiplatelet, cytotoxic activities and characterization of green-synthesized zinc oxide nanoparticles using aqueous extract of Nephrolepis exaltata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27483-3. [PMID: 37195603 DOI: 10.1007/s11356-023-27483-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
The goal of the current study was to synthesize zinc oxide nanoparticles (ZnO-NPs) using ZnCl2.2H2O salt precursor and an aqueous extract of Nephrolepis exaltata (N. exaltata), which act as a capping and reducing agent. N. exaltata plant extract-mediated ZnO-NPs were further characterized by various techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-visible (UV-Vis), and energy-dispersive X-ray (EDX) analysis. The nanoscale crystalline phase of ZnO-NPs was analyzed by the XRD patterns. The FT-IR analysis revealed different functional groups of biomolecules involved in the reduction and stabilization of the ZnO-NPs. The light absorption and optical properties of ZnO-NPs were examined by UV-Vis spectroscopy at a wavelength of 380 nm. The spherical shape morphology of ZnO-NPs with mean particle size ranges between 60 and 80 nm was confirmed by SEM images. While the EDX analysis was used to identify the elemental composition of ZnO-NPs. Furthermore, the synthesized ZnO-NPs demonstrate potential antiplatelet activity by inhibiting the platelet aggregation induced by platelet activation factor (PAF) and arachidonic acid (AA). The results showed that synthesized ZnO-NPs were more effective in inhibiting platelet aggregation induced by AA with IC50 (56% and 10 μg/mL) and PAF (63% and 10 μg/mL), respectively. However, the biocompatibility of ZnO-NPs was assessed in human lung cancer cell line (A549) under in vitro conditions. The cytotoxicity of synthesized nanoparticles revealed that cell viability decreased and the IC50 was found to be 46.7% at a concentration of 75 μg/mL. The present work concluded the green synthesis of ZnO-NPs that was achieved by N. exaltata plant extract and showed good antiplatelet and cytotoxic activity, which demonstrates the lack of harmful effects making them more effective for use in pharmaceutical and medical fields to treat thrombotic disorders.
Collapse
Affiliation(s)
- Mourad A M Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
| | - Rashid Siddique
- Department of Chemistry, Islamia College University, Peshawar, 26000, Pakistan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, 26000, Pakistan
| | - Fozia Fozia
- Biochemistry Department, Khyber Medical University Institute of Medical Sciences, Kohat, 26000, Pakistan
| | - Asad Ullah
- Department of Chemistry, Islamia College University, Peshawar, 26000, Pakistan
| | - Yasir Rashid
- Department of Chemistry, Kohat University of Science & Technology, Kohat, 26000, Pakistan
| | - Ijaz Ahmad
- Department of Chemistry, Kohat University of Science & Technology, Kohat, 26000, Pakistan
| | - Nouf S S Zaghloul
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1FD, UK
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
12
|
Asif N, Ahmad R, Fatima S, Shehzadi S, Siddiqui T, Zaki A, Fatma T. Toxicological assessment of Phormidium sp. derived copper oxide nanoparticles for its biomedical and environmental applications. Sci Rep 2023; 13:6246. [PMID: 37069201 PMCID: PMC10110551 DOI: 10.1038/s41598-023-33360-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
Driven by the need to biosynthesized alternate biomedical agents to prevent and treat infection, copper oxide nanoparticles (CuONPs) have surfaced as a promising avenue. Cyanobacteria-derived synthesis of CuONPs is of substantive interest as it offers an eco-friendly, cost-effective, and biocompatible route. In the present study biosynthesized CuONPs were characterized and investigated regarding their toxicity. Morphological analysis using TEM, SEM and AFM showed the spherical particle size of 20.7 nm with 96% copper that confirmed the purity of CuONPs. Biogenic CuONPs with IC50 value of 64.6 µg ml-1 showed 90% scavenging of free radicals in superoxide radical scavenging assay. CuONPs showed enhanced anti-inflammatory activity by 86% of protein denaturation with IC50 value of 89.9 µg ml-1. Biogenic CuONPs exhibited significant toxicity against bacterial strains with lowest MIC value of 62.5 µg ml-1 for B. cereus and fungal strain with a MIC value of 125 µg ml-1 for C. albicans. In addition CuONPs demonstrated a high degree of synergistic interaction when combined with standard drugs. CuONPs exhibited significant cytotoxicity against non-small cell lung cancer with an IC50 value of 100.8 µg ml-1 for A549 and 88.3 µg ml-1 for the H1299 cell line with apoptotic activities. Furthermore, biogenic CuONPs was evaluated for their photocatalytic degradation potential against methylene blue dye and were able to removed 94% dye in 90 min. Free radical scavenging analysis suggested that CuONPs assisted dye degradation was mainly induced by hydroxide radicals. Biogenic CuONPs appears as an eco-friendly and cost effective photocatalyst for the treatment of wastewater contaminated with synthetic dyes that poses threat to aquatic biota and human health. The present study highlighted the blend of biomedical and photocatalytic potential of Phormidium derived CuONPs as an attractive approach for future applications in nanomedicine and bioremediation.
Collapse
Affiliation(s)
- Nida Asif
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Rakhshan Ahmad
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Samreen Fatima
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Shehzadi Shehzadi
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Tabassum Siddiqui
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Almaz Zaki
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
13
|
Green Synthesis of Zinc Oxide Nanoparticles Using Nostoc sp. and Their Multiple Biomedical Properties. Catalysts 2023. [DOI: 10.3390/catal13030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Zinc oxide nanoparticles (ZnONPs) are the top candidate in the field of biological applications because of their high surface area and excellent catalytic activities. In the present study, the cyanobacteria-mediated biosynthesis of zinc oxide NPs using Nostoc sp. extract as a stabilizing, chelating, and reducing agent is reported. ZnONPs were biologically synthesized using an eco-friendly and simple technique with a minimal reaction time and calcination temperature. Various methods, including X-ray diffraction (XRD), ultraviolet spectroscopy (UV), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) were used to characterize the biosynthesized zinc oxide NPs. XRD analysis depicted the crystalline form of zinc oxide NPs, and the Scherrer equation determined a mean crystalline size of ~28.21 nm. The SEM results reveal the spherical shape of the biosynthesized nanoparticles. Various functional groups were involved in the capping and stabilization of the zinc oxide NPs, which were confirmed by FTIR analysis. The zinc oxide NPs showed strong UV-vis absorption at 340 nm. Multiple in vitro biological applications showed significant therapeutic potential for zinc oxide NPs. Potential antimicrobial assays were reported for zinc oxide NPs via the disc-diffusion method and food poisoning method, respectively. All other activities mentioned below are described with the concentration and IC50 values. Biocompatibility with human erythrocytes and macrophages (IC50: 433 µg/mL, IC50 > 323 µg/mL) and cytotoxic properties using brine shrimps (IC50: 11.15 µg/mL) and Leishmania tropics (Amastigotes IC50: 43.14 µg mL−1 and Promastigotes IC50: 14.02 µg mL−1) were determined. Enzyme inhibition assays (protein kinase and alpha amylase) were performed and showed strong potential. Free radical scavenging tests showed strong antioxidant capacities. These results indicate that zinc oxide NPs synthesized by Nostoc sp. have strong biological applications and are promising candidates for clinical development.
