1
|
Li X, Zhu R, Liu Q, Sun H, Sheng H, Zhu L. Effects of traditional Chinese medicine polysaccharides on chronic diseases by modulating gut microbiota: A review. Int J Biol Macromol 2024:136691. [PMID: 39437951 DOI: 10.1016/j.ijbiomac.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Intestinal tract is the largest immune system of human body. Gut microbiota (GM) can produce a large number of metabolites, such as short-chain fatty acids and bile acids, which regulate the physiological health of the host and affect the development of disease. In recent years, traditional Chinese medicine (TCM) polysaccharides have attracted extensive attention with multiple biological activities and low toxicity. TCM polysaccharides can promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria by regulating the structure and function of GM, thus playing a crucial role in preventing or treating chronic diseases such as inflammatory bowel disease (IBD), obesity, type 2 diabetes mellitus (T2DM), liver diseases, cancer, etc. In this paper, the research progress of TCM polysaccharides in the treatment of chronic diseases such as inflammatory bowel disease, obesity, T2DM, liver diseases, cancer, etc. by modulating GM was reviewed. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research of TCM polysaccharides on chronic diseases by modulating GM, and new valuable prospection for the future researches of TCM polysaccharides are proposed, which will provide new ideas for the further study of TCM polysaccharides.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Riran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
2
|
Yang Y, Fan G, Lan J, Li X, Li X, Liu R. Polysaccharide-mediated modulation of gut microbiota in the treatment of liver diseases: Promising approach with significant challenges. Int J Biol Macromol 2024:135566. [PMID: 39270901 DOI: 10.1016/j.ijbiomac.2024.135566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Liver disease represents a significant global health burden, with an increasing prevalence and a lack of efficient treatment options. The microbiota-gut-liver axis involves bidirectional communication between liver function and intestinal microorganisms. A balanced gut flora protects intestinal homeostasis, while imbalances contribute to the development of liver diseases. Distinct alterations in the structure of gut flora during illness are crucial in the management of various liver diseases. Polysaccharides derived from herbal products, fungi, and other sources have been identified to possess diverse biological activities and are well-tolerated in the treatment of liver diseases. This review provides updates on the therapeutic effects of polysaccharides on liver diseases, including fatty liver diseases, acute liver injuries and liver cancers. It also summarizes advancements in understanding the mechanisms involved, particularly from the perspective of gut microbiota and metabolites, by highlighting the changes in the composition of potentially beneficial and harmful bacteria and their correlation with the therapeutic effects of polysaccharides. Additionally, by exploring the structure-activity relationship, our review provides valuable insights for the structural modification of polysaccharides and expanding their applications. In conclusion, this review offers theoretical support and novel perspectives on developing polysaccharides-based therapeutic approaches for the treatment of liver diseases.
Collapse
Affiliation(s)
- Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Jianhang Lan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China.
| |
Collapse
|
3
|
Jiang Y, Wang S, Shuai J, Zhang X, Zhang S, Huang H, Zhang Q, Fu L. Dietary dicarbonyl compounds exacerbated immune dysfunction and hepatic oxidative stress under high-fat diets in vivo. Food Funct 2024; 15:8286-8299. [PMID: 38898781 DOI: 10.1039/d3fo05708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
High-fat diets (HFDs) predispose to obesity and liver dysfunctions, and α-dicarbonyl compounds (α-DCs) present in highly processed foods are also implicated in relevant pathological processes. However, the synergistic harmful effects of α-DCs co-administered with HFDs remain to be elucidated. In this study, 6-week-old C57BL/6 mice were fed with a HFD co-administered with 0.5% methylglyoxal (MGO)/glyoxal (GO) in water for 8 weeks, and multi-omics approaches were employed to investigate the underlying toxicity mechanisms. The results demonstrated that the MGO intervention with a HFD led to an increased body weight and blood glucose level, accompanied by the biological accumulation of α-DCs and carboxymethyl-lysine, as well as elevated serum levels of inflammatory markers including IL-1β, IL-6, and MIP-1α. Notably, hepatic lesions were observed in the MGO group under HFD conditions, concomitant with elevated levels of malondialdehyde. Transcriptomic analysis revealed enrichment of pathways and differentially expressed genes (DEGs) associated with inflammation and oxidative stress in the liver. Furthermore, α-DC intervention exacerbated gut microbial dysbiosis in the context of a HFD, and through Spearman correlation analysis, the dominant genera such as Fusobacterium and Bacteroides in the MGO group and Colidextribacter and Parabacteroides in the GO group were significantly correlated with a set of DEGs involved in inflammatory and oxidative stress pathways in the liver. This study provides novel insights into the healthy implications of dietary ultra-processed food products in the context of obesity-associated disorders.
Collapse
Affiliation(s)
- Yuhao Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou, 310018, Zhejiang Province, China.
| | - Shunyu Wang
- hejiang Li Zi Yuan Food Co., Ltd, Z, Jinhua, 321031, China
| | - Jiangbing Shuai
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, 310016, China
| | - Xiaofeng Zhang
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, 310016, China
| | - Shuifeng Zhang
- National Pre-packaged Food Quality Supervision and Inspection Center, Zhejiang Fangyuan Test Group Co., Ltd., Hangzhou, 310018, China
| | - Hua Huang
- Quzhou Institute for Food and Drug Control, Quzhou, 324000, China
| | - Qiaozhi Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou, 310018, Zhejiang Province, China.
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou, 310018, Zhejiang Province, China.
| |
Collapse
|
4
|
Liu Q, Cheng L, Wang M, Shen L, Zhang C, Mu J, Hu Y, Yang Y, He K, Yan H, Zhao L, Yang S. Dietary sodium acetate and sodium butyrate improve high-carbohydrate diet utilization by regulating gut microbiota, liver lipid metabolism, oxidative stress, and inflammation in largemouth bass (Micropterus salmoides). J Anim Sci Biotechnol 2024; 15:50. [PMID: 38566217 PMCID: PMC10988814 DOI: 10.1186/s40104-024-01009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/03/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate (HC) diet disrupt the homeostasis of the gut-liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level. METHOD Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate (SA) and sodium butyrate (SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC (9% starch), HC (18% starch), HCSA (18% starch; 2 g/kg SA), HCSB (18% starch; 2 g/kg SB), and HCSASB (18% starch; 1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d. RESULTS We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy (ATG101, LC3B and TFEB), promoting lipolysis (CPT1α, HSL and AMPKα), and inhibiting adipogenesis (FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver (CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors (IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate (Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition. CONCLUSIONS In conclusion, dietary SA and SB can reduce hepatic lipid deposition; and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.
Collapse
Affiliation(s)
- Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liangshun Cheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Maozhu Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianfeng Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chengxian Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jin Mu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yihui Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Cai T, Song X, Xu X, Dong L, Liang S, Xin M, Huang Y, Zhu L, Li T, Wang X, Fang Y, Xu Z, Wang C, Wang M, Li J, Zheng Y, Sun W, Li L. Effects of plant natural products on metabolic-associated fatty liver disease and the underlying mechanisms: a narrative review with a focus on the modulation of the gut microbiota. Front Cell Infect Microbiol 2024; 14:1323261. [PMID: 38444539 PMCID: PMC10912229 DOI: 10.3389/fcimb.2024.1323261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by the excessive accumulation of fat in hepatocytes. However, due to the complex pathogenesis of MAFLD, there are no officially approved drugs for treatment. Therefore, there is an urgent need to find safe and effective anti-MAFLD drugs. Recently, the relationship between the gut microbiota and MAFLD has been widely recognized, and treating MAFLD by regulating the gut microbiota may be a new therapeutic strategy. Natural products, especially plant natural products, have attracted much attention in the treatment of MAFLD due to their multiple targets and pathways and few side effects. Moreover, the structure and function of the gut microbiota can be influenced by exposure to plant natural products. However, the effects of plant natural products on MAFLD through targeting of the gut microbiota and the underlying mechanisms are poorly understood. Based on the above information and to address the potential therapeutic role of plant natural products in MAFLD, we systematically summarize the effects and mechanisms of action of plant natural products in the prevention and treatment of MAFLD through targeting of the gut microbiota. This narrative review provides feasible ideas for further exploration of safer and more effective natural drugs for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Linghui Zhu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Kong H, Xu T, Wang S, Zhang Z, Li M, Qu S, Li Q, Gao P, Cong Z. The molecular mechanism of polysaccharides in combating major depressive disorder: A comprehensive review. Int J Biol Macromol 2024; 259:129067. [PMID: 38163510 DOI: 10.1016/j.ijbiomac.2023.129067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Major depressive disorder (MDD) is a complex psychiatric condition with diverse etiological factors. Typical pathological features include decreased cerebral cortex, subcortical structures, and grey matter volumes, as well as monoamine transmitter dysregulation. Although medications exist to treat MDD, unmet needs persist due to limited efficacy, induced side effects, and relapse upon drug withdrawal. Polysaccharides offer promising new therapies for MDD, demonstrating antidepressant effects with minimal side effects and multiple targets. These include neurotransmitter, neurotrophin, neuroinflammation, hypothalamic-pituitary-adrenal axis, mitochondrial function, oxidative stress, and intestinal flora regulation. This review explores the latest advancements in understanding the pharmacological actions and mechanisms of polysaccharides in treating major depression. We discuss the impact of polysaccharides' diverse structures and properties on their pharmacological actions, aiming to inspire new research directions and facilitate the discovery of novel anti-depressive drugs.
