1
|
Denaro S, Pasquinucci L, Turnaturi R, Alberghina C, Longhitano L, Giallongo S, Costanzo G, Spoto S, Grasso M, Zappalà A, Li Volti G, Tibullo D, Vicario N, Parenti R, Parenti C. Sigma-1 Receptor Inhibition Reduces Mechanical Allodynia and Modulate Neuroinflammation in Chronic Neuropathic Pain. Mol Neurobiol 2024; 61:2672-2685. [PMID: 37922065 PMCID: PMC11043107 DOI: 10.1007/s12035-023-03717-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2023]
Abstract
Neuropathic pain is one of the most debilitating forms of chronic pain, resulting from an injury or disease of the somatosensory nervous system, which induces abnormal painful sensations including allodynia and hyperalgesia. Available treatments are limited by severe side-effects and reduced efficacy in the chronic phase of the disease. Sigma-1 receptor (σ1R) has been identified as a chaperone protein, which modulate opioid receptors activities and the functioning of several ion channels, exerting a role in pain transmission. As such, it represents a druggable target to treat neuropathic pain. This study aims at investigating the therapeutic potential of the novel compound (+)-2R/S-LP2, a σ1R antagonist, in reducing painful behaviour and modulating the neuroinflammatory environment. We showed that repeated administration of the compound significantly inhibited mechanical allodynia in neuropathic rats, increasing the withdrawal threshold as compared to CCI-vehicle rats. Moreover, we found that (+)-2R/S-LP2-mediated effects resolve the neuroinflammatory microenvironment by reducing central gliosis and pro-inflammatory cytokines expression levels. This effect was coupled with a significant reduction of connexin 43 (Cx43) expression levels and gap junctions/hemichannels mediated microglia-to-astrocyte communication. These results suggest that inhibition of σ1R significantly attenuates neuropathic pain chronicization, thus representing a viable effective strategy.
Collapse
Affiliation(s)
- Simona Denaro
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Lorella Pasquinucci
- Section of Medicinal Chemistry, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| | - Rita Turnaturi
- Section of Medicinal Chemistry, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| | - Cristiana Alberghina
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Sebastiano Giallongo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giuliana Costanzo
- Section of Medicinal Chemistry, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| | - Salvatore Spoto
- Section of Pharmacology and Toxicology, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| | - Margherita Grasso
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018, Troina, Italy
| | - Agata Zappalà
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Carmela Parenti
- Section of Pharmacology and Toxicology, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| |
Collapse
|
2
|
Kalkman HO. Activation of σ1-Receptors by R-Ketamine May Enhance the Antidepressant Effect of S-Ketamine. Biomedicines 2023; 11:2664. [PMID: 37893038 PMCID: PMC10604479 DOI: 10.3390/biomedicines11102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ketamine is a racemic mixture composed of two enantiomers, S-ketamine and R-ketamine. In preclinical studies, both enantiomers have exhibited antidepressant effects, but these effects are attributed to distinct pharmacological activities. The S-enantiomer acts as an NMDA-channel blocker and as an opioid μ-receptor agonist, whereas the R-enantiomer binds to σ1-receptors and is believed to act as an agonist. As racemate, ketamine potentially triggers four biochemical pathways involving the AGC-kinases, PKA, Akt (PKB), PKC and RSK that ultimately lead to inhibitory phosphorylation of GSK3β in microglia. In patients with major depressive disorder, S-ketamine administered as a nasal spray has shown clear antidepressant activity. However, when compared to intravenously infused racemic ketamine, the response rate, duration of action and anti-suicidal activity of S-ketamine appear to be less pronounced. The σ1-protein interacts with μ-opioid and TrkB-receptors, whereas in preclinical experiments σ1-agonists reduce μ-receptor desensitization and improve TrkB signal transduction. TrkB activation occurs as a response to NMDA blockade. So, the σ1-activity of R-ketamine may not only enhance two pathways via which S-ketamine produces an antidepressant response, but it furthermore provides an antidepressant activity in its own right. These two factors could explain the apparently superior antidepressant effect observed with racemic ketamine compared to S-ketamine alone.
Collapse
Affiliation(s)
- Hans O Kalkman
- Retired Pharmacologist, Gänsbühlgartenweg 7, 4132 Muttenz, Switzerland
| |
Collapse
|
3
|
Wang J, Barwick SR, Xiao H, Smith SB. Evaluation of the role of Sigma 1 receptor and Cullin3 in retinal photoreceptor cells. Free Radic Biol Med 2023; 205:214-223. [PMID: 37328017 PMCID: PMC10527355 DOI: 10.1016/j.freeradbiomed.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Sigma 1 receptor (Sig1R), a pluripotent modulator of cell survival, is neuroprotective in models of retinal degeneration when activated by the high-affinity, high-specificity ligand (+)-pentazocine ((+)-PTZ). The molecular mechanisms of Sig1R-mediated retinal neuroprotection are under investigation. We previously reported that the antioxidant regulatory transcription factor Nrf2 may be involved in Sig1R-mediated retinal photoreceptor cell (PRC) rescue. Cullin 3 (Cul3) is a component of the Nrf2-Keap1 antioxidant pathway and facilitates Nrf2 ubiquitination. Our earlier transcriptome analysis revealed decreased Cul3 in retinas lacking Sig1R. Here, we asked whether Sig1R activation can modulate Cul3 expression in 661 W cone PRCs. Proximity ligation and co-immunoprecipitation (co-IP) showed that Cul3 resides closely to and co-IPs with Sig1R. Activation of Sig1R using (+)-PTZ significantly increased Cul3 at the gene/protein level; silencing Sig1R decreased Cul3 gene/protein levels. Experiments in which Cul3 was silenced in cells exposed to tBHP resulted in increased oxidative stress, which was not attenuated with Sig1R activation by (+)-PTZ, whereas cells transfected with scrambled siRNA (and incubated with tBHP) responded to (+)-PTZ treatment by decreasing levels of oxidative stress. Assessment of mitochondrial respiration and glycolysis revealed significantly improved maximal respiration, spare capacity and glycolytic capacity in oxidatively-stressed cells transfected with scrambled siRNA and treated with (+)-PTZ, but not in (+)-PTZ treated, oxidatively-stressed cells in which Cul3 had been silenced. The data provide the first evidence that Sig1R co-localizes/interacts with Cul3, a key player in the Nrf2-Keap1 antioxidant pathway. The data suggest that the preservation of mitochondrial respiration/glycolytic function and reduction of oxidative stress observed upon activation of Sig1R occur in part in a Cul3-dependent manner.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Shannon R Barwick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Haiyan Xiao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
4
|
Ren P, Wang J, Li N, Li G, Ma H, Zhao Y, Li Y. Sigma-1 Receptors in Depression: Mechanism and Therapeutic Development. Front Pharmacol 2022; 13:925879. [PMID: 35784746 PMCID: PMC9243434 DOI: 10.3389/fphar.2022.925879] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 12/26/2022] Open
Abstract
Depression is the most common type of neuropsychiatric illness and has increasingly become a major cause of disability. Unfortunately, the recent global pandemic of COVID-19 has dramatically increased the incidence of depression and has significantly increased the burden of mental health care worldwide. Since full remission of the clinical symptoms of depression has not been achieved with current treatments, there is a constant need to discover new compounds that meet the major clinical needs. Recently, the roles of sigma receptors, especially the sigma-1 receptor subtype, have attracted increasing attention as potential new targets and target-specific drugs due to their translocation property that produces a broad spectrum of biological functions. Even clinical first-line antidepressants with or without affinity for sigma-1 receptors have different pharmacological profiles. Thus, the regulatory role of sigma-1 receptors might be useful in treating these central nervous system (CNS) diseases. In addition, long-term mental stress disrupts the homeostasis in the CNS. In this review, we discuss the topical literature concerning sigma-1 receptor antidepressant mechanism of action in the regulation of intracellular proteostasis, calcium homeostasis and especially the dynamic Excitatory/Inhibitory (E/I) balance in the brain. Furthermore, based on these discoveries, we discuss sigma-1 receptor ligands with respect to their promise as targets for fast-onset action drugs in treating depression.
Collapse
Affiliation(s)
- Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jingya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Nanxi Li
- Department of Pharmaceutical Sciences, Beijng Institute of Radiation Medicine, Beijing, China
| | - Guangxiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, China
- *Correspondence: Hui Ma, ; Yongqi Zhao, ; Yunfeng Li,
| | - Yongqi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
- *Correspondence: Hui Ma, ; Yongqi Zhao, ; Yunfeng Li,
| | - Yunfeng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Hui Ma, ; Yongqi Zhao, ; Yunfeng Li,
| |
Collapse
|
5
|
Milenina LS, Krutetskaya ZI, Antonov VG, Krutetskaya NI. Sigma-1 Receptor Ligands Chlorpromazine and Trifluoperazine Attenuate Ca 2+ Responses in Rat Peritoneal Macrophages. CELL AND TISSUE BIOLOGY 2022; 16:233-244. [PMID: 35668825 PMCID: PMC9136207 DOI: 10.1134/s1990519x22030075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022]
Abstract
Sigma-1 receptors are ubiquitous multifunctional ligand-regulated molecular chaperones in the endoplasmic reticulum membrane with a unique history, structure, and pharmacological profile. Sigma-1 receptors bind ligands of different chemical structure and pharmacological action and modulate a wide range of cellular processes in health and disease, including Ca2+ signaling. To elucidate the involvement of sigma-1 receptors in the processes of Ca2+ signaling in macrophages we studied the effect of sigma-1 receptor ligands, phenothiazine neuroleptics chlorpromazine and trifluoperazine, on Ca2+ responses induced by inhibitors of endoplasmic Ca2+-ATPases thapsigargin and cyclopiazonic acid, as well as by disulfide-containing immunomodulators Glutoxim and Molixan in rat peritoneal macrophages. Using Fura-2AM microfluorimetry we showed for the first time that chlorpromazine and trifluoperazine inhibit both phases of Ca2+ responses induced by Glutoxim, Molixan, thapsigargin, and cyclopiazonic acid in rat peritoneal macrophages. The data obtained indicate the participation of sigma-1 receptors in a complex signaling cascade caused by Glutoxim or Molixan and leading to an increase in intracellular Ca2+ concentration in macrophages. The results also indicate the involvement of sigma-1 receptors in the regulation of store-dependent Ca2+entry in macrophages.