Collapse
|
14
|
Miletić M, Vilotić A, Korićanac L, Žakula J, Krivokuća MJ, Dohčević-Mitrović Z, Aškrabić S. Spectroscopic signature of ZnO NP-induced cell death modalities assessed by non-negative PCA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122180. [PMID: 36470088 DOI: 10.1016/j.saa.2022.122180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Selective cytotoxicity of ZnO nanoparticles among different cell types and cancer and non-cancerous cells has been demonstrated earlier. In the view of anticancer potential of ZnO nanoparticles and their presence in numerous industrial products, it is of great importance to carefully evaluate their effects and mechanisms of action in both cancerous and healthy cells. In this paper, the effects of ZnO nanoparticles on cancerous HeLa and non-cancerous MRC-5 cells are investigated by studying the changes in the vibrational properties of the cells using Raman spectroscopy. Both types of cells were incubated with ZnO nanoparticles of average size 40 nm in the doses from the range 10-40 µg/ml for the period of 48 h, after which Raman spectra were collected. Raman modes' intensity ratios I1659/I1444, I2855/I2933 and I1337/I1305 were determined as spectral markers of the cytotoxic effect of ZnO in both cell types. Non-negative principal component analysis was used instead of standard one for analysis and detection of spectral features characteristic for nanoparticle-treated cells. The first several non-negative loading vectors obtained in this analysis coincided remarkably well with the Raman spectra of particular biomolecules, showing increase of lipid and decrease of nucleic acids and protein content. Our study pointed out that Raman spectral markers of lipid unsaturation, especially I1270/I1300, are relevant for tracing the cytotoxic effect of ZnO nanoparticles on both cancerous and non-cancerous cells. The change of these spectral markers is correlated to the dose of applied nanoparticles and to the degree of cellular damage. Furthermore, great similarity of spectral features of increasing lipids to spectral features of phosphatidylserine, one of the main apoptotic markers, was recognized in treated cells. Finally, the results strongly indicated that the degree of lipid saturation, presented in the cells, plays an important role in the interaction of cells with nanoparticles.
Collapse
Affiliation(s)
- Mirjana Miletić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia.
| | - Aleksandra Vilotić
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Lela Korićanac
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Jelena Žakula
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | | | - Sonja Aškrabić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia.
| |
Collapse
|
15
|
Kaur R, Bhardwaj G, Saini S, Kaur N, Singh N. A high-performance Calix@ZnO based bifunctional nanomaterial for selective detection and degradation of toxic azinphos methyl in environmental samples. CHEMOSPHERE 2023; 316:137693. [PMID: 36638927 DOI: 10.1016/j.chemosphere.2022.137693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
One of the key tenets of sustainable agriculture and food safety is the removal of toxic pesticides from the environment. However, developing reliable, affordable, and efficient methods for detecting and degrading pesticides into non-toxic degradable products remains an immediate matter of concern. Herein, we attempt to develop a strategy for the detection as well as degradation of highly toxic phosphorodithioate pesticide, Azinphos methyl (AZM), using hybrid zinc oxide nanoparticles (ZnO NPs). Considering the non-selectivity of bare ZnO and receptor R1, we have fabricated the heterocalixarene-based Calix (R1) over zinc oxide (ZnO) surface in situ via the sol-gel process. The synthesized heterocaliaxrene-modified ZnO (R1@ZnO) NPs show an excellent affinity for the selective and sensitive detection of AZM with a tremendously low limit of detection (68 mg L-1) and no interference from other pesticides. Degradation of AZM was fully supported by fluorescence spectroscopy, scanning electron microscopy (SEM), 1H NMR titrations, FTIR spectroscopy, cyclic voltammetry, and mass spectroscopy, which unequivocally confirmed the formation of non-toxic products. According to our findings, R1@ZnO NPs are sustainable nanomaterials that can be employed for environmental remediation since they operate in an aqueous medium.
Collapse
Affiliation(s)
- Randeep Kaur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Geetika Bhardwaj
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Sanjeev Saini
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, 140001, India
| | - Navneet Kaur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, 140001, India.
| |
Collapse
|
16
|
Abd Rahman R, Chia CH, Masdor NA. <i>In Vitro</i> Evaluation of Antibacterial Properties of Biogenically Synthesized Zinc Oxide Nanoparticles on Pathogenic Paddy Bacteria. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2023; 59:1-10. [DOI: 10.4028/p-cu9pvj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NP) were successfully synthesized from aloe vera extract and zinc sulphate as zinc precursor. Characterizations of the ZnO-NP were performed using UV–Vis spectrophotometer, XRD, FESEM and TEM analysis. The absorption peak from UV–Vis was at 380 nm while the XRD diagram displays high purity ZnO-NP. FESEM and TEM analysis showed agglomerated particles with a wide size distribution range. Polymerase chain reaction (PCR) analysis of Xanthomonas oryzae pv. oryzae (Xoo) pathotype 0.0 generated a product with the size of 230 bp similar to in silico PCR results, verifying the pathotype on molecular level. Subsequently, the antimicrobial activities of the ZnO-NP against Xoo pathotype 0.0 were assessed. Xoo (108 cfu/ml) were grown in LB broth supplemented with various concentrations of ZnO-NP. Collection of samples were done at 24 hours, 48 hours and 72 hours of incubation, grown on LB agar and observed for bacterial growth. Colony forming unit (cfu/ml) values revealed the number of viable cells decreased with high concentrations of ZnO-NP whereas minimal inhibition was observed at lower ZnO-NP concentrations. At lower bacteria cfu/ml (103 cfu/ml), it was found that at 24 hours incubation, ZnO-NP gave comparable antibacterial effects to commercial ZnO-NP and commercial non-nanoZnO after exposure for 1 hour. However, the antimicrobial effects decreased after 48 hours. It was also noted that the ZnO-NP provide better suppression of bacterial growth at lower bacterial concentration.
Collapse
|
17
|
Hamk M, Akçay FA, Avcı A. Green synthesis of zinc oxide nanoparticles using Bacillus subtilis ZBP4 and their antibacterial potential against foodborne pathogens. Prep Biochem Biotechnol 2023; 53:255-264. [PMID: 35616319 DOI: 10.1080/10826068.2022.2076243] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, extracellular biosynthesis of zinc oxide nanoparticles (ZnO NPs) by using the supernatant of Bacillus subtilis ZBP4 after cultivation in nutrient broth at 33 °C for 24 h was investigated. Zinc sulfate heptahydrate was used as the precursor, and the reactions were performed at 33 °C for 72 h. The effects of pH 5-9 and precursor concentration (2-10 mM) were determined and the optima were found to be pH 7.5 and 8 mM ZnSO4·7H2O, respectively. The nanoparticles were characterized by UV-VIS spectroscopy, FESEM, TEM, EDS, XRD, FTIR and zeta potential measurement. ZnO NPs appeared to be irregular spherical structures with a size range of 22-59 nm, as confirmed by FESEM and TEM. Energy-dispersive spectroscopy analysis validated the formation of ZnO NPs. X-ray diffraction analysis revealed the crystalline structure of the ZnO NPs, and they were determined to have a zeta potential of -19.0 ± 4.3 mV and a bandgap of 3.36 eV. Antibacterial activity experiments showed that ZnO NPs are effective against a broad spectrum of Gram-positive and Gram-negative food pathogens. This study provides evidence for a safe and effective method for synthesizing ZnO NPs and demonstrates their effectiveness against pathogenic bacteria.