Collapse
Affiliation(s)
- Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Min Li
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Suyan Qu
- Tai 'an Taishan District People's Hospital, China
| | - Qinqing Li
- Shanxi University of Chinese Medicine, China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Cancer Hospital of Shandong First Medical University, China.
| |
Collapse
|
7
|
Xiang L, Du T, Zhang J, Zhang Y, Zhou Y, Zhao Y, Zhou Y, Ma L. Vitamin D 3 supplementation shapes the composition of gut microbiota and improves some obesity parameters induced by high-fat diet in mice. Eur J Nutr 2024; 63:155-172. [PMID: 37740812 DOI: 10.1007/s00394-023-03246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE Individuals with vitamin D (VD) insufficiency have a greater tendency to develop obesity and have increased systemic inflammation. Gut microbiota are involved in the regulation of host inflammation and energy metabolism, which plays a role in the pathogenesis of obesity. Thus, we aimed to evaluate the effects of different doses of VD3 on body weight, serum lipids, inflammatory factors, and intestinal barrier function in obese mice and to explore the regulatory effect of VD3 on gut microbiota in obese mice. METHODS Male C57BL/6 J mice received a normal chow diet (NCD, 10% fat) or high-fat diet (HFD, 60% fat) to induce obesity within 10 weeks. Then, HFD mice were supplemented with 5650, 8475, or 11,300 IU VD3/kg diet for 8 weeks. Finally, 16 s rRNA analysis was performed to analyze gut microbiota composition in cecal contents. In addition, body weight, serum lipids, inflammatory factors, and intestinal barrier function were analyzed. RESULTS VD3 supplementation reduced body weight and the levels of TG, TC, HDL-C, TNF-α, IL-1β and LPS, and increased ZO-1 in HFD-fed mice. Moreover, it increased α-diversity, reduced F/B ratio and altered microbiota composition by increasing relative abundance of Bacteroidetes, Proteobacteria, Desulfovibrio, Dehalobacterium, Odoribacter, and Parabacteroides and reducing relative abundance of Firmicutes and Ruminococcus. There were significant differences between HFD and NCD groups in several metabolic pathways, including endotoxin biosynthesis, tricarboxylic acid cycle, lipid synthesis and metabolism, and glycolysis. CONCLUSIONS Low, medium, and high doses of VD3 inhibited weight gain, reduced levels of blood lipids and inflammatory factors, and improved endotoxemia and gut barrier function in obese mice. It also increased the α-diversity of gut microbiota in obese mice and reduced the relative abundance of some intestinal pathogenic bacteria, increased the relative abundance of some beneficial bacteria, and corrected the intestinal flora disorder of obese mice, with the low- and high-dose groups showing better effects than the medium-dose group.
Collapse
Affiliation(s)
- Lian Xiang
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Tingwan Du
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Jingjing Zhang
- Department of Clinical Nutrition, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuanfan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yanqiu Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yueying Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yong Zhou
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Southwest Medical University, Luzhou, China.
| | - Ling Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China.
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China.
| |
Collapse
|
8
|
Yang Y, Ren Q, Zhou Z, Li X, Ren D, Ji Z, Mao J. Structural elucidation of a highly branched α-D-glucan from Huangjiu and its hepatoprotective activity via gut microbiome regulation and intestinal barrier repairment. Carbohydr Polym 2024; 324:121423. [PMID: 37985032 DOI: 10.1016/j.carbpol.2023.121423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 11/22/2023]
Abstract
Polysaccharides in Huangjiu, a traditional fermented food, are expected to be potentially effective ingredients in protecting against alcoholic liver disease (ALD). Elucidating their precise structural and functional characteristics is essential for in-depth understanding of structure-activity relationships of hepatoprotective polysaccharides. Herein, a major polysaccharide component HJPS1-2 was purified from Huangjiu with an average molecular weight of 3.49 kDa. Structural analyses inferred that HJPS1-2 backbone was composed of (1 → 4)-linked α-D-Glcp and a single α(1 → 6)-D-Glcp-α(1 → 6)-D-Glcp branched unit for every three α(1 → 4)-D-Glcp. An ALD mouse model was further established to clarify the underlying effect of HJPS1-2 on ALD alleviation. Biochemical detection and histopathological assessment revealed that HJPS1-2 intervention remarkably improved ethanol-induced hepatic dysfunction and steatosis. HJPS1-2 treatment ameliorated gut microbiota dysbiosis of ALD mice in a dose-dependent manner, mainly manifested as restoration of microbial diversities, community structure and bacterial interaction patterns. Compared with ethanol group, the strikingly elevated intestinal short-chain fatty acids' levels and enhanced intestinal barrier function after HJPS1-2 intake might contribute to reduced serum and liver lipopolysaccharide levels and subsequently suppressed release of hepatic inflammatory cytokines, thus mitigating ALD. Collectively, this research supports the potential of food-derived polysaccharides to hinder the early formation and progression of ALD through maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Yi Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Qingxi Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiong Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Guangzhou 511458, Guangdong, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhongwei Ji
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Research Center for Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd, Zhejiang Shaoxing Huangjiu Industry Innovation Service Complex, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
9
|
Huang Q, Zhang Y, Chu Q, Song H. The Influence of Polysaccharides on Lipid Metabolism: Insights from Gut Microbiota. Mol Nutr Food Res 2024; 68:e2300522. [PMID: 37933720 DOI: 10.1002/mnfr.202300522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Indexed: 11/08/2023]
Abstract
SCOPE Polysaccharides are complex molecules of more than ten monosaccharide residues interconnected through glycosidic linkages formed via condensation reactions. Polysaccharides are widely distributed in various food resources and have gained considerable attention due to their diverse biological activities. This review presented a critical analysis of the existing research literature on anti-obesity polysaccharides and investigates the complex interplay between their lipid-lowering activity and the gut microbiota, aiming to provide a comprehensive overview of the lipid-lowering properties of polysaccharides and the underlying mechanisms of action. METHODS AND RESULTS In this review, the study summarized the roles of polysaccharides in improving lipid metabolism via gut microbiota, including the remodeling of the intestinal barrier, reduction of inflammation, inhibition of pathogenic bacteria, reduction of trimethylamine N-oxide (TMAO) production, and regulation of the metabolism of short-chain fatty acids (SCFAs) and bile acids (BAs). CONCLUSION These mechanisms collectively contributed to the beneficial effects of polysaccharides on lipid metabolism and overall metabolic health. Furthermore, polysaccharide-based nanocarriers combined with gut microbiota have broad prospects for developing targeted and personalized therapies for hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Qianqian Huang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yanhui Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| |
Collapse
|
10
|
Wang D, Deng Y, Zhao L, Wang K, Wu D, Hu Z, Liu X. GABA and fermented litchi juice enriched with GABA promote the beneficial effects in ameliorating obesity by regulating the gut microbiota in HFD-induced mice. Food Funct 2023; 14:8170-8185. [PMID: 37466048 DOI: 10.1039/d2fo04038g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Gamma-aminobutyric acid (GABA) dietary intervention is considered to have therapeutic potential against obesity. Microbial enrichment is an effective strategy to naturally and safely enhance GABA production in food. As litchi is "the king of GABA" in fruits, the retention or enrichment of its content during processing has been a key issue in the litchi industry. This study aimed to investigate the potential of GABA and fermented litchi juice enriched with GABA (FLJ) to protect against obesity in a high-fat diet (HFD) mouse model. Supplementation of GABA and FLJ displayed an anti-obesogenic effect by attenuating body weight gain, fat accumulation, and oxidative damage, and improving the serum lipid profile and hepatic function. Sequencing (16S rRNA) of fecal samples indicated that GABA and FLJ intervention displayed different regulatory effects on HFD-induced gut microbiota dysbiosis at different taxonomic levels. The microbial diversity, the relative abundance of Firmicutes and Bacteroidetes as well as the F/B ratio of GABA and FLJ groups were reversed compared to those of the HFD-induced mice. Our finding broadens the potential mechanisms by which GABA regulates gut flora in the amelioration of obesity and provides guidance for developing FLJ as a functional food to prevent obesity.
Collapse
Affiliation(s)
- Dongwei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yani Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Dongmei Wu
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Cao Y, Fang X, Sun M, Zhang Y, Shan M, Lan X, Zhu D, Luo H. Preventive and therapeutic effects of natural products and herbal extracts on nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Phytother Res 2023; 37:3867-3897. [PMID: 37449926 DOI: 10.1002/ptr.7932] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common condition that is prevalent in patients who consume little or no alcohol, and is characterized by excessive fat accumulation in the liver. The disease is becoming increasingly common with the rapid economic development of countries. Long-term accumulation of excess fat can lead to NAFLD, which represents a global health problem with no effective therapeutic approach. NAFLD is a complex, multifaceted pathological process that has been the subject of extensive research over the past few decades. Herbal medicines have gained attention as potential therapeutic agents to prevent and treat NAFLD due to their high efficacy and low risk of side effects. Our overview is based on a PubMed and Web of Science database search as of Dec 22 with the keywords: NAFLD/NASH Natural products and NAFLD/NASH Herbal extract. In this review, we evaluate the use of herbal medicines in the treatment of NAFLD. These natural resources have the potential to inform innovative drug research and the development of treatments for NAFLD in the future.