Collapse
Affiliation(s)
- L. S. Milenina
- Department of Biophysics, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Z. I. Krutetskaya
- Department of Biophysics, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - V. G. Antonov
- Department of Clinical Biochemistry and Laboratory Diagnostics, Kirov Military Medical Academy, 194044 St. Petersburg, Russia
| | - N. I. Krutetskaya
- Department of Biophysics, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
6
|
Sun Y, Sukumaran P, Singh BB. Sigma1 Receptor Inhibits TRPC1-Mediated Ca 2+ Entry That Promotes Dopaminergic Cell Death. Cell Mol Neurobiol 2021; 41:1245-1255. [PMID: 32514827 PMCID: PMC11448707 DOI: 10.1007/s10571-020-00892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
Abstract
Regulation of Ca2+ homeostasis is essential for neuronal function and its survival. Recent data suggest that TRPC1 function as the endogenous store-mediated Ca2+ entry channel in dopaminergic cells, and loss of TRPC1 function leads to neurodegeneration; however, its regulation is not fully identified. Here we provide evidence that the sigma 1 receptor contributes to the loss of dopaminergic cells by blocking TRPC1-mediated Ca2+ entry. Importantly, downregulation of sigma 1 receptor expression significantly decreased neurotoxin-induced loss of dopaminergic cells as measured by MTT assays and caspase activity was also inhibited. Importantly, sigma 1 receptor inhibited TRPC1-mediated Ca2+ entry and silencing of sigma 1 receptor significantly restored store-dependent Ca2+ influx. Although co-immunoprecipitation failed to show an interaction between the TRPC1 and sigma 1 receptor, store depletion promoted a decrease in the sigma 1 receptor-STIM1 association. Neurotoxin-induced loss of Ca2+ entry was significantly restored in cells that had decreased sigma 1 receptor expression. Furthermore, TRPC1 or STIM1 silencing inhibited store-mediated Ca2+ entry, which was further increased upon the downregulation of the sigma 1 receptor expression. TRPC1 silencing prevented the increased neuroprotection and caspase activity observed upon the downregulation of sigma 1 receptor. Finally, sigma 1 receptor activation also significantly decreased TRPC1-mediated Ca2+ entry and lead to an increase in neurodegeneration. In contrast, addition of sigma 1 receptor antagonist prevented neurotoxin-induced neurodegeneration and facilitated TRPC1-mediated Ca2+ influx. Together these results suggest that the sigma 1 receptor is involved in the inhibition of TRPC1- mediated Ca2+ entry, which leads to the degeneration in the dopaminergic cells, and prevention of sigma 1 receptor function could protect neuronal cell death as observed in Parkinson's disease.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Pramod Sukumaran
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Brij B Singh
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
7
|
Shenkman M, Geva M, Gershoni-Emek N, Hayden MR, Lederkremer GZ. Pridopidine reduces mutant huntingtin-induced endoplasmic reticulum stress by modulation of the Sigma-1 receptor. J Neurochem 2021; 158:467-481. [PMID: 33871049 DOI: 10.1111/jnc.15366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/18/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER)-localized Sigma-1 receptor (S1R) is neuroprotective in models of neurodegenerative diseases, among them Huntington disease (HD). Recent clinical trials in HD patients and preclinical studies in cellular and mouse HD models suggest a therapeutic potential for the high-affinity S1R agonist pridopidine. However, the molecular mechanisms of the cytoprotective effect are unclear. We have previously reported strong induction of ER stress by toxic mutant huntingtin (mHtt) oligomers, which is reduced upon sequestration of these mHtt oligomers into large aggregates. Here, we show that pridopidine significantly ameliorates mHtt-induced ER stress in cellular HD models, starting at low nanomolar concentrations. Pridopidine reduced the levels of markers of the three branches of the unfolded protein response (UPR), showing the strongest effects on the PKR-like endoplasmic reticulum kinase (PERK) branch. The effect is S1R-dependent, as it is abolished in cells expressing mHtt in which the S1R was deleted using CRISPR/Cas9 technology. mHtt increased the level of the detergent-insoluble fraction of S1R, suggesting a compensatory cellular mechanism that responds to increased ER stress. Pridopidine further enhanced the levels of insoluble S1R, suggesting the stabilization of activated S1R oligomers. These S1R oligomeric species appeared in ER-localized patches, and not in the mitochondria-associated membranes nor the ER-derived quality control compartment. The colocalization of S1R with the chaperone BiP was significantly reduced by mHtt, and pridopidine restored this colocalization to normal, unstressed levels. Pridopidine increased toxic oligomeric mHtt recruitment into less toxic large sodium dodecyl sulfate-insoluble aggregates, suggesting that this in turn reduces ER stress and cytotoxicity.
Collapse
Affiliation(s)
- Marina Shenkman
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michal Geva
- Prilenia Therapeutics Development LTD, Herzliya, Israel
| | | | | | - Gerardo Z Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Zhemkov V, Geva M, Hayden MR, Bezprozvanny I. Sigma-1 Receptor (S1R) Interaction with Cholesterol: Mechanisms of S1R Activation and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4082. [PMID: 33920913 PMCID: PMC8071319 DOI: 10.3390/ijms22084082] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
The sigma-1 receptor (S1R) is a 223 amino acid-long transmembrane endoplasmic reticulum (ER) protein. The S1R modulates the activity of multiple effector proteins, but its signaling functions are poorly understood. S1R is associated with cholesterol, and in our recent studies we demonstrated that S1R association with cholesterol induces the formation of S1R clusters. We propose that these S1R-cholesterol interactions enable the formation of cholesterol-enriched microdomains in the ER membrane. We hypothesize that a number of secreted and signaling proteins are recruited and retained in these microdomains. This hypothesis is consistent with the results of an unbiased screen for S1R-interacting partners, which we performed using the engineered ascorbate peroxidase 2 (APEX2) technology. We further propose that S1R agonists enable the disassembly of these cholesterol-enriched microdomains and the release of accumulated proteins such as ion channels, signaling receptors, and trophic factors from the ER. This hypothesis may explain the pleotropic signaling functions of the S1R, consistent with previously observed effects of S1R agonists in various experimental systems.
Collapse
Affiliation(s)
- Vladimir Zhemkov
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Michal Geva
- Prilenia Therapeutics Development LTD, Herzliya 4673304, Israel; (M.G.); (M.R.H.)
| | - Michael R. Hayden
- Prilenia Therapeutics Development LTD, Herzliya 4673304, Israel; (M.G.); (M.R.H.)
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V6H 3V5, Canada
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
- Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg State Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
9
|
Danysz W, Dekundy A, Scheschonka A, Riederer P. Amantadine: reappraisal of the timeless diamond-target updates and novel therapeutic potentials. J Neural Transm (Vienna) 2021; 128:127-169. [PMID: 33624170 PMCID: PMC7901515 DOI: 10.1007/s00702-021-02306-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/13/2021] [Indexed: 12/30/2022]
Abstract
The aim of the current review was to provide a new, in-depth insight into possible pharmacological targets of amantadine to pave the way to extending its therapeutic use to further indications beyond Parkinson's disease symptoms and viral infections. Considering amantadine's affinities in vitro and the expected concentration at targets at therapeutic doses in humans, the following primary targets seem to be most plausible: aromatic amino acids decarboxylase, glial-cell derived neurotrophic factor, sigma-1 receptors, phosphodiesterases, and nicotinic receptors. Further three targets could play a role to a lesser extent: NMDA receptors, 5-HT3 receptors, and potassium channels. Based on published clinical studies, traumatic brain injury, fatigue [e.g., in multiple sclerosis (MS)], and chorea in Huntington's disease should be regarded potential, encouraging indications. Preclinical investigations suggest amantadine's therapeutic potential in several further indications such as: depression, recovery after spinal cord injury, neuroprotection in MS, and cutaneous pain. Query in the database http://www.clinicaltrials.gov reveals research interest in several further indications: cancer, autism, cocaine abuse, MS, diabetes, attention deficit-hyperactivity disorder, obesity, and schizophrenia.