Collapse
Affiliation(s)
- Mohammed Hamk
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan, Sakarya, Turkey.,Food Science and Quality Control Department, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic University, Zamaqi, Halabja, Iraq
| | - Fikriye Alev Akçay
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan, Sakarya, Turkey
| | - Ayşe Avcı
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan, Sakarya, Turkey
| |
Collapse
|
18
|
Asif N, Fatima S, Siddiqui T, Fatma T. Investigation of morphological and biochemical changes of zinc oxide nanoparticles induced toxicity against multi drug resistance bacteria. J Trace Elem Med Biol 2022; 74:127069. [PMID: 36152464 DOI: 10.1016/j.jtemb.2022.127069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/07/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Biofilms are microbial colonies that remain enclosed in an organic polymeric matrix substance on biotic and abiotic surfaces, allowing them to colonize medical equipments and involved in most device associated life intimidating infections. Due to their antimicrobial resistance there is an urgent need to discover novel biofilm preventive and therapeutic agents. METHODS ZnO NPs were synthesized using cyanobacteria Gleocapsa gelatinosa cell extract through green and cost-effective approach. Physiochemical characterization was done to determine their morphologies and size distribution. Antibiofilm and eradication activity of ZnO NPs was determined. Cell viability and internalization ability of ZnO NPs into biofilm was analyzed by flow cytometry. Confocal microscopy was done to visualize the disrupted biofilm morphology treated with ZnO NPs. RESULTS It was observed that ZnONPs were spherical in shape with 31-35 nm size and were moderately dispersed. ZnO NPs exhibited high antibiofilm activity against B. cereus and E. coli with minimum biofilm inhibitory concentration (MBIC) of ZnO NPs at 46.8 µg ml-1 and 93.7 µg ml-1. Flow cytometry analysis confirmed the reduced bacterial cell viability due to increased permeability, altered bacterial growth and enhanced production of intracellular ROS. Disruption of membrane integrity exhibited with reduced exopolysaccharides secretion and leakage of nucleic acids through UV-Vis spectroscopy. Results of confocal microscopy highlighted strong interaction of ZnO NPs with intracellular components leading to biofim destruction. CONCLUSIONS This study emphasizes the potential mechanisms underlying the selective bactericidal properties of ZnO NPs and highlighted the strong interaction of ZnO NPs with intracellular components leading to biofim destruction. Therefore, ZnO NPs could be considered as a promising antibiofilm agent and thus could expand the possibility to use as therapeutic agent.
Collapse
Affiliation(s)
- Nida Asif
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Samreen Fatima
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Tabassum Siddiqui
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| |
Collapse
|
19
|
Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci Rep 2022; 12:20370. [PMID: 36437355 PMCID: PMC9701696 DOI: 10.1038/s41598-022-24805-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
In the present study, a green, sustainable, simple and low-cost method was adopted for the synthesis of ZnO NPs, for the first time, using the aqueous extract of sea lavender, Limonium pruinosum (L.) Chaz., as a reducing, capping, and stabilizing agent. The obtained ZnO NPs were characterized using ultraviolet-visible spectroscopy (UV-VIS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The UV-Vis spectra of the green synthesized ZnO NPs showed a strong absorption peak at about 370 nm. Both electron microscopy and XRD confirmed the hexagonal/cubic crystalline structure of ZnO NPs with an average size ~ 41 nm. It is worth noting that the cytotoxic effect of the ZnO NPs on the investigated cancer cells is dose-dependent. The IC50 of skin cancer was obtained at 409.7 µg/ml ZnO NPs. Also, the phyto-synthesized nanoparticles exhibited potent antibacterial and antifungal activity particularly against Gram negative bacteria Escherichia coli (ATCC 8739) and the pathogenic fungus Candida albicans (ATCC 10221). Furthermore, they showed considerable antioxidant potential. Thus, making them a promising biocompatible candidate for pharmacological and therapeutic applications.
Collapse
|
20
|
An Evaluation of the Biocatalyst for the Synthesis and Application of Zinc Oxide Nanoparticles for Water Remediation—A Review. Catalysts 2022. [DOI: 10.3390/catal12111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global water scarcity is threatening the lives of humans, and it is exacerbated by the contamination of water, which occurs because of increased industrialization and soaring population density. The available conventional physical and chemical water treatment techniques are hazardous to living organisms and are not environmentally friendly, as toxic chemical elements are used during these processes. Nanotechnology has presented a possible way in which to solve these issues by using unique materials with desirable properties. Zinc oxide nanoparticles (ZnO NPs) can be used effectively and efficiently for water treatment, along with other nanotechnologies. Owing to rising concerns regarding the environmental unfriendliness and toxicity of nanomaterials, ZnO NPs have recently been synthesized through biologically available and replenishable sources using a green chemistry or green synthesis protocol. The green-synthesized ZnO NPs are less toxic, more eco-friendly, and more biocompatible than other chemically and physically synthesized materials. In this article, the biogenic synthesis and characterization techniques of ZnO NPs using plants, bacteria, fungi, algae, and biological derivatives are reviewed and discussed. The applications of the biologically prepared ZnO NPs, when used for water treatment, are outlined. Additionally, their mechanisms of action, such as the photocatalytic degradation of dyes, the production of reactive oxygen species (ROS), the generation of compounds such as hydrogen peroxide and superoxide, Zn2+ release to degrade microbes, as well as their adsorbent properties with regard to heavy metals and other contaminants in water bodies, are explained. Furthermore, challenges facing the green synthesis of these nanomaterials are outlined. Future research should focus on how nanomaterials should reach the commercialization stage, and suggestions as to how this ought to be achieved are presented.
Collapse
|
21
|
Yusof HM, Rahman NA, Mohamad R, Zaidan UH, Samsudin AA. Optimization of biosynthesis zinc oxide nanoparticles: Desirability-function based response surface methodology, physicochemical characteristics, and its antioxidant properties. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Nitnavare R, Bhattacharya J, Thongmee S, Ghosh S. Photosynthetic microbes in nanobiotechnology: Applications and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156457. [PMID: 35662597 DOI: 10.1016/j.scitotenv.2022.156457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic microbes like brown algae, red algae, green-algae and blue-green algae (cyanobacteria) are utilized extensively for various commercial and industrial purposes. However, in recent time, their application has shifted to nanotechnology. The synthesis of metal nanoparticles using algal resources is known as Phyconanotechnology. Due to various advantages of the photosynthetic microbes such as presence of bioactive molecules, scalability, high metal uptake and cultivability, these microbes form ideal sources for nanoparticle synthesis. The green synthesis of nanoparticles is a non-toxic and environment-friendly alternative compared to other hazardous chemical and physical routes of synthesis. Several species of algae are explored for the fabrication of metal and metal oxide nanoparticles. Various physical characterization techniques collectively contribute in defining the surface morphology of nanoparticles and the existing functional groups for bioreduction and stability. A wide range of nanostructured metals like gold, silver, copper, zinc, iron, platinum and palladium are fabricated using algae and cyanobacteria. Due to the unique properties of the phycogenic nanoparticles, biocompatibility and safety aspects, all of these metal nanoparticles have their applications in facets like infection control, diagnosis, drug delivery, biosensing and bioremediation. Herein, the uniqueness of the phycogenic nanoparticles along with their distinctive antibacterial, antifungal, antibiofilm, algaecidal, antiviral, anticancer, antioxidant, antidiabetic, dye degradation, metal removal and catalytic properties are featured. Lastly, this work highlights the various challenges and future perspectives for further exploration of the biogenic metal nanoparticles for development of nanomedicine and environmental remediation in the coming years.
Collapse
Affiliation(s)
- Rahul Nitnavare
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, United Kingdom; Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, Telangana, India; Department of Genetics, Osmania University, Hyderabad 500007, Telangana, India
| | - Sirikanjana Thongmee
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Sougata Ghosh
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Microbiology, School of Science, RK University, Rajkot 360020, Gujarat, India.
| |
Collapse
|
23
|
Biosynthesis of zinc oxide nanoparticles via endophyte Trichoderma viride and evaluation of their antimicrobial and antioxidant properties. Arch Microbiol 2022; 204:620. [PMID: 36100763 DOI: 10.1007/s00203-022-03218-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/26/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
Abstract
The biogenic method for synthesis of nanoparticles is preferred over the traditional strategies, on account of its ease, environmental friendliness, and cost-effectivity, wherein fungi endorse themselves to be the most appropriate precursor for the same. In recent times numerous metal nanoparticles have been reported to exhibit significant therapeutic activities, out of which Zinc Oxide nanoparticles (ZnO NPs) stand apart on account of their multidimensional nature. Thus, this study was carried out with an aim to biosynthesize ZnO NPs utilizing endophyte Trichoderma viride, isolated from the seeds of Momordica charantia. The physicochemical characterization of NPs was done via employing a combination of spectroscopic and microscopic techniques. The NPs were found to have a hexagonal shape and possessed an average particle size of around 63.3 nm. The antimicrobial activity of NPs was evaluated against multi-drug resistant organisms and it was observed to be an appreciable one whereas the antioxidant activity was deduced to be dose-dependent. Thus, these ZnO NPs can be considered as a probable active ingredient of any future therapeutic conceptualization after undertaking a thorough toxicological assessment.