Collapse
Affiliation(s)
- Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mingyang Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
12
|
Bloemendaal M, Veniaminova E, Anthony DC, Gorlova A, Vlaming P, Khairetdinova A, Cespuglio R, Lesch KP, Arias Vasquez A, Strekalova T. Serotonin Transporter (SERT) Expression Modulates the Composition of the Western-Diet-Induced Microbiota in Aged Female Mice. Nutrients 2023; 15:3048. [PMID: 37447374 PMCID: PMC10346692 DOI: 10.3390/nu15133048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Background. The serotonin transporter (SERT), highly expressed in the gut and brain, is implicated in metabolic processes. A genetic variant of the upstream regulatory region of the SLC6A4 gene encoding SERT, the so-called short (s) allele, in comparison with the long (l) allele, results in the decreased function of this transporter, altered serotonergic regulation, an increased risk of psychiatric pathology and type-2 diabetes and obesity, especially in older women. Aged female mice with the complete (Sert-/-: KO) or partial (Sert+/-: HET) loss of SERT exhibit more pronounced negative effects following their exposure to a Western diet in comparison to wild-type (Sert+/+: WT) animals. Aims. We hypothesized that these effects might be mediated by an altered gut microbiota, which has been shown to influence serotonin metabolism. We performed V4 16S rRNA sequencing of the gut microbiota in 12-month-old WT, KO and HET female mice that were housed on a control or Western diet for three weeks. Results. The relative abundance of 11 genera was increased, and the abundance of 6 genera was decreased in the Western-diet-housed mice compared to the controls. There were correlations between the abundance of Streptococcus and Ruminococcaceae_UCG-014 and the expression of the pro-inflammatory marker Toll-like-Receptor 4 (Tlr4) in the dorsal raphe, as well as the expression of the mitochondrial activity marker perixome-proliferator-activated-receptor-cofactor-1b (Ppargc1b) in the prefrontal cortex. Although there was no significant impact of genotype on the microbiota in animals fed with the Control diet, there were significant interactions between diet and genotype. Following FDR correction, the Western diet increased the relative abundance of Intestinimonas and Atopostipes in the KO animals, which was not observed in the other groups. Erysipelatoclostridium abundance was increased by the Western diet in the WT group but not in HET or KO animals. Conclusions. The enhanced effects of a challenge with a Western diet in SERT-deficient mice include the altered representation of several gut genera, such as Intestinimonas, Atopostipes and Erysipelatoclostridium, which are also implicated in serotonergic and lipid metabolism. The manipulation of these genera may prove useful in individuals with the short SERT allele.
Collapse
Affiliation(s)
- Mirjam Bloemendaal
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Ekaterina Veniaminova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | | | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | - Priscilla Vlaming
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Adel Khairetdinova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
- Neuroscience Research Center of Lyon, Claude-Bernard Lyon-1 University, 69500 Bron, France
| | - Klaus Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany; (K.P.L.); (T.S.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Alejandro Arias Vasquez
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany; (K.P.L.); (T.S.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
13
|
Tu R, Zhou C, Huang W, Feng Z, Zhao Q, Shi X, Cui L, Chen K. Fuzi polysaccharides improve immunity in immunosuppressed mouse models by regulating gut microbiota composition. Heliyon 2023; 9:e18244. [PMID: 37519691 PMCID: PMC10372400 DOI: 10.1016/j.heliyon.2023.e18244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Rationale and objectives Fuzi, the dried root of Aconitum carmichaelii Debx, is one of the widely used traditional Chinese medicines. Fuzi polysaccharides are considered the most bioactive compounds with immunomodulatory functions, however, the mechanisms have not been evaluated. This study aims to systematically investigate the effects of Fuzi polysaccharides on the gut microbiota and immune function using a mouse model immunosuppressed with cyclophosphamide. Methods The short-chain fatty acid levels in cecal contents were measured by gas chromatography-mass spectrometry. The gut microbiota 16S rRNA gene were sequenced by next generation sequencing. The mRNA expression levels of NF-κB, IL-6, TNF-α, iNOS and COX-2 were measured using quantitative real-time polymerase chain reaction. The protein expression of occludin and zonula occludens-1 were analyzed by Western blot. The white blood cells were counted using automated hematology analyzer, and CD4+FOXP3+/CD4+ ratio was measured by flow cytometry. Results and Conclusions Fuzi polysaccharides had the function of elevating the concentration of acetic acid, propionic acid, isobutyric acid, and n-butyric acid in the cecum. Meanwhile, Fuzi polysaccharides could decrease the relative abundance of Helicobacter, Anaerotruncus, Faecalibacterium, Lachnospira, Erysipelotrichaceae_UCG-003, Mucispirillum, and Mycoplasma, and increase the relative abundance of Rhodospirillales, Ruminococcaceae_UCG-013, Mollicutes_RF39, Ruminococcus_1, Christensenellaceae_R-7_group, and Muribaculaceae in the gut. Furthermore, Fuzi polysaccharides exhibited the function of increasing spleen and thymus indices and number of white blood cells and lymphocytes. Fuzi polysaccharides could reverse the decreased mRNA expression of NF-кB, IL-6, and iNOS, differentiation of CD4+FOXP3+ regulatory T cells as well as protein expression of occludin and zonula occludens-1 induced by cyclophosphamide. In addition, the mRNA and protein expression of cytokines were significantly correlated with the abundance of gut microbiota under Fuzi polysaccharides treatment. Collectively, the above results demonstrated that Fuzi polysaccharides could regulate inflammatory cytokines and gut microbiota composition of immunosuppressive mice to improve immunity, thereby shedding light on revealing the molecular mechanism of polysaccharides of traditional Chinese medicines in the future.
Collapse
Affiliation(s)
- Ran Tu
- Medical Laboratory of Jingmen People's Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Cheng Zhou
- Medical Laboratory of Jingmen People's Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Wenfeng Huang
- Medical Laboratory of Jingmen People's Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Zhengping Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- Yan'an Hospital of Traditional Chinese Medicine, Yan'an, Shaanxi, China
| | - Qiufang Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaofei Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Langjun Cui
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Keke Chen
- School of Biological and Environmental Engineering, Xi'an University, Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an, Shaanxi, China
| |
Collapse
|
14
|
Wang XL, Yu N, Ma YX, Zhou HR, Wang C, Wei S, Miao AJ. Potential effects of Ag ion on the host by changing the structure of its gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131879. [PMID: 37336107 DOI: 10.1016/j.jhazmat.2023.131879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Silver (Ag) can change the structure of the gut microbiota (GM), but how such change may affect host health is unknown. In this study, mice were exposed to silver acetate daily for 120 days. During this period, Ag accumulation in the liver was measured, its effects on GM structure were analyzed, and potential metabolic changes in liver and serum were examined. Although Ag accumulation remained unchanged in most treatments, the ratio of Firmicutes to Bacteroidetes at the phylum level increased and changes in the relative abundance of 33 genera were detected, suggesting that Ag altered the energy metabolism of mice via changes in the gut GM. In serum and liver, 34 and 72 differentially expressed metabolites were identified, respectively. The KEGG pathways thus enriched mainly included those involving the metabolism of amino acids, organic acids, lipids, and purine. Strong correlations were found between 33 % of the microorganisms with altered relative abundances and 46 % of the differentially expressed metabolites. The resulting clusters yielded two communities responsible for host inflammation and energy metabolism. Overall, these results demonstrate potential effects of Ag on the host, by changing its GM structure, and the need to consider them when evaluating the health risk of Ag.
Collapse
Affiliation(s)
- Xin-Lei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, Nanjing, Jiangsu Province 210023, China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, Nanjing, Jiangsu Province 210023, China
| | - Ying-Xue Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, Nanjing, Jiangsu Province 210023, China
| | - Hao-Ran Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, Nanjing, Jiangsu Province 210023, China
| | - Chuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, Nanjing, Jiangsu Province 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, Nanjing, Jiangsu Province 210023, China.
