1
|
Pemas S, Gkiliopoulos D, Samiotaki C, Bikiaris DN, Terzopoulou Z, Pechlivani EM. Valorization of Tomato Agricultural Waste for 3D-Printed Polymer Composites Based on Poly(lactic acid). Polymers (Basel) 2024; 16:1536. [PMID: 38891482 PMCID: PMC11174512 DOI: 10.3390/polym16111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Agricultural waste is a renewable source of lignocellulosic components, which can be processed in a variety of ways to yield added-value materials for various applications, e.g., polymer composites. However, most lignocellulosic biomass is incinerated for energy. Typically, agricultural waste is left to decompose in the fields, causing problems such as greenhouse gas release, attracting insects and rodents, and impacting soil fertility. This study aims to valorise nonedible tomato waste with no commercial value in Additive Manufacturing (AM) to create sustainable, cost-effective and added-value PLA composites. Fused Filament Fabrication (FFF) filaments with 5 and 10 wt.% tomato stem powder (TSP) were developed, and 3D-printed specimens were tested. Mechanical testing showed consistent tensile properties with 5% TSP addition, while flexural strength decreased, possibly due to void formation. Dynamic mechanical analysis (DMA) indicated changes in storage modulus and damping factor with TSP addition. Notably, the composites exhibited antioxidant activity, increasing with higher TSP content. These findings underscore the potential of agricultural waste utilization in FFF, offering insights into greener waste management practices and addressing challenges in mechanical performance and material compatibility. This research highlights the viability of integrating agricultural waste into filament-based AM, contributing to sustainable agricultural practices and promoting circular economy initiatives.
Collapse
Affiliation(s)
- Sotirios Pemas
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (S.P.); (D.G.)
| | - Dimitrios Gkiliopoulos
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (S.P.); (D.G.)
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christina Samiotaki
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.S.); (D.N.B.)
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.S.); (D.N.B.)
| | - Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.S.); (D.N.B.)
- Laboratory of Industrial Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Eleftheria Maria Pechlivani
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (S.P.); (D.G.)
| |
Collapse
|
2
|
Morvayová A, Contuzzi N, Fabbiano L, Casalino G. Multi-Attribute Decision Making: Parametric Optimization and Modeling of the FDM Manufacturing Process Using PLA/Wood Biocomposites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:924. [PMID: 38399175 PMCID: PMC10890381 DOI: 10.3390/ma17040924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
The low carbon footprint, biodegradability, interesting mechanical properties, and relatively low price are considered some of the reasons for the increased interest in polylactic acid-based (PLA-based) filaments supplied with natural fillers. However, it is essential to recognize that incorporating natural fillers into virgin PLA significantly impacts the printability of the resulting blends. The complex inter-relationship between process, structure, and properties in the context of fused deposition modeling (FDM)-manufactured biocomposites is still not fully understood, which thus often results in decreased reliability of this technology in the context of biocomposites, decreased accuracy, and the increased presence of defects in the manufactured biocomposite samples. In light of these considerations, this study aims to identify the optimal processing parameters for the FDM manufacturing process involving wood-filled PLA biocomposites. This study presents an optimization approach consisting of Grey Relational Analysis in conjunction with the Taguchi orthogonal array. The optimization process has identified the combination of a scanning speed of 70 mm/s, a layer height of 0.1 mm, and a printing temperature of 220 °C as the most optimal, resulting in the highly satisfactory combination of good dimensional accuracy (Dx = 20.115 mm, Dy = 20.556 mm, and Dz = 20.220 mm) and low presence of voids (1.673%). The experimentally determined Grey Relational Grade of the specimen manufactured with the optimized set of process parameters (0.782) was in good agreement with the predicted value (0. 754), substantiating the validity of the optimization process. Additionally, the research compared the efficacy of optimization between the integrated multiparametric method and the conventional monoparametric strategy. The multiparametric method, which combines Grey Relational Analysis with the Taguchi orthogonal array, exhibited superior performance. Although the monoparametric optimization strategy yielded specimens with favorable values for the targeted properties, the analysis of the remaining characteristics uncovered unsatisfactory results. This highlights the potential drawbacks of relying on a singular optimization approach.
Collapse
Affiliation(s)
| | | | | | - Giuseppe Casalino
- Dipartimento di Meccanica, Matematica e Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy; (A.M.); (N.C.); (L.F.)
| |
Collapse
|
3
|
Baniasadi H, Abidnejad R, Fazeli M, Lipponen J, Niskanen J, Kontturi E, Seppälä J, Rojas OJ. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications. Adv Colloid Interface Sci 2024; 324:103095. [PMID: 38301316 DOI: 10.1016/j.cis.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Direct ink writing (DIW) stands as a pioneering additive manufacturing technique that holds transformative potential in the field of hydrogel fabrication. This innovative approach allows for the precise deposition of hydrogel inks layer by layer, creating complex three-dimensional structures with tailored shapes, sizes, and functionalities. By harnessing the versatility of hydrogels, DIW opens up possibilities for applications spanning from tissue engineering to soft robotics and wearable devices. This comprehensive review investigates DIW as applied to hydrogels and its multifaceted applications. The paper introduces a diverse range of printing techniques while providing a thorough exploration of DIW for hydrogel-based printing. The investigation aims to explain the progress made, challenges faced, and potential trajectories that lie ahead for DIW in hydrogel-based manufacturing. The fundamental principles underlying DIW are carefully examined, specifically focusing on rheological attributes and printing parameters, prompting a comprehensive survey of the wide variety of hydrogel materials. These encompass both natural and synthetic variations, all of which can be effectively harnessed for this purpose. Furthermore, the review explores the latest applications of DIW for hydrogels in biomedical areas, with a primary focus on tissue engineering, wound dressing, and drug delivery systems. The document not only consolidates the existing state of DIW within the context of hydrogel-based manufacturing but also charts potential avenues for further research and innovative breakthroughs.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland.
| | - Roozbeh Abidnejad
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Mahyar Fazeli
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Juha Lipponen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Jukka Niskanen
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Jang G, Kim SK, Heo SJ, Koak JY. Fit analysis of stereolithography-manufactured three-unit resin prosthesis with different 3D-printing build orientations and layer thicknesses. J Prosthet Dent 2024; 131:301-312. [PMID: 36653209 DOI: 10.1016/j.prosdent.2021.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 01/19/2023]
Abstract
STATEMENT OF PROBLEM Printing conditions can affect the fit of a 3-dimensionally (3D) printed prosthesis. Therefore, it is important to determine the optimal printing conditions for stereolithography (SLA)-manufactured prostheses. PURPOSE The purpose of this study was to analyze the fit according to the build orientations and layer thicknesses in SLA-manufactured 3-unit resin prostheses. MATERIAL AND METHODS SLA 3D printed prostheses were produced in 5 build orientations (0, 30, 45, 60, and 90 degrees) and 2 layer thicknesses (50 and 100 μm). Milled prostheses were fabricated from the same design. The mounted prostheses on the master model were scanned with microcomputed tomography (μCT). Data were processed with the NRecon software program. For quantitative analysis, marginal and internal fits were measured by using the imageJ software program in terms of the following metrics: absolute marginal discrepancy, marginal gap, cervical area, midaxial wall area, line-angle area, and occlusal area. Internal gap volume was also measured with the CTAn software program. For statistical analysis, ANOVA and Tukey HSD tests were used (α=.05). For qualitative analysis, μCT cross-sections were compared among groups, and intaglio surfaces were imaged with a scanning electron microscope. RESULTS A layer thickness of 50 μm with build orientations of 45 and 60 degrees exhibited smaller mean gap values (P<.05) than the other conditions for all measurements except line-angle area and occlusal area. The scanning electron microscope images showed voids on the intaglio surfaces for the 0- and 90-degree groups. CONCLUSIONS For SLA 3D printed resin prostheses, a difference in fit occurred based on the printing conditions, although both 3D printed and milled prostheses showed a clinically acceptable fit. When an SLA 3D printed prosthesis is manufactured under appropriate conditions, a clinically acceptable fit can be obtained.
Collapse
Affiliation(s)
- Gaejun Jang
- Post-Doctor, Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Seong-Kyun Kim
- Professor, Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| | - Seong-Joo Heo
- Professor, Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jai-Young Koak
- Professor, Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Putra NE, Zhou J, Zadpoor AA. Sustainable Sources of Raw Materials for Additive Manufacturing of Bone-Substituting Biomaterials. Adv Healthc Mater 2024; 13:e2301837. [PMID: 37535435 PMCID: PMC11468967 DOI: 10.1002/adhm.202301837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Indexed: 08/05/2023]
Abstract
The need for sustainable development has never been more urgent, as the world continues to struggle with environmental challenges, such as climate change, pollution, and dwindling natural resources. The use of renewable and recycled waste materials as a source of raw materials for biomaterials and tissue engineering is a promising avenue for sustainable development. Although tissue engineering has rapidly developed, the challenges associated with fulfilling the increasing demand for bone substitutes and implants remain unresolved, particularly as the global population ages. This review provides an overview of waste materials, such as eggshells, seashells, fish residues, and agricultural biomass, that can be transformed into biomaterials for bone tissue engineering. While the development of recycled metals is in its early stages, the use of probiotics and renewable polymers to improve the biofunctionalities of bone implants is highlighted. Despite the advances of additive manufacturing (AM), studies on AM waste-derived bone-substitutes are limited. It is foreseeable that AM technologies can provide a more sustainable alternative to manufacturing biomaterials and implants. The preliminary results of eggshell and seashell-derived calcium phosphate and rice husk ash-derived silica can likely pave the way for more advanced applications of AM waste-derived biomaterials for sustainably addressing several unmet clinical applications.
Collapse
Affiliation(s)
- Niko E. Putra
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Jie Zhou
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| |
Collapse
|
6
|
Šimunović L, Jurela A, Sudarević K, Bačić I, Haramina T, Meštrović S. Influence of Post-Processing on the Degree of Conversion and Mechanical Properties of 3D-Printed Polyurethane Aligners. Polymers (Basel) 2023; 16:17. [PMID: 38201683 PMCID: PMC10780983 DOI: 10.3390/polym16010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND This study explores how different post-processing methods affect the mechanical properties and degree of conversion of 3d-printed polyurethane aligners made from Tera Harz TC-85 resin. METHODS Using Fourier-transform infrared (FTIR) spectroscopy, the degree of conversion of liquid resin and post-processed materials was analyzed. This investigation focused on the effects of various post-curing environments (nitrogen vs. air) and rinsing protocols (centrifuge, ethanol, isopropanol, and isopropanol + water). The assessed mechanical properties were flexural modulus and hardness. RESULTS The degree of conversion showed no significant variance across different groups, though the polymerization environment influenced the results, accounting for 24.0% of the variance. The flexural modulus varied considerably, depending on both the rinsing protocol and the polymerization environment. The standard protocol (centrifugation followed by nitrogen polymerization) exhibited the highest flexural modulus of 1881.22 MPa. Hardness testing revealed significant differences, with isopropanol treatments showing increased resistance to wear in comparison to the centrifuge and ethanol rinse treatments. CONCLUSIONS This study conclusively demonstrates the adverse effects of oxygen on the polymerization process, underscoring the critical need for an oxygen-free environment to optimize material properties. Notably, the ethanol rinse followed by nitrogen polymerization protocol emerged as a viable alternative to the conventional centrifuge plus nitrogen method.
Collapse
Affiliation(s)
- Luka Šimunović
- Department of Orthodontics, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Antonija Jurela
- Dental Clinic Fiziodent, 10000 Zagreb, Croatia; (A.J.); (K.S.)
| | - Karlo Sudarević
- Dental Clinic Fiziodent, 10000 Zagreb, Croatia; (A.J.); (K.S.)
| | - Ivana Bačić
- Forensic Science Centre “Ivan Vučetić”, Ministry of the Interior, 10000 Zagreb, Croatia;
| | - Tatjana Haramina
- Department of Materials, Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia;
| | - Senka Meštrović
- Department of Orthodontics, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
7
|
Jiang B, Jiao H, Guo X, Chen G, Guo J, Wu W, Jin Y, Cao G, Liang Z. Lignin-Based Materials for Additive Manufacturing: Chemistry, Processing, Structures, Properties, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206055. [PMID: 36658694 PMCID: PMC10037990 DOI: 10.1002/advs.202206055] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The utilization of lignin, the most abundant aromatic biomass component, is at the forefront of sustainable engineering, energy, and environment research, where its abundance and low-cost features enable widespread application. Constructing lignin into material parts with controlled and desired macro- and microstructures and properties via additive manufacturing has been recognized as a promising technology and paves the way to the practical application of lignin. Considering the rapid development and significant progress recently achieved in this field, a comprehensive and critical review and outlook on three-dimensional (3D) printing of lignin is highly desirable. This article fulfils this demand with an overview on the structure of lignin and presents the state-of-the-art of 3D printing of pristine lignin and lignin-based composites, and highlights the key challenges. It is attempted to deliver better fundamental understanding of the impacts of morphology, microstructure, physical, chemical, and biological modifications, and composition/hybrids on the rheological behavior of lignin/polymer blends, as well as, on the mechanical, physical, and chemical performance of the 3D printed lignin-based materials. The main points toward future developments involve hybrid manufacturing, in situ polymerization, and surface tension or energy driven molecular segregation are also elaborated and discussed to promote the high-value utilization of lignin.
Collapse
Affiliation(s)
- Bo Jiang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Huan Jiao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Xinyu Guo
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Jiaqi Guo
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Wenjuan Wu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yongcan Jin
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Guozhong Cao
- Department of Materials Science and EngineeringUniversity of WashingtonSeattleWA98195‐2120USA
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesJoint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
| |
Collapse
|
8
|
Veerendra GTN, Dey S, Manoj AVP, Kumaravel B. Life cycle assessment for a suburban building located within the vicinity using Revit Architecture. JOURNAL OF BUILDING PATHOLOGY AND REHABILITATION 2022. [PMCID: PMC9176164 DOI: 10.1007/s41024-022-00199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Buildings account for 25% of carbon emissions and 32% of ultimate energy consumption. Urbanization has led to an increase in the requirement for infrastructure in general, which has led to an increase in the demand for housing. Building has a significant influence on the market, community, and the environment, and these issues must be addressed. Building projects that start with the sound design decisions have a far better chance of attaining long-term viability. The environmental consequences of a structure may be reduced through design by as much as 70%. Both the professional and educational groups have welcome to the connections between sustainability and Building Information Modeling (BIM). Construction industry cooperation and productivity are predicted to improve as a result of BIM, which is a mix of technology or organizational solutions that are intended to boost inter-organizational collaboration in building design, construction and maintenance. The increasing of populations is interested in creating ecologically friendly structures that are both high-performing and cost-effective. An approach to analysis a sustainable building that has an energy-efficient orientation and amenities based on the specific location in southern India's subcontinent was presented in the present research. This research work studies a novel approach to implementing an integrated platform for sustainable design in the suburban area.
Collapse
|
9
|
Bhushan S, Singh S, Maiti TK, Sharma C, Dutt D, Sharma S, Li C, Tag Eldin EM. Scaffold Fabrication Techniques of Biomaterials for Bone Tissue Engineering: A Critical Review. Bioengineering (Basel) 2022; 9:728. [PMID: 36550933 PMCID: PMC9774188 DOI: 10.3390/bioengineering9120728] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising alternative to repair bone defects using biomaterial scaffolds, cells, and growth factors to attain satisfactory outcomes. This review targets the fabrication of bone scaffolds, such as the conventional and electrohydrodynamic techniques, for the treatment of bone defects as an alternative to autograft, allograft, and xenograft sources. Additionally, the modern approaches to fabricating bone constructs by additive manufacturing, injection molding, microsphere-based sintering, and 4D printing techniques, providing a favorable environment for bone regeneration, function, and viability, are thoroughly discussed. The polymers used, fabrication methods, advantages, and limitations in bone tissue engineering application are also emphasized. This review also provides a future outlook regarding the potential of BTE as well as its possibilities in clinical trials.
Collapse
Affiliation(s)
- Sakchi Bhushan
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Sandhya Singh
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Tushar Kanti Maiti
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 247001, India
| | - Chhavi Sharma
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 247001, India
| | - Dharm Dutt
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research & Development, Chandigarh University, Mohali 140413, India
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Changhe Li
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | | |
Collapse
|
10
|
González K, Larraza I, Berra G, Eceiza A, Gabilondo N. 3D printing of customized all-starch tablets with combined release kinetics. Int J Pharm 2022; 622:121872. [DOI: 10.1016/j.ijpharm.2022.121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
11
|
Rajaonarivony RK, Rouau X, Fabre C, Mayer-Laigle C. Properties of biomass powders resulting from the fine comminution of lignocellulosic feedstocks by three types of ball-mill set-up. OPEN RESEARCH EUROPE 2022; 1:125. [PMID: 37645205 PMCID: PMC10445875 DOI: 10.12688/openreseurope.14017.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 08/31/2023]
Abstract
Background: Lignocellulosic biomass has many functionalities that hold huge potential for material, energy or chemistry applications. To support advanced applications, the biomass must be milled into ultrafine powder to increase reactivity. This milling unit operation needs to be fully mastered to deliver high-quality standard end-products. Here we studied the relationship between the characteristics of the starting lignocellulosic plant material and the properties of the resulting ultrafine powder in different ball-mill process routes. Methods: Two lignocellulosic biomasses (pine bark and wheat straw) with contrasted compositional and mechanical properties were milled using three ball-mill set-ups delivering different balances of impact force and attrition force. The resulting powders were analysed for particle characteristics (size, agglomeration extent, shape) and powder flow properties (compressibility, cohesion) using a dynamic powder rheometer. Results: Pine bark is more amenable to a fast particle size reduction than the fibrous wheat straw. The resulting pine bark powders appear less compressible but much more cohesive than the straw powders due to particle shape, density and composition factors. The mill set-up working by attrition as dominant mechanical force (vibratory ball mill) produced a mix of large, elongated particles and higher amounts of fines as it acts mainly by erosion, the resulting powder being more prone to agglomerate due to the abundance of fines. The mill set-up working by impact as dominant mechanical force (rotary ball mill) produced more evenly distributed particle sizes and shapes. The resulting powder is less prone to agglomerate due to a preferential fragmentation mechanism. Conclusions: The attrition-dominant mill yields powders with dispersed particle sizes and shapes and the poorest flow properties, while the impact-dominant mill yields more agglomeration-prone powders. The mill set-up working with impact and attrition as concomitant mechanical forces (stirred ball mill) produces powders with better reactivity and flow properties compared to rotary and vibratory mills.
Collapse
Affiliation(s)
| | - Xavier Rouau
- IATE, Université de Montpellier, INRAE, Montpellier SupAgro, Montpellier, 34060, France
| | - Charlène Fabre
- IATE, Université de Montpellier, INRAE, Montpellier SupAgro, Montpellier, 34060, France
| | - Claire Mayer-Laigle
- IATE, Université de Montpellier, INRAE, Montpellier SupAgro, Montpellier, 34060, France
| |
Collapse
|
12
|
Zirak N, Shirinbayan M, Benfriha K, Deligant M, Tcharkhtchi A. Stereolithography of (meth)acrylate‐based photocurable resin: Thermal and mechanical properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nader Zirak
- Arts Et Metiers Institute of Technology, CNRS, CNAM, PIMM HESAM University Paris France
- Arts Et Métiers Institute of Technology, CNAM, LIFSE HESAM University Paris France
| | - Mohammadali Shirinbayan
- Arts Et Metiers Institute of Technology, CNRS, CNAM, PIMM HESAM University Paris France
- Arts Et Métiers Institute of Technology, CNAM, LIFSE HESAM University Paris France
| | - Khaled Benfriha
- Arts Et Metiers Institute of Technology, CNAM, LCPI HESAM University Paris France
| | - Michael Deligant
- Arts Et Métiers Institute of Technology, CNAM, LIFSE HESAM University Paris France
| | - Abbas Tcharkhtchi
- Arts Et Metiers Institute of Technology, CNRS, CNAM, PIMM HESAM University Paris France
| |
Collapse
|
13
|
Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regeneration. J Adv Res 2021; 40:69-94. [PMID: 36100335 PMCID: PMC9481949 DOI: 10.1016/j.jare.2021.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Biphasic calcium phosphates offer a chemically similar biomaterial to the natural bone, which can significantly accelerate bone formation and reconstruction. Robocasting is a suitable technique to produce porous scaffolds supporting cell viability, proliferation, and differentiation. This review discusses materials and methods utilized for BCP robocasting, considering recent advancements and existing challenges in using additives for bioink preparation. Commercialization and marketing approach, in-vitro and in-vivo evaluations, biologic responses, and post-processing steps are also investigated. Possible strategies and opportunities for the use of BCP toward injured bone regeneration along with clinical applications are discussed. The study proposes that BCP possesses an acceptable level of bone substituting, considering its challenges and struggles.
Background Aim of review Key scientific concepts of review
Collapse
|
14
|
Mandala R, Bannoth AP, Akella S, Rangari VK, Kodali D. A short review on fused deposition modeling
3D
printing of bio‐based polymer nanocomposites. J Appl Polym Sci 2021. [DOI: 10.1002/app.51904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Radhika Mandala
- Department of Mechanical Engineering Vignan Institute of Technology & Science Deshmukhi Hyderabad India
- Department of Mechanical Engineering Jawaharlal Nehru Technological University Hyderabad India
| | - Anjaneya Prasad Bannoth
- Department of Mechanical Engineering Jawaharlal Nehru Technological University Hyderabad India
| | - Suresh Akella
- Department of Mechanical Engineering Sreyas Institute of Engineering and Technology Hyderabad India
| | - Vijaya K. Rangari
- Department of Materials Science Engineering Tuskegee University Tuskegee USA
| | - Deepa Kodali
- Department of Materials Science Engineering Tuskegee University Tuskegee USA
- Department of Mechanical Engineering Christian Brothers University Memphis USA
| |
Collapse
|
15
|
Buschmann B, Henke K, Talke D, Saile B, Asshoff C, Bunzel F. Additive Manufacturing of Wood Composite Panels for Individual Layer Fabrication (ILF). Polymers (Basel) 2021; 13:3423. [PMID: 34641238 PMCID: PMC8511984 DOI: 10.3390/polym13193423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
The renewable resource, wood, is becoming increasingly popular as a feedstock material for additive manufacturing (AM). It can help make those processes more affordable and reduce their environmental impact. Individual layer fabrication (ILF) is a novel AM process conceived for structural applications. In ILF, parts are formed by laminating thin, individually contoured panels of wood composites which are fabricated additively by binder jetting. The individual fabrication of single panels allows the application of mechanical pressure in manufacturing those board-like elements, leading to a reduction of binder contend and an increase of mechanical strength. In this paper, the ILF process is described in detail, geometric and processing limitations are identified, and the mechanical properties of the intermediate product (panels) are presented. It is shown that the thickness of panels significantly influences the geometric accuracy. Wood composite panels from spruce chips and pMDI adhesive showed flexural strengths between 24.00 and 52.45 MPa with adhesive contents between 6.98 and 17.00 wt %. Thus, the panels meet the mechanical requirements for usage in the European construction industry. Additionally, they have significantly lower binder contents than previously investigated additively manufactured wood composites.
Collapse
Affiliation(s)
- Birger Buschmann
- Chair of Timber Structures and Building Construction, TUM School of Engineering and Design, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany; (K.H.); (D.T.); (B.S.)
| | - Klaudius Henke
- Chair of Timber Structures and Building Construction, TUM School of Engineering and Design, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany; (K.H.); (D.T.); (B.S.)
| | - Daniel Talke
- Chair of Timber Structures and Building Construction, TUM School of Engineering and Design, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany; (K.H.); (D.T.); (B.S.)
| | - Bettina Saile
- Chair of Timber Structures and Building Construction, TUM School of Engineering and Design, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany; (K.H.); (D.T.); (B.S.)
| | - Carsten Asshoff
- Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut WKI, Bienroder Weg 54E, 38108 Brunswick, Germany; (C.A.); (F.B.)
| | - Frauke Bunzel
- Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut WKI, Bienroder Weg 54E, 38108 Brunswick, Germany; (C.A.); (F.B.)
| |
Collapse
|
16
|
Ebrahimi F, Ramezani Dana H. Poly lactic acid (PLA) polymers: from properties to biomedical applications. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1944140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Farnoosh Ebrahimi
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Hossein Ramezani Dana
- Laboratoire de Mécanique, Surface, Matériaux Procédés (MSMP) – EA 7350, Arts et Metiers Institute of Technology, HESAM Université, Aix-en-Provence, France
- Texas A&M Engineering Experiment Station (TEES), Texas A&M University, College Station, TX, USA
| |
Collapse
|
17
|
Gregor-Svetec D, Leskovšek M, Leskovar B, Stanković Elesini U, Vrabič-Brodnjak U. Analysis of PLA Composite Filaments Reinforced with Lignin and Polymerised-Lignin-Treated NFC. Polymers (Basel) 2021; 13:2174. [PMID: 34209091 PMCID: PMC8271860 DOI: 10.3390/polym13132174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
Polylactic acid (PLA) is one of the most suitable materials for 3D printing. Blending with nanoparticles improves some of its properties, broadening its application possibilities. The article presents a study of composite PLA matrix filaments with added unmodified and lignin/polymerised lignin surface-modified nanofibrillated cellulose (NFC). The influence of untreated and surface-modified NFC on morphological, mechanical, technological, infrared spectroscopic, and dynamic mechanical properties was evaluated for different groups of samples. As determined by the stereo and scanning electron microscopy, the unmodified and surface-modified NFCs with lignin and polymerised lignin were present in the form of plate-shaped agglomerates. The addition of NFC slightly reduced the filaments' tensile strength, stretchability, and ability to absorb energy, while in contrast, the initial modulus slightly improved. By adding NFC to the PLA matrix, the bending storage modulus (E') decreased slightly at lower temperatures, especially in the PLA samples with 3 wt% and 5 wt% NFC. When NFC was modified with lignin and polymerised lignin, an increase in E' was noticed, especially in the glassy state.
Collapse
Affiliation(s)
- Diana Gregor-Svetec
- Graphic Arts and Design, Department of Textiles, Faculty of Natural Sciences and Engineering, University of Ljubljana, Snežniška 5, 1000 Ljubljana, Slovenia; (D.G.-S.); (M.L.); (U.S.E.)
| | - Mirjam Leskovšek
- Graphic Arts and Design, Department of Textiles, Faculty of Natural Sciences and Engineering, University of Ljubljana, Snežniška 5, 1000 Ljubljana, Slovenia; (D.G.-S.); (M.L.); (U.S.E.)
| | - Blaž Leskovar
- Department of Materials and Metallurgy, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia;
| | - Urška Stanković Elesini
- Graphic Arts and Design, Department of Textiles, Faculty of Natural Sciences and Engineering, University of Ljubljana, Snežniška 5, 1000 Ljubljana, Slovenia; (D.G.-S.); (M.L.); (U.S.E.)
| | - Urška Vrabič-Brodnjak
- Graphic Arts and Design, Department of Textiles, Faculty of Natural Sciences and Engineering, University of Ljubljana, Snežniška 5, 1000 Ljubljana, Slovenia; (D.G.-S.); (M.L.); (U.S.E.)
| |
Collapse
|
18
|
Ebers LS, Arya A, Bowland CC, Glasser WG, Chmely SC, Naskar AK, Laborie MP. 3D printing of lignin: Challenges, opportunities and roads onward. Biopolymers 2021; 112:e23431. [PMID: 33974275 DOI: 10.1002/bip.23431] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
As the second most abundant biopolymer on earth, and as a resource recently becoming more available in separated and purified form on an industrial scale due to the development of new isolation technologies, lignin has a key role to play in transitioning our material industry towards sustainability. Additive manufacturing (AM), the most efficient-material processing technology to date, has likewise made great strides to promote sustainable industrial solutions to our needs in engineered products. Bringing lignin research to AM has prompted the emergence of the nascent "lignin 3D printing" field. This review presents the recent state of art of this promising field and highlights its challenges and opportunities. Following a review of the industrial availability, molecular attributes, and associated properties of technical lignins, we review R&D efforts at implementing lignin systems in extrusion-based and stereolithography (SLA) printing technologies. Doing so underlines the adage of lignin research that "all lignins are not created equal," and stresses the opportunity nested in this chemical diversity created mostly by differences in isolation conditions to molecularly select and tune the attributes of technical lignin systems towards desirable properties, be it by modification or polymer blending. Considering the AM design process in its entirety, we finally propose onward routes to bring the full potential to this emerging field. We hope that this review can help promote the unique value and overdue industrial role of lignin in sustainable engineered materials and products.
Collapse
Affiliation(s)
- L-S Ebers
- Chair of Forest Biomaterials, Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Freiburg im Br., Germany.,Freiburg Materials Research Center, Albert Ludwig University of Freiburg, Freiburg im Br., Germany
| | - Aditi Arya
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - C C Bowland
- Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - W G Glasser
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia, USA
| | - S C Chmely
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - A K Naskar
- Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - M-P Laborie
- Chair of Forest Biomaterials, Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Freiburg im Br., Germany.,Freiburg Materials Research Center, Albert Ludwig University of Freiburg, Freiburg im Br., Germany
| |
Collapse
|
19
|
Orejuela-Escobar LM, Landázuri AC, Goodell B. Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
20
|
Barkane A, Platnieks O, Jurinovs M, Kasetaite S, Ostrauskaite J, Gaidukovs S, Habibi Y. UV-Light Curing of 3D Printing Inks from Vegetable Oils for Stereolithography. Polymers (Basel) 2021; 13:1195. [PMID: 33917193 PMCID: PMC8068002 DOI: 10.3390/polym13081195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/18/2022] Open
Abstract
Typical resins for UV-assisted additive manufacturing (AM) are prepared from petroleum-based materials and therefore do not contribute to the growing AM industry trend of converting to sustainable bio-based materials. To satisfy society and industry's demand for sustainability, renewable feedstocks must be explored; unfortunately, there are not many options that are applicable to photopolymerization. Nevertheless, some vegetable oils can be modified to be suitable for UV-assisted AM technologies. In this work, extended study, through FTIR and photorheology measurements, of the UV-curing of epoxidized acrylate from soybean oil (AESO)-based formulations has been performed to better understand the photopolymerization process. The study demonstrates that the addition of appropriate functional comonomers like trimethylolpropane triacrylate (TMPTA) and the adjusting of the concentration of photoinitiator from 1% to 7% decrease the needed UV-irradiation time by up to 25%. Under optimized conditions, the optimal curing time was about 4 s, leading to a double bond conversion rate (DBC%) up to 80% and higher crosslinking density determined by the Flory-Rehner empirical approach. Thermal and mechanical properties were also investigated via TGA and DMA measurements that showed significant improvements of mechanical performances for all formulations. The properties were improved further upon the addition of the reactive diluents. After the thorough investigations, the prepared vegetable oil-based resin ink formulations containing reactive diluents were deemed suitable inks for UV-assisted AM, giving their appropriate viscosity. The validation was done by printing different objects with complex structures using a laser based stereolithography apparatus (SLA) printer.
Collapse
Affiliation(s)
- Anda Barkane
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia; (A.B.); (O.P.); (M.J.)
| | - Oskars Platnieks
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia; (A.B.); (O.P.); (M.J.)
| | - Maksims Jurinovs
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia; (A.B.); (O.P.); (M.J.)
| | - Sigita Kasetaite
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania; (S.K.); (J.O.)
| | - Jolita Ostrauskaite
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania; (S.K.); (J.O.)
| | - Sergejs Gaidukovs
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia; (A.B.); (O.P.); (M.J.)
| | - Youssef Habibi
- Department of Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
21
|
Morales MA, Atencio Martinez CL, Maranon A, Hernandez C, Michaud V, Porras A. Development and Characterization of Rice Husk and Recycled Polypropylene Composite Filaments for 3D Printing. Polymers (Basel) 2021; 13:1067. [PMID: 33800605 PMCID: PMC8037629 DOI: 10.3390/polym13071067] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Nowadays the use of natural fiber composites has gained significant interest due to their low density, high availability, and low cost. The present study explores the development of sustainable 3D printing filaments based on rice husk (RH), an agricultural residue, and recycled polypropylene (rPP) and the influence of fiber weight ratio on physical, thermal, mechanical, and morphological properties of 3D printing parts. Thermogravimetric analysis revealed that the composite's degradation process started earlier than for the neat rPP due to the lignocellulosic fiber components. Mechanical tests showed that tensile strength increased when using a raster angle of 0° than specimens printed at 90°, due to the weaker inter-layer bonding compared to in-layer. Furthermore, inter layer bonding tensile strength was similar for all tested materials. Scanning electron microscope (SEM) images revealed the limited interaction between the untreated fiber and matrix, which led to reduced tensile properties. However, during the printing process, composites presented lower warping than printed neat rPP. Thus, 3D printable ecofriendly natural fiber composite filaments with low density and low cost can be developed and used for 3D printing applications, contributing to reduce the impact of plastic and agricultural waste.
Collapse
Affiliation(s)
- Maria A. Morales
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, CR 1 18a 12, Bogotá 111711, Colombia; (M.A.M.); (C.L.A.M.)
| | - Cindy L. Atencio Martinez
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, CR 1 18a 12, Bogotá 111711, Colombia; (M.A.M.); (C.L.A.M.)
| | - Alejandro Maranon
- Structural Integrity Research Group, Department of Mechanical Engineering, Universidad de los Andes, CR 1 18a 12, Bogotá 111711, Colombia;
| | - Camilo Hernandez
- Sustainable Design in Mechanical Engineering Research Group (DSIM), Department of Mechanical Engineering, Escuela Colombiana de Ingenieria Julio Graravito, Autopista Norte AK 45 205 59, Bogotá 111166, Colombia;
| | - Veronique Michaud
- Laboratory for Processing for Advanced Composited (LPAC), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IMX-LPAC, Station 12, CH-1015 Lausanne, Switzerland;
| | - Alicia Porras
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, CR 1 18a 12, Bogotá 111711, Colombia; (M.A.M.); (C.L.A.M.)
| |
Collapse
|
22
|
Hong SH, Park JH, Kim OY, Hwang SH. Preparation of Chemically Modified Lignin-Reinforced PLA Biocomposites and Their 3D Printing Performance. Polymers (Basel) 2021; 13:667. [PMID: 33672347 PMCID: PMC7926467 DOI: 10.3390/polym13040667] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Using a simple esterification reaction of a hydroxyl group with an anhydride group, pristine lignin was successfully converted to a new lignin (COOH-lignin) modified with a terminal carboxyl group. This chemical modification of pristine lignin was confirmed by the appearance of new absorption bands in the FT-IR spectrum. Then, the pristine lignin and COOH-lignin were successfully incorporated into a poly(lactic acid) (PLA) matrix by a typical melt-mixing process. When applied to the COOH-lignin, interfacial adhesion performance between the lignin filler and PLA matrix was better and stronger than pristine lignin. Based on these results for the COOH-lignin/PLA biocomposites, the cost of printing PLA 3D filaments can be reduced without changing their thermal and mechanical properties. Furthermore, the potential of lignin as a component in PLA biocomposites adequate for 3D printing was demonstrated.
Collapse
Affiliation(s)
| | | | | | - Seok-Ho Hwang
- Materials Chemistry & Engineering Laboratory, School of Polymer System Engineering, Dankook University, Yongin, Gyeonggi-do 16890, Korea; (S.-H.H.); (J.H.P.); (O.Y.K.)
| |
Collapse
|
23
|
Yang K, Xu S, Li B. The influence mechanism of nano-alumina content in semi-solid ceramic precursor fluid on the forming performance via a light-cured 3D printing method. RSC Adv 2020; 10:41453-41461. [PMID: 35516587 PMCID: PMC9057787 DOI: 10.1039/d0ra09121a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/02/2022] Open
Abstract
The use of three-dimensional (3D) printing technology to form ceramic materials can greatly reduce the technical difficulty and cost of preparing special-shaped ceramic parts. In this work, the formation of the 3D structure of ceramic products was achieved through light-curing 3D printing technology. The semi-solid ceramic precursor fluid prepared from nano alumina particles (Al2O3), photocurable polyurethane acrylate (PUA) and isobornyl methacrylate (IBOMA) resin was used to realize ceramic fluid with self-made light-curing 3D printing equipment. The solidification and forming of the ceramic material was achieved through secondary high temperature sintering. In order to reveal the influence mechanism of nano-alumina content in a ceramic slurry on the forming process and performance of light-curing 3D printing, the composition, micro morphology and mechanical properties of 3D printing ceramic samples under different preparation conditions were investigated. The research results show that the relationship of the ratio of alumina to the forming performance was not a monotonic function in the mathematical sense. When the mass ratio of the resin system and alumina was 1 : 2.50, the performance of the formed sample was the best. At this time, the Vickers strength of the sintered ceramic part was 79 GPa, the bending strength was 340 MPa, and the fracture toughness was 2.90 MPa m−2. This work laid a theoretical and practical foundation for the realization of high-quality, low-cost, and rapid ceramic manufacturing technology in the future. The influence mechanism of nano-alumina content on the forming performance of the light-cured 3D printing method was clarified.![]()
Collapse
Affiliation(s)
- Kepeng Yang
- Jingdezhen University Jingdezhen 333000 China +86 798 6228121
| | - Sanqiang Xu
- Jingdezhen University Jingdezhen 333000 China +86 798 6228121
| | - Bailu Li
- Jingdezhen University Jingdezhen 333000 China +86 798 6228121
| |
Collapse
|
24
|
Marrazzo P, O’Leary C. Repositioning Natural Antioxidants for Therapeutic Applications in Tissue Engineering. Bioengineering (Basel) 2020; 7:E104. [PMID: 32887327 PMCID: PMC7552777 DOI: 10.3390/bioengineering7030104] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Although a large panel of natural antioxidants demonstrate a protective effect in preventing cellular oxidative stress, their low bioavailability limits therapeutic activity at the targeted injury site. The importance to deliver drug or cells into oxidative microenvironments can be realized with the development of biocompatible redox-modulating materials. The incorporation of antioxidant compounds within implanted biomaterials should be able to retain the antioxidant activity, while also allowing graft survival and tissue recovery. This review summarizes the recent literature reporting the combined role of natural antioxidants with biomaterials. Our review highlights how such functionalization is a promising strategy in tissue engineering to improve the engraftment and promote tissue healing or regeneration.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d’Augusto 237, 47921 Rimini (RN), Italy
| | - Cian O’Leary
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, 2 D02 Dublin, Ireland;
- Science Foundation Ireland Advanced Materials and Bioengineering (AMBER) Centre, RCSI, 2 D02 Dublin, Ireland
| |
Collapse
|