Collapse
Affiliation(s)
- Wojciech Danysz
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Andrzej Dekundy
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Astrid Scheschonka
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department Psychiatry, University of Southern Denmark Odense, Vinslows Vey 18, 5000, Odense, Denmark.
| |
Collapse
|
10
|
Vela JM. Repurposing Sigma-1 Receptor Ligands for COVID-19 Therapy? Front Pharmacol 2020; 11:582310. [PMID: 33364957 PMCID: PMC7751758 DOI: 10.3389/fphar.2020.582310] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Outbreaks of emerging infections, such as COVID-19 pandemic especially, confront health professionals with the unique challenge of treating patients. With no time to discover new drugs, repurposing of approved drugs or in clinical development is likely the only solution. Replication of coronaviruses (CoVs) occurs in a modified membranous compartment derived from the endoplasmic reticulum (ER), causes host cell ER stress and activates pathways to facilitate adaptation of the host cell machinery to viral needs. Accordingly, modulation of ER remodeling and ER stress response might be pivotal in elucidating CoV-host interactions and provide a rationale for new therapeutic, host-based antiviral approaches. The sigma-1 receptor (Sig-1R) is a ligand-operated, ER membrane-bound chaperone that acts as an upstream modulator of ER stress and thus a candidate host protein for host-based repurposing approaches to treat COVID-19 patients. Sig-1R ligands are frequently identified in in vitro drug repurposing screens aiming to identify antiviral compounds against CoVs, including severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Sig-1R regulates key mechanisms of the adaptive host cell stress response and takes part in early steps of viral replication. It is enriched in lipid rafts and detergent-resistant ER membranes, where it colocalizes with viral replicase proteins. Indeed, the non-structural SARS-CoV-2 protein Nsp6 interacts with Sig-1R. The activity of Sig-1R ligands against COVID-19 remains to be specifically assessed in clinical trials. This review provides a rationale for targeting Sig-1R as a host-based drug repurposing approach to treat COVID-19 patients. Evidence gained using Sig-1R ligands in unbiased in vitro antiviral drug screens and the potential mechanisms underlying the modulatory effect of Sig-1R on the host cell response are discussed. Targeting Sig-1R is not expected to reduce dramatically established viral replication, but it might interfere with early steps of virus-induced host cell reprogramming, aid to slow down the course of infection, prevent the aggravation of the disease and/or allow a time window to mature a protective immune response. Sig-1R-based medicines could provide benefit not only as early intervention, preventive but also as adjuvant therapy.
Collapse
Affiliation(s)
- José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals, Barcelona, Spain
| |
Collapse
|
11
|
Turnaturi R, Pasquinucci L, Chiechio S, Grasso M, Marrazzo A, Amata E, Dichiara M, Prezzavento O, Parenti C. Exploiting the Power of Stereochemistry in Drug Action: 3-[(2 S,6 S,11 S)-8-Hydroxy-6,11-dimethyl-1,4,5,6-tetrahydro-2,6-methano-3-benzazocin-3(2 H)-yl]- N-phenylpropanamide as Potent Sigma-1 Receptor Antagonist. ACS Chem Neurosci 2020; 11:999-1005. [PMID: 32186844 DOI: 10.1021/acschemneuro.9b00688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
(+)-(2S,6S,11S)- and (-)-(2R,6R,11R)-Benzomorphan derivatives have a different binding affinity for sigma-1 (σ1R) and opioid receptors, respectively. In this study, we describe the synthesis of the (+)-enantiomer [(+)-LP1] of the benzomorphan MOR agonist/DOR antagonist LP1 [(-)-LP1]. The binding affinity of both (+)-LP1 and (-)-LP1 for σ1R and sigma-2 receptor (σ2R) was tested. Moreover, (+)-LP1 opioid receptor binding affinity was also investigated. Finally, (+)-LP1 was tested in a mouse model of inflammatory pain. Our results showed a nanomolar σ1R and binding affinity for (+)-LP1. Both (+)-LP1 and (-)-LP1 elicited a significant analgesic effect in a formalin test. Differently from (-)-LP1, the analgesic effect of (+)-LP1 was not reversed by naloxone, suggesting a σ1R antagonist profile. Furthermore, σ1R agonist PRE-084 was able to unmask the σ1R antagonistic component of the benzomorphan compound. (+)-LP1 could constitute an useful lead compound to develop new analgesics based on mechanisms of action alternative to opioid receptor activation.
Collapse
MESH Headings
- Analgesics/chemistry
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Benzomorphans/chemical synthesis
- Benzomorphans/pharmacology
- Disease Models, Animal
- Mice
- Pain/drug therapy
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Receptors, sigma/antagonists & inhibitors
- Structure-Activity Relationship
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Santina Chiechio
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Oasi Research Institute-IRCCS, Troina 94018, Italy
| | - Margherita Grasso
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Oasi Research Institute-IRCCS, Troina 94018, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
12
|
Lewis R, Li J, McCormick PJ, L-H Huang C, Jeevaratnam K. Is the sigma-1 receptor a potential pharmacological target for cardiac pathologies? A systematic review. IJC HEART & VASCULATURE 2019; 26:100449. [PMID: 31909177 PMCID: PMC6939113 DOI: 10.1016/j.ijcha.2019.100449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Sigma-1 receptors are ligand-regulated chaperone proteins, involved in several cellular mechanisms. The aim of this systematic review was to examine the effects that the sigma-1 receptor has on the cardiovascular system. The interaction targets and proposed mechanisms of action of sigma-1 receptors were explored, with the aim of determining if the sigma-1 receptor is a potential pharmacological target for cardiac pathologies. This systematic review was conducted according to the PRISMA guidelines and these were used to critically appraise eligible studies. Pubmed and Scopus were systematically searched for articles investigating sigma-1 receptors in the cardiovascular system. Papers identified by the search terms were then subject to analysis against pre-determined inclusion criteria. 23 manuscripts met the inclusion criteria and were included in this review. The experimental platforms, experimental techniques utilised and the results of the studies were summarised. The sigma-1 receptor is found to be implicated in cardioprotection, via various mechanisms including stimulating the Akt-eNOS pathway, and reduction of Ca2 + leakage into the cytosol via modulating certain calcium channels. Sigma-1 receptors are also found to modulate other cardiac ion channels including different subtypes of potassium and sodium channels and have been shown to modulate intracardiac neuron excitability. The sigma-1 receptor is a potential therapeutic target for treatment of cardiac pathologies, particularly cardiac hypertrophy. We therefore suggest investigating the cardioprotective mechanisms of sigma-1 receptor function, alongside proposed potential ligands that can stimulate these functions.
Collapse
Affiliation(s)
- Rebecca Lewis
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7AL, UK
| | - Jiaqi Li
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7AL, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Peter J McCormick
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Christopher L-H Huang
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7AL, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Kamalan Jeevaratnam
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7AL, UK
| |
Collapse
|
13
|
Cipriano PW, Lee SW, Yoon D, Shen B, Tawfik VL, Curtin CM, Dragoo JL, James ML, McCurdy CR, Chin FTN, Biswal S. Successful treatment of chronic knee pain following localization by a sigma-1 receptor radioligand and PET/MRI: a case report. J Pain Res 2018; 11:2353-2357. [PMID: 30349360 PMCID: PMC6190812 DOI: 10.2147/jpr.s167839] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The ability to accurately diagnose and objectively localize pain generators in chronic pain sufferers remains a major clinical challenge since assessment relies on subjective patient complaints and relatively non-specific diagnostic tools. Developments in clinical molecular imaging, including advances in imaging technology and radiotracer design, have afforded the opportunity to identify tissues involved in pain generation based on their pro-nociceptive condition. The sigma-1 receptor (S1R) is a pro-nociceptive receptor upregulated in painful, inflamed tissues, and it can be imaged using the highly specific radioligand 18F-FTC-146 with PET. Case presentation A 50-year-old woman with a 7-year history of refractory, left-knee pain of unknown origin was referred to our pain management team. Over the past several years, she had undergone multiple treatments, including a lateral retinacular release, radiofrequency ablation of a peripheral nerve, and physical therapy. While certain treatments provided partial relief, her pain would inevitably return to its original state. Using simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) with the novel radiotracer 18F-FTC-146, imaging showed increased focal uptake of 18F-FTC-146 in the intercondylar notch, corresponding to an irregular but equivocal lesion identified in the simultaneously acquired MRI. These imaging results prompted surgical removal of the lesion, which upon resection was identified as an inflamed, intraarticular synovial lipoma. Removal of the lesion relieved the patient's pain, and to date the pain has not recurred. Conclusion We present a case of chronic, debilitating knee pain that resolved with surgery following identification of the pathology with a novel clinical molecular imaging approach that detects chronic pain generators at the molecular and cellular level. This approach has the potential to identify and localize pain-associated pathology in a variety of chronic pain syndromes.
Collapse
Affiliation(s)
| | - Sheen-Woo Lee
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA, , .,Department of Radiology, Gachon University Gil Hospital, Incheon, South Korea
| | - Daehyun Yoon
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA, ,
| | - Bin Shen
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA, ,
| | - Vivianne Lily Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine Mills Curtin
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason L Dragoo
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Louise James
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA, ,
| | - Christopher Robert McCurdy
- Clinical and Translational Science Institute, Translational Drug Development Core, University of Florida, Gainesville, FL, USA
| | | | - Sandip Biswal
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA, ,
| |
Collapse
|
14
|
Turnaturi R, Montenegro L, Marrazzo A, Parenti R, Pasquinucci L, Parenti C. Benzomorphan skeleton, a versatile scaffold for different targets: A comprehensive review. Eur J Med Chem 2018; 155:492-502. [PMID: 29908442 DOI: 10.1016/j.ejmech.2018.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/23/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022]
Abstract
Despite the fact that the benzomorphan skeleton has mainly been employed in medicinal chemistry for the development of opioid analgesics, it is a versatile structure. Its stereochemistry, as well as opportune modifications at the phenolic hydroxyl group and at the basic nitrogen, play a pivotal role addressing the benzomorphan-based compounds to a specific target. In this review, we describe the structure activity-relationships (SARs) of benzomorphan-based compounds acting at sigma 1 receptor (σ1R), sigma 2 receptor (σ2R), voltage-dependent sodium channel, N-Methyl-d-Aspartate (NMDA) receptor-channel complex and other targets. Collectively, the SARs data have highlighted that the benzomorphan nucleus could be regarded as a useful template for the synthesis of drug candidates for different targets.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria, 6, 95100, Catania, Italy.
| | - Lucia Montenegro
- Department of Drug Sciences, Pharmaceutical Technology Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria, 6, 95100, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria, 6, 95100, Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology Section, University of Catania, Viale A. Doria, 6, 95100, Catania, Italy
| |
Collapse
|
15
|
Cerveró C, Blasco A, Tarabal O, Casanovas A, Piedrafita L, Navarro X, Esquerda JE, Calderó J. Glial Activation and Central Synapse Loss, but Not Motoneuron Degeneration, Are Prevented by the Sigma-1 Receptor Agonist PRE-084 in the Smn2B/- Mouse Model of Spinal Muscular Atrophy. J Neuropathol Exp Neurol 2018; 77:577-597. [PMID: 29767748 DOI: 10.1093/jnen/nly033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by the loss of α-motoneurons (MNs) with concomitant muscle denervation. MN excitability and vulnerability to disease are particularly regulated by cholinergic synaptic afferents (C-boutons), in which Sigma-1 receptor (Sig1R) is concentrated. Alterations in Sig1R have been associated with MN degeneration. Here, we investigated whether a chronic treatment with the Sig1R agonist PRE-084 was able to exert beneficial effects on SMA. We used a model of intermediate SMA, the Smn2B/- mouse, in which we performed a detailed characterization of the histopathological changes that occur throughout the disease. We report that Smn2B/- mice exhibited qualitative differences in major alterations found in mouse models of severe SMA: Smn2B/- animals showed more prominent MN degeneration, early motor axon alterations, marked changes in sensory neurons, and later MN deafferentation that correlated with conspicuous reactive gliosis and altered neuroinflammatory M1/M2 microglial balance. PRE-084 attenuated reactive gliosis, mitigated M1/M2 imbalance, and prevented MN deafferentation in Smn2B/- mice. These effects were also observed in a severe SMA model, the SMNΔ7 mouse. However, the prevention of gliosis and MN deafferentation promoted by PRE-084 were not accompanied by any improvements in clinical outcome or other major pathological changes found in SMA mice.
Collapse
Affiliation(s)
- Clàudia Cerveró
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Alba Blasco
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Xavier Navarro
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona and CIBERNED, Bellaterra, Catalonia, Spain
| | - Josep E Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| |
Collapse
|
16
|
Trujillo AN, Katnik C, Cuevas J, Cha BJ, Taylor-Clark TE, Breslin JW. Modulation of mesenteric collecting lymphatic contractions by σ 1-receptor activation and nitric oxide production. Am J Physiol Heart Circ Physiol 2017; 313:H839-H853. [PMID: 28778917 PMCID: PMC5668603 DOI: 10.1152/ajpheart.00702.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
Recently, it has been reported that a σ-receptor antagonist could reduce inflammation-induced edema. Lymphatic vessels play an essential role in removing excess interstitial fluid. We tested the hypothesis that activation of σ-receptors would reduce or weaken collecting lymphatic contractions. We used isolated, cannulated rat mesenteric collecting lymphatic vessels to study contractions in response to the σ-receptor agonist afobazole in the absence and presence of different σ-receptor antagonists. We used RT-PCR and Western blot analysis to investigate whether these vessels express the σ1-receptor and immunofluorescence confocal microscopy to examine localization of the σ1-receptor in the collecting lymphatic wall. Using N-nitro-l-arginine methyl ester (l-NAME) pretreatment before afobazole in isolated lymphatics, we tested the role of nitric oxide (NO) signaling. Finally, we used 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence as an indicator to test whether afobazole increases NO release in cultured lymphatic endothelial cells. Our results show that afobazole (50-150 µM) elevated end-systolic diameter and generally reduced pump efficiency and that this response could be partially blocked by the σ1-receptor antagonists BD 1047 and BD 1063 but not by the σ2-receptor antagonist SM-21. σ1-Receptor mRNA and protein were detected in lysates from isolated rat mesenteric collecting lymphatics. Confocal images with anti-σ1-receptor antibody labeling suggested localization in the lymphatic endothelium. Blockade of NO synthases with l-NAME inhibited the effects of afobazole. Finally, afobazole elicited increases in NO production from cultured lymphatic endothelial cells. Our findings suggest that the σ1-receptor limits collecting lymphatic pumping through a NO-dependent mechanism.NEW & NOTEWORTHY Relatively little is known about the mechanisms that govern contractions of lymphatic vessels. σ1-Receptor activation has been shown to reduce the fractional pump flow of isolated rat mesenteric collecting lymphatics. The σ1-receptor was localized mainly in the endothelium, and blockade of nitric oxide synthase inhibited the effects of afobazole.
Collapse
Affiliation(s)
- Andrea N Trujillo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Christopher Katnik
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Javier Cuevas
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Byeong Jake Cha
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
17
|
Donnier-Maréchal M, Carato P, Larchanché PE, Ravez S, Boulahjar R, Barczyk A, Oxombre B, Vermersch P, Melnyk P. Synthesis and pharmacological evaluation of benzamide derivatives as potent and selective sigma-1 protein ligands. Eur J Med Chem 2017; 138:964-978. [PMID: 28756263 DOI: 10.1016/j.ejmech.2017.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/22/2017] [Accepted: 07/10/2017] [Indexed: 02/08/2023]
Abstract
A series of novel benzamide-derived compounds was designed, synthesized and pharmacologically evaluated. Among all 37 synthesized compounds, two series were developed with the modulation of the nature, the position of atoms or groups on the benzamide scaffold, but also the nature of the amine group separated from the benzamide with 2, 3 or 4 methylene groups. In vitro competition binding assays against sigma proteins (sigma-1 S1R and sigma-2 S2R) revealed that most of them conferred S2R/S1R selectivity toward without cytotoxic effects on SY5Y cells, especially with the first series with compounds 7a-z. Some selected compounds were also evaluated for their agonist and antagonist activities on a panel of 40 receptors. Results showed the importance of the nature and the position with halogeno atom on the benzamide scaffold, the length chain but also the contribution of the hydrophobic part on the amine group. Among them, compounds 7i, w, y with Cl, CN or NO2 groups at the 4-position of the benzamide scaffold showed excellent affinity for S1R (Ki = 1.2-3.6 nM), selectivity for S2R (Ki up to 1400 nM) and high selectivity index (IC50(SY5Y)/Ki(S1R) ratio from 28 000 to 83 000). Futhermore, these compounds presented an excellent safety profile over 40 other receptors. These derivatives will be selected for further biological investigations.
Collapse
Affiliation(s)
- Marion Donnier-Maréchal
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.
| | - Pascal Carato
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.
| | - Paul-Emmanuel Larchanché
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.
| | - Séverine Ravez
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.
| | - Rajaa Boulahjar
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.
| | - Amélie Barczyk
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France.
| | - Bénédicte Oxombre
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France.
| | - Patrick Vermersch
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France.
| | - Patricia Melnyk
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.
| |
Collapse
|
18
|
Nguyen L, Lucke-Wold BP, Mookerjee S, Kaushal N, Matsumoto RR. Sigma-1 Receptors and Neurodegenerative Diseases: Towards a Hypothesis of Sigma-1 Receptors as Amplifiers of Neurodegeneration and Neuroprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:133-152. [PMID: 28315269 PMCID: PMC5500918 DOI: 10.1007/978-3-319-50174-1_10] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sigma-1 receptors are molecular chaperones that may act as pathological mediators and targets for novel therapeutic applications in neurodegenerative diseases. Accumulating evidence indicates that sigma-1 ligands can either directly or indirectly modulate multiple neurodegenerative processes, including excitotoxicity, calcium dysregulation, mitochondrial and endoplasmic reticulum dysfunction, inflammation, and astrogliosis. In addition, sigma-1 ligands may act as disease-modifying agents in the treatment for central nervous system (CNS) diseases by promoting the activity of neurotrophic factors and neural plasticity. Here, we summarize their neuroprotective and neurorestorative effects in different animal models of acute brain injury and chronic neurodegenerative diseases, and highlight their potential role in mitigating disease. Notably, current data suggest that sigma-1 receptor dysfunction worsens disease progression, whereas enhancement amplifies pre-existing functional mechanisms of neuroprotection and/or restoration to slow disease progression. Collectively, the data support a model of the sigma-1 receptor as an amplifier of intracellular signaling, and suggest future clinical applications of sigma-1 ligands as part of multi-therapy approaches to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Linda Nguyen
- Department of Behavioral Medicine and Psychiatry, School of Medicine, West Virginia University, 930 Chestnut Ridge Road, Morgantown, WV, 26506, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, One Medical Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Brandon P Lucke-Wold
- Graduate Program in Neuroscience, School of Medicine, West Virginia University, One Medical Center Drive, Morgantown, WV, 26506, USA
| | - Shona Mookerjee
- College of Pharmacy, Touro University California, 1310 Club Drive, Vallejo, CA, 94592, USA
| | | | - Rae R Matsumoto
- Department of Behavioral Medicine and Psychiatry, School of Medicine, West Virginia University, 930 Chestnut Ridge Road, Morgantown, WV, 26506, USA.
- College of Pharmacy, Touro University California, 1310 Club Drive, Vallejo, CA, 94592, USA.
| |
Collapse
|
19
|
Krutetskaya ZI, Milenina LS, Naumova AA, Butov SN, Antonov VG, Nozdrachev AD. Sigma-1 receptor antagonist haloperidol attenuates Ca 2+ responses induced by glutoxim and molixan in macrophages. DOKL BIOCHEM BIOPHYS 2017; 472:74-76. [PMID: 28421439 DOI: 10.1134/s1607672917010227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Indexed: 11/23/2022]
Abstract
Using Fura-2AM microfluorimetry, we have shown for the first time that sigma-1 receptor antagonist, antipsychotic haloperidol, significantly inhibits glutoxim- and molixan-induced Ca2+-response in peritoneal macrophages. These results indicate possible involvement of sigma-1 receptors in the signal cascade induced by glutoxim or molixan and leading to intracellular Ca2+ concentration increase in macrophages.
Collapse
Affiliation(s)
- Z I Krutetskaya
- St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia.
| | - L S Milenina
- St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - A A Naumova
- St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - S N Butov
- St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - V G Antonov
- St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - A D Nozdrachev
- St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| |
Collapse
|
20
|
Choi SR, Roh DH, Yoon SY, Kwon SG, Choi HS, Han HJ, Beitz AJ, Lee JH. Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice. Neuropharmacology 2016; 111:34-46. [PMID: 27567941 DOI: 10.1016/j.neuropharm.2016.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 01/13/2023]
Abstract
We have previously shown using a spinal cord injury (SCI) model that gap junctions contribute to the early spread of astrocyte activation in the lumbar spinal cord and that this astrocyte communication plays critical role in the induction of central neuropathic pain. Sigma-1 receptors (Sig-1Rs) have been implicated in spinal astrocyte activation and the development of peripheral neuropathic pain, yet their contribution to central neuropathic pain remains unknown. Thus, we investigated whether SCI upregulates spinal Sig-1Rs, which in turn increase the expression of the astrocytic gap junction protein, connexin 43 (Cx43) leading to the induction of central neuropathic pain. A thoracic spinal cord hemisection significantly increased both astrocyte activation and Cx43 expression in lumbar dorsal horn. Sig-1Rs were also increased in lumbar dorsal horn astrocytes, but not neurons or microglia. Intrathecal injection of an astrocyte metabolic inhibitor (fluorocitrate); a gap junction/hemichannel blocker (carbenoxolone); or a Cx43 mimetic peptide (43Gap26) significantly reduced SCI-induced bilateral below-level mechanical allodynia. Blockade of Sig-1Rs with BD1047 during the induction phase of pain significantly suppressed the SCI-induced development of mechanical allodynia, astrocyte activation, increased expression of Cx43 in both total and membrane levels, and increased association of Cx43 with Sig-1R. However, SCI did not change the expression of oligodendrocyte (Cx32) or neuronal (Cx36) gap junction proteins. These findings demonstrate that SCI activates astrocyte Sig-1Rs leading to increases in the expression of the gap junction protein, Cx43 and astrocyte activation in the lumbar dorsal horn, and ultimately contribute to the induction of bilateral below-level mechanical allodynia.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyun Roh
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seo-Yeon Yoon
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Soon-Gu Kwon
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hoon-Seong Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Jae Han
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
21
|
Choi SR, Kwon SG, Choi HS, Han HJ, Beitz AJ, Lee JH. Neuronal NOS Activates Spinal NADPH Oxidase 2 Contributing to Central Sigma-1 Receptor-Induced Pain Hypersensitivity in Mice. Biol Pharm Bull 2016; 39:1922-1931. [PMID: 27601184 DOI: 10.1248/bpb.b16-00326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently demonstrated that activation of spinal sigma-1 receptors (Sig-1Rs) induces pain hypersensitivity via the activation of neuronal nitric oxide synthase (nNOS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2). However, the potential direct interaction between nNOS-derived nitric oxide (NO) and Nox2-derived reactive oxygen species (ROS) is poorly understood, particularly with respect to the potentiation of N-methyl-D-aspartate (NMDA) receptor activity in the spinal cord associated with the development of central sensitization. Thus, the main purpose of this study was to investigate whether Sig-1R-induced and nNOS-derived NO modulates spinal Nox2 activation leading to an increase in ROS production and ultimately to the potentiation of NMDA receptor activity and pain hypersensitivity. Intrathecal pretreatment with the nNOS inhibitor, 7-nitroindazole or with the Nox inhibitor, apocynin significantly inhibited the mechanical and thermal hypersensitivity induced by intrathecal administration of the Sig-1R agonist, 2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride (PRE084). Conversely, pretreatment with 5,10,15,20-tetrakis-(4-sulphonatophenyl)-porphyrinato iron(III) (FeTPPS; a scavenger of peroxynitrite, a toxic reaction product of NO and superoxide) had no effect on the PRE084-induced pain hypersensitivity. Pretreatment with 7-nitroindazole significantly reduced the PRE084-induced increase in Nox2 activity and concomitant ROS production in the lumbar spinal cord dorsal horn, whereas apocynin did not alter the PRE084-induced changes in nNOS phosphorylation. On the other hand pretreatment with apocynin suppressed the PRE084-induced increase in the protein kinase C (PKC)-dependent phosphorylation of NMDA receptor GluN1 subunit (pGluN1) at Ser896 site in the dorsal horn. These findings demonstrate that spinal Sig-1R-induced pain hypersensitivity is mediated by nNOS activation, which leads to an increase in Nox2 activity ultimately resulting in a ROS-induced increase in PKC-dependent pGluN1 expression.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University
| | | | | | | | | | | |
Collapse
|
22
|
Zhang PP, Zhang G, Zhou W, Weng SJ, Yang XL, Zhong YM. Signaling mechanism for modulation by ATP of glycine receptors on rat retinal ganglion cells. Sci Rep 2016; 6:28938. [PMID: 27357477 PMCID: PMC4928062 DOI: 10.1038/srep28938] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022] Open
Abstract
ATP modulates voltage- and ligand-gated channels in the CNS via the activation of ionotropic P2X and metabotropic P2Y receptors. While P2Y receptors are expressed in retinal neurons, the function of these receptors in the retina is largely unknown. Using whole-cell patch-clamp techniques in rat retinal slice preparations, we demonstrated that ATP suppressed glycine receptor-mediated currents of OFF type ganglion cells (OFF-GCs) dose-dependently, and the effect was in part mediated by P2Y1 and P2Y11, but not by P2X. The ATP effect was abolished by intracellular dialysis of a Gq/11 protein inhibitor and phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor, but not phosphatidylcholine (PC)-PLC inhibitor. The ATP effect was accompanied by an increase in [Ca(2+)]i through the IP3-sensitive pathway and was blocked by intracellular Ca(2+)-free solution. Furthermore, the ATP effect was eliminated in the presence of PKC inhibitors. Neither PKA nor PKG system was involved. These results suggest that the ATP-induced suppression may be mediated by a distinct Gq/11/PI-PLC/IP3/Ca(2+)/PKC signaling pathway, following the activation of P2Y1,11 and other P2Y subtypes. Consistently, ATP suppressed glycine receptor-mediated light-evoked inhibitory postsynaptic currents of OFF-GCs. These results suggest that ATP may modify the ON-to-OFF crossover inhibition, thus changing action potential patterns of OFF-GCs.
Collapse
Affiliation(s)
- Ping-Ping Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Gong Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Wei Zhou
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Shi-Jun Weng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiong-Li Yang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yong-Mei Zhong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
23
|
Srivats S, Balasuriya D, Pasche M, Vistal G, Edwardson JM, Taylor CW, Murrell-Lagnado RD. Sigma1 receptors inhibit store-operated Ca2+ entry by attenuating coupling of STIM1 to Orai1. J Cell Biol 2016; 213:65-79. [PMID: 27069021 PMCID: PMC4828687 DOI: 10.1083/jcb.201506022] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 02/24/2016] [Indexed: 11/24/2022] Open
Abstract
Sigma1 receptors (σ1Rs) are expressed widely; they bind diverse ligands, including psychotropic drugs and steroids, regulate many ion channels, and are implicated in cancer and addiction. It is not known how σ1Rs exert such varied effects. We demonstrate that σ1Rs inhibit store-operated Ca(2+)entry (SOCE), a major Ca(2+)influx pathway, and reduce the Ca(2+)content of the intracellular stores. SOCE was inhibited by expression of σ1R or an agonist of σ1R and enhanced by loss of σ1R or an antagonist. Within the endoplasmic reticulum (ER), σ1R associated with STIM1, the ER Ca(2+)sensor that regulates SOCE. This interaction was modulated by σ1R ligands. After depletion of Ca(2+)stores, σ1R accompanied STIM1 to ER-plasma membrane (PM) junctions where STIM1 stimulated opening of the Ca(2+)channel, Orai1. The association of STIM1 with σ1R slowed the recruitment of STIM1 to ER-PM junctions and reduced binding of STIM1 to PM Orai1. We conclude that σ1R attenuates STIM1 coupling to Orai1 and thereby inhibits SOCE.
Collapse
Affiliation(s)
- Shyam Srivats
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, England, UK
| | - Dilshan Balasuriya
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, England, UK
| | - Mathias Pasche
- MRC Laboratory for Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Gerard Vistal
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, England, UK
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, England, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, England, UK
| | - Ruth D Murrell-Lagnado
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, England, UK Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, England, UK
| |
Collapse
|
24
|
Kwon SG, Roh DH, Yoon SY, Choi SR, Choi HS, Moon JY, Kang SY, Kim HW, Han HJ, Beitz AJ, Oh SB, Lee JH. Role of peripheral sigma-1 receptors in ischaemic pain: Potential interactions with ASIC and P2X receptors. Eur J Pain 2016; 20:594-606. [PMID: 26358747 DOI: 10.1002/ejp.774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND The role of peripheral sigma-1 receptors (Sig-1Rs) in normal nociception and in pathologically induced pain conditions has not been thoroughly investigated. Since there is mounting evidence that Sig-1Rs modulate ischaemia-induced pathological conditions, we investigated the role of Sig-1Rs in ischaemia-induced mechanical allodynia (MA) and addressed their possible interaction with acid-sensing ion channels (ASICs) and P2X receptors at the ischaemic site. METHODS We used a rodent model of hindlimb thrombus-induced ischaemic pain (TIIP) to investigate their role. Western blot was performed to observe changes in Sig-1R expression in peripheral nervous tissues. MA was measured after intraplantar (i.pl.) injections of antagonists for the Sig-1, ASIC and P2X receptors in TIIP rats or agonists of each receptor in naïve rats. RESULTS Sig-1R expression significantly increased in skin, sciatic nerve and dorsal root ganglia at 3 days post-TIIP surgery. I.pl. injections of the Sig-1R antagonist, BD-1047 on post-operative days 0-3 significantly attenuated the development of MA during the induction phase, but had no effect on MA when given during the maintenance phase (days 3-6 post-surgery). BD-1047 synergistically increased amiloride (an ASICs blocker)- and TNP-ATP (a P2X antagonist)-induced analgesic effects in TIIP rats. In naïve rats, i.pl. injection of Sig-1R agonist PRE-084 alone did not produce MA; but it did induce MA when co-administered with either an acidic pH solution or a sub-effective dose of αβmeATP. CONCLUSION Peripheral Sig-1Rs contribute to the induction of ischaemia-induced MA via facilitation of ASICs and P2X receptors. Thus, peripheral Sig-1Rs represent a novel therapeutic target for the treatment of ischaemic pain.
Collapse
Affiliation(s)
- S G Kwon
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - D H Roh
- Department of Maxillofacial Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - S Y Yoon
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences College of Natural Sciences, Seoul National University, Korea
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Korea
| | - S R Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - H S Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - J Y Moon
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - S Y Kang
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - H W Kim
- Department of Physiology, Institute of Brain Research, Chungnam National University Medical School, Daejeon, Korea
| | - H J Han
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - A J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, USA
| | - S B Oh
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences College of Natural Sciences, Seoul National University, Korea
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Korea
| | - J H Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| |
Collapse
|
25
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
26
|
Natsvlishvili N, Goguadze N, Zhuravliova E, Mikeladze D. Sigma-1 receptor directly interacts with Rac1-GTPase in the brain mitochondria. BMC BIOCHEMISTRY 2015; 16:11. [PMID: 25924612 PMCID: PMC4430930 DOI: 10.1186/s12858-015-0040-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/22/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Small Rho-GTPases are critical mediators of neuronal plasticity and are involved in the pathogenesis of several psychiatric and neurological disorders. Rac-GTPase forms a multiprotein complex with upstream and downstream regulators that are essential for the spatiotemporal transmission of Rac signaling. The sigma-1 receptor (Sig1R) is a ligand-regulated membrane protein chaperone, and multiprotein complex assembly is essential to sigma-receptor function. RESULTS Using immunoprecipitation techniques, we have shown that in mitochondrial membranes Sig1R could directly interact with Rac1. Besides Rac1, the Sig1R forms complexes with inositol 1,4,5-trisphosphate receptor and Bcl2, suggesting that mitochondrial associated membranes (MAM) are involved in this macromolecular complex formation. Assembly of this complex is ligand-specific and depends on the presence of sigma agonist/antagonist, as well as on the presence of GTP/GDP. Treatment of mitochondrial membranes with (+)-pentazocine leads to the (+)-pentazocine-sensitive phosphorylation of Bad and the pentazocine-sensitive NADPH-dependent production of ROS. CONCLUSION We suggest that Sig1R through Rac1 signaling induces mild oxidative stress that possibly is involved in the regulation of neuroplasticity, as well as in the prevention of apoptosis and autophagy.
Collapse
Affiliation(s)
- Nino Natsvlishvili
- Institute of Chemical Biology, Ilia State University, 3/5 Cholokashvili av, Tbilisi, 0162, Georgia.
- Department of Biochemistry, I.Beritashvili Center of Experimental Biomedicine, 14 Gotua st, Tbilisi, 0160, Georgia.
| | - Nino Goguadze
- Institute of Chemical Biology, Ilia State University, 3/5 Cholokashvili av, Tbilisi, 0162, Georgia.
| | - Elene Zhuravliova
- Institute of Chemical Biology, Ilia State University, 3/5 Cholokashvili av, Tbilisi, 0162, Georgia.
- Department of Biochemistry, I.Beritashvili Center of Experimental Biomedicine, 14 Gotua st, Tbilisi, 0160, Georgia.
| | - David Mikeladze
- Institute of Chemical Biology, Ilia State University, 3/5 Cholokashvili av, Tbilisi, 0162, Georgia.
- Department of Biochemistry, I.Beritashvili Center of Experimental Biomedicine, 14 Gotua st, Tbilisi, 0160, Georgia.
| |
Collapse
|
27
|
Shimazawa M, Sugitani S, Inoue Y, Tsuruma K, Hara H. Effect of a sigma-1 receptor agonist, cutamesine dihydrochloride (SA4503), on photoreceptor cell death against light-induced damage. Exp Eye Res 2015; 132:64-72. [PMID: 25616094 DOI: 10.1016/j.exer.2015.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
Abstract
Cutamesine dihydrochloride is an agonist of sigma-1 receptor, which is a ligand-operated receptor chaperone at the mitochondrion-associated endoplasmic reticulum (ER) membrane. ER stress plays a pivotal role in light irradiation-induced retinal damage. In the present study, we examined whether cutamesine is effective against experimental degenerative retinal damages in vitro and in vivo. The effects of cutamesine against white light-induced retinal photoreceptor damage were evaluated in vitro by measuring cell death. The expression of sigma-1 receptor after the light exposure was examined by immunoblot analysis. The disruption of the mitochondrial membrane potential and caspase-3/7 activation after excessive light exposure were also examined. In addition, retinal damage in mice induced by irradiation to white light was evaluated using histological staining and electroretinography. Cutamesine reduced the cell death rate induced by light exposure, and the protective effect was prevented by N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine (BD-1047) dihydrobromide, a sigma-1 receptor antagonist. Sigma-1 receptor expression was decreased by light exposure, and cutamesine suppressed the decreased expression of sigma-1 receptor protein. Cutamesine also reduced the mitochondrial damage and reduced the elevated level of caspase 3/7 activity; this effect was attenuated by BD-1047. In in vivo studies, cutamesine suppressed the light-induced retinal dysfunction and thinning of the outer nuclear layer in the mouse retina. These findings indicate that cutamesine protects against retinal cell death in vitro and in vivo by the agonistic effect of sigma-1 receptor. Therefore, sigma-1 receptor may have a potential as a therapeutic target in retinal diseases mediated by photoreceptor degeneration.
Collapse
Affiliation(s)
- Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Sou Sugitani
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yuki Inoue
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
28
|
Zheng C, Deng QQ, Liu LL, Wang MY, Zhang G, Sheng WL, Weng SJ, Yang XL, Zhong YM. Orexin-A differentially modulates AMPA-preferring responses of ganglion cells and amacrine cells in rat retina. Neuropharmacology 2015; 93:80-93. [PMID: 25656479 DOI: 10.1016/j.neuropharm.2015.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/22/2014] [Accepted: 01/20/2015] [Indexed: 01/18/2023]
Abstract
By activating their receptors (OX1R and OX2R) orexin-A/B regulate wake/sleeping states, feeding behaviors, but the function of these peptides in the retina remains unknown. Using patch-clamp recordings and calcium imaging in rat isolated retinal cells, we demonstrated that orexin-A suppressed α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)-preferring receptor-mediated currents (AMPA-preferring currents) in ganglion cells (GCs) through OX1R, but potentiated those in amacrine cells (ACs) through OX2R. Consistently, in rat retinal slices orexin-A suppressed light-evoked AMPA-preferring receptor-mediated excitatory postsynaptic currents in GCs, but potentiated those in ACs. Intracellular dialysis of GDP-β-S or preincubation with the Gi/o inhibitor pertussis toxin (PTX) abolished both the effects. Either cAMP/the protein kinase A (PKA) inhibitor Rp-cAMP or cGMP/the PKG blocker KT5823 failed to alter the orexin-A effects. Whilst both of them involved activation of protein kinase C (PKC), the effects on GCs and ACs were respectively eliminated by the phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor and phosphatidylcholine (PC)-PLC inhibitor. Moreover, in GCs orexin-A increased [Ca(2+)]i and the orexin-A effect was blocked by intracellular Ca(2+)-free solution and by inositol 1,4,5-trisphosphate (IP3) receptor antagonists. In contrast, orexin-A did not change [Ca(2+)]i in ACs and the orexin-A effect remained in intracellular or extracellular Ca(2+)-free solution. We conclude that a distinct Gi/o/PI-PLC/IP3/Ca(2+)-dependent PKC signaling pathway, following the activation of OX1R, is likely responsible for the orexin-A effect on GCs, whereas a Gi/o/PC-PLC/Ca(2+)-independent PKC signaling pathway, following the activation of OX2R, mediates the orexin-A effect on ACs. These two actions of orexin-A, while working in concert, provide a characteristic way for modulating information processing in the inner retina.
Collapse
Affiliation(s)
- Chao Zheng
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China; Cell Electrophysiology Laboratory, Wannan Medical College, 22 West Wenchang Road, Wuhu, Anhui 241002, China
| | - Qin-Qin Deng
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Lei-Lei Liu
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Meng-Ya Wang
- Cell Electrophysiology Laboratory, Wannan Medical College, 22 West Wenchang Road, Wuhu, Anhui 241002, China
| | - Gong Zhang
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Wen-Long Sheng
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Shi-Jun Weng
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiong-Li Yang
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| | - Yong-Mei Zhong
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
29
|
Moon JY, Roh DH, Yoon SY, Choi SR, Kwon SG, Choi HS, Kang SY, Han HJ, Beitz AJ, Oh SB, Lee JH. σ1 receptors activate astrocytes via p38 MAPK phosphorylation leading to the development of mechanical allodynia in a mouse model of neuropathic pain. Br J Pharmacol 2014; 171:5881-97. [PMID: 25158784 PMCID: PMC4290724 DOI: 10.1111/bph.12893] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/12/2014] [Accepted: 08/21/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Spinal astrocytes have emerged as important mechanistic contributors to the genesis of mechanical allodynia (MA) in neuropathic pain. We recently demonstrated that the spinal sigma non-opioid intracellular receptor 1 (σ1 receptor) modulates p38 MAPK phosphorylation (p-p38), which plays a critical role in the induction of MA in neuropathic rats. However, the histological and physiological relationships among σ1, p-p38 and astrocyte activation is unclear. EXPERIMENTAL APPROACH We investigated: (i) the precise location of σ1 receptors and p-p38 in spinal dorsal horn; (ii) whether the inhibition of σ1 receptors or p38 modulates chronic constriction injury (CCI)-induced astrocyte activation; and (iii) whether this modulation of astrocyte activity is associated with MA development in CCI mice. KEY RESULTS The expression of σ1 receptors was significantly increased in astrocytes on day 3 following CCI surgery. Sustained intrathecal treatment with the σ1 antagonist, BD-1047, attenuated CCI-induced increase in GFAP-immunoreactive astrocytes, and the treatment combined with fluorocitrate, an astrocyte metabolic inhibitor, synergistically reduced the development of MA, but not thermal hyperalgesia. The number of p-p38-ir astrocytes and neurons, but not microglia was significantly increased. Interestingly, intrathecal BD-1047 attenuated the expression of p-p38 selectively in astrocytes but not in neurons. Moreover, intrathecal treatment with a p38 inhibitor attenuated the GFAP expression, and this treatment combined with fluorocitrate synergistically blocked the induction of MA. CONCLUSIONS AND IMPLICATIONS Spinal σ1 receptors are localized in astrocytes and blockade of σ1 receptors inhibits the pathological activation of astrocytes via modulation of p-p38, which ultimately prevents the development of MA in neuropathic mice.
Collapse
Affiliation(s)
- J Y Moon
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoul, Korea
| | - D H Roh
- Department of Maxillofacial Tissue Regeneration, Kyung Hee University School of DentistrySeoul, Korea
| | - S Y Yoon
- Laboratory of Molecular Signal Transduction, Center for Neural Science, Korea Institute of Science and Technology (KIST)Seoul, Korea
| | - S R Choi
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoul, Korea
| | - S G Kwon
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoul, Korea
| | - H S Choi
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoul, Korea
| | - S Y Kang
- Acupuncture, Moxibustion and Meridian Research Group, Medical Research Division, Korea Institute of Oriental MedicineDaejeon, Korea
| | - H J Han
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoul, Korea
| | - A J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of MinnesotaSt Paul, MN, USA
| | - S B Oh
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences College of Natural Sciences, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National UniversitySeoul, Korea
| | - J H Lee
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoul, Korea
| |
Collapse
|
30
|
Balasuriya D, D'Sa L, Talker R, Dupuis E, Maurin F, Martin P, Borgese F, Soriani O, Edwardson JM. A direct interaction between the sigma-1 receptor and the hERG voltage-gated K+ channel revealed by atomic force microscopy and homogeneous time-resolved fluorescence (HTRF®). J Biol Chem 2014; 289:32353-32363. [PMID: 25266722 PMCID: PMC4231707 DOI: 10.1074/jbc.m114.603506] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/17/2014] [Indexed: 01/29/2023] Open
Abstract
The sigma-1 receptor is an endoplasmic reticulum chaperone protein, widely expressed in central and peripheral tissues, which can translocate to the plasma membrane and modulate the function of various ion channels. The human ether-à-go-go-related gene encodes hERG, a cardiac voltage-gated K(+) channel that is abnormally expressed in many human cancers and is known to interact functionally with the sigma-1 receptor. Our aim was to investigate the nature of the interaction between the sigma-1 receptor and hERG. We show that the two proteins can be co-isolated from a detergent extract of stably transfected HEK-293 cells, consistent with a direct interaction between them. Atomic force microscopy imaging of the isolated protein confirmed the direct binding of the sigma-1 receptor to hERG monomers, dimers, and tetramers. hERG dimers and tetramers became both singly and doubly decorated by sigma-1 receptors; however, hERG monomers were only singly decorated. The distribution of angles between pairs of sigma-1 receptors bound to hERG tetramers had two peaks, at ∼90 and ∼180° in a ratio of ∼2:1, indicating that the sigma-1 receptor interacts with hERG with 4-fold symmetry. Homogeneous time-resolved fluorescence (HTRF®) allowed the detection of the interaction between the sigma-1 receptor and hERG within the plane of the plasma membrane. This interaction was resistant to sigma ligands, but was decreased in response to cholesterol depletion of the membrane. We suggest that the sigma-1 receptor may bind to hERG in the endoplasmic reticulum, aiding its assembly and trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Dilshan Balasuriya
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Lauren D'Sa
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Ronel Talker
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Elodie Dupuis
- CisBio Bioassays, Parc Marcel Boiteux BP 84175, 30200 Codolet, France, and
| | - Fabrice Maurin
- CisBio Bioassays, Parc Marcel Boiteux BP 84175, 30200 Codolet, France, and
| | - Patrick Martin
- Institut de Biologie de Valrose (iBV), CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Franck Borgese
- Institut de Biologie de Valrose (iBV), CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Olivier Soriani
- Institut de Biologie de Valrose (iBV), CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France.
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom,.
| |
Collapse
|
31
|
Nguyen L, Kaushal N, Robson MJ, Matsumoto RR. Sigma receptors as potential therapeutic targets for neuroprotection. Eur J Pharmacol 2014; 743:42-7. [PMID: 25261035 DOI: 10.1016/j.ejphar.2014.09.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 01/02/2023]
Abstract
Sigma receptors comprise a unique family of proteins that have been implicated in the pathophysiology and treatment of many central nervous system disorders, consistent with their high level of expression in the brain and spinal cord. Mounting evidence indicate that targeting sigma receptors may be particularly beneficial in a number of neurodegenerative conditions including Alzheimer׳s disease, Parkinson׳s disease, stroke, methamphetamine neurotoxicity, Huntington׳s disease, amyotrophic lateral sclerosis, and retinal degeneration. In this perspective, a brief overview is given on sigma receptors, followed by a focus on common mechanisms of neurodegeneration that appear amenable to modulation by sigma receptor ligands to convey neuroprotective effects and/or restorative functions. Within each of the major mechanisms discussed herein, the neuroprotective effects of sigma ligands are summarized, and when known, the specific sigma receptor subtype(s) involved are identified. Together, the literature suggests sigma receptors may provide a novel target for combatting neurodegenerative diseases through both neuronal and glial mechanisms.
Collapse
Affiliation(s)
- Linda Nguyen
- Graduate Program in Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Nidhi Kaushal
- Graduate Program in Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Matthew J Robson
- Graduate Program in Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Rae R Matsumoto
- Graduate Program in Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
32
|
Peviani M, Salvaneschi E, Bontempi L, Petese A, Manzo A, Rossi D, Salmona M, Collina S, Bigini P, Curti D. Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiol Dis 2014; 62:218-32. [PMID: 24141020 DOI: 10.1016/j.nbd.2013.10.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/12/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
The identification of novel molecular targets crucially involved in motor neuron degeneration/survival is a necessary step for the development of hopefully more effective therapeutic strategies for amyotrophic lateral sclerosis (ALS) patients. In this view, S1R, an endoplasmic reticulum (ER)-resident receptor with chaperone-like activity, has recently attracted great interest. S1R is involved in several processes leading to acute and chronic neurodegeneration, including ALS pathology. Treatment with the S1R agonist PRE-084 improves locomotor function and motor neuron survival in presymptomatic and early symptomatic mutant SOD1-G93A ALS mice. Here, we tested the efficacy of PRE-084 in a model of spontaneous motor neuron degeneration, the wobbler mouse (wr) as a proof of concept that S1R may be regarded as a key therapeutic target also for ALS cases not linked to SOD1 mutation. Increased staining for S1R was detectable in morphologically spared cervical spinal cord motor neurons of wr mice both at early (6th week) and late (12th week) phases of clinical progression. S1R signal was also detectable in hypertrophic astrocytes and reactive microglia of wr mice. Chronic treatment with PRE-084 (three times a week, for 8weeks), starting at symptom onset, significantly increased the levels of BDNF in the gray matter, improved motor neuron survival and ameliorated paw abnormality and grip strength performance. In addition, the treatment significantly reduced the number of reactive astrocytes whereas, that of CD11b+ microglial cells was increased. A deeper evaluation of microglial markers revealed significant increased number of cells positive for the pan-macrophage marker CD68 and of CD206+ cells, involved in tissue restoration, in the white matter of PRE-084-treated mice. The mRNA levels of TNF-α and IL-1β were not affected by PRE-084 treatment. Thus, our results support pharmacological manipulation of S1R as a promising strategy to cure ALS and point to increased availability of growth factors and modulation of astrocytosis and of macrophage/microglia as part of the mechanisms involved in S1R-mediated neuroprotection.
Collapse
Affiliation(s)
- Marco Peviani
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Eleonora Salvaneschi
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Leonardo Bontempi
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Alessandro Petese
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Antonio Manzo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Division of Rheumatology, IRCCS Policlinico S. Matteo Foundation/University of Pavia, Italy
| | - Daniela Rossi
- Department of Drug Science, Laboratory of Medicinal Chemistry, University of Pavia, Pavia, Italy
| | - Mario Salmona
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Simona Collina
- Department of Drug Science, Laboratory of Medicinal Chemistry, University of Pavia, Pavia, Italy
| | - Paolo Bigini
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Daniela Curti
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
33
|
Bobrov AE, Krasnoslobodtseva LA, Mutnykh EM, Kursakov AA. [Cognitive impairment in depression and potential applications of antidepressants with procognitive effects]. Zh Nevrol Psikhiatr Im S S Korsakova 2014; 114:10-14. [PMID: 25591648 DOI: 10.17116/jnevro201411411210-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The characteristics of cognitive impairment in depression are reviewed. Data of literature indicate that cognitive impairment may serve as a predictor of depression recurrence and poor prognosis of antidepressant therapy. In this view, we consider the importance of assessment of cognitive impairment and differential use of medications with precognitive effect (bupropion, vorteoxetine and some SSRI antidepressants as well as fluvoxamine, which is a potent agonist of the sigma-1-receptor).
Collapse
Affiliation(s)
- A E Bobrov
- Moskovskiĭ NII psikhiatrii Minzdrava Rossii, Moskva
| | - L A Krasnoslobodtseva
- Fakul'tet usovershenstvovaniia vracheĭ Rossiĭskogo natsional'nogo issledovatel'skogo meditsinskogo universiteta im. N.I. Pirogova, Moskva
| | - E M Mutnykh
- Fakul'tet usovershenstvovaniia vracheĭ Rossiĭskogo natsional'nogo issledovatel'skogo meditsinskogo universiteta im. N.I. Pirogova, Moskva
| | - A A Kursakov
- Moskovskiĭ NII psikhiatrii Minzdrava Rossii, Moskva
| |
Collapse
|
34
|
Roh DH, Yoon SY. Sigma-1 receptor antagonist, BD1047 reduces nociceptive responses and phosphorylation of p38 MAPK in mice orofacial formalin model. Biol Pharm Bull 2013; 37:145-51. [PMID: 24152609 DOI: 10.1248/bpb.b13-00690] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Sigma-1 receptors (Sig-1Rs) play a role in different types of pain and in central sensitization mechanism in spinal cord. However, it is currently unexplored whether Sig-1Rs are involved in orofacial pain processing. Here we show whether a selective Sig-1R antagonist, BD1047 reduces nociceptive responses in the mouse orofacial formalin model and the number of Fos-immunoreactive (ir) cells in the trigeminal nucleus caudalis (TNC). In addition, it was examined whether the phosphorylation of extracellular signal-regulated kinase (pERK) or p38 (pp38) mitogen-activated protein kinases (MAPK), which are closely linked to pain signaling and sensitization, in TNC was modified by BD1047. The 5% formalin (10 µL) was subcutaneously injected into the right upper lip, and the rubbing responses with ipsilateral fore- or hind paw were counted for 45 min. BD1047 (1, 3 or 10 mg/kg) were intraperitoneally treated 30 min before formalin injection. High dose of BD1047 (10 mg/kg) produced significant anti-nociceptive effects in the first and the second phase. The number of Fos-ir cells in ipsilateral side of TNC was also reduced by BD1047 as compared to that in saline-treated animals. In addition, the number of pp38-ir cells in ipsilateral TNC was decreased in BD1047-treated animals, whereas the number of pERK-ir cells was not modified. Collectively, these results demonstrate that Sig-1Rs play a pivotal role in the orofacial pain processing, and the pp38 signaling pathway can be associated with Sig-1R's action in TNC.
Collapse
Affiliation(s)
- Dae-Hyun Roh
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University
| | | |
Collapse
|
35
|
Choi SR, Roh DH, Yoon SY, Kang SY, Moon JY, Kwon SG, Choi HS, Han HJ, Beitz AJ, Oh SB, Lee JH. Spinal sigma-1 receptors activate NADPH oxidase 2 leading to the induction of pain hypersensitivity in mice and mechanical allodynia in neuropathic rats. Pharmacol Res 2013; 74:56-67. [PMID: 23732704 DOI: 10.1016/j.phrs.2013.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/18/2013] [Accepted: 05/26/2013] [Indexed: 01/27/2023]
Abstract
We have recently demonstrated that spinal sigma-1 receptors (Sig-1Rs) mediate pain hypersensitivity in mice and neuropathic pain in rats. In this study, we examine the role of NADPH oxidase 2 (Nox2)-induced reactive oxygen species (ROS) on Sig-1R-induced pain hypersensitivity and the induction of chronic neuropathic pain. Neuropathic pain was produced by chronic constriction injury (CCI) of the right sciatic nerve in rats. Mechanical allodynia and thermal hyperalgesia were evaluated in mice and CCI-rats. Western blotting and dihydroethidium (DHE) staining were performed to assess the changes in Nox2 activation and ROS production in spinal cord, respectively. Direct activation of spinal Sig-1Rs with the Sig-1R agonist, PRE084 induced mechanical allodynia and thermal hyperalgesia, which were dose-dependently attenuated by pretreatment with the ROS scavenger, NAC or the Nox inhibitor, apocynin. PRE084 also induced an increase in Nox2 activation and ROS production, which were attenuated by pretreatment with the Sig-1R antagonist, BD1047 or apocynin. CCI-induced nerve injury produced an increase in Nox2 activation and ROS production in the spinal cord, all of which were attenuated by intrathecal administration with BD1047 during the induction phase of neuropathic pain. Furthermore, administration with BD1047 or apocynin reversed CCI-induced mechanical allodynia during the induction phase, but not the maintenance phase. These findings demonstrate that spinal Sig-1Rs modulate Nox2 activation and ROS production in the spinal cord, and ultimately contribute to the Sig-1R-induced pain hypersensitivity and the peripheral nerve injury-induced induction of chronic neuropathic pain.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Strain differences in profiles of dopaminergic neurotransmission in the prefrontal cortex of the BALB/C vs. C57Bl/6 mice: consequences of stress and afobazole. Eur J Pharmacol 2013; 708:95-104. [PMID: 23524098 DOI: 10.1016/j.ejphar.2013.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 11/24/2022]
Abstract
We found that in mice the basal activity of monoamine oxidase B (MAO-B) in the medial prefrontal cortex (mPFC) is lower in BALB/C than in C57Bl/6J mice, whereas activity of MAO-A is similar between strains. BALB/C mice, in comparison to C57Bl/6N mice, have higher basal content of dopamine in the mPFC, in both microdialysates and tissue content. Novelty stress (open field test) elicits a further increase in the microdialysate levels of dopamine in BALB/C, but not in C57Bl/6N mice; a subsequent accumulation of extracellular 3,4-dioxyphenylacetic acid (DOPAC) reaffirms the difference in catabolic capacity of monoaminergic systems between the strains. We demonstrated that in stress-susceptible BALB/C mice the novel anxiolytic afobazole, 5mg/kg, selectively mitigates trait anxiety; however it does not change the behavioral response in stress-resilient C57Bl/6N mice. Afobazole inhibits MAO-A in in vitro; it also lowers the microdialysate DOPAC levels in both strains (which testifies to its MAO-A inhibiting activity in vivo) and slightly suppresses dopamine release when elevated. Therefore, it is likely that the drug may mediate its anxiolytic activity via modulation of volume dopaminergic transmission at level of the mPFC.
Collapse
|
37
|
Geldenhuys WJ, Novotny N, Malan SF, Van