Collapse
|
24
|
Prerna, Agarwal H, Goyal D. Photocatalytic degradation of textile dyes using phycosynthesised ZnO nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Phyco-Synthesized Zinc Oxide Nanoparticles Using Marine Macroalgae, Ulva fasciata Delile, Characterization, Antibacterial Activity, Photocatalysis, and Tanning Wastewater Treatment. Catalysts 2022. [DOI: 10.3390/catal12070756] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aqueous extract of marine green macroalgae, Ulva fasciata Delile, was harnessed for the synthesis of zinc oxide nanoparticles (ZnO-NPs). The conversion to ZnO-NPs was characterized by color change, UV–vis spectroscopy, FT-IR, TEM, SEM-EDX, and XRD. Data showed the formation of spherical and crystalline ZnO-NPs with a size range of 3–33 nm. SEM-EDX revealed the presence of Zn and O in weight percentages of 45.3 and 31.62%, respectively. The phyco-synthesized ZnO-NPs exhibited an effective antibacterial activity against the pathogenic Gram-positive and Gram-negative bacteria. The bacterial clear zones ranged from 21.7 ± 0.6 to 14.7 ± 0.6 mm with MIC values of 50–6.25 µg mL−1. The catalytic activity of our product was investigated in dark and visible light conditions, using the methylene blue (MB) dye. The maximum dye removal (84.9 ± 1.2%) was achieved after 140 min in the presence of 1.0 mg mL−1 of our nanocatalyst under the visible light at a pH of 7 and a temperature of 35 °C. This percentage was decreased to 53.4 ± 0.7% under the dark conditions. This nanocatalyst showed a high reusability with a decreasing percentage of ~5.2% after six successive cycles. Under the optimum conditions, ZnO-NPs showed a high efficacy in decolorizing the tanning wastewater with a percentage of 96.1 ± 1.7%. Moreover, the parameters of the COD, BOD, TSS, and conductivity were decreased with percentages of 88.8, 88.5, 96.9, and 91.5%, respectively. Moreover, nano-ZnO had a high efficacy in decreasing the content of the tanning wastewater Cr (VI) from 864.3 ± 5.8 to 57.3 ± 4.1 mg L−1 with a removal percentage of 93.4%.
Collapse
|
26
|
The efficient role of algae as green factories for nanotechnology and their vital applications. Microbiol Res 2022; 263:127111. [DOI: 10.1016/j.micres.2022.127111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/09/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022]
|
27
|
Cyanobacteria: miniature factories for green synthesis of metallic nanomaterials: a review. Biometals 2022; 35:653-674. [PMID: 35716270 DOI: 10.1007/s10534-022-00405-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Nanotechnology is one of the most promising and advanced disciplines of science that deals with synthesis, characterization and applications of different types of Nanomaterials (NMs) viz. nanospheres, nanoparticles, nanotubes, nanorods, nanowires, nanocomposites, nanoalloys, carbon dots and quantum dots. These nanosized materials exhibit different physicochemical characteristics and act as a whole unit during its transport. The unique characteristics and vast applications of NMs in diverse fields viz. electronics, agriculture, biology and medicine have created huge demand of different type of NMs. Conventionally physical and chemical methods were adopted to manufacture NMs which are expensive and end up with hazardous by-products. Therefore, green synthesis exploiting biological resources viz. algae, bacteria, fungi and plants emerged as a better and promising alternative due to its cost effective and ecofriendly approach and referred as nanobiotechnology. Among various living organisms, cyanobacteria have proved one of the most favourable bioresources for NMs biosynthesis due to their survival in diverse econiches including metal and metalloid contaminated sites and capability to withstand high levels of metals. Biosynthesis of metallic NMs is accomplished through bioreduction of respective metal salts by various capping agents viz. alkaloids, pigments, polysaccharides, steroids, enzymes and peptides present in the biological systems. Advancement in the field of Nanobiotechnology has produced large number of diverse NMs from cyanobacteria which have been used as antimicrobial agents against Gram positive and negative human pathogens, anticancer agents, luminescent nanoprobes for imaging of cells, antifungal agents against plant pathogens, nanocatalyst and semiconductor quantum dots in industries and in bioremediation in toxic pollutant dyes. In the present communication, we have reviewed cyanobacteria mediated biosynthesis of NMs and their applications in various fields.
Collapse
|
28
|
Rani S, Kumar P, Dahiya P, Dang AS, Suneja P. Biogenic Synthesis of Zinc Nanoparticles, Their Applications, and Toxicity Prospects. Front Microbiol 2022; 13:824427. [PMID: 35756000 PMCID: PMC9226681 DOI: 10.3389/fmicb.2022.824427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
Nanofertilizers effectively deliver the micronutrients besides reducing the phytotoxicity and environmental damage associated with chemical fertilizers. Zinc, an essential micronutrient, is significant for chloroplast development, activation of certain enzymes, and primary metabolism. Nano zinc oxide (ZnO) is the most widely used zinc nanoparticle. Concerns regarding the toxicity of conventional physical and chemical methods of synthesizing the nanoparticles have generated the need for a green approach. It involves the biogenic synthesis of metallic nanoparticles using plants and microorganisms. Microbe-mediated biogenic synthesis of metallic nanoparticles is a bottom-up approach in which the functional biomolecules of microbial supernatant reduce the metal ions into its nanoparticles. This review discusses the biological synthesis of nano-ZnO from microorganisms and related aspects such as the mechanism of synthesis, factors affecting the same, methods of application, along with their role in conferring drought stress tolerance to the plants and challenges involved in their large-scale synthesis and applications.
Collapse
Affiliation(s)
- Simran Rani
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pradeep Kumar
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Priyanka Dahiya
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
29
|
Abstract
Metal nanoparticles (NPs) are increasingly being used in many areas, e.g., industry, pharmacy, and biomedical engineering. NPs can be obtained through chemical and biological synthesis or using physical methods. AgNPs, AuNPs, CuNPs, FeNPs, MgNPs, SnO2NPs, TiO2NPs, and ZnONPs are the most commonly synthesized metal nanoparticles. Many of them have anti-microbial properties and documented activity supported by many tests against some species of pathogenic bacteria, viruses, and fungi. AgNPs, which are used for the production of commercial self-sterilizing packages, are one of the best-explored nanoparticles. Moreover, the EFSA has approved the use of small doses of silver nanoparticles (0.05 mg Ag·kg−1) to food products. Recent studies have shown that metal NPs can be used for the production of coatings to prevent the spread of the SARS-CoV-2 virus, which has caused the global pandemic. Some nanoparticles (e.g., ZnONPs and MgONPs) have the Generally Recognized As Safe (GRAS) status, i.e., they are considered safe for consumption and can be used for the production of edible coatings, protecting food against spoilage. Promising results have been obtained in research on the use of more than one type of nanometals, which prevents the development of pathogen resistance through various mechanisms of inactivation thereof.
Collapse
|
30
|
Khan F, Shahid A, Zhu H, Wang N, Javed MR, Ahmad N, Xu J, Alam MA, Mehmood MA. Prospects of algae-based green synthesis of nanoparticles for environmental applications. CHEMOSPHERE 2022; 293:133571. [PMID: 35026203 DOI: 10.1016/j.chemosphere.2022.133571] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 05/22/2023]
Abstract
Green synthesis of nanoparticles (NPs) has emerged as an eco-friendly alternative to produce nanomaterials with diverse physical, chemical, and biological characteristics. Previously used, physical and chemical methods involve the production of toxic byproducts, costly instrumentation, and energy-intensive experimental processes thereby, limiting their applicability. Biogenic synthesis of nanoparticles has come forward as a potential alternative, providing an eco-friendly, cost-effective, and energy-efficient approach for the synthesis of a diverse range of NPs. Several biological entities are employed in the biosynthesis of NPs including bacteria, fungi, and algae. However, the distinguishing characteristics of microalgae and cyanobacteria make them promising candidates for NPs synthesis because of their higher growth rate, substantially higher rate of sequestering CO2, hyperaccumulation of heavy metals, absence of toxic byproducts, minimum energy input, and employment of biomolecules (pigments and enzymes) as reducing and capping agents. Algal extract, being a natural reducing and capping agent, serves as a living cell factory for the efficient green synthesis of nanoparticles. Physiological and biological methods allow algal cells to uptake heavy metals and utilize them as nutrient source to generate biomass by regulating their metabolic processes. Despite their enormous potential, studies on the microalgae-based synthesis of nanoparticles for the removal of toxic pollutants from wastewater remained an unexplored research area in the literature. This review was aimed to summarize the recent advancements and prospects in the algae-based synthesis of nanoparticles for environmental applications particularly treating the wastewater.
Collapse
Affiliation(s)
- Fahad Khan
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ayesha Shahid
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Muhammad Rizwan Javed
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Jianren Xu
- College of Bioscience and Engineering, North Minzu University, Yinchuan, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
31
|
Rilda Y, Rinaldi R, Syukri S, Armaini A, Refinel R, Agustien A, Pardi H. Biosynthesis of Zinc Oxide (ZnO) Using the Biomass of
Aspergillus niger
to Impart Cotton Fabric with Antimicrobial Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202103824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yetria Rilda
- Department of Chemistry Faculty Mathematics and Natural Sciences of Andalas University, Campus Unand Limau Padang 25163 Indonesia
| | - Rifki Rinaldi
- Department of Chemistry Faculty Mathematics and Natural Sciences of Andalas University, Campus Unand Limau Padang 25163 Indonesia
| | - Syukri Syukri
- Department of Chemistry Faculty Mathematics and Natural Sciences of Andalas University, Campus Unand Limau Padang 25163 Indonesia
| | - Armaini Armaini
- Department of Chemistry Faculty Mathematics and Natural Sciences of Andalas University, Campus Unand Limau Padang 25163 Indonesia
| | - Refinel Refinel
- Department of Chemistry Faculty Mathematics and Natural Sciences of Andalas University, Campus Unand Limau Padang 25163 Indonesia
| | - Anthoni Agustien
- Department of Biology Faculty Mathematics and Natural Sciences of Andalas University, Campus Unand Limau Padang 25163 Indonesia
| | - Hilfi Pardi
- Department of Chemistry Education Faculty of Teacher Training and Education Raja Ali Haji Maritime University Senggarang Tanjungpinang 29111 Indonesia
| |
Collapse
|
32
|
Abdo AM, Fouda A, Eid AM, Fahmy NM, Elsayed AM, Khalil AMA, Alzahrani OM, Ahmed AF, Soliman AM. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) by Pseudomonas aeruginosa and Their Activity against Pathogenic Microbes and Common House Mosquito, Culex pipiens. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6983. [PMID: 34832382 PMCID: PMC8623893 DOI: 10.3390/ma14226983] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022]
Abstract
The synthesis of nanoparticles by green approaches is gaining unique importance due to its low cost, biocompatibility, high productivity, and purity, and being environmentally friendly. Herein, biomass filtrate of Pseudomonas aeruginosa isolated from mangrove rhizosphere sediment was used for the biosynthesis of zinc oxide nanoparticles (ZnO-NPs). The bacterial isolate was identified based on morphological, physiological, and 16S rRNA. The bio-fabricated ZnO-NPs were characterized using color change, UV-visible spectroscopy, FT-IR, TEM, and XRD analyses. In the current study, spherical and crystalline nature ZnO-NPs were successfully formed at a maximum SPR (surface plasmon resonance) of 380 nm. The bioactivities of fabricated ZnO-NPs including antibacterial, anti-candida, and larvicidal efficacy were investigated. Data analysis showed that these bioactivities were concentration-dependent. The green-synthesized ZnO-NPs exhibited high efficacy against pathogenic Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and unicellular fungi (Candida albicans) with inhibition zones of (12.33 ± 0.9 and 29.3 ± 0.3 mm), (19.3 ± 0.3 and 11.7 ± 0.3 mm), and (22.3 ± 0.3 mm), respectively, at 200 ppm. The MIC value was detected as 50 ppm for E. coli, B. subtilis, and C. albicans, and 200 ppm for S. aureus and P. aeruginosa with zones of inhibition ranging between 11.7 ± 0.3-14.6 ± 0.6 mm. Moreover, the biosynthesized ZnO-NPs showed high mortality for Culex pipiens with percentages of 100 ± 0.0% at 200 ppm after 24 h as compared with zinc acetate (44.3 ± 3.3%) at the same concentration and the same time.
Collapse
Affiliation(s)
- Abdullah M. Abdo
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo P.O. Box 11884, Egypt; (A.M.A.); (A.M.E.); (A.M.A.K.)
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo P.O. Box 11884, Egypt; (A.M.A.); (A.M.E.); (A.M.A.K.)
| | - Ahmed M. Eid
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo P.O. Box 11884, Egypt; (A.M.A.); (A.M.E.); (A.M.A.K.)
| | - Nayer M. Fahmy
- Marine Microbiology Laboratory, National Institute of Oceanography and Fisheries, Cairo P.O. Box 101, Egypt;
| | - Ahmed M. Elsayed
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, Cairo P.O. Box 1181, Egypt;
| | - Ahmed Mohamed Aly Khalil
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo P.O. Box 11884, Egypt; (A.M.A.); (A.M.E.); (A.M.A.K.)
| | - Othman M. Alzahrani
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (O.M.A.); (A.F.A.)
| | - Atef F. Ahmed
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (O.M.A.); (A.F.A.)
| | - Amal M. Soliman
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain-Shams University, Cairo P.O. Box 1181, Egypt;
| |
Collapse
|
33
|
Khan F, Kang MG, Jo DM, Chandika P, Jung WK, Kang HW, Kim YM. Phloroglucinol-Gold and -Zinc Oxide Nanoparticles: Antibiofilm and Antivirulence Activities towards Pseudomonasaeruginosa PAO1. Mar Drugs 2021; 19:601. [PMID: 34822472 PMCID: PMC8624799 DOI: 10.3390/md19110601] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
With the advancement of nanotechnology, several nanoparticles have been synthesized as antimicrobial agents by utilizing biologically derived materials. In most cases, the materials used for the synthesis of nanoparticles from natural sources are extracts. Natural extracts contain a wide range of bioactive components, making it difficult to pinpoint the exact component responsible for nanoparticle synthesis. Furthermore, the bioactive component present in the extract changes according to numerous environmental factors. As a result, the current work intended to synthesize gold (AuNPs) and zinc oxide (ZnONPs) nanoparticles using pure phloroglucinol (PG). The synthesized PG-AuNPs and PG-ZnONPs were characterized using a UV-Vis absorption spectrophotometer, FTIR, DLS, FE-TEM, zeta potential, EDS, and energy-dispersive X-ray diffraction. The characterized PG-AuNPs and PG-ZnONPs have been employed to combat the pathogenesis of Pseudomonas aeruginosa. P. aeruginosa is recognized as one of the most prevalent pathogens responsible for the common cause of nosocomial infection in humans. Antimicrobial resistance in P. aeruginosa has been linked to the development of recalcitrant phenotypic characteristics, such as biofilm, which has been identified as one of the major obstacles to antimicrobial therapy. Furthermore, P. aeruginosa generates various virulence factors that are a major cause of chronic infection. These PG-AuNPs and PG-ZnONPs significantly inhibit early stage biofilm and eradicate mature biofilm. Furthermore, these NPs reduce P. aeruginosa virulence factors such as pyoverdine, pyocyanin, protease, rhamnolipid, and hemolytic capabilities. In addition, these NPs significantly reduce P. aeruginosa swarming, swimming, and twitching motility. PG-AuNPs and PG-ZnONPs can be used as control agents for infections caused by the biofilm-forming human pathogenic bacterium P. aeruginosa.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (F.K.); (W.-K.J.)
| | - Min-Gyun Kang
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea; (M.-G.K.); (D.-M.J.)
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea; (M.-G.K.); (D.-M.J.)
| | - Pathum Chandika
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea;
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (F.K.); (W.-K.J.)
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea;
| | - Hyun Wook Kang
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea;
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (F.K.); (W.-K.J.)
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea; (M.-G.K.); (D.-M.J.)
| |
Collapse
|
34
|
Vazquez DS, Schilbert HM, Dodero VI. Molecular and Structural Parallels between Gluten Pathogenic Peptides and Bacterial-Derived Proteins by Bioinformatics Analysis. Int J Mol Sci 2021; 22:9278. [PMID: 34502187 PMCID: PMC8430993 DOI: 10.3390/ijms22179278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Gluten-related disorders (GRDs) are a group of diseases that involve the activation of the immune system triggered by the ingestion of gluten, with a worldwide prevalence of 5%. Among them, Celiac disease (CeD) is a T-cell-mediated autoimmune disease causing a plethora of symptoms from diarrhea and malabsorption to lymphoma. Even though GRDs have been intensively studied, the environmental triggers promoting the diverse reactions to gluten proteins in susceptible individuals remain elusive. It has been proposed that pathogens could act as disease-causing environmental triggers of CeD by molecular mimicry mechanisms. Additionally, it could also be possible that unrecognized molecular, structural, and physical parallels between gluten and pathogens have a relevant role. Herein, we report sequence, structural and physical similarities of the two most relevant gluten peptides, the 33-mer and p31-43 gliadin peptides, with bacterial pathogens using bioinformatics going beyond the molecular mimicry hypothesis. First, a stringent BLASTp search using the two gliadin peptides identified high sequence similarity regions within pathogen-derived proteins, e.g., extracellular proteins from Streptococcus pneumoniae and Granulicatella sp. Second, molecular dynamics calculations of an updated α-2-gliadin model revealed close spatial localization and solvent-exposure of the 33-mer and p31-43 peptide, which was compared with the pathogen-related proteins by homology models and localization predictors. We found putative functions of the identified pathogen-derived sequence by identifying T-cell epitopes and SH3/WW-binding domains. Finally, shape and size parallels between the pathogens and the superstructures of gliadin peptides gave rise to novel hypotheses about activation of innate immunity and dysbiosis. Based on our structural findings and the similarities with the bacterial pathogens, evidence emerges that these pathologically relevant gluten-derived peptides could behave as non-replicating pathogens opening new research questions in the interface of innate immunity, microbiome, and food research.
Collapse
Affiliation(s)
- Diego S. Vazquez
- Grupo de Biología Estructural y Biotecnología (GBEyB-IMBICE), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma C1033AAJ, Buenos Aires, Argentina
| | - Hanna M. Schilbert
- Department of Chemistry, Organic Chemistry OCIII, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany;
| | - Veronica I. Dodero
- Department of Chemistry, Organic Chemistry OCIII, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany;
| |
Collapse
|
35
|
Potential eco-friendly Zinc Oxide nanomaterials through Phyco-nanotechnology –A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Ebadi M, Zolfaghari MR, Aghaei SS, Zargar M, Noghabi KA. Desertifilum sp. EAZ03 cell extract as a novel natural source for the biosynthesis of zinc oxide nanoparticles and antibacterial, anticancer and antibiofilm characteristics of synthesized zinc oxide nanoparticles. J Appl Microbiol 2021; 132:221-236. [PMID: 34101961 DOI: 10.1111/jam.15177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
AIMS The use of cyanobacterial cell extracts for the synthesis of zinc oxide nanoparticles (ZnO NPs) seems to be superior to other methods of synthesis because of its a green, environmentally friendly and low-cost approach. In this study, the cell extract of a newly characterized cyanobacterial strain Desertifilum sp. EAZ03 was used for the biosynthesis of ZnO NPs. The antimicrobial, antibiofilm and anticancer activities of the biosynthesized ZnO NPs (hereinafter referred to as CED-ZnO NPs) were examined as well. METHODS AND RESULTS UV-Vis spectroscopy analysis of CED-ZnO NPs showed an absorbance band at 364 nm, and powder X-ray diffraction analysis confirmed the purity of the synthesized nanoparticles. The analyses of scanning electron microscopy and transmission electron microscopy images revealed that CED-ZnO NPs were rod-shaped with a size of 88 nm. The study of the biological features of CED-ZnO NPs showed a significant antimicrobial potential against the bacterial strains tested. CED-ZnO NPs were able to impede the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa up to 80%, 89% and 85%, respectively. The nanoparticles also showed 69%, 70% and 62% degrading activity against S. aureus, E. coli and P. aeruginosa 1-day-old biofilms, respectively. The antibiofilm activity of the synthesized nanoparticles was investigated by confocal laser scanning microscopy. The MTT assay showed that CED-ZnO NPs, at a concentration of 100 μg/ml, had less cytotoxicity towards normal lung (MRC-5) cells, at the half, compared to cancerous lung alveolar epithelial (A549) cells. The minimum inhibitory concentration and minimum bactericidal concentration values of CED-ZnO NPs against E. coli, P. aeruginosa and S. aureus were 1500, 2000 and 32 μg/ml, and 2500, 3500 and 64 μg/ml, respectively. CONCLUSIONS The multifunctional CED-ZnO NPs seem to be promising for possible applications in the therapeutic and pharmaceutical industries. SIGNIFICANCE AND IMPACT OF THE STUDY This study proposes a new approach for the biosynthesis of zinc oxide nanoparticles using a newly characterized cyanobacterial strain Desertifilum sp. EAZ03. The considerable antimicrobial, antibiofilm and anticancer activities of the biosynthesized zinc oxide nanoparticles further emphasize the emerging role of microbial systems in the green synthesis of metal oxide nanoparticles.
Collapse
Affiliation(s)
- Mojgan Ebadi
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | | - Mohsen Zargar
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Kambiz Akbari Noghabi
- Department of Energy & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
37
|
Asif N, Fatima S, Aziz MN, Shehzadi, Zaki A, Fatma T. Biofabrication and characterization of cyanobacteria derived ZnO NPs for their bioactivity comparison with commercial chemically synthesized nanoparticles. Bioorg Chem 2021; 113:104999. [PMID: 34062406 DOI: 10.1016/j.bioorg.2021.104999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
Due to unique properties of the nanoparticles (NPs) with biocompatibility, their application as drug in drug delievery and diagnostics, the recent scientific branch nanotechnology has emerged as hope in modern medicine. Zinc oxide nanoparticles (ZnO NPs) have gained tremendous interest due to their potential use as chemotherapeutic and antimicrobial agents. They are included in the category of "generally recognized as safe (GRAS) metal oxide". There is an urgent need for developing additional sources of ZnO NPs. Therefore, in the present study 30 cyanobacterial extracts were screened for ZnO NPs synthesis.. The color change of the reaction mixture from blue to pale white indicated the synthesis of ZnO NPs. It was further confirmed by UV-Visible spectroscopy that showed the absorption peak at 372 nm. The SEM analysis during screening revealed that Oscillatoria sp. synthesized smallest ZnO NPs (~40 nm) that were further optimized for their higher yield by altering reaction conditions (pH, temperature, reaction time, concentration of extract and metal precursor). Best conditions for ZnO NPs synthesis are (0.02 M zinc nitrate, 10 ml of extract volume, pH 8, at 80 °C for 3 h). The NPs were purified through calcination at 350°C and characterized by UV-Vis, FTIR, XRD, SEM-EDAX, TEM, Zeta potential and DLS analysis. The comparative analysis of purified biogenic ZnO NPs with commercial chemically synthesized ZnO NPs (CS), exhibited their superior nature as antioxidant and anti-bacterial agent against both gram-positive and gram-negative bacteria. Synergistic effects of biogenic ZnO NPs and streptomycin additionally favored for their future use as a potential biomedical agent.
Collapse
Affiliation(s)
- Nida Asif
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Samreen Fatima
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Md Nafe Aziz
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Shehzadi
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Almaz Zaki
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| |
Collapse
|
38
|
Alavi M, Nokhodchi A. Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discov Today 2021; 26:1953-1962. [PMID: 33845219 DOI: 10.1016/j.drudis.2021.03.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Ag and ZnO nanoparticles (NP) can be prepared by physical, chemical, or eco-friendly methods. The biosynthesis of metal and metal oxide NPs by plants, fungi, and bacteria could be a promising way to obtain biocompatible NPs that have desirable antibacterial activities. However, the uniformity of shape, size, and size distribution of NPs are crucial to producing significant antibacterial results, particularly in physiological conditions such as infected wounds or septicemia. In this review, we discuss recent progress and challenges in the use of novel approaches for the biosynthesis of Ag and ZnO nanoparticles that have antibacterial activities.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Faculty of Science, Razi University, Iran.
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| |
Collapse
|
39
|
D'Souza JN, Prabhu A, Nagaraja GK, Navada K M, Kouser S, Manasa DJ. Unravelling the human triple negative breast cancer suppressive activity of biocompatible zinc oxide nanostructures influenced by Vateria indica (L.) fruit phytochemicals. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111887. [PMID: 33641895 DOI: 10.1016/j.msec.2021.111887] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/25/2020] [Accepted: 01/09/2021] [Indexed: 01/17/2023]
Abstract
The present study delineates the biosynthesis of ZnOVI nanostructures by using aqueous fruit extract of V. indica. The study has disclosed the role of V. indica fruit extract as both reducing and capping agents, ushering the formation of ZnOVI nanostructures with distinct morphologies. The formation of ZnOVI nanostructures was corroborated by FT-IR and UV-visible spectroscopy which was further substantiated by the elemental composition study through EDS spectroscopy. The nanostructures were also investigated by Rietveld refinement of PXRD data, FE-SEM, and BET analysis. The morphology, size, and surface area were found to be precursor stoichiometry dependent. The in-vitro cytotoxicity study of ZnOVI nanostructures carried out on MDA-MB468 human triple-negative breast cancer (TNBC) cells has revealed their potential cytotoxicity (91.18 ± 1.98). MTT assay performed on the NIH3T3 mouse fibroblast cells has unfolded the non-toxic nature of ZnOVI nanostructures. Additionally, the results of the AO-EB dual staining assay indicated early apoptosis in TNBC cells by displaying greenish yellow-fluorescence in the nuclei. Reactive oxygen species (ROS) measurement study has confirmed the elevated intracellular levels of ROS, supporting the oxidative-stress induced cytotoxicity in ZnOVI nanostructures treated TNBC cells. Furthermore, the haemocompatibility of ZnOVI nanostructures was evaluated using human erythrocytes. Thus, the obtained results have shown greater potential in the anticancer activity of bio-fabricated ZnOVI nanostructures.
Collapse
Affiliation(s)
- Josline Neetha D'Souza
- Department of Chemistry, Mangalore University, Mangaloagangothri 574199, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte 575018, Karnataka, India
| | - G K Nagaraja
- Department of Chemistry, Mangalore University, Mangaloagangothri 574199, Karnataka, India.
| | - Meghana Navada K
- Department of Chemistry, Mangalore University, Mangaloagangothri 574199, Karnataka, India
| | - Sabia Kouser
- Department of Chemistry, Mangalore University, Mangaloagangothri 574199, Karnataka, India
| | - D J Manasa
- Department of Botany, Davanagere University, Davanagere 577007, Karnataka, India
| |
Collapse
|
40
|
Qamar H, Hussain K, Soni A, Khan A, Hussain T, Chénais B. Cyanobacteria as Natural Therapeutics and Pharmaceutical Potential: Role in Antitumor Activity and as Nanovectors. Molecules 2021; 26:E247. [PMID: 33466486 PMCID: PMC7796498 DOI: 10.3390/molecules26010247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria (blue-green microalgae) are ubiquitous, Gram-negative photoautotrophic prokaryotes. They are considered as one of the most efficient sources of bioactive secondary metabolites. More than 50% of cyanobacteria are cultivated on commercial platforms to extract bioactive compounds, which have bene shown to possess anticancer activity. The chemically diverse natural compounds or their analogues induce cytotoxicity and potentially kill a variety of cancer cells via the induction of apoptosis, or altering the activation of cell signaling, involving especially the protein kinase-C family members, cell cycle arrest, mitochondrial dysfunctions and oxidative damage. These therapeutic properties enable their use in the pharma and healthcare sectors for the betterment of future generations. This review provides a baseline overview of the anti-cancerous cyanobacterial bioactive compounds, along with recently introduced nanomaterials that could be used for the development of new anticancer drugs to build a healthy future for mankind.
Collapse
Affiliation(s)
- Hina Qamar
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India;
| | - Kashif Hussain
- Pharmacy Section, Gyani Inder Singh Institute of Professional Studies, Dehradun 248003, India;
- School of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Aishwarya Soni
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat 124001, India;
| | - Anish Khan
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124001, India;
| | - Touseef Hussain
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Benoît Chénais
- EA 2160 Mer Molécules Santé, Le Mans Université, F-72085 Le Mans, France
| |
Collapse
|
41
|
El-Belely EF, Farag MMS, Said HA, Amin AS, Azab E, Gobouri AA, Fouda A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira platensis (Class: Cyanophyceae) and Evaluation of their Biomedical Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E95. [PMID: 33406606 PMCID: PMC7823323 DOI: 10.3390/nano11010095] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
In this study, zinc oxide nanoparticles (ZnO-NPs) were successfully fabricated through the harnessing of metabolites present in the cell filtrate of a newly isolated and identified microalga Arthrospira platensis (Class: Cyanophyceae). The formed ZnO-NPs were characterized by UV-Vis spectroscopy, Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Data showed the efficacy of cyanobacterial metabolites in fabricating spherical, crystallographic ZnO-NPs with a size ≈30.0 to 55.0 nm at a wavelength of 370 nm. Moreover, FT-IR analysis showed varied absorption peaks related to nanoparticle formation. XPS analysis confirms the presence of Zn(II)O at different varied bending energies. Data analyses exhibit that the activities of biosynthesized ZnO-NPs were dose-dependent. Their application as an antimicrobial agent was examined and formed clear zones, 24.1 ± 0.3, 21.1 ± 0.06, 19.1 ± 0.3, 19.9 ± 0.1, and 21.6 ± 0.6 mm, at 200 ppm against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans, respectively, and these activities were reduced as the NPs concentration decreased. The minimum inhibitory concentration (MIC) values were determined as 50 ppm for S. aureus, 25 ppm for P. aeruginosa, and 12.5 ppm for B. subtilis, E. coli, and C. albicans. More interestingly, ZnO-NPs exhibit high in vitro cytotoxic efficacy against cancerous (Caco-2) (IC50 = 9.95 ppm) as compared with normal (WI38) cell line (IC50 = 53.34 ppm).
Collapse
Affiliation(s)
- Ehab F. El-Belely
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (E.F.E.-B.); (M.M.S.F.)
| | - Mohamed M. S. Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (E.F.E.-B.); (M.M.S.F.)
| | - Hanan A. Said
- Botany Department, Faculty of Science, Fayoum University, Fayoum 63511, Egypt;
| | - Abeer S. Amin
- Botany Department, Faculty of Science, Suez Canal University Ismailia, Ismailia 41522, Egypt;
| | - Ehab Azab
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (E.F.E.-B.); (M.M.S.F.)
| |
Collapse
|
42
|
Mohd Yusof H, Abdul Rahman N, Mohamad R, Zaidan UH, Samsudin AA. Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties. Sci Rep 2020; 10:19996. [PMID: 33204003 PMCID: PMC7673015 DOI: 10.1038/s41598-020-76402-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022] Open
Abstract
This study aims to utilize the cell-biomass (CB) and supernatant (CFS) of zinc-tolerant Lactobacillus plantarum TA4 as a prospective nanofactory to synthesize ZnO NPs. The surface plasmon resonance for the biosynthesized ZnO NPs-CFS and ZnO NPs-CB was 349 nm and 351 nm, respectively, thereby confirming the formation of ZnO NPs. The FTIR analysis revealed the presence of proteins, carboxyl, and hydroxyl groups on the surfaces of both the biosynthesized ZnO NPs that act as reducing and stabilizing agents. The DLS analysis revealed that the poly-dispersity indexes was less than 0.4 for both ZnO NPs. In addition, the HR-TEM micrographs of the biosynthesized ZnO NPs revealed a flower-like pattern for ZnO NPs-CFS and an irregular shape for ZnO NPs-CB with particles size of 291.1 and 191.8 nm, respectively. In this study, the biosynthesized ZnO NPs exhibited antibacterial activity against pathogenic bacteria in a concentration-dependent manner and showed biocompatibility with the Vero cell line at specific concentrations. Overall, CFS and CB of L. plantarum TA4 can potentially be used as a nanofactory for the biological synthesis of ZnO NPs.
Collapse
Affiliation(s)
- Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nor'Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Anjas Asmara Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
43
|
Pomastowski P, Król-Górniak A, Railean-Plugaru V, Buszewski B. Zinc Oxide Nanocomposites-Extracellular Synthesis, Physicochemical Characterization and Antibacterial Potential. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4347. [PMID: 33007802 PMCID: PMC7579083 DOI: 10.3390/ma13194347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
This research presents, for the first time, the potential of the Lactobacillus paracasei LC20 isolated from sweet whey as a novel, effective and accessible source for post-cultured ZnO nanocomposites synthesis. The obtained nanocomposites were subjected to comprehensive characterization by a broad spectrum of instrumental techniques. Results of spectroscopic and microscopic analysis confirmed the hexagonal crystalline structure of ZnO in the nanometer size. The dispersion stability of the obtained nanocomposites was determined based on the zeta potential (ZP) measurements-the average ZP value was found to be -29.15 ± 1.05 mV in the 7-9 pH range. The ZnO nanocomposites (NCs) demonstrated thermal stability up to 130 °C based on the results of thermogravimetric TGA/DTG) analysis. The organic deposit on the nanoparticle surface was recorded by spectroscopic analysis in the infrared range (FT-IR). Results of the spectrometric study exhibited nanostructure-assisted laser desorption/ionization effects and also pointed out the presence of organic deposits and, what is more, allowed us to identify the specific amino acids and peptides present on the ZnO NCs surfaces. In this context, mass spectrometry (MS) data confirmed the nano-ZnO formation mechanism. Moreover, fluorescence data showed an increase in fluorescence signal in the presence of nanocomposites designed for potential use as, e.g., biosensors. Despite ZnO NCs' luminescent properties, they can also act as promising antiseptic agents against clinically relevant pathogens. Therefore, a pilot study on the antibacterial activity of biologically synthesized ZnO NCs was carried out against four strains (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa) by using MIC (minimal inhibitory concentration). Additionally, the colony forming units (CFU) assay was performed and quantified for all bacterial cells as the percentage of viable cells in comparison to a control sample (untreated culture) The nanocomposites were effective among three pathogens with MIC values in the range of 86.25-172.5 μg/mL and showed potential as a new type of, e.g., medical path or ointment formulation.
Collapse
Affiliation(s)
- Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
| | - Anna Król-Górniak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| |
Collapse
|
44
|
Evaluation cytotoxicity effects of biosynthesized zinc oxide nanoparticles using aqueous Linum Usitatissimum extract and investigation of their photocatalytic activityackn. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108066] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Hamida RS, Ali MA, Redhwan A, Bin-Meferij MM. Cyanobacteria - A Promising Platform in Green Nanotechnology: A Review on Nanoparticles Fabrication and Their Prospective Applications. Int J Nanomedicine 2020; 15:6033-6066. [PMID: 32884261 PMCID: PMC7434529 DOI: 10.2147/ijn.s256134] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Green synthesis of nanoparticles (NPs) is a global ecofriendly method to develop and produce nanomaterials with unique biological, physical, and chemical properties. Recently, attention has shifted toward biological synthesis, owing to the disadvantages of physical and chemical synthesis, which include toxic yields, time and energy consumption, and high cost. Many natural sources are used in green fabrication processes, including yeasts, plants, fungi, actinomycetes, algae, and cyanobacteria. Cyanobacteria are among the most beneficial natural candidates used in the biosynthesis of NPs, due to their ability to accumulate heavy metals from their environment. They also contain a variety of bioactive compounds, such as pigments and enzymes, that may act as reducing and stabilizing agents. Cyanobacteria-mediated NPs have potential antibacterial, antifungal, antialgal, anticancer, and photocatalytic activities. The present review paper highlights the characteristics and applications in various fields of NPs produced by cyanobacteria-mediated synthesis.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Alya Redhwan
- Department of Health, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | |
Collapse
|
46
|
Vidya C, Manjunatha C, Sudeep M, Ashoka S, Lourdu Antony Raj MA. Photo-assisted mineralisation of titan yellow dye using ZnO nanorods synthesised via environmental benign route. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2537-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
47
|
Chouke P, Potbhare A, Dadure K, Mungole A, Meshram N, Chaudhary R, Rai A, Chaudhary R. An antibacterial activity of Bauhinia racemosa assisted ZnO nanoparticles during lunar eclipse and docking assay. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2020.04.758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
48
|
Nagaraj E, Shanmugam P, Karuppannan K, Chinnasamy T, Venugopal S. The biosynthesis of a graphene oxide-based zinc oxide nanocomposite using Dalbergia latifolia leaf extract and its biological applications. NEW J CHEM 2020. [DOI: 10.1039/c9nj04961d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZnO/GO nanocomposites were synthesized and their antibacterial activities assessed against various pathogens. They are potential antibacterial materials and significant anticancer activity against the MCF-7 breast cancer cell line compared to the A549 lung cancer cell line.
Collapse
|