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
15
|
Gu F, Zhu S, Hou J, Tang Y, Liu JX, Xu Q, Sun HZ. The hindgut microbiome contributes to host oxidative stress in postpartum dairy cows by affecting glutathione synthesis process. MICROBIOME 2023; 11:87. [PMID: 37087457 PMCID: PMC10122372 DOI: 10.1186/s40168-023-01535-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Dairy cows are susceptible to postpartum systemic oxidative stress (OS), which leads to significant production loss and metabolic disorders. The gut microbiota has been linked to host health and stress levels. However, to what extent the gut microbiota is associated with postpartum OS remains unknown. In this study, the contribution of the fecal microbiota to postpartum systemic OS and its underlying mechanisms were investigated by integrating 16S rRNA gene sequencing, metagenomics, and metabolomics in postpartum dairy cattle and by transplanting fecal microbiota from cattle to mice. RESULTS A strong link was found between fecal microbial composition and postpartum OS, with an explainability of 43.1%. A total of 17 significantly differential bacterial genera and 19 species were identified between cows with high (HOS) and low OS (LOS). Among them, 9 genera and 16 species showed significant negative correlations with OS, and Marasmitruncus and Ruminococcus_sp._CAG:724 had the strongest correlations. The microbial functional analysis showed that the fecal microbial metabolism of glutamine, glutamate, glycine, and cysteine involved in glutathione synthesis was lower in HOS cows. Moreover, 58 significantly different metabolites were identified between HOS and LOS cows, and of these metabolites, 19 were produced from microbiota or cometabolism of microbiota and host. Furthermore, these microbial metabolites were enriched in the metabolism of glutamine, glutamate, glycine, and cysteine. The mice gavaged with HOS fecal microbiota had significantly higher OS and lower plasma glutathione peroxidase and glutathione content than those orally administered saline or LOS fecal microbiota. CONCLUSIONS Integrated results suggest that the fecal microbiota is responsible for OS and that lower glutathione production plays a causative role in HOS. These findings provide novel insights into the mechanisms of postpartum OS and potential regulatory strategies to alleviate OS in dairy cows. Video Abstract.
Collapse
Affiliation(s)
- Fengfei Gu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Senlin Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jinxiu Hou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yifan Tang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Tian B, Wang P, Xu T, Cai M, Mao R, Huang L, Sun P, Yang K. Ameliorating effects of Hericium erinaceus polysaccharides on intestinal barrier injury in immunocompromised mice induced by cyclophosphamide. Food Funct 2023; 14:2921-2932. [PMID: 36892225 DOI: 10.1039/d2fo03769f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Hericium erinaceus is a kind of large fungus with rich nutrition and its polysaccharides exhibit various biological activities. In recent years, widespread interest has been focused on maintaining or improving intestinal health through the consumption of edible fungi. Studies have shown that hypoimmunity can damage the intestinal barrier, which in turn seriously affects human health. The aim of this work was to investigate the ameliorative effects of Hericium erinaceus polysaccharides (HEPs) on intestinal barrier damage in cyclophosphamide (CTX)-induced immunocompromised mice. The results showed that the HEP effectively increased the levels of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), and total superoxide dismutase (T-SOD), and decreased malondialdehyde (MDA) content in the liver tissues of mice. In addition, the HEP restored the immune organ index, increased the serum levels of IL-2 and IgA, augmented the mRNA expression levels of intestinal Muc2, Reg3γ, occludin and ZO-1, and reduced intestinal permeability in mice. It was further confirmed by an immunofluorescence assay that the HEP enhanced the expression level of intestinal tight junction proteins to protect the intestinal mucosal barrier. These results suggested that the HEP could reduce intestinal permeability and enhance intestinal immune functions by increasing antioxidant capacity, tight junction proteins and immune-related factors in CTX-induced mice. In conclusion, the HEP effectively ameliorated CTX-induced intestinal barrier damage in immunocompromised mice, which provides a new application direction for the HEP as a natural immunopotentiator with antioxidant function.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Peiyi Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Tianrui Xu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Rongliang Mao
- Changshan Haofeng Agricultural Development Co. Ltd, Quzhou 324207, China
| | - Liangshui Huang
- Research Institute of Changshan Tianle Edible Fungus, Quzhou 324200, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| |
Collapse
|
17
|
Noni (Morinda citrifolia L.) fruit polysaccharide ameliorated high-fat diet-induced obesity by modulating gut microbiota and improving bile acid metabolism. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
18
|
Liu M, Shi W, Huang Y, Wu Y, Wu K. Intestinal flora: A new target for traditional Chinese medicine to improve lipid metabolism disorders. Front Pharmacol 2023; 14:1134430. [PMID: 36937840 PMCID: PMC10014879 DOI: 10.3389/fphar.2023.1134430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Lipid metabolism disorders (LMD) can cause a series of metabolic diseases, including hyperlipidemia, obesity, non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (AS). Its development is caused by more pathogenic factors, among which intestinal flora dysbiosis is considered to be an important pathogenic mechanism of LMD. In recent years, the research on intestinal flora has made great progress, opening up new perspectives on the occurrence and therapeutic effects of diseases. With its complex composition and wide range of targets, traditional Chinese medicine (TCM) is widely used to prevent and treat LMD. This review takes intestinal flora as a target, elaborates on the scientific connotation of TCM in the treatment of LMD, updates the therapeutic thinking of LMD, and provides a reference for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Shi
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yefang Huang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Keming Wu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Huang B, Gui M, Ni Z, He Y, Zhao J, Peng J, Lin J. Chemotherapeutic Drugs Induce Different Gut Microbiota Disorder Pattern and NOD/RIP2/NF-κB Signaling Pathway Activation That Lead to Different Degrees of Intestinal Injury. Microbiol Spectr 2022; 10:e0167722. [PMID: 36222691 PMCID: PMC9769542 DOI: 10.1128/spectrum.01677-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023] Open
Abstract
5-Fluorouracil (5-FU), irinotecan (CPT-11), oxaliplatin (L-OHP), and calcium folinate (CF) are widely used chemotherapeutic drugs to treat colorectal cancer. However, chemotherapeutic use is often accompanied by intestinal inflammation and gut microbiota disorder. Changes in gut microbiota may destroy the intestinal barrier, which contributes to the severity of intestinal injury. However, intestinal injury and gut microbiota disorder have yet to be compared among 5-FU, CPT-11, L-OHP, and CF in detail, thereby limiting the development of targeted detoxification therapy after chemotherapy. In this study, a model of chemotherapy-induced intestinal injury in tumor-bearing mice was established by intraperitoneally injecting chemotherapeutic drugs at a clinically equivalent dose. 16S rRNA gene sequencing was used to detect gut microbiota. We found that 5-FU, CPT-11, and l-OHP caused intestinal injury, inflammatory cytokine (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], interleukin-1β [IL-1β], and IL-6) secretion, and gut microbiota disorder. We established a complex but clear network between the pattern of changes in gut microbiota and degree of intestinal damage induced by different chemotherapeutic drugs. L-OHP caused the most severe damage in the intestine and disorder of the gut microbiota and showed a considerable overlap of the pattern of changes in microbiota with 5-FU and CPT-11. Analysis by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt v.1.0) showed that the microbiota disorder pattern induced by 5-FU, CPT-11, and L-OHP was related to the NOD-like signaling pathway. Therefore, we detected the protein expression of the NOD/RIP2/NF-κB signaling pathway and found that L-OHP most activated this pathway. Redundancy analysis/canonical correlation analysis (RDA/CCA) revealed that Bifidobacterium, Akkermansia, Allobaculum, Catenibacterium, Mucispirillum, Turicibacter, Helicobacter, Proteus, Escherichia Shigella, Alloprevotealla, Vagococcus, Streptococcus, and "Candidatus Saccharimonas" were highly correlated with the NOD/RIP2/NF-κB signaling pathway and influenced by chemotherapeutic drugs. IMPORTANCE Chemotherapy-induced intestinal injury limits the clinical use of drugs. Intestinal injury involves multiple signaling pathways and gut microbiota disruption. Our results suggested that the degree of intestinal injury caused by different drugs of the first-line colorectal chemotherapy regimen is related to the pattern of changes in microbiota. The activation of the NOD/RIP2/NF-κB signaling pathway was also related to the pattern of changes in microbiota. l-OHP caused the most severe damage to the intestine and showed a considerable overlap of the pattern of changes in microbiota with 5-FU and CPT-11. Thirteen bacterial genera were related to different levels of intestinal injury and correlated with the NOD/RIP2/NF-κB pathway. Here, we established a network of different chemotherapeutic drugs, gut microbiota, and the NOD/RIP2/NF-κB signaling pathway. This study likely provided a new basis for further elucidating the mechanism and clinical treatment of intestinal injury caused by chemotherapy.
Collapse
Affiliation(s)
- Bin Huang
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Mengxuan Gui
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Zhuona Ni
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Yanbin He
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Jinyan Zhao
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Jun Peng
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Jiumao Lin
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
20
|
Zhang N, Wang Q, Lin F, Zheng B, Huang Y, Yang Y, Xue C, Xiao M, Ye J. Neoagarotetraose alleviates high fat diet induced obesity via white adipocytes browning and regulation of gut microbiota. Carbohydr Polym 2022; 296:119903. [DOI: 10.1016/j.carbpol.2022.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 11/02/2022]
|
21
|
Cheng L, Wei Y, Xu L, Peng L, Wang Y, Wei X. Gut Microbiota Differentially Mediated by Qingmao Tea and Qingzhuan Tea Alleviated High-Fat-Induced Obesity and Associated Metabolic Disorders: The Impact of Microbial Fermentation. Foods 2022; 11:3210. [PMCID: PMC9601715 DOI: 10.3390/foods11203210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although dark tea is a unique microbial-fermented tea with a high reputation for having an antiobesity effect, little is known about the effect of microbial fermentation on tea leaves’ antiobesity properties. This study compared the antiobesity effects of microbial-fermented Qingzhuan tea (QZT) and unfermented Qingmao tea (QMT), providing insight into their underlying mechanisms associated with gut microbiota. Our results indicated that the supplementation of QMT extract (QMTe) and QZT extract (QZTe) displayed similar antiobesity effects in high-fat diet (HFD)-fed mice, but the hypolipidemic effect of QZTe was significantly stronger than that of QMTe. The microbiomic analysis indicated that QZTe was more effective than QMTe at regulating HFD-caused gut microbiota dysbiosis. Akkermansiaceae and Bifidobacteriaceae, which have negative correlations with obesity, were enhanced notably by QZTe, whereas Faecalibaculum and Erysipelotrichaceae, which are positively correlated with obesity, were decreased dramatically by QMTe and QZTe. A Tax4Fun analysis of QMTe/QZTe-mediated gut microbiota revealed that QMTe supplementation drastically reversed the HFD-induced upregulation of glycolysis and energy metabolism, whereas QZTe supplementation significantly restored the HFD-caused downregulation of pyruvate metabolism. Our findings suggested that microbial fermentation showed a limited effect on tea leaves’ antiobesity, but enhanced their hypolipidemic activity, and QZT could attenuate obesity and associated metabolic disorders by favorably modulating gut microbiota.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
- Correspondence: (Y.W.); (X.W.); Tel.: +86-18616184495 (Y.W.); +86-021-34208533 (X.W.)
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Correspondence: (Y.W.); (X.W.); Tel.: +86-18616184495 (Y.W.); +86-021-34208533 (X.W.)
| |
Collapse
|
22
|
Research Progress on the Therapeutic Effect of Polysaccharides on Non-Alcoholic Fatty Liver Disease through the Regulation of the Gut–Liver Axis. Int J Mol Sci 2022; 23:ijms231911710. [PMID: 36233011 PMCID: PMC9570256 DOI: 10.3390/ijms231911710] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease affecting global public health at present, which can induce cirrhosis and liver cancer in serious cases. However, NAFLD is a multifactorial disease, and there is still a lack of research on its mechanism and therapeutic strategy. With the development of the gut–liver axis theory, the association between the gut–liver axis and the pathogenesis of NAFLD has been gradually disclosed. Polysaccharides, as a kind of natural product, have the advantages of low toxicity, multi-target and multi-pathway action. It has been reported that polysaccharides can affect the gut–liver axis at multiple interrelated levels, such as maintaining the ecological balance of gut microbiota (GM), regulating the metabolites of GM and improving the intestinal barrier function, which thereby plays a protective role in NAFLD. These studies have great scientific significance in understanding NAFLD based on the gut–liver axis and developing safe and effective medical treatments. Herein, we reviewed the recent progress of polysaccharides in improving nonalcoholic fatty liver disease (NAFLD) through the gut–liver axis.
Collapse
|
23
|
Xu H, Pan LB, Yu H, Han P, Fu J, Zhang ZW, Hu JC, Yang XY, Keranmu A, Zhang HJ, Bu MM, Jiang JD, Wang Y. Gut microbiota-derived metabolites in inflammatory diseases based on targeted metabolomics. Front Pharmacol 2022; 13:919181. [PMID: 36238574 PMCID: PMC9551995 DOI: 10.3389/fphar.2022.919181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota plays an important role in inflammatory diseases. Metabolites in the three metabolic pathways of tryptophan (Trp), histidine (His), and phenylalanine (Phe) can affect various inflammatory conditions, such as obesity, diabetes, arthritis, colitis, atherosclerosis, and neuroinflammation. We established an LC–MS/MS method to measure 17 metabolites—Trp, 3-indole-acetic acid (Iaa), 3-indole-lactate (Ila), 3-indole-propionic acid (Ipa), 3-indole formaldehyde (Iald), kynurenine (Kn), kynurenic acid (Kyna), 3-Hydroxyanthranilic acid (3-Haa), His, 3-methylhistidine (3-Mhis), histamine (Hist), imidazole propionic acid (Imp), 4-imidazoacetic acid (Imaa), urocanic acid (Ua), Phe, phenylethylamine (Pea), and hippuric acid (Ha)—in the three metabolic pathways. The method exhibited high sensitivity and good selectivity, linearity, accuracy, precision, stability; and recovery rate; all met the requirements of biological sample analysis. By establishing a rheumatoid arthritis (RA) model of Sprague–Dawley rats and performing 16S rRNA sequencing on their feces, it was found that there was dysbiosis, including changes in phylum level, genus level, and α biodiversity of gut bacteria. The contents of the microbiota metabolites Iaa and Ipa in the model group were significantly decreased, and those of Iald, Kn, Kyna, Ha, and Imp were significantly increased. The common therapeutic drugs Tripterygium glycosides, total glucosides of peony, and their main active ingredients were screened by in vitro incubation with gut bacteria: it was found that Tripterygium glycosides and their active ingredients could lead to a variation in metabolites in the Trp and Phe pathways. Total glucosides and active components of peony could lead to a variation in metabolites in the Phe pathway of the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yan Wang
- *Correspondence: Yan Wang, ; Jian-Dong Jiang,
| |
Collapse
|
24
|
Maternal Treatment with Metformin Persistently Ameliorates High-Fat Diet-Induced Metabolic Symptoms and Modulates Gut Microbiota in Rat Offspring. Nutrients 2022; 14:nu14173612. [PMID: 36079869 PMCID: PMC9460832 DOI: 10.3390/nu14173612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
A maternal high-fat (HF) diet has long-term deleterious effect on offspring. This study aims to evaluate whether maternal metformin (MT) treatment ameliorates the adverse effects of maternal HF diet on offspring and the role of gut microbiota in it. Pregnant Sprague-Dawley rats were randomly assigned to a HF diet (60% fat) or a standard chow diet (11.8% fat) group, and part of the HF diet group rats were co-treated with MT via drinking water (300 mg/kg/day), resulting in three groups according to maternal diet and MT treatment during gestation and lactation. All offspring were weaned on a chow diet. A maternal HF diet showed a significant deleterious effect on offspring’s metabolic phenotype and induced colonic inflammation and gut-barrier disruption through the reshaped gut microbiota. The daily oral administration of MT to HF-fed dams during gestation and lactation reversed the dysbiosis of gut microbiota in both dams and adult offspring. The hypothalamic TGR5 expression and plasma bile acids composition in adult male offspring was restored by maternal MT treatment, which could regulate hypothalamic appetite-related peptides expression and alleviate inflammation, thereby improving male offspring’s metabolic phenotype. The present study indicates that targeting the gut–brain axis through the mother may be an effective strategy to control the metabolic phenotype of offspring.
Collapse
|
25
|
Liao J, Guo J, Niu Y, Fang T, Wang F, Fan Y. Flavonoids from Lycium barbarum leaves attenuate obesity through modulating glycolipid levels, oxidative stress, and gut bacterial composition in high-fat diet-fed mice. Front Nutr 2022; 9:972794. [PMID: 35967795 PMCID: PMC9366397 DOI: 10.3389/fnut.2022.972794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional herbal therapy made from Lycium barbarum leaves has been said to be effective in treating metabolic diseases, while its exact processes are yet unknown. Natural flavonoids are considered as a secure and reliable method for treating obesity. We thus made an effort to investigate the processes by which flavonoids from L. barbarum leaves (LBLF) reduce obesity. To assess the effectiveness of the intervention following intragastric injection of various dosages of LBLF (50, 100, and 200 mg/kg⋅bw), obese model mice developed via a high-fat diet were utilized. Treatment for LBLF may decrease body weight gain, Lee’s index, serum lipids levels, oxidative stress levels, and hepatic lipids levels. It may also enhance fecal lipids excretion and improve glucose tolerance. Additionally, LBLF therapy significantly restored gut dysfunction brought on by a high-fat diet by boosting gut bacterial diversities and altering the composition of the gut bacterial community by elevating probiotics and reducing harmful bacteria.
Collapse
Affiliation(s)
- JiaLe Liao
- Department of Food Science and Technology, School of Food & Wine, Ningxia University, Yinchuan, China
| | - Jia Guo
- Department of Food Science and Technology, School of Food & Wine, Ningxia University, Yinchuan, China
| | - YinHong Niu
- Department of Food Science and Technology, School of Food & Wine, Ningxia University, Yinchuan, China
| | - Tian Fang
- Department of Food Science and Technology, School of Food & Wine, Ningxia University, Yinchuan, China
| | - FangZhou Wang
- Ningxia Red Power Goji Co., Ltd., Zhongwei, China.,Ningxia Engineering Research Center for Goji Biological Fermentation & Milling, Zhongwei, China
| | - YanLi Fan
- Department of Food Science and Technology, School of Food & Wine, Ningxia University, Yinchuan, China
| |
Collapse
|
26
|
Ma Y, Liu X, Liu D, Yin Z, Yang X, Zeng M. Oyster ( Crassostrea gigas) Polysaccharide Ameliorates High-Fat-Diet-Induced Oxidative Stress and Inflammation in the Liver via the Bile Acid-FXR-AMPKα Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8662-8671. [PMID: 35797440 DOI: 10.1021/acs.jafc.2c02490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oyster polysaccharides (OPS) have a variety of biological activities. In this study, we aimed to investigate the potential mechanisms of OPS to ameliorate hepatic oxidative stress and inflammation in mice induced by a high-fat diet (HFD). The results showed that OPS reduced the HFD-induced increases in serum transaminase levels and alleviated hepatic oxidative stress and inflammation. Moreover, OPS regulated bile acid metabolism and increased bile acid content in the liver, serum, and feces. Serum bile acid profile results indicated that OPS reduced levels of chenodeoxycholic acid, deoxycholic acid, and lithocholic acid associated with high-affinity agonists of Farnesol X receptor (FXR). Western blot analysis showed that OPS accelerated bile acid metabolism by downregulating hepatic FXR expression and promoting its downstream CYP7A1, CYP27A1, and CYP8B1 protein expression. Meanwhile, OPS ameliorated oxidative stress and inflammation in the liver by modulating FXR-AMPKα-Nrf2/NF-κB signaling to reduce p-IκBα/IκBα, p-NF-κB p65/NF-κB p65, IL-1β, and TNF-α expression and increase p-Nrf2/Nrf2, HO-1, and NQO-1 expression. This study was the first to explore the possible mechanism of OPS in improving liver oxidative stress and inflammation from the perspective of bile acid metabolism, providing a theoretical basis for OPS as a new source of functional food.
Collapse
Affiliation(s)
- Yuyang Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Xue Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Defu Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Zihao Yin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Xinyi Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, Shandong, China
| |
Collapse
|
27
|
Kong F, Kang S, Zhang J, Zhao H, Peng Y, Yang M, Zheng Y, Shao J, Yue X. Whey protein and xylitol complex alleviate type 2 diabetes in C57BL/6 mice by regulating the intestinal microbiota. Food Res Int 2022; 157:111454. [PMID: 35761691 DOI: 10.1016/j.foodres.2022.111454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes (T2D) is a metabolic disorder that has become a major threat to public health. Epidemiological and experimental studies have suggested that whey protein isolate (WPI) and xylitol (XY) play an important role on T2D. This manuscript hypothesizes the supplementation of whey protein and xylitol complex (WXY) has the hypoglycemic and hyperlipidemia effect of T2D mice induced by the conjoint action of a high-fat diet and streptozotocin (STZ) by modulating of intestinal microbiota. The mice with diabetes displayed higher levels of fasting blood glucose (FBG), insulin, glycosylated hemoglobin, total triglycerides, total cholesterol, aspartate aminotransferase, alanine aminotransferase and other serum parameters than the normal mice. Treatment with WXY for 6 weeks significantly modulated the levels of FBG and insulin, improved insulin sensitivity, pancreas impairment and liver function in T2D mice, and the effect was better than that observed with WPI and XY groups. Moreover, supplementation with WXY significantly changed the diversity and composition of the intestinal microbiota in T2D mice and restored the intestinal bacteria associated with T2D (Firmicutes, Bacteroidetes, and Lactobacillus). This may be a potential mechanism for alleviating T2D symptoms. Spearman correlation analysis showed that the relative abundances of specific genera (Turicibacter, Lachnospiraceae_NK4A136_group, Lactobacillus, Candidatus_Saccharimonas, Faecalibaculum and Coriobacteriaceae_UCG-002) were correlated with the levels of blood glucose and serum parameters. Therefore, WXY may be considered a promising dietary supplement for T2D treatment in the future.
Collapse
Affiliation(s)
- Fanhua Kong
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Shimo Kang
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Juan Zhang
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Huiwen Zhao
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Yanqi Peng
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Mei Yang
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Yan Zheng
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Junhua Shao
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
28
|
Zhang YX, Wang HX, Li QX, Chen AX, Wang XX, Zhou S, Xie ST, Li HZ, Wang JJ, Zhang Q, Zhang XY, Zhu JN. A comparative study of vestibular improvement and gastrointestinal effect of betahistine and gastrodin in mice. Biomed Pharmacother 2022; 153:113344. [PMID: 35780620 DOI: 10.1016/j.biopha.2022.113344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Betahistine and gastrodin are the first-line medications for vestibular disorders in clinical practice, nevertheless, their amelioration effects on vestibular dysfunctions still lack direct comparison and their unexpected extra-vestibular effects remain elusive. Recent clinical studies have indicated that both of them may have effects on the gastrointestinal (GI) tract. Therefore, we purposed to systematically compare both vestibular and GI effects induced by betahistine and gastrodin and tried to elucidate the mechanisms underlying their GI effects. Our results showed that betahistine and gastrodin indeed had similar therapeutic effects on vestibular-associated motor dysfunction induced by unilateral labyrinthectomy. However, betahistine reduced total GI motility with gastric hypomotility and colonic hypermotility, whereas gastrodin did not influence total GI motility with only slight colonic hypermotility. In addition, betahistine, at normal dosages, induced a slight injury of gastric mucosa. These GI effects may be due to the different effects of betahistine and gastrodin on substance P and vasoactive intestinal peptide secretion in stomach and/or colon, and agonistic/anatgonistic effects of betahistine on histamine H1 and H3 receptors expressed in GI mucosal cells and H3 receptors distributed on nerves within the myenteric and submucosal plexuses. Furthermore, treatment of betahistine and gastrodin had potential effects on gut microbiota composition, which could lead to changes in host-microbiota homeostasis in turn. These results demonstrate that gastrodin has a consistent improvement effect on vestibular functions compared with betahistine but less effect on GI functions and gut microbiota, suggesting that gastrodin may be more suitable for vestibular disease patients with GI dysfunction.
Collapse
Affiliation(s)
- Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Xiao Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xiao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ao-Xue Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xiao-Xia Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shuang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
29
|
Santoso P, Maliza R, Octavian R, Rita RS. Dietary fiber of jicama ( Pachyrhizus erosus L) tuber exerts hepatoprotective effect against high-sugar drinks in mice. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Jicama (Pachyrhizus erosus, family Fabaceae) is a potent medicinal plant. Although extensive studies report the health benefits of jicama extract, few studies have investigated the efficacy of its dietary fiber in preventing metabolic diseases, including liver disease. The present study aimed to elucidate whether dietary fiber obtained from the jicama tuber counteracts the development of liver disease induced by high-sugar drinks. Methods: Twenty-four adult male mice (DDY strain; 2 months old with bodyweight 22-25 g) were randomized into three groups: normal drink (ND), fed with tap water and standard chow; high-sucrose drink (HSD), fed with a high-sucrose drink and standard chow; and high-sucrose drink plus standard chow with 25% jicama fiber (HSD + JF 25%). After the mice were on their respective diets for ten weeks, the following parameters were measured: body weight, liver weight, malondialdehyde (MDA), histopathological alterations, blood glucose, and serum glutamate-pyruvate transaminase (SGPT). Results: Mice in the HSD + JF 25% group had significantly lower body weight (P < 0.01), liver weight (P<0.05), MDA (P<0.01), blood glucose (P<0.01), and SGPT (P<0.01) compared to those in the HSD group. They also had fewer histopathological alterations in the liver, as demonstrated by a lower proportion of degenerated cells and an overall lower histopathological score than those in the HSD group (P<0.05). Conclusion: Adding jicama fiber (25% of standard chow) mitigates the increase in blood glucose and body weight and histopathological changes in the liver induced by high-sucrose drinks, showing liver protective activity.
Collapse
Affiliation(s)
- Putra Santoso
- Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University, Padang West Sumatra 25163, Indonesia
| | - Rita Maliza
- Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University, Padang West Sumatra 25163, Indonesia
| | - Riski Octavian
- Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University, Padang West Sumatra 25163, Indonesia
| | - Rauza Sukma Rita
- Biochemistry Department, Faculty of Medicine, Andalas University, Padang West Sumatra 25163 Indonesia
| |
Collapse
|
30
|
Pengrattanachot N, Thongnak L, Lungkaphin A. The impact of prebiotic fructooligosaccharides on gut dysbiosis and inflammation in obesity and diabetes related kidney disease. Food Funct 2022; 13:5925-5945. [PMID: 35583860 DOI: 10.1039/d1fo04428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity is an extensive health problem worldwide that is frequently associated with diabetes. It is a risk factor for the development of several diseases including diabetic nephropathy. Recent studies have reported that gut dysbiosis aggravates the progression of obesity and diabetes by increasing the production of uremic toxins in conjunction with gut barrier dysfunction which then leads to increased passage of lipopolysaccharides (LPS) into the blood circulatory system eventually causing systemic inflammation. Therefore, the modification of gut microbiota using a prebiotic supplement may assist in the restoration of gut barrier function and reduce any disturbance of the inflammatory response. In this review information has been compiled concerning the possible mechanisms involved in an increase in obesity, diabetes and kidney dysfunction via the exacerbation of the inflammatory response and its association with gut dysbiosis. In addition, the role of fructooligosaccharides (FOS), a source of prebiotic widely available commercially, on the improvement of gut dysbiosis and attenuation of inflammation on obese and diabetic conditions has been reviewed. The evidence confirms that FOS supplementation could improve the pathological changes associated with obesity and diabetes related kidney disease, however, knowledge concerning the mechanisms involved is still limited and needs further elucidation.
Collapse
Affiliation(s)
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
31
|
Yang Y, Li M, Wang Q, Huang H, Zhao Y, Du F, Chen Y, Shen J, Luo H, Zhao Q, Zeng J, Li W, Chen M, Li X, Wang F, Sun Y, Gu L, Xiao Z, Wu X. Pueraria lobata starch regulates gut microbiota and alleviates high-fat high-cholesterol diet induced non-alcoholic fatty liver disease in mice. Food Res Int 2022; 157:111401. [DOI: 10.1016/j.foodres.2022.111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/04/2022]
|
32
|
Sun CY, Zheng ZL, Chen CW, Lu BW, Liu D. Targeting Gut Microbiota With Natural Polysaccharides: Effective Interventions Against High-Fat Diet-Induced Metabolic Diseases. Front Microbiol 2022; 13:859206. [PMID: 35369480 PMCID: PMC8965082 DOI: 10.3389/fmicb.2022.859206] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Unhealthy diet, in particular high-fat diet (HFD) intake, can cause the development of several metabolic disorders, including obesity, hyperlipidemia, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome (MetS). These popular metabolic diseases reduce the quality of life, and induce premature death worldwide. Evidence is accumulating that the gut microbiota is inextricably associated with HFD-induced metabolic disorders, and dietary intervention of gut microbiota is an effective therapeutic strategy for these metabolic dysfunctions. Polysaccharides are polymeric carbohydrate macromolecules and sources of fermentable dietary fiber that exhibit biological activities in the prevention and treatment of HFD-induced metabolic diseases. Of note, natural polysaccharides are among the most potent modulators of the gut microbiota composition. However, the prebiotics-like effects of polysaccharides in treating HFD-induced metabolic diseases remain elusive. In this review, we introduce the critical role of gut microbiota human health and HFD-induced metabolic disorders. Importantly, we review current knowledge about the role of natural polysaccharides in improving HFD-induced metabolic diseases by regulating gut microbiota.
Collapse
Affiliation(s)
- Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | | | - Cun-Wu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Bao-Wei Lu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| |
Collapse
|
33
|
Zhang H, Jiang F, Zhang J, Wang W, Li L, Yan J. Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: A review. Int J Biol Macromol 2022; 204:169-192. [PMID: 35122806 DOI: 10.1016/j.ijbiomac.2022.01.166] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Naturally occurring carbohydrate polymers containing non-starch polysaccharides (NPs) are a class of biomacromolecules isolated from plants, marine algae, and edible mushrooms, and their biological activities has shown potential uses in the prevention and treatment of human diseases. Importantly, NPs serve as prebiotics to provide health benefits to the host through stimulating the proliferation of beneficial gut microbiota (GM) and enhancing the production of short-chain fatty acids (SCFAs). The composition and diversity of GM play a critical role in regulating host health and have been extensively studied in recent years. In this review, the extraction, isolation, purification, and structural characterization of NPs derived from plants, marine algae, and edible mushrooms are outlined. Importantly, the degradation and metabolism of these NPs in the intestinal tract, the effects of NPs on the microbial community and SCFAs generation, and the beneficial effects of NPs on host health by modulating GM are systematically highlighted. Overall, we hope that this review can provide some theoretical references and a new perspective for applications of NPs as prebiotics in functional food and drug development.
Collapse
Affiliation(s)
- Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China.
| | - Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Jinsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jingkun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
34
|
Anti-inflammatory and gut microbiota regulatory effects of walnut protein derived peptide LPF in vivo. Food Res Int 2022; 152:110875. [DOI: 10.1016/j.foodres.2021.110875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 02/08/2023]
|
35
|
Anti-obesity natural products and gut microbiota. Food Res Int 2022; 151:110819. [PMID: 34980371 DOI: 10.1016/j.foodres.2021.110819] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022]
Abstract
The link between gut microbiota and obesity or other metabolic syndromes is growing increasingly clear. Natural products are appreciated for their beneficial health effects in humans. Increasing investigations demonstrated that the anti-obesity bioactivities of many natural products are gut microbiota dependent. In this review, we summarized the current knowledge on anti-obesity natural products acting through gut microbiota according to their chemical structures and signaling metabolites. Manipulation of the gut microbiota by natural products may serve as a potential therapeutic strategy to prevent obesity.
Collapse
|
36
|
Neoagarooligosaccharides modulate gut microbiota and alleviate body weight gain and metabolic syndrome in high-fat diet-induced obese rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
37
|
Zhang X, Chen G, Zhang J, Zhang B, Li L, Li X. Fermented noni (Morinda citrifolia L.) fruit juice improved oxidative stress and insulin resistance under the synergistic effect of Nrf2/ARE pathway and gut flora in db/db mice and HepG2 cells. Food Funct 2022; 13:8254-8273. [DOI: 10.1039/d2fo00595f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative stress interferes with blood glucose homeostasis, leading to insulin resistance (IR) and hyperglycemia, which eventually induces type 2 diabetes (T2DM). Fermented noni (Morinda citrifolia L.) fruit juice (FNJ) is...
Collapse
|
38
|
Perri MR, Romano C, Marrelli M, Zicarelli L, Toma CC, Basta D, Conforti F, Statti G. Beneficial Role of Fruits, Their Juices, and Freeze-Dried Powders on Inflammatory Bowel Disease and Related Dysbiosis. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010004. [PMID: 35009009 PMCID: PMC8747592 DOI: 10.3390/plants11010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 05/27/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of complex chronic inflammatory conditions affecting the gastrointestinal tract. It is linked to a number of genetic and environmental factors able to perturb the immune-microbiome axis. Diet is the most investigated variable both for its role in the etiology of IBD and for its beneficial potential in the treatment of the symptoms. Dietary products may influence intestinal inflammation through different mechanisms of action, such as the modulation of inflammatory mediators, the alteration of gene expression, changes in gut permeability, and modifications in enteric flora composition. A consisting number of studies deal with the link between nutrition and microbial community, and particular attention is paid to plant-based foods. The effects of the dietary intake of different fruits have been investigated so far. This review aims to present the most recent studies concerning the beneficial potential of fruit consumption on human gut microbiota. Investigated plant species are described, and obtained results are presented and discussed in order to provide an overview of both in vitro and in vivo effects of fruits, their juices, and freeze-dried powders.
Collapse
Affiliation(s)
- Maria Rosaria Perri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.R.P.); (F.C.)
| | - Carmen Romano
- SIACSA Società Italiana degli Analisti del Comportamento in campo Sperimentale ed Applicativo, 87100 Cosenza, RC, Italy;
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.R.P.); (F.C.)
| | | | - Claudia-Crina Toma
- Pharmacognosy Department, Faculty of Pharmacy, Vasile Goldis Western University of Arad, 87 L. Rebreanu Str., 310045 Arad, Romania;
| | - Daniele Basta
- University Sport Center, University of Calabria, 87036 Rende, CS, Italy;
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.R.P.); (F.C.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.R.P.); (F.C.)
| |
Collapse
|
39
|
Anti-Hyperlipidemia and Gut Microbiota Community Regulation Effects of Selenium-Rich Cordyceps militaris Polysaccharides on the High-Fat Diet-Fed Mice Model. Foods 2021; 10:foods10102252. [PMID: 34681302 PMCID: PMC8534605 DOI: 10.3390/foods10102252] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Supplementation of polysaccharides is a promising gut microbiota-targeted therapeutic method for obesity and metabolic diseases. Biological activities of Cordyceps militaris polysaccharides have been well reported, but the effect of selenium (Se)-rich C. militaris polysaccharides (SeCMP) on obesity and associated metabolic disorder and gut microbiota composition has been rarely studied. This study aimed to investigate the anti-obesity and gut microbiota modulatory effect of crude polysaccharides separated from Se-rich C. militaris on a high-fat diet (HFD)-fed C57BL/6J mice model. Mice were treated with a normal diet (CHOW), HFD alone, HFD plus C. militaris polysaccharides (CMP), or low/medium/high dosage of SeCMP for 8 weeks. Body weight, fat content, serum lipid, appetite hormone, lipid gene expression, inflammation cytokines, thermogenic protein, short-chain fatty acids (SCFAs), and gut microbiota structure of the mice were determined. Compared with HFD-fed mice, the serum triglyceride and low-density lipoprotein cholesterol (LDL-C) in the SeCMP-200 group were decreased by 51.5% and 44.1%, respectively. Furthermore, serum lipopolysaccharide-binding proteins (LBP), adiponectin level, and pro-inflammation gene expression in the colon and subcutaneous fat were inhibited, whereas anti-inflammation gene expression was improved, reflecting SeCMP-200 might mitigate obese-induced inflammation. Meanwhile, SeCMP-200 promoted satiety and thermogenesis of obese mice. It also significantly decreased gut bacteria, such as Dorea, Lactobacillus, Clostridium, Ruminococcus, that negatively correlated with obesity traits and increased mucosal beneficial bacteria Akkermansia. There was no significant difference between CMP and SeCMP-100 groups. Our results revealed a high dose of SeCMP could prevent HFD-induced dyslipidemia and gut microbiota dysbiosis and was potential to be used as functional foods.
Collapse
|
40
|
Chen P, Tong M, Zeng H, Zheng B, Hu X. Structural characterization and in vitro fermentation by rat intestinal microbiota of a polysaccharide from Porphyra haitanensis. Food Res Int 2021; 147:110546. [PMID: 34399523 DOI: 10.1016/j.foodres.2021.110546] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
A sulfated polysaccharide (PHP1) produced by the marine red alga Porphyra haitanensis was structurally characterized, and its effect on rat fecal microbiota fermentations and short chain fatty acids production were investigated. PHP1 was mainly composed of galactose and the main linkage types were identified as → 3)G4Sβ(1 → 3)G(1 → 6)G4Sα(1 → 4)LA(1 → 6)G4Sα(1→. The surface morphology of dried PHP1 films appears to be related to its chemical structure. PHP1 promoted the growth of both propionic acid-producing bacteria and propionic acid production, as well as influencing the composition and abundance of beneficial microbiota species in rats, which may be related to its high level of sulfation. The molecular weight of PHP1 decreased significantly after fermentation, which may result from hydrolysis of the galactan (with α- and β-linkages between galactose residues) by α- or β-galactosidase secreted by the microbiota. These results provided new insights into the structure-activity relationships between P. haitanensis polysaccharide and its regulation of microbiota in vivo.
Collapse
Affiliation(s)
- Peilin Chen
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyao Tong
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongliang Zeng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
41
|
Li TT, Huang ZR, Jia RB, Lv XC, Zhao C, Liu B. Spirulina platensis polysaccharides attenuate lipid and carbohydrate metabolism disorder in high-sucrose and high-fat diet-fed rats in association with intestinal microbiota. Food Res Int 2021; 147:110530. [PMID: 34399508 DOI: 10.1016/j.foodres.2021.110530] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to evaluate the possibility that Spirulina platensis crude polysaccharides may ameliorate the lipid and carbohydrate metabolism disorder, including obesity, hyperlipidemia, hyperglycemia, hepatic steatosis, and gut dysbiosis. The results showed Spirulina platensis crude polysaccharides could improve body weight, serum/liver lipid and carbohydrate indexes, and liver antioxidant parameters in high-sucrose and high-fat diet (HFD)-fed rats, which were accompanied by regulated liver mRNA expressions involved in lipid and carbohydrate metabolism disorder. In addition, SPLP intervention significantly decreased cecal level of propionic acid in HFD-fed rats. Notably, the SPLP could alter the relative abundance of Firmicutes, Bacteroides, Proteobacteria, and Actinobacteria at phylum levels. Based on Spearman's rank correlation coefficient, serum/liver lipid and carbohydrate profiles were found significantly positively correlated with genera Romboutsia, Allobaculum, Blautia, Phascolarctobacterium, Bifidobacterium, Coprococcus, Turicibacter, Erysipelotrichaceae_unclassified, Olsenella, Escherichia/Shigella, Coprobacillus, Lachnospiracea incertae, and Lactobacillus, but strongly negatively correlated with genera Atopostipes, Flavonifractor, Porphyromonadaceae_unclassified, Barnesiella, Oscillibacter, Paraprevotella, Jeotgalicoccus, Corynebacterium, Alloprevotella and Bacteroides. It was concluded that oral administration of SPLP could remarkably ameliorate the lipid and carbohydrate metabolism disorder and significantly modulate the intestinal microbiota in HFD-fed rats.
Collapse
Affiliation(s)
- Tian-Tian Li
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zi-Rui Huang
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui-Bo Jia
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu-Cong Lv
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Chao Zhao
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bin Liu
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
42
|
Ye J, Zhao Y, Chen X, Zhou H, Yang Y, Zhang X, Huang Y, Zhang N, Lui EMK, Xiao M. Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice. Food Res Int 2021; 144:110360. [PMID: 34053553 DOI: 10.1016/j.foodres.2021.110360] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 01/03/2023]
Abstract
Obesity is regarded to be associated with fat accumulation, chronic inflammation, and gut microbiota dysbiosis. Raw and ripened pu-erh tea extract (PETe) have the effect of reducing body weight gain and fat accumulation, which are associated with gut microbiota. However, little is known about the difference of raw and ripened PETe on the regulation of gut microbiota. Here, our results suggested that supplementation of raw and ripened PETe displayed similar anti-obesogenic effect in high fat diet (HFD)-induced obesity mice, by attenuating the body weight gain, fat accumulation, oxidative injury, and low-grade inflammation, improving the glucose tolerance, alleviating the metabolic endotoxemia, and regulating the mRNA and protein expression levels of the lipid metabolism-related genes. 16S rRNA sequencing of fecal samples indicated that raw and ripened PETe intervention displayed different regulatory effect on the HFD-induced gut microbiota dysbiosis at different taxonomic levels. The microbial diversity, the relative abundance of Firmicutes and Bacteroidetes as well as F/B ratio were reversed more closer to normal by ripened PETe. Phylotypes of Bacteroidaceae, Ruminococcaceae, Lachnospiraceae, Muribaculaceae, and Rikenellaceae which are negatively correlated with obesity were enhanced notably by the intervention of ripened PETe, while Erysipelotrichaceae and Lactobacillaceae which have positive correlation with obesity were decreased dramatically. In addition, the treatment of ripened PETe had better effect on the increase of benefical Bacteroides, Alistipes, and Akkemansia and decrease of obesity associated Faecalibaculum and Erysipelatoclostridium (p < 0.05). These findings suggested that pu-erh tea especially ripened pu-erh tea could serve as a great candidate for alleviation of obesity in association with the modulation of gut microbiota.
Collapse
Affiliation(s)
- Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| | - Yan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiangming Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Huiyu Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yucheng Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Xueqin Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Yayan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Na Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Edmund M K Lui
- Physiology and Pharmacology, Western University, London, Ontario N6A 5B9, Canada
| | - Meitian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| |
Collapse
|
43
|
The lignan-rich fraction from Sambucus Williamsii Hance ameliorates dyslipidemia and insulin resistance and modulates gut microbiota composition in ovariectomized rats. Biomed Pharmacother 2021; 137:111372. [PMID: 33761598 DOI: 10.1016/j.biopha.2021.111372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Menopausal women are susceptible to have high risk of cardiovascular diseases, type II diabetes and osteoporosis due to the metabolic disorder caused by estrogen deficiency. Accumulating evidence supports that gut microbiota is a key regulator of metabolic diseases. Our previous metabolomics study interestingly demonstrated that the anti-osteoporotic effects of lignan-rich fraction (SWCA) from Sambucus wialliamsii Hance were related to the restoration of a series of lipid and glucose metabolites. This study aims to investigate how SWCA modulates lipid and glucose metabolism and the underlying mechanism. Our results show that oral administration of SWCA (140 mg/kg and 280 mg/kg) for 10 weeks alleviated dyslipidemia, improved liver functions, prevented glucose tolerance and insulin actions, attenuated system inflammation and improved intestinal barrier in OVX rats. It also induced a high abundance of Actinobacteria, and restored microbial composition. We are the first to report the protective effects of the lignan-rich fraction from S. williamsii on dyslipidemia and insulin resistance. Our findings provide strong evidence for the application of this lignan-rich fraction to treat menopausal lipid disorder and insulin resistance-related diseases.
Collapse
|
44
|
Zhang K, Meng J, Li X, Tang X, Ma S, Lv Y, Yang S. Noni (Morinda citrifolia L.) wine prevents the oxidative stress and obesity in mice induced by high-fat diet. J Food Biochem 2020; 44:e13460. [PMID: 32902870 DOI: 10.1111/jfbc.13460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
Noni (Morinda citrifolia L.) is rich in polyphenols, flavonoids, terpenoids, and iridoids. However, its bad taste and smell make noni fruit unsuitable for consumption. After fermentation, noni wine becomes free from the undesirable smell. Nevertheless, it is still unclear whether processed noni could retain its original nutrients and effects. Therefore, we conducted a series of evaluations on the nutritional composition and efficacy of noni wine. Our results showed that the polyphenol, flavonoid, and vitamin C contents in noni wine were 558.80, 234.42, and 0.30 mg/L, respectively. Our animal experiments showed that 40 ml kg-1 day-1 noni wine could reduce bodyweight, as well as the levels of body fat, serum triglycerides, total cholesterol, and low-density lipoprotein, while it simultaneously increased the amount of energy expenditure and activity, and improved the systemic antioxidant capacity in mice following a high-fat diet. The results of the gene expression and western blot analyses showed that 40 ml kg-1 day-1 noni wine could regulate the Nrf2 pathway and improve the antioxidant enzyme gene expression in mice maintained on a high-fat diet, thereby improving body lipid metabolism, reducing fatty acid synthesis, and promoting fatty acid β-oxidation. Our study indicated that drinking 40 ml kg-1 day-1 noni wine could effectively prevent high-fat diet-induced oxidative stress and obesity in mice. PRACTICAL APPLICATIONS: Noni fruit is rich in nutrients but its bad smell and hardship of processing make its commercialization difficult. Previous studies mainly focused on fresh noni juice and its primary processed products, while few noni products, of poor taste and low quality, are available in the market. Therefore, the fruit wine with both the nutritive values and the special flavor of noni has broad market prospects. Our work provides a valuable reference for the commercialization of noni wine.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Meng
- Zhuzhou Qianjin Pharmacy Co., Ltd., Hunan, China
| | - Xiaojuan Li
- Zhuzhou Qianjin Pharmacy Co., Ltd., Hunan, China
| | - Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuhua Ma
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yipin Lv
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shaojun Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|