1
|
Hu Y, Zhang S, Xu K, Zhuang X, Tang Y, Gong H, Pi Y, Tian T, Pang H. Nano-Metal-Organic Frameworks and Nano-Covalent-Organic Frameworks: Controllable Synthesis and Applications. Chem Asian J 2025; 20:e202400896. [PMID: 39384549 DOI: 10.1002/asia.202400896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Nanoscale framework materials have attracted extensive attention due to their diverse morphology and good properties, and synthesis methods of different size structures have been reported. Therefore, the relationship between different sizes and performance has become a research hotspot. This paper reviews the controllable synthesis strategies of nano-metal-organic frameworks (nano-MOFs) and nano-covalent-organic frameworks (nano-COFs). Firstly, the synthetic evolution of nano-frame materials is summarized. Due to their special surface area, regular pores and adjustable structural functions, nano-frame materials have attracted much attention. Then the preparation methods of nanostructures with different dimensions are introduced. These synthetic strategies provide the basis for the design of novel energy storage and catalytic materials. In addition, the latest advances in the field of energy storage and catalysis are reviewed, with emphasis on the application of nano-MOFs/COFs in zinc-, lithium-, and sodium-based batteries, as well as supercapacitors.
Collapse
Affiliation(s)
- Yaxun Hu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Kun Xu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xiaoli Zhuang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Hao Gong
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Tian Tian
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|
2
|
Zhang J, Wang Y, Yang T, Liu S, Li J, Fan J, Wu Z, Qiu L. Boosting supercapacitive performance of pristine covalent organic frameworks via phenolic hydroxyl groups: A two-in-one strategy. J Colloid Interface Sci 2025; 677:1037-1044. [PMID: 39134078 DOI: 10.1016/j.jcis.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024]
Abstract
Two-dimensional covalent organic frameworks (COFs) are ideal electrode materials for electrochemical energy storage devices due to their unique structures and properties, and the accessibility and utilization efficiency of the redox-active sites within COFs are critical determinants of their pseudocapacitive performance. Via introducing meticulously designed phenolic hydroxyl (Ar-OH) groups with hydrogen-bond forming ability onto the imine COF skeletons, DHBD-Sb-COF exhibited improved hydrophilicity and crystallinity than the parent BD-Sb-COF, the redox-active sites (SbPh3 moieties) in COF electrodes could thus be highly accessed by aqueous electrolyte with a high active-site utilization of 93%. DHBD-Sb-COF//AC provided an excellent supercapacitive performance with an energy density of 78 Wh Kg-1 at the power density of 2553 W Kg-1 and super cycling stability, exceeding most of the previously reported pristine COF electrode-based supercapacitors. The "two-in-one" strategy of introducing hydroxyl groups onto imine COF skeletons to enhance both hydrophilicity and crystallinity provides a new avenue to improve the electrochemical performance of COF-based electrodes for high-performance supercapacitors.
Collapse
Affiliation(s)
- Jingmin Zhang
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Yan Wang
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Tianfu Yang
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Shuangbin Liu
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Jinmei Li
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Jianxian Fan
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Zhengyi Wu
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Li Qiu
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
3
|
He W, Li QW, Chen S, Liu H, Cheng Z, Li S, Lyu W, Xu G, Chen YJ, Liao Y. Enhanced Conductivity in Conjugated Microporous Polymers via Integrating of Carbon Nanotubes for Ultrasensitive NO 2 Chemiresistive Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407880. [PMID: 39696927 DOI: 10.1002/smll.202407880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Conjugated microporous polymers (CMPs) present high promise for chemiresistive gas sensing owing to their inherent porosities, high surface areas, and tunable semiconducting properties. However, the poor conductivity hinders their widespread application in chemiresistive sensing. In this work, three typical CMPs (PSATA, PSATB, and PSATT) are synthesized and their chemiresistive gas sensing performance is investigated for the first time. To further improve performance, PSATT are modified on the surface of amino-functionalized multi-walled carbon nanotubes (NH2-MWCNTs) to improve the conductivity. As a result, the obtained material, PSATT-7NC exhibited a high sensitivity of 9766% toward 4 ppm NO2, which is 2.5 times higher than that of pristine PSATT. It also demonstrated remarkable selectivity and excellent long-term stability. Furthermore, the lowest limit of detection (0.79 ppb) among all polymers-based sensors is achieved at a low operating temperature of 100 °C. This work provides a valuable strategy into the development of a new material platform for advancing high-performance gas sensing applications.
Collapse
Affiliation(s)
- Weisi He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qian-Wen Li
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials, and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Sijie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - He Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhonghua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials, and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Yong-Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials, and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
4
|
Dou Y, Li Z, Wang C, Wang Q, Wang Z, Wu Q, Wang C. Hydroxyl-functionalized cationic porous organic polymers for efficient enrichment and detection of phenolic endocrine disrupting chemicals in water and snapper. Food Chem 2024; 460:140587. [PMID: 39067381 DOI: 10.1016/j.foodchem.2024.140587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) can disrupt the normal functioning of the endocrine system in organisms, leading to various health issues. Therefore, monitoring EDCs in the environment and food is of significant importance. In this study, a hydroxyl-functionalized ionic porous organic polymer (OH-IPOP) has been synthesized for the first time using 2-benzimidazolemethanol as a monomer. The OH-IPOP exhibited excellent adsorption performance towards phenolic EDCs. An efficient method for determination of phenolic EDCs (p-tert-butylphenol, bisphenol B, bisphenol A and bisphenol F) in environmental water and snapper samples was successfully established by with OH-IPOP as solid-phase extraction sorbent and determination with high-performance liquid chromatography-ultraviolet detection. The method showed good linearity (r2 > 0.998), low detection limits (0.008-0.020 ng mL-1 for lake water, 1.00-3.00 ng/g for snapper), high recovery rates (82.3-106 %), and good precision (relative standard deviation < 6.6 %), making it a highly efficient adsorbent for the enrichment of EDCs in complex sample matrices.
Collapse
Affiliation(s)
- Yiran Dou
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chenhuan Wang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
5
|
Lambert F, Hetzel AL, Danten Y, Franco AA, Gatti C, Frayret C. Investigating the potential of pyrazine dioxide based-compounds as organic electrodes for batteries. Dalton Trans 2024; 53:17498-17517. [PMID: 39007227 DOI: 10.1039/d4dt01144a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Understanding structure-property relationship in redox-active molecular species is of central importance in various fields, including many medicinal and chemical applications. The quest for performant organic electrodes in the context of energy storage calls for pioneering studies to develop new and possibly optimal materials. Beyond modifying the molecular design of the existing compounds through functionalization, expansion of the search enabling the advent of efficient new backbones can potentially lead to breakthroughs in this research area. The number of already identified families able to constitute negative organic electrodes is much lower than that of their positive counterparts, which calls for finding ways to bridge this gap. To expand the dataset of known predicted redox potentials and in view of reaching an educated guess about the abilities of some eventual new redox active electrodes, we examined the properties of pyrazine N,N'-dioxide (PZDO) and its fully methylated functionalized derivative (TeMePzDO). The aspects and mechanisms driving the various features characteristic of these compounds were unraveled through molecular and periodic DFT calculations combined with accurate electronic structure analysis. The predicted molecular redox/crystalline intercalation potentials lead to the classification of PZDO and TeMePzDO systems within the class of negative electrodes, with features that are significantly appealing compared to those of some existing systems with backbones suited for such kind of application.
Collapse
Affiliation(s)
- F Lambert
- Laboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, UMR CNRS 7314.
- Hub de l'Energie; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80000 Amiens Cedex, France
- The French Environment and Energy Management Agency (ADEME), 49004 Angers Cedex 01, France
| | - A L Hetzel
- Laboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, UMR CNRS 7314.
- Hub de l'Energie; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80000 Amiens Cedex, France
| | - Y Danten
- Institut des Sciences Moléculaires, UMR CNRS 5255, 33405 Talence, France
| | - A A Franco
- Laboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, UMR CNRS 7314.
- Hub de l'Energie; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80000 Amiens Cedex, France
- ALISTORE-European Research Institute, Hub de l'Energie, FR CNRS 3104, 80000 Amiens, France
- Institut Universitaire de France, Paris 75005, France
| | - C Gatti
- CNR SCITEC, CNR Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Milano, Italy
| | - C Frayret
- Laboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, UMR CNRS 7314.
- Hub de l'Energie; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80000 Amiens Cedex, France
- ALISTORE-European Research Institute, Hub de l'Energie, FR CNRS 3104, 80000 Amiens, France
| |
Collapse
|
6
|
Zhong L, Liu C, Zhang Y, Li J, Yang F, Zhang Z, Yu D. Engineering π-Electron Bridge Enables Low-Potential 2D Redox Polymer Anodes for High-Voltage Aqueous All-Organic Batteries. Angew Chem Int Ed Engl 2024:e202413971. [PMID: 39322942 DOI: 10.1002/anie.202413971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
Aqueous all-organic batteries (AAOBs) have emerged as a hot topic but their development was plagued by limited choices of anode materials, generally facing an intractable trade-off between low potential and high stability. Here, we propose a novel π-electron bridge engineering strategy to explore a class of 2D dioxin-bridged redox covalent organic polymer (RCOP) as trade-off-breaking anodes for high-voltage AAOBs. By establishing a tunable RCOP platform, we perform theoretical study to scrutinize how bridge units between active sites affect the electrode potential and redox activity for the first time. We discover that compared to common pyrazine bridge, the weakened conjugation and strong electron donor character of the proposed dioxin bridge can induce elevated LUMO level and enriched π-electron populations in active sites, heralding a low electrode potential and enhanced redox activity. Besides, the nonaromaticity-induced molecular flexibility of dioxin bridge mitigates intermolecular stacking for sufficient active sites exposure. To experimentally corroborate this, a new dioxin-bridged 2D RCOP (D-HATN) and its pyrazine-bridged analogue (P-HATN) are synthesized for proof-of-concept demonstration. D-HATN displays excellent compatibility with Na+/Zn2+/NH4 +/H3O+ and obviously lower redox potentials in various dilute electrolytes compared to P-HATN and most reported organic anodes, while featuring rapid Grotthuss-type proton conduction and unprecedented durability in acid - 91.8 % capacity retention after 20000 cycles. Thus, the D-HATN-involved all-organic proton battery delivers an average output voltage of 0.75 V, which can be further elevated to 1.63 V with alkaline-acidic hybrid electrolyte design, affording markedly-increased specific energy.
Collapse
Affiliation(s)
- Linfeng Zhong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Cong Liu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yang Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Fan Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Zishou Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
7
|
He C, Yang G, Ni L, Yang H, Peng Y, Liu X, Li P, Song C, He S, Zhang Q. N/O Co-doped Porous Carbon with Controllable Porosity Synthesized via an All-in-One Step Method for a High-Rate-Performance Supercapacitor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19665-19674. [PMID: 39229748 DOI: 10.1021/acs.langmuir.4c02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A green and economical methodology to fabricate carbon-based materials with suitable pore size distributions is needed to achieve rapid electrolyte diffusion and improve the performance of supercapacitors. Here, a method combining in situ templates with self-activation and self-doping is proposed. By variation of the molar ratio of magnesium folate and potassium folate, the pore size distribution was effectively adjusted. The optimal carbon materials (Kx) have a high specific surface area (1021-1676 m2 g-1) and hierarchical pore structure, which significantly promotes its excellent capacitive properties. Notably, K2 shows an excellent mass specific capacitance of 233 F g-1 at 0.1 A g-1. It still retained 113 F g-1 at 55 A g-1. The assembled symmetric supercapacitor exhibited an outstanding cyclic stability. It maintains 100% capacitance after 100 000 cycles at 10 A g-1. The symmetric supercapacitor demonstrated a maximum power density of 99.8 kW kg-1. This study focuses on the preparation of layered pore structures to provide insights into the sustainable design of carbon materials.
Collapse
Affiliation(s)
- Chenweijia He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Guangjie Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Liye Ni
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Haoqi Yang
- College of Electrical, Energy and Power Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Yongshuo Peng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Xiangdong Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Ping Li
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, People's Republic of China
| | - Cheng Song
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Qian Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| |
Collapse
|
8
|
Qi J, Bao K, Wang W, Wu J, Wang L, Ma C, Wu Z, He Q. Emerging Two-Dimensional Materials for Proton-Based Energy Storage. ACS NANO 2024. [PMID: 39248347 DOI: 10.1021/acsnano.4c06737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The rapid diffusion kinetics and smallest ion radius make protons the ideal cations toward the ultimate energy storage technology combining the ultrafast charging capabilities of supercapacitors and the high energy densities of batteries. Despite the concept existing for centuries, the lack of satisfactory electrode materials hinders its practical development. Recently, the rapid advancement of the emerging two-dimensional (2D) materials, characterized by their ultrathin morphology, interlayer van der Waals gaps, and distinctive electrochemical properties, injects promises into future proton-based energy storage systems. In this perspective, we comprehensively summarize the current advances in proton-based energy storage based on 2D materials. We begin by providing an overview of proton-based energy storage systems, including proton batteries, pseudocapacitors and electrical double layer capacitors. We then elucidate the fundamental knowledge about proton transport characteristics, including in electrolytes, at electrolyte/electrode interfaces, and within electrode materials, particularly in 2D material systems. We comprehensively summarize specific cases of 2D materials as proton electrodes, detailing their design concepts, proton transport mechanism and electrochemical performance. Finally, we provide insights into the prospects of proton-based energy storage systems, emphasizing the importance of rational design of 2D electrode materials and matching electrolyte systems.
Collapse
Affiliation(s)
- Junlei Qi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kai Bao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wenbin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jingkun Wu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Lingzhi Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Cong Ma
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zongxiao Wu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Sun H, Li J, Liang W, Gong X, Jing A, Yang W, Liu H, Ren S. Porous Organic Polymers as Active Electrode Materials for Energy Storage Applications. SMALL METHODS 2024; 8:e2301335. [PMID: 38037763 DOI: 10.1002/smtd.202301335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/05/2023] [Indexed: 12/02/2023]
Abstract
Eco-friendly and efficient energy production and storage technologies are highly demanded to address the environmental and energy crises. Porous organic polymers (POPs) are a class of lightweight porous network materials covalently linked by organic building blocks, possessing high surface areas, tunable pores, and designable components and structures. Due to their unique structural and compositional advantages, POPs have recently emerged as promising electrode materials for energy storage devices, particularly in the realm of supercapacitors and ion batteries. In this work, a comprehensive overview of recent progress and applications of POPs as electrode materials in energy storage devices, including the structural features and synthesis strategies of various POPs, as well as their applications in supercapacitors, lithium batteries, sodium batteries, and potassium batteries are provided. Finally, insights are provided into the future research directions of POPs in electrochemical energy storage technologies. It is anticipated that this work can provide readers with a comprehensive background on the design of POPs-based electrode materials and ignite more research in the development of next-generation energy storage devices.
Collapse
Affiliation(s)
- Haotian Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jingli Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wencui Liang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xue Gong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Aoming Jing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wanru Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
10
|
Brendgen R, Grethe T, Schwarz-Pfeiffer A. Straightforward Production Methods for Diverse Porous PEDOT:PSS Structures and Their Characterization. SENSORS (BASEL, SWITZERLAND) 2024; 24:4919. [PMID: 39123965 PMCID: PMC11314961 DOI: 10.3390/s24154919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Porous conductive polymer structures, in particular Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) structures, are gaining in importance due to their versatile fields of application as sensors, hydrogels, or supercapacitors, to name just a few. Moreover, (porous) conducting polymers have become of interest for wearable and smart textile applications due to their biocompatibility, which enables applications with direct skin contact. Therefore, there is a huge need to investigate distinct, straightforward, and textile-compatible production methods for the fabrication of porous PEDOT:PSS structures. Here, we present novel and uncomplicated approaches to producing diverse porous PEDOT:PSS structures and characterize them thoroughly in terms of porosity, electrical resistance, and their overall appearance. Production methods comprise the incorporation of micro cellulose, the usage of a blowing agent, creating a sponge-like structure, and spraying onto a porous base substrate. This results in the fabrication of various porous structures, ranging from thin and slightly porous to thick and highly porous. Depending on the application, these structures can be modified and integrated into electronic components or wearables to serve as porous electrodes, sensors, or other functional devices.
Collapse
Affiliation(s)
- Rike Brendgen
- Research Institute for Textile and Clothing (FTB), Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Moenchengladbach, Germany
| | - Thomas Grethe
- Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Moenchengladbach, Germany (A.S.-P.)
| | - Anne Schwarz-Pfeiffer
- Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Moenchengladbach, Germany (A.S.-P.)
| |
Collapse
|
11
|
Liu B, Qian Y, Zhang J, Yang M, Liu Y, Zhang S. Layered S-Bridged Covalent Triazine Frameworks via a Bifunctional Template-Catalytic Strategy Enabling High-Performance Zinc-Ion Hybrid Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310884. [PMID: 38376170 DOI: 10.1002/smll.202310884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/05/2024] [Indexed: 02/21/2024]
Abstract
Exploring covalent triazine frameworks (CTFs) with high capacitative activity is highly desirable and challenging. Herein, the S-rich CTFs cathode is pioneeringly introduced in Zn-ion hybrid supercapacitors (ZSC), achieving outstanding capacity and energy density, and satisfactory anti-freezing flexibility. Specifically, the S-bridged CTFs are synthesized by a bifunctional template-catalytic strategy, where ZnCl2 serves as both the catalyst/solvent and in situ template to construct triazine frameworks with interconnected pores and layered gaps. The resultant CTFs (CTFS-750) are employed as a reasonable pattern-like system to more deeply scrutinize the synergistic effect of S-bridged triazine and layered porous architecture for polymer-based cathodes in Zn-ion storage. The experimental results indicate that the adsorption barriers of Zn-ions on CTFS-750 are effectively weakened, and accessible Zn2+-absorption sites provided by the C─S─C and C═N bonds have been confirmed via DFT calculations. Consequently, the CTFS-750 cathode-assembled ZSC displays an ultra-high capacity of 211.6 mAh g-1 at 1.0 A g-1, an outstanding energy density of 202.7 Wh kg-1, and attractive cycling performance. Moreover, the resulting flexible ZSC device shows superior capacity, good adaptability, and satisfactory anti-freezing behavior. This approach sheds new light on constructing advanced polymer-based cathodes at the atom level and paves the way for fabricating high-performance ZSC and beyond.
Collapse
Affiliation(s)
- Bei Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Yirong Qian
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Jun Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Mei Yang
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Yijiang Liu
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
12
|
Shao M, Dong J, Lv X, Liu C, Xia M, Cui J, Tameev A, Ouyang M, Zhang C. Electrochemical Formation of Ionic Porous Organic Polymers Based on Viologen for Electrochromic Applications. Macromol Rapid Commun 2024; 45:e2400031. [PMID: 38620002 DOI: 10.1002/marc.202400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/08/2024] [Indexed: 04/17/2024]
Abstract
The systematic study of two ionic porous organic polymers (iPOPs) based on viologens and their first applications in the electrochromic field are reported. The viologen-based iPOPs are synthesized by electrochemical polymerization with cyano groups, providing a simple and controllable method for iPOPs that solves the film preparation problems common to viologens. After the characterization of these iPOPs, a detailed study of their electrochromic properties is conducted. The iPOP films based on viologens structure exhibit excellent electrochromic properties. In addition, the resulting iPOP films show high sensitivity to electrolyte ions of different sizes in the redox process. Electrochemical and electrochromic data of the iPOPs explain this phenomenon in detail. These results demonstrate that iPOPs of this type are ideal candidates as electrochromic materials due to their inherent porous structures and ion-rich properties.
Collapse
Affiliation(s)
- Mingfa Shao
- International Science & Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Juncheng Dong
- International Science & Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaojing Lv
- International Science & Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Chunyan Liu
- International Science & Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Minao Xia
- International Science & Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jiankun Cui
- International Science & Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Alexey Tameev
- The Laboratory for Electronic and Photonic Processes in Polymer Nanocomposites, Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Mi Ouyang
- International Science & Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Cheng Zhang
- International Science & Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
13
|
Ying J, Yin R, Zhao Z, Zhang X, Feng W, Peng J, Liang C. Hierarchical porous carbon materials for lithium storage: preparation, modification, and applications. NANOTECHNOLOGY 2024; 35:332003. [PMID: 38744256 DOI: 10.1088/1361-6528/ad4b21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Secondary battery as an efficient energy conversion device has been highly attractive for alleviating the energy crisis and environmental pollution. Hierarchical porous carbon (HPC) materials with multiple sizes pore channels are considered as promising materials for energy conversion and storage applications, due to their high specific surface area and excellent electrical conductivity. Although many reviews have reported on carbon materials for different fields, systematic summaries about HPC materials for lithium storage are still rare. In this review, we first summarize the main preparation methods of HPC materials, including hard template method, soft template method, and template-free method. The modification methods including porosity and morphology tuning, heteroatom doping, and multiphase composites are introduced systematically. Then, the recent advances in HPC materials on lithium storage are summarized. Finally, we outline the challenges and future perspectives for the application of HPC materials in lithium storage.
Collapse
Affiliation(s)
- Jiaping Ying
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ruilian Yin
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zixu Zhao
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiaoyu Zhang
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Wen Feng
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jian Peng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Chu Liang
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
14
|
Wei W, Zhao L, Si T, Zhang Y, Chen W, Tang S. Green synthesis of N-rich carbon dot-derived crosslinked covalent organic nanomaterial for multipurpose chromatographic applications. Mikrochim Acta 2024; 191:345. [PMID: 38802617 DOI: 10.1007/s00604-024-06435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Carbon dots (CDs) derived crosslinked covalent organic nanomaterials (CONs) possessing high specific surface area and abundant surface functional groups are considered to be potential candidates for multimodal chromatographic separations. Typically, the synthesis of CDs and CONs requires harsh reaction conditions and toxic organic solvents, hence, the pursuit of facile and mild preparation strategies is the goal of researchers. In this work, 3-aminopropyltriethoxysilane and D-glucose were used as nitrogen and carbon sources, respectively, to prepare amino-CDs (AmCDs) by rapid low-temperature polymerization rather than the common high-temperature and high-pressure reaction. Then, surface functionalization of the aminated silica gel was carried out in a deep eutectic solvent by using hydrophilic AmCDs and 1,3,5-triformylbenzene (TFB) as the functional monomers. Consequently, a novel N-rich CDs derived CON surface-functionalized silica gel (AmCDs-CON@SiO2) was obtained under mild reaction conditions. The combination of AmCDs and TFB created an ideal CON based chromatographic stationary phase. The incorporation of TFB not only contributed to the successful construction of a crosslinked CON, but also enhanced the interaction forces. The developed AmCDs-CON@SiO2 has a great potential for versatile applications in liquid chromatography. This study proposes a simple stationary phase preparation strategy by the surface modification of silica gel with CDs-based CON. Moreover, this study verified the application potential of CDs derived CON in chromatographic separation. This not only promotes the development of CDs in the field of liquid chromatographic stationary phase, but also provides some reference value for the wide application of cross-linked CON.
Collapse
Affiliation(s)
- Wanjiao Wei
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Lulu Zhao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Tiantian Si
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
15
|
Zhu Y, Wang Z, Zhu X, Feng Z, Tang C, Wang Q, Yang Y, Wang L, Fan L, Hou J. Optimizing Performance in Supercapacitors through Surface Decoration of Bismuth Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16927-16935. [PMID: 38506726 DOI: 10.1021/acsami.3c17699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Bismuth (Bi) exhibits a high theoretical capacity, excellent electrical conductivity properties, and remarkable interlayer spacing, making it an ideal electrode material for supercapacitors. However, during the charge and discharge processes, Bi is prone to volume expansion and pulverization, resulting in a decline in the capacitance. Deposition of a nonmetal on its surface is considered an effective way to modulate its morphology and electronic structure. Herein, we employed the chemical vapor deposition technique to fabricate Se-decorated Bi nanosheets on a nickel foam (NF) substrate. Various characterizations indicated that the deposition of Se on Bi nanosheets regulated their surface morphology and chemical state, while sustaining their pristine phase structure. Electrochemical tests demonstrated that Se-decorated Bi nanosheets exhibited a 51.1% improvement in capacity compared with pristine Bi nanosheets (1313 F/g compared to 869 F/g at a current density of 5 A/g). The energy density of the active material in an assembled asymmetric supercapacitor could reach 151.2 Wh/kg at a power density of 800 W/kg. These findings suggest that Se decoration is a promising strategy to enhance the capacity of the Bi nanosheets.
Collapse
Affiliation(s)
- Yiyu Zhu
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Zhen Wang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Xinyuan Zhu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, P. R. China
| | - Ziyu Feng
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Chaoyang Tang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Qian Wang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Ying Yang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Lei Wang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Lele Fan
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Jiwei Hou
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| |
Collapse
|
16
|
Karak S, Koner K, Karmakar A, Mohata S, Nishiyama Y, Duong NT, Thomas N, Ajithkumar TG, Hossain MS, Bandyopadhyay S, Kundu S, Banerjee R. Morphology Tuning via Linker Modulation: Metal-Free Covalent Organic Nanostructures with Exceptional Chemical Stability for Electrocatalytic Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209919. [PMID: 36635878 DOI: 10.1002/adma.202209919] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The development of synthetic routes for the formation of robust porous organic polymers (POPs) with well-defined nanoscale morphology is fundamentally significant for their practical applications. The thermodynamic characteristics that arise from reversible covalent bonding impart intrinsic chemical instability in the polymers, thereby impeding their overall potential. Herein, a unique strategy is reported to overcome the stability issue by designing robust imidazole-linked POPs via tandem reversible/irreversible bond formation. Incorporating inherent rigidity into the secondary building units leads to robust microporous polymeric nanostructures with hollow-spherical morphologies. An in-depth analysis by extensive solid-state NMR (1D and 2D) study on 1H, 13C, and 14N nuclei elucidates the bonding and reveals the high purity of the newly designed imidazole-based POPs. The nitrogen-rich polymeric nanostructures are further used as metal-free electrocatalysts for water splitting. In particular, the rigid POPs show excellent catalytic activity toward the oxygen evolution reaction (OER) with long-term durability. Among them, the most efficient OER electrocatalyst (TAT-TFBE) requires 314 mV of overpotential to drive 10 mA cm-2 current density, demonstrating its superiority over state-of-the-art catalysts (RuO2 and IrO2).
Collapse
Affiliation(s)
- Shayan Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Kalipada Koner
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Shibani Mohata
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
- JEOL Ltd., Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Nghia Tuan Duong
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
- JEOL Ltd., Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Neethu Thomas
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune, 411008, India
| | | | - Munshi Sahid Hossain
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| |
Collapse
|
17
|
Xiang G, Xu W, Zhuge W, Huang Q, Zhang C, Peng J. A Tröger's base-linked aluminium phthalocyanine polymer for discriminative electrochemical sensing of the antibiotic isoniazid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1012-1020. [PMID: 38304962 DOI: 10.1039/d3ay02298f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Isoniazid is a first-line drug used to treat tuberculosis. However, its excessive use can lead to serious adverse effects. Thus, strict monitoring of the isoniazid levels in medications and human systems is required. In this study, a new polymer (AlPc-TB POP) containing a metal phthalocyanine and Tröger's base was synthesized and explored as an electrocatalyst for the oxidation of isoniazid. The results indicated that the polymer is an excellent electron-transfer medium for isoniazid oxidation. The AlPc-TB POP-based sensor quantified isoniazid in the linear range of 0.1-130 μM, with a detection limit of 0.0185 μM. The response of the developed sensor to isoniazid was reproducible and stable. Furthermore, this method can accurately determine isoniazid levels by ignoring the influence of common interfering species in tablets and biological samples. This study contributes to the development of nitrogen-rich porous organic polymers and offers a novel strategy for addressing challenges in disease therapeutic efficacy and public safety monitoring.
Collapse
Affiliation(s)
- Gang Xiang
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Wensi Xu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China
| | - Wenfeng Zhuge
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Qing Huang
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Cuizhong Zhang
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Jinyun Peng
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| |
Collapse
|
18
|
Ibrahim M, Wen Z, Sun X, Abdelhamid HN. In situ polymerization of a melamine-based microsphere into 3D nickel foam for supercapacitors. RSC Adv 2024; 14:5566-5576. [PMID: 38352687 PMCID: PMC10862101 DOI: 10.1039/d3ra08489b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
An in situ synthesis approach is used to directly grow a microsphere of melamine-glutaraldehyde (MAGA) polymer over three-dimensional (3D) nickel foam (NF). The materials are used to produce nitrogen-doped carbon (NC) with and without NF. These precursors undergo carbonization at various temperatures, namely 400 °C, 500 °C, and 700 °C. The electrochemical properties of the materials would be significantly improved by directly growing MAGA polymer on the surface of NF. The electrochemical performance of NC/NF-400 was excellent, with a capacitance of 297 F g-1 achieved at a current density of 1 A g-1. The in situ growing approach does not necessitate the use of additional chemical agents, such as binders or conductive compounds when preparing the electrode. In addition, the material exhibits only 10% reduction in capacitance after undergoing 5000 cycles, indicating excellent cycling performance. The outstanding electrochemical performance achieved by using the in situ method of MAGA microsphere polymer on NF may be attributed to the rapid transit of ions to the electrode surfaces, facilitating effortless redox reactions.
Collapse
Affiliation(s)
- Mervat Ibrahim
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
- Department of Chemistry, Faculty of Science, New Valley University El-Kharja 72511 Egypt
| | - Zhen Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
| | - Hani Nasser Abdelhamid
- Department of Chemistry, Assiut University Assiut 71516 Egypt
- Egyptian Russian University Badr City 11829 Egypt
| |
Collapse
|
19
|
Porath AJ, Lybrand T, Bour JR. Relationships Between Defectivity and Porosity in High Surface Area Porous Aromatic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202314120. [PMID: 38036454 DOI: 10.1002/anie.202314120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Porous aromatic framework (PAF) microporosity is known to be strongly dependent on synthetic approach but little is known about why certain reactions yield significantly and consistently more porous PAFs. This article explores the connections between synthetic pathway, PAF defectivity, and microporosity. Using a network disassembly strategy, we show that defectivity is highly dependent on synthetic approach and that more defective PAFs are associated with lower surface areas and pore volumes. This empirical association is corroborated through systematic introduction of defects to a modelPAF, which results in significant reduction of apparent surface area and pore volumes. Taken together, these data suggest that only highly efficient coupling reactions should be targeted for the synthesis of ultra-high surface area porous aromatic frameworks.
Collapse
Affiliation(s)
- Anthony J Porath
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Tony Lybrand
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - James R Bour
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
20
|
Ansari MZ, Hussain I, Mohapatra D, Ansari SA, Rahighi R, Nandi DK, Song W, Kim S. Atomic Layer Deposition-A Versatile Toolbox for Designing/Engineering Electrodes for Advanced Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303055. [PMID: 37937382 PMCID: PMC10767429 DOI: 10.1002/advs.202303055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/07/2023] [Indexed: 11/09/2023]
Abstract
Atomic layer deposition (ALD) has become the most widely used thin-film deposition technique in various fields due to its unique advantages, such as self-terminating growth, precise thickness control, and excellent deposition quality. In the energy storage domain, ALD has shown great potential for supercapacitors (SCs) by enabling the construction and surface engineering of novel electrode materials. This review aims to present a comprehensive outlook on the development, achievements, and design of advanced electrodes involving the application of ALD for realizing high-performance SCs to date, as organized in several sections of this paper. Specifically, this review focuses on understanding the influence of ALD parameters on the electrochemical performance and discusses the ALD of nanostructured electrochemically active electrode materials on various templates for SCs. It examines the influence of ALD parameters on electrochemical performance and highlights ALD's role in passivating electrodes and creating 3D nanoarchitectures. The relationship between synthesis procedures and SC properties is analyzed to guide future research in preparing materials for various applications. Finally, it is concluded by suggesting the directions and scope of future research and development to further leverage the unique advantages of ALD for fabricating new materials and harness the unexplored opportunities in the fabrication of advanced-generation SCs.
Collapse
Affiliation(s)
- Mohd Zahid Ansari
- School of Materials Science and EngineeringYeungnam University280 Daehak‐RoGyeongsanGyeongbuk38541Republic of Korea
| | - Iftikhar Hussain
- Department of Mechanical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowoonHong Kong
| | - Debananda Mohapatra
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| | - Sajid Ali Ansari
- Department of PhysicsCollege of ScienceKing Faisal UniversityP.O. Box 400HofufAl‐Ahsa31982Saudi Arabia
| | - Reza Rahighi
- SKKU Advanced Institute of Nano‐Technology (SAINT)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Dip K Nandi
- Plessey Semiconductors LtdTamerton Road RoboroughPlymouthDevonPL6 7BQUK
| | - Wooseok Song
- Thin Film Materials Research CenterKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Soo‐Hyun Kim
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
- Department of Materials Science and EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| |
Collapse
|
21
|
Zheng Y, Zhang Z, Yin T, Fu X, Lu J, Cheng S, Gao Y. Micron-sized H 2MoO 3/PANI for superfast proton batteries in frozen electrolyte through Grotthuss mechanism. Sci Bull (Beijing) 2023; 68:2945-2953. [PMID: 37957068 DOI: 10.1016/j.scib.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Aqueous proton battery is considered as a promising candidate for the electrochemical energy storage system with the merits of safety, environmental benignity, fast kinetics and low cost. The realization of these advantages relies on the development of suitable and easy-access electrode materials. Herein, micron-sized H2MoO3/Polyaniline (PANI) is developed as a high-rate and stable anode material in proton battery. Contrary to the pseudocapacitive nature of most anode materials, the H2MoO3/PANI presents diffusion-controlled charge storage mechanism with both high capacity and high rate-capability. The H2MoO3/PANI electrode shows a rather high capacity of 268.2 mAh g-1 at 1.0 A g-1, and a surprisingly high rate-capability with ∼50% capacity retention even at an extremely high current density of 200.0 A g-1. Detailed analyses demonstrate the Grotthuss mechanism of ultrafast proton conduction in H2MoO3/PANI. The constructed proton full cell based on H2MoO3/PANI delivers a high energy density of 42.1 Wh kg-1 at 800.0 W kg-1. Impressively, the proton full cell shows fast proton transportation even in the frozen electrolyte, and ∼70% of the room temperature capacity is retained at -20 °C. These excellent proton storage behaviors provide insights into the practical applications of micron-sized electrode materials in proton batteries at low temperatures.
Collapse
Affiliation(s)
- Yifan Zheng
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zhi Zhang
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Tingting Yin
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xiutao Fu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jianing Lu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Siya Cheng
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yihua Gao
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
22
|
Xiang G, Xu W, Zhuge W, Huang Q, Zhang C, Peng J. Conductive phthalocyanine-based porous organic polymer as sensing platform for rapid determination of vanillin. Analyst 2023; 148:6274-6281. [PMID: 37969078 DOI: 10.1039/d3an01758c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Vanillin (Van) is widely utilized in processed foods and medicines for its appealing scent and multiple therapeutic benefits. However, its overconsumption poses a risk to public health, making its quantification essential for ensuring food and medicine safety and quality. This study introduces a stable and conductive phthalocyanine-based porous organic polymer (NiPc-CC POP), synthesized through a straightforward electrophilic substitution of nickel tetra-amine phthalocyanine (NiTAPc) with cyanuric chloride (CC). Appropriate characterization techniques were employed to determine the morphologies and structures of the synthesized materials. Furthermore, the NiPc-CC POP was applied to devise a sensitive Van detection method. Leveraging the high electrocatalytic activity of NiPc-CC POP toward Van oxidation, a linear response of 0.15-32 μmol L-1 was achieved, along with an exceptional detection limit of 0.10 μmol L-1. The sensor demonstrated high selectivity and stability. Samples of human serum and tablets spiked with Van were analyzed, yielding satisfactory recoveries. Consequently, this work contributes to the advancement of sensitive detection platforms for Van at minimal concentrations.
Collapse
Affiliation(s)
- Gang Xiang
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Wensi Xu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China
| | - Wenfeng Zhuge
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Qing Huang
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Cuizhong Zhang
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Jinyun Peng
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| |
Collapse
|
23
|
Gu Q, Lu X, Chen C, Hu R, Wang X, Sun G, Kang F, Yang J, Wang X, Wu J, Li YY, Peng YK, Qin W, Han Y, Liu X, Zhang Q. Thermally Induced Persistent Covalent-Organic Frameworks Radicals. ACS NANO 2023. [PMID: 38014811 DOI: 10.1021/acsnano.3c08313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Persistent covalent-organic framework (COF) radicals hold important applications in magnetics and spintronics; however, their facile synthesis remains a daunting challenge. Here, three p-phenylenediacetonitrile-based COFs (named CityU-4, CityU-5, and CityU-6) were synthesized. Upon heat treatment (250 °C for CityU-4 and CityU-5 or 220 °C for CityU-6), these frameworks were brought into their persistent radical forms (no obvious changes after at least one year), together with several observable factors, including color changes, red-shifted absorption, the appearance of electron spin resonance (ESR) signals, and detectable magnetic susceptibility. The theoretical simulation suggests that after heat treatment, lower total energy and nonzero spin density are two main factors to guarantee persistent COFs radicals and polarized spin distributions. This work provides an efficient method for the preparation of persistent COF radicals with promising potentials.
Collapse
Affiliation(s)
- Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Xiangqian Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Cailing Chen
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science and Engineering Division, King Ab-dullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Renjie Hu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Xin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Guohan Sun
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Jinghang Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yang Yang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Yu Han
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science and Engineering Division, King Ab-dullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiaogang Liu
- Department of Chemistry and the N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
24
|
Zhang C, Yang Y, Liu X, Mao M, Li K, Li Q, Zhang G, Wang C. Mobile energy storage technologies for boosting carbon neutrality. Innovation (N Y) 2023; 4:100518. [PMID: 37841885 PMCID: PMC10568306 DOI: 10.1016/j.xinn.2023.100518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Carbon neutrality calls for renewable energies, and the efficient use of renewable energies requires energy storage mediums that enable the storage of excess energy and reuse after spatiotemporal reallocation. Compared with traditional energy storage technologies, mobile energy storage technologies have the merits of low cost and high energy conversion efficiency, can be flexibly located, and cover a large range from miniature to large systems and from high energy density to high power density, although most of them still face challenges or technical bottlenecks. In this review, we provide an overview of the opportunities and challenges of these emerging energy storage technologies (including rechargeable batteries, fuel cells, and electrochemical and dielectric capacitors). Innovative materials, strategies, and technologies are highlighted. Finally, the future directions are envisioned. We hope this review will advance the development of mobile energy storage technologies and boost carbon neutrality.
Collapse
Affiliation(s)
- Chenyang Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ying Yang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuan Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minglei Mao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kanghua Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangzu Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chengliang Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou 325035, China
| |
Collapse
|
25
|
Qiao Y, He J, Zhou Y, Wu S, Li X, Jiang G, Jiang G, Demir M, Ma P. Flexible All-Solid-State Asymmetric Supercapacitors Based on PPy-Decorated SrFeO 3-δ Perovskites on Carbon Cloth. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37933868 DOI: 10.1021/acsami.3c10189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The defective structure and high oxygen vacancy concentration of SrFeO3-δ perovskite enable fast ion-electron transport, but its low conductivity still hinders the high electrochemical performance. Herein, to enhance the conductivity of SrFeO3-δ-based electrodes, polypyrrole-modified SrFeO3-δ perovskite on carbon cloth (PPy@SFO@CC) has been successfully fabricated by electrodeposition of polypyrrole (PPy) on the surface of SFO@CC. The optimal PPy700@SFO@CC electrode exhibits a specific capacitance of 421 F g-1 at 1 A g-1. It was found that the outside PPy layer not only accelerates the electron transport and ion diffusion but also creates more oxygen vacancies in SrFeO3-δ, enhancing the charge storage performance significantly. Moreover, the NiCo2O4@CC//PPy700@SFO@CC device maintains a specific capacitance of 63.6% after 3000 cycles, which is ascribed to the weak adhesion forces between the active materials and carbon cloth. Finally, the all-solid-state flexible supercapacitor NiCo2O4@CC//PPy700@SFO@CC is constructed with PVA-KOH as the solid electrolyte, delivering an energy density of 16.9 W h kg-1 at a power density of 984 W kg-1. The flexible supercapacitor retains 69% of its specific capacitance after 1000 bending and folding times, demonstrating a certain degree of foldability. The present study opens new avenues for perovskite oxide-based flexible all-solid-state supercapacitors.
Collapse
Affiliation(s)
- Yin Qiao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiahao He
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Zhou
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shibo Wu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoyan Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guangming Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Muslum Demir
- TUBITAK Marmara Research Center, Material Institute, Gebze 41470, Turkey
- Chemical Engineering, Osmaniye Korkut Ata University, Osmaniye 80000, Turkey
| | - Pianpian Ma
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
26
|
Jia Q, Ma X, Chen H, Li X, Huang MH. Unusual 3,4-Oxidative Coupling Polymerization on 1,2,5-Trisubstituted Pyrroles for Novel Porous Organic Polymers. ACS Macro Lett 2023; 12:1358-1364. [PMID: 37733801 DOI: 10.1021/acsmacrolett.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Porous organic polymers (POPs) have demonstrated promising task-specific applications due to their structure designability and thus functionality. Herein, an unusual 3,4-polymerization on 1,2,5-trisubstituted pyrroles has been developed to give linear polypyrrole-3,4 in high efficiency, with Mn of 20000 and PDI of 1.7. This novel polymerization technique was applied to prepare a series of polypyrrole-based POPs (PY-POP-1-4), which exhibited high BET surface areas (up to 762 m2 g-1) with a meso-micro-supermicro hierarchically porous structure. Furthermore, PY-POPs were doped in the mixed matrix membranes based on the polysulfone matrix to enhance the gas permeability and gas pair selectivity, with H2/N2 selectivity up to 84.6 and CO2/CH4 and CO2/N2 selectivity up to 46.8 and 39.6.
Collapse
Affiliation(s)
- Qiong Jia
- School of Materials Science and Engineering, Experimental Center for Advanced Materials, Beijing Institute of Technology, No.5, Zhongguancun South Street, Beijing 100081, P. R. China
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Hanyuan Chen
- School of Materials Science and Engineering, Experimental Center for Advanced Materials, Beijing Institute of Technology, No.5, Zhongguancun South Street, Beijing 100081, P. R. China
| | - Xiaodong Li
- School of Materials Science and Engineering, Experimental Center for Advanced Materials, Beijing Institute of Technology, No.5, Zhongguancun South Street, Beijing 100081, P. R. China
| | - Mu-Hua Huang
- School of Materials Science and Engineering, Experimental Center for Advanced Materials, Beijing Institute of Technology, No.5, Zhongguancun South Street, Beijing 100081, P. R. China
| |
Collapse
|
27
|
Li H, Ma R, Chen F, Wang D, Zhang H, Lu C. Constructing Interconnected Microporous Structures in Carbon by Homogeneous Activation as a Sustainable Electrode Material for High-Performance Supercapacitors. Molecules 2023; 28:6851. [PMID: 37836695 PMCID: PMC10574793 DOI: 10.3390/molecules28196851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Microporous carbon attracts attention as an electrode material for supercapacitors. However, a large number of deep and distorted mesoporous and macroporous structures are usually created by non-uniform etching, resulting in underutilized internal space. Homogeneous activation has been considered by researchers as a necessary condition for the formation of interconnected microporous structures in carbon materials. Herein, a simple strategy of hydrothermal introduction of defects followed by homogeneous activation for the preparation of microporous carbon was developed for the synthesis of electrode materials for high-performance supercapacitors. The optimized sample with defect-enriched microporous structure and large specific surface area has a specific capacity of 315 F g-1 (1 A g-1) in KOH solution, and the assembled symmetric supercapacitor achieves a high energy density of 7.3 Wh kg-1 at a power density of 250 W kg-1. This work is interesting because it not only demonstrates that rational design of electrode materials is important to boost the performance of supercapacitors, but also provides inspiration for the design of efficient supercapacitors in the future.
Collapse
Affiliation(s)
- Huijie Li
- School of Surveying and Urban Spatial Information, Henan University of Urban Construction, Pingdingshan 467036, China;
| | - Rui Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (R.M.); (F.C.); (D.W.)
| | - Feifei Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (R.M.); (F.C.); (D.W.)
| | - Danting Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (R.M.); (F.C.); (D.W.)
| | - Hongmin Zhang
- School of Surveying and Urban Spatial Information, Henan University of Urban Construction, Pingdingshan 467036, China;
| | - Chunyang Lu
- School of Surveying and Urban Spatial Information, Henan University of Urban Construction, Pingdingshan 467036, China;
| |
Collapse
|
28
|
Zhang L, Wang S, Wang Q, Shao H, Jin Z. Dendritic Solid Polymer Electrolytes: A New Paradigm for High-Performance Lithium-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303355. [PMID: 37269533 DOI: 10.1002/adma.202303355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Indexed: 06/05/2023]
Abstract
Li-ions battery is widely used and recognized, but its energy density based on organic electrolytes has approached the theoretical upper limit, while the use of organic electrolytes also brings some safety hazards (leakage and flammability). Polymer electrolytes (PEs) are expected to fundamentally solve the safety problem and improve energy density. Therefore, Li-ions battery based on solid PE has become a research hotspot in recent years. However, low ionic conductivity and poor mechanical properties, as well as a narrow electrochemical window limit its further development. Dendritic PEs with unique topology structure has low crystallinity, high segmental mobility, and reduced chain entanglement, providing a new avenue for designing high-performance PEs. In this review, the basic concept and synthetic chemistry of dendritic polymers are first introduced. Then, this story will turn to how to balance the mechanical properties, ionic conductivity, and electrochemical stability of dendritic PEs from synthetic chemistry. In addition, accomplishments on dendritic PEs based on different synthesis strategies and recent advances in battery applications are summarized and discussed. Subsequently, the ionic transport mechanism and interfacial interaction are deeply analyzed. In the end, the challenges and prospects are outlined to promote further development in this booming field.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials and Chemical Engineering, Chuzhou University, 1528 Fengle Avenue, Chuzhou, 239099, China
| | - Shi Wang
- School of Materials and Chemical Engineering, Chuzhou University, 1528 Fengle Avenue, Chuzhou, 239099, China
- State Key Laboratory of Organic Electronics & Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High-Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qian Wang
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huaiyu Shao
- Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, N23-4022, Avenida da Universidad, Taipa, Maca, 519000, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High-Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
29
|
Beikzadeh S, Akbarinejad A, Taylor J, Perera J, Ross J, Swift S, Kilmartin PA, Travas-Sejdic J. From energy storage to pathogen eradication: unveiling the antibacterial and antiviral capacities of flexible solid-state carbon cloth supercapacitors. J Mater Chem B 2023; 11:8170-8181. [PMID: 37401360 DOI: 10.1039/d3tb01085f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
With the emergence of deadly viral and bacterial infections, preventing the spread of microorganisms on surfaces has gained ever-increasing importance. This study investigates the potential of solid-state supercapacitors as antibacterial and antiviral devices. We developed a low-cost and flexible carbon cloth supercapacitor (CCSC) with highly efficient antibacterial and antiviral surface properties. The CCSC comprised two parallel layers of carbon cloth (CC) electrodes assembled in a symmetric, electrical double-layer supercapacitor structure that can be charged at low potentials between 1 to 2 V. The optimized CCSC exhibited a capacitance of 4.15 ± 0.3 mF cm-2 at a scan rate of 100 mV s-1, high-rate capability (83% retention of capacitance at 100 mV s-1 compared to its value at 5 mV s-1), and excellent electrochemical stability (97% retention of the initial capacitance after 1000 cycles). Moreover, the CCSC demonstrated outstanding flexibility and retained its full capacitance even when bent at high angles, making it suitable for wearable or flexible devices. Using its stored electrical charge, the charged CCSC disinfects bacteria effectively and neutralizes viruses upon surface contact with the positive and negative electrodes. The charged CCSC device yielded a 6-log CFU reduction of Escherichia coli bacterial inocula and a 5-log PFU reduction of HSV-1 herpes virus. Antibacterial and antiviral carbon cloth supercapacitors represent a promising platform technology for various applications, including electronic textiles and electronic skins, health monitoring or motion sensors, wound dressings, personal protective equipment (e.g., masks) and air filtration systems.
Collapse
Affiliation(s)
- Sara Beikzadeh
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1023, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington, 6140, New Zealand
| | - Alireza Akbarinejad
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1023, New Zealand.
| | - John Taylor
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Janesha Perera
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Jacqueline Ross
- Department of Anatomy and Medical Imaging, The University of Auckland, Private Bag, Auckland 92019, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Paul A Kilmartin
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1023, New Zealand.
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1023, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington, 6140, New Zealand
| |
Collapse
|
30
|
Wang S, Li Q, Gao H, Cai H, Liu C, Cheng T, Liu C, Li Y, Lai WY. A Polyzwitterion-Mediated Polymer Electrolyte with High Oxidative Stability for Lithium-Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304677. [PMID: 37632318 DOI: 10.1002/smll.202304677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Indexed: 08/27/2023]
Abstract
To achieve high-performance solid-state lithium-metal batteries (SSLMBs), solid electrolytes with high ionic conductivity, high oxidative stability, and high mechanical strength are necessary. However, balancing these characteristics remains dramatically challenging and is still not well addressed. Herein, a simple yet effective design strategy is presented for the development of high-performance polymer electrolytes (PEs) by exploring the synergistic effect between dynamic H-bonded networks and conductive zwitterionic nanochannels. Multiple weak intermolecular interactions along with ample nanochannels lead to high oxidative stability (over 5 V), improved mechanical properties (strain of 1320%), and fast ion transport (ionic conductivity of 10-4 S cm-1 ) of PEs. The amphoteric ionic functional units also effectively regulate the lithium ion distribution and confine the anion transport to achieve uniform lithium ion deposition. As a result, the assembled SSLMBs exhibit excellent capacity retention and long-term cycle stability (average Coulombic efficiency: 99.5%, >1000 cycles with LiFePO4 cathode; initial capacity: 202 mAh g-1 , average Coulombic efficiency: 96%, >230 cycles with LiNi0.8 Co0.1 Mn0.1 O2 cathode). It is exciting to note that the corresponding flexible cells can be cycled stably and can withstand severe deformation. The resulting polyzwitterion-mediated PE therefore offers great promise for the next-generation safe and high-energy-density flexible energy storage devices.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Qiange Li
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Haiqi Gao
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Henan Cai
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chao Liu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Tao Cheng
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chongyang Liu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yonghua Li
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wen-Yong Lai
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
31
|
Yao Y, Yu Y, Wan L, Du C, Zhang Y, Chen J, Xie M. Structurally-stable Mg-Co-Ni LDH grown on reduced graphene by ball-milling and ion-exchange for highly-stable asymmetric supercapacitor. J Colloid Interface Sci 2023; 649:519-527. [PMID: 37356153 DOI: 10.1016/j.jcis.2023.06.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/10/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
As an electrode for energy storage, the inherently poor conductivity of metal hydroxides (MHs) can be improved by in situ growth of MHs on conductive carbon based substrates so that their performances on energy storage could be enhanced to a high level. However, the incompatibility of hydrophilic component (metal hydroxides) and hydrophobic counterpart (carbon based materials) makes it difficult to be accomplished. Herein, we presented a scalable and easy-operated strategy by ball-milling combined with ion-exchange technique to grow Mg-Co-Ni LDH (layered double hydroxides) on reduced graphene, in which ball-milling was utilized to disperse the staring material of magnesium acetate on graphene oxide (GO) to obtain the composite of Mg(Ac)2/GO. The composite can be in situ transformed to MgO/reduced grapheme (rG) by following heat treatment. While, the ion-exchange reaction could enables the in situ growth of Mg-Co-Ni LDHs on the reduced graphene. The derived products (denoted as Mg-Co-Ni LDH/rG-x) owns nanosheet morphology, surface area of 59-115 m2/g, homogenous elements distribution. As electrode for supercapacitor, the maximum capacitance of 1204F/g@1.0 A/g was achieved and the corresponding asymmetric supercapacitor device shows a large energy density of 44.3 Wh/kg@800 W/kg. Particularly, a superlong cycling stability with 90.5% capacitance retention of the first cycle was attained after continuous charge/discharge for 20 000 cycles at current density of 5.0 A/g, promising great potential for practical energy storage application. The present strategy is simple and scalable that can be widely applied to the synthesis of various hydroxides/oxides or multi-component hydroxides/oxides on carbon substrates forming a composite structure, thus offers a great potential for broad application areas including catalysis, adsorption, energy storage, etc.
Collapse
Affiliation(s)
- Yushuai Yao
- Hubei Key Lab for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China
| | - Yi Yu
- Hubei Key Lab for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China
| | - Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China
| | - Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.
| |
Collapse
|
32
|
Li A, Dong F, Xiong Y. Nitrogen-Rich Porous Organic Polymers from an Irreversible Amine-Epoxy Reaction for Pd Nanocatalyst Carrier. Molecules 2023; 28:4731. [PMID: 37375285 DOI: 10.3390/molecules28124731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Nitrogen-rich porous organic polymers were fabricated through a nonreversible ring-opening reaction from polyamines and polyepoxides (PAEs). The epoxide groups reacted with both primary and secondary amines provided by the polyamines at different epoxide/amine ratios with polyethylene glycol as the solvent to form the porous materials. Fourier-transform infrared spectroscopy confirmed the occurrence of ring opening between the polyamines and polyepoxides. The porous structure of the materials was confirmed through N2 adsorption-desorption data and scanning electron microscopy images. The polymers were found to possess both crystalline and noncrystalline structures, as evidenced by X-ray diffraction and high-resolution transmission electron microscopy (HR-TEM) results. The HR-TEM images revealed a thin, sheet-like layered structure with ordered orientations, and the lattice fringe spacing measured from these images was consistent with the interlayer of the PAEs. Additionally, the selected area electron diffraction pattern indicated that the PAEs contained a hexagonal crystal structure. The Pd catalyst was fabricated in situ onto the PAEs support by the NaBH₄ reduction of the Au precursor, and the size of the nano-Pd was about 6.9 nm. The high nitrogen content of the polymer backbone combined with Pd noble nanometals resulted in excellent catalytic performance in the reduction of 4-nitrophenol to 4-aminophenol.
Collapse
Affiliation(s)
- Ailing Li
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Yuzhu Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| |
Collapse
|
33
|
Wang J, Wang Z, Li Z, Liu N, Luo Y, Chu Y, Jiang L, Zhao FG, Zhang K, Liu X, Shen Y. High-energy-density flexible graphene-based supercapacitors enabled by atypical hydroquinone dimethyl ether. J Colloid Interface Sci 2023; 648:231-241. [PMID: 37301147 DOI: 10.1016/j.jcis.2023.05.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Supercapacitor is an electrochemical energy-storage technology that can meet the green and sustainable energy needs of the future. However, a low energy density was a bottleneck that limited its practical application. To overcome this, we developed a heterojunction system composed of two-dimensional (2D) graphene and hydroquinone dimethyl ether- an atypical redox-active aromatic ether. This heterojunction displayed a large specific capacitance (Cs) of 523 F g-1 at 1.0 A g-1, as well as good rate capability and cycling stability. When assembled in symmetric and asymmetric two-electrode configuration, respectively, supercapacitors can work in voltage windows of 0 ∼ 1.0 V and 0 ∼ 1.6 V, accordingly, and exhibited attractive capacitive characteristics. The best device can deliver an energy density of 32.4 Wh Kg-1 and a power density of 8000 W Kg-1, and suffered a small capacitance degradation. Additionally, the device showed low self-discharge and leakage current behaviors during long time. This strategy may inspire exploration of aromatic ether electrochemistry and pave a way to develop electrical double-layer capacitance (EDLC)/pseudocapacitance heterojunctions to boost the critical energy density.
Collapse
Affiliation(s)
- Jian Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Zhenquan Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Zhiming Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Naxing Liu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Yang Luo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Yuxiao Chu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Long Jiang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Fu-Gang Zhao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, China.
| | - Kai Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Xunshan Liu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China.
| | - Yongmiao Shen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, China.
| |
Collapse
|
34
|
Wang K, Chen C, Li Y, Hong Y, Wu H, Zhang C, Zhang Q. Insight into Electrochemical Performance of Nitrogen-Doped Carbon/NiCo-Alloy Active Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300054. [PMID: 36879474 DOI: 10.1002/smll.202300054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Indexed: 06/08/2023]
Abstract
Nanocomposites containing Ni or Co or NiCo alloy and nitrogen-doped carbon with diverse ratios have been prepared and utilized as active elements in supercapacitors. The atomic contents of nitrogen, nickel, and cobalt have been adjusted by the supplement amount of Ni and Co salts. In virtue of the excellent surface groups and rich redox active sites, the NC/NiCo active materials exhibit superior electrochemical charge-storage performances. Among these as-prepared active electrode materials, the NC/NiCo1/1 electrode performs better than other bimetallic/carbon electrodes and pristine metal/carbon electrodes. Several characterization methods, kinetic analyses, and nitrogen-supplement strategies determine the specific reason for this phenomenon. As a result, the better performance can be ascribed to a combination of factors including the high surface area and nitrogen content, proper Co/Ni ratio, and relatively low average pore size. The NC/NiCo electrode delivers a maximum capacity of 300.5 C g-1 and superior capacity retention of 92.30% after 3000 unceasing charge-discharge cycles. After assembling it into the battery-supercapacitor hybrid device, a high energy density of 26.6 Wh kg-1 (at 412 W kg-1 ) is achieved, comparable to the recent reports. Furthermore, this device can also power four light-emitting-diode (LED) demos, suggesting the potential practicability of these N-doped carbon compositing with bimetallic materials.
Collapse
Affiliation(s)
- Kuaibing Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Changyun Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, 211171, P. R. China
| | - Yihao Li
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Ye Hong
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Hua Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
| |
Collapse
|
35
|
Mousa AO, Lin ZI, Chuang CH, Chen CK, Kuo SW, Mohamed MG. Rational Design of Bifunctional Microporous Organic Polymers Containing Anthracene and Triphenylamine Units for Energy Storage and Biological Applications. Int J Mol Sci 2023; 24:ijms24108966. [PMID: 37240313 DOI: 10.3390/ijms24108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, we synthesized two conjugated microporous polymers (CMPs), An-Ph-TPA and An-Ph-Py CMPs, using the Suzuki cross-coupling reaction. These CMPs are organic polymers with p-conjugated skeletons and persistent micro-porosity and contain anthracene (An) moieties linked to triphenylamine (TPA) and pyrene (Py) units. We characterized the chemical structures, porosities, thermal stabilities, and morphologies of the newly synthesized An-CMPs using spectroscopic, microscopic, and N2 adsorption/desorption isotherm techniques. Our results from thermogravimetric analysis (TGA) showed that the An-Ph-TPA CMP displayed better thermal stability with Td10 = 467 °C and char yield of 57 wt% compared to the An-Ph-Py CMP with Td10 = 355 °C and char yield of 54 wt%. Furthermore, we evaluated the electrochemical performance of the An-linked CMPs and found that the An-Ph-TPA CMP had a higher capacitance of 116 F g-1 and better capacitance stability of 97% over 5000 cycles at 10 A g-1. In addition, we assessed the biocompatibility and cytotoxicity of An-linked CMPs using the MTT assay and a live/dead cell viability assay and observed that they were non-toxic and biocompatible with high cell viability values after 24 or 48 h of incubation. These findings suggest that the An-based CMPs synthesized in this study have potential applications in electrochemical testing and the biological field.
Collapse
Affiliation(s)
- Aya Osama Mousa
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Shiao-Wei Kuo
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mohamed Gamal Mohamed
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
36
|
Yuan Y, Bang KT, Wang R, Kim Y. Macrocycle-Based Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210952. [PMID: 36608278 DOI: 10.1002/adma.202210952] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Macrocycles with well-defined cavities and the ability to undergo supramolecular interactions are classical materials that have played an essential role in materials science. However, one of the most substantial barriers limiting the utilization of macrocycles is their aggregation, which blocks the active regions. Among many attempted strategies to prevent such aggregation, installing macrocycles into covalent organic frameworks (COFs), which are porous and stable reticular networks, has emerged as an ideal solution. The resulting macrocycle-based COFs (M-COFs) preserve the macrocycles' unique activities, enabling applications in various fields such as single-atom catalysis, adsorption/separation, optoelectronics, phototherapy, and structural design of forming single-layered or mechanically interlocked COFs. The resulting properties are unmatchable by any combination of macrocycles with other substrates, opening a new chapter in advanced materials. This review focuses on the latest progress in the concepts, synthesis, properties, and applications of M-COFs, and presents an in-depth outlook on the challenges and opportunities in this emerging field.
Collapse
Affiliation(s)
- Yufei Yuan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ki-Taek Bang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
37
|
Babu SK, Gunasekaran B. Ultrathin α-Ni(OH)2 nanosheets coated on MOF-derived Fe2O3 nanorods as a potential electrode for solid-state hybrid supercapattery device. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
38
|
Tao R, Yang T, Wang Y, Zhang J, Wu Z, Qiu L. Design strategies of covalent organic framework-based electrodes for supercapacitor application. Chem Commun (Camb) 2023; 59:3175-3192. [PMID: 36810434 DOI: 10.1039/d2cc06573h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Supercapacitors (SCs) have been recognized as a promising electrochemical energy storage (EES) device, thanks to their high-power density, long lifespan, fast charge-discharge capability, and eco-friendliness. The breakthrough of electrode materials that determine the electrochemical performance of SCs is urgently desired. Covalent organic frameworks (COFs), an emerging and burgeoning class of crystalline porous polymeric materials, have been found to have huge potential for application in EES devices by virtue of their unique properties including atomically adjustable structures, robust and tunable skeletons, well-defined and open channels, high surface areas, etc. In this feature article, we aim at summarizing the design strategies of COF-based electrode materials for SCs based on the representative advances. The current challenges and future perspectives of COFs for SC application are highlighted as well.
Collapse
Affiliation(s)
- Rao Tao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Tianfu Yang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Yan Wang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Jingmin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Zhengyi Wu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Li Qiu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| |
Collapse
|
39
|
Liang H, Zhou Y, Shi R, Jiang W, Liu K, Xu Q, Zhang M, Zhuang H, Li H, Bu Y. In Situ Raman Study of Voltage Tolerance Up to 2.2 V of Ionic Liquid Analogue Supercapacitor Electrolytes Immune to Water Adsorption Conferred by Amphoteric Imidazole Additives. J Phys Chem Lett 2023; 14:2347-2353. [PMID: 36847667 DOI: 10.1021/acs.jpclett.2c03928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ionic liquid analogues (ILAs) are promising electrolytes for supercapacitors due to their low cost and considerable voltage (>2.0 V). However, the voltage is <1.1 V for water-adsorbed ILAs. Herein for the first time, an amphoteric imidazole (IMZ) additive is reported to address this concern by reconfiguring the solvent shell of ILAs. Addition of only 2 wt % IMZ increases the voltage from 1.1 to 2.2 V, with an increase in capacitance from 178 to 211 F g-1 and an increase in energy density from 6.8 to 32.6 Wh kg-1. In situ Raman reveals that the strong H-bonds formed by IMZ with completive ligands 1,3-propanediol and water induce a reversal of the polarity of the solvent shells, suppressing absorbed water electrochemical activity and thus increasing the voltage. This study solves the problem of low voltage for water-adsorbed ILAs and reduces the equipment cost of ILA-based supercapacitor assembly (e.g., assembly in air without a glovebox).
Collapse
Affiliation(s)
- Hongyu Liang
- Institute of Advanced Manufacturing and Modern Equipment Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Zhou
- Institute of Advanced Manufacturing and Modern Equipment Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Renxing Shi
- Institute of Advanced Manufacturing and Modern Equipment Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenya Jiang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Kuanguan Liu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering and Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qian Xu
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Ming Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Hao Zhuang
- CECEP Solar Energy Technology (Zhenjiang) Company, Ltd., No. 9, Beishan Road, New Area, Zhenjiang, Jiangsu 212132, China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Yongfeng Bu
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
40
|
Tan S, Zhang Z, Xue Y, Zhao J, Ji J, Wang C, Wu Y. Ionic Liquid Cross-linked Poly( N-isopropylacrylamide) Hydrogel Electrolytes for Self-Protective Flexible Separator-Free Supercapacitors. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shuai Tan
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Zechuan Zhang
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Yuzhen Xue
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Jingli Zhao
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| |
Collapse
|
41
|
Tao Y, Wang T, Ding X, Han B. Porous polycarbazole materials prepared by ionothermal synthesis method for carbon dioxide adsorption and electrochemical capacitors. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- You Tao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Tian‐Xiong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China
| | - Bao‐Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
42
|
Wang Y, Zhao X, Wang Y, Qiu W, Song E, Wang S, Liu J. Trinitroaromatic Salts as High-Energy-Density Organic Cathode Materials for Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1129-1137. [PMID: 36534742 DOI: 10.1021/acsami.2c18433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Even though organic molecules with designed structures can be assembled into high-capacity electrode materials, only limited functional groups such as -C═O and -C═N- could be designed as high-voltage cathode materials with enough high capacity. Here, we propose a common chemical raw material, trinitroaromatic salt, to have promising potential to develop organic cathode materials with high discharge voltage and capacity through a strong delocalization effect between -NO2 and aromatic ring. Our first-principles calculations show that electrochemical reactions of trinitroaromatic potassium salt C6H2(NO2)3OK are a 6-electron charge-transfer process, providing a high discharge capacity of 606 mAh g-1 and two voltage plateaus of 2.40 and 1.97 V. Electronic structure analysis indicates that the discharge process from C6H2(NO2)3OK to C6H2(NO2Li2)3OK stabilizes oxidized [C6]n+ to achieve a stable conjugated structure through electron delocalization from -NO2 to [C6]n+. The ordered layer structure C6H2(NO2)3OK can provide large spatial pore channels for Li-ion transport, achieving a high ion diffusion coefficient of 3.41 × 10-6 cm2 s-1.
Collapse
Affiliation(s)
- Yaning Wang
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, Anhui, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
| | - Xiaolin Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Youwei Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Wujie Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Erhong Song
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Sufan Wang
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, Anhui, China
| | - Jianjun Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou310024, China
| |
Collapse
|
43
|
Structure, morphology and energy storage properties of imide conjugated microporous polymers with different cores and the corresponding composites with CNT. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Qiu C, Zuo M, Qiu D, Cao J, Jia X, Li Y, Liu C, Chen N, Chen X, Li M. Unique hierarchical porous carbon nanosheet network for supercapacitors: Ultra-long cycling stability and enhanced electroactivity of oxygen at high temperature. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Jang M, Cho Y, Kim Y, Hahn M, Jung D, Park SY, Lee W, Piao Y. Redox-active conjugated microporous anthraquinonylamine-based polymer network grafted with activated graphene toward high-performance flexible asymmetric supercapacitor electrodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Yu C, He JH, Lu JM. Ion-in-Conjugation: A Promising Concept for Multifunctional Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204023. [PMID: 36285771 DOI: 10.1002/smll.202204023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Most organic semiconductors (OSCs) consist of conjugated skeletons with flexible peripheral chains. Their weak intermolecular interactions from dispersion and induction forces result in environmental susceptibilities and are unsuitable for many multifunctional applications where direct exposure to external environments is unavoidable, such as gas absorption, chemical sensing, and catalysis. To exploit the advantages of inorganic semiconductors in OSCs, ion-in-conjugation (IIC) materials are proposed. An IIC material refers to any conjugated material (molecules, polymers, and crystals) in Kekule's structural formula containing stoichiometric ionic states in its conjugated backbone in the electronic ground state. In this review, the definitions, structures, synthesis, properties, and applications of IIC materials are described briefly. Four types of IIC material, including zwitterionic conjugated molecules/polymers, conjugated ionic dyes, π-d conjugated molecules and polymers, and coordinatively doped polymers, are reported. Their applications in gas sensing, humidity sensing, resistive memory devices, and thermal/photo-/electro-catalysis are demonstrated. The challenges and opportunities for future research are also discussed. It is expected that this work will inspire the design of new organic electronic information materials.
Collapse
Affiliation(s)
- Chuang Yu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
47
|
Sun X, Fan Q, Yin X. Jujube Shell Based-Porous Carbon Composites Double-Doped by MnO 2 and Ti 3C 2Tx: The Effect of Double Pseudocapacitive Doping on Electrochemical Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7532. [PMID: 36363126 PMCID: PMC9657630 DOI: 10.3390/ma15217532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In this study, manganese-containing porous carbon was synthesized from jujube shells by two-step carbonization and activation and was then covered with Ti3C2Tx to obtain double-doped biomass composites. In order to improve the interfacial properties (surface tension and wettability) between Ti3C2Tx and porous carbon, the effects of two media (deionized water and acetone solution) on the electrochemical properties of the composites were compared. The acetone solution changed the surface rheology of Ti3C2Tx and porous carbon, and the decreased surface tension and the increased wettability contributed to the ordered growth of 2D-Ti3C2Tx on the surface of the porous carbon. Raman analysis shows the relatively higher graphitization degree of JSPC&Ti3C2Tx (acetone). Compared with JSPC&Ti3C2Tx, JSPC&Ti3C2Tx (acetone) can maintain better rectangle-like properties even at a higher scanning rate. Under the effect of the acetone solution, the pseudocapacitive ratio of JSPC&Ti3C2Tx (acetone) increased from 10.1% to 30.7%. At the current density of 0.5 A/g, the specific capacitance of JSPC&Ti3C2Tx (acetone) achieved 96.83 F/g, and the specific capacitance of 58.17 F/g was maintained even at the high current density (10 A/g), which shows excellent magnification. Under the condition of the current density of 10 A/g, JSPC&Ti3C2Tx (acetone) can obtain a power density of 52,000 W/kg while maintaining an energy density of 8.74 Wh/kg. After 2000 cycles, the symmetrical button battery assembled with this material can still have a capacitance retention rate of more than 90%. This method realized the deep utilization of green and low-cost raw materials by using biomass as the precursor of composite materials and promoted the further development of carbon-based supercapacitor electrode materials.
Collapse
|
48
|
Zhang R, Zhang Z, Ke Q, Zhou B, Cui G, Lu H. Covalent Organic Frameworks with Ionic Liquid-Moieties (ILCOFs): Structures, Synthesis, and CO 2 Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3615. [PMID: 36296805 PMCID: PMC9612033 DOI: 10.3390/nano12203615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
CO2, an acidic gas, is usually emitted from the combustion of fossil fuels and leads to the formation of acid rain and greenhouse effects. CO2 can be used to produce kinds of value-added chemicals from a viewpoint based on carbon capture, utilization, and storage (CCUS). With the combination of unique structures and properties of ionic liquids (ILs) and covalent organic frameworks (COFs), covalent organic frameworks with ionic liquid-moieties (ILCOFs) have been developed as a kind of novel and efficient sorbent, catalyst, and electrolyte since 2016. In this critical review, we first focus on the structures and synthesis of different kinds of ILCOFs materials, including ILCOFs with IL moieties located on the main linkers, on the nodes, and on the side chains. We then discuss the ILCOFs for CO2 capture and conversion, including the reduction and cycloaddition of CO2. Finally, future directions and prospects for ILCOFs are outlined. This review is beneficial for academic researchers in obtaining an overall understanding of ILCOFs and their application of CO2 conversion. This work will open a door to develop novel ILCOFs materials for the capture, separation, and utilization of other typical acid, basic, or neutral gases such as SO2, H2S, NOx, NH3, and so on.
Collapse
|
49
|
Tan J, Li Z, Ye M, Shen J. Nanoconfined Space: Revisiting the Charge Storage Mechanism of Electric Double Layer Capacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37259-37269. [PMID: 35951420 DOI: 10.1021/acsami.2c07775] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The electric double layer capacitor (EDLC) has been recognized as one of the most appealing electrochemical energy storage devices. Nanoporous materials with relatively high specific surface areas are generally used as the electrode materials for electric double layer capacitors (EDLCs). The past decades have witnessed anomalous phenomena of EDLCs under nanoconfined space, which to a large degree doubt the conventional recognition. However, there are currently still no deep insights and consensus on the mechanism of these striking discoveries. In this Perspective, we start with a brief introduction to contextualize the significance of EDLCs, especially with electrode materials of nanoconfined space. Next, we briefly review the landmark studies in light of the charge storage mechanism of EDLCs, mainly focusing on the study of nanoporous materials for EDLCs. Subsequently, we reexamine the basic concepts under nanoconfined space and some representative in situ characterization techniques applied to understand the charge storage mechanism of EDLCs. Finally, we provide general conclusions and insights into the future research directions in the field of EDLCs.
Collapse
Affiliation(s)
- Jian Tan
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Zhiheng Li
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Mingxin Ye
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
| | - Jianfeng Shen
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
50
|
Redox-active conjugated microporous polymers as electron-accepting organic pseudocapacitor electrode materials for flexible energy storage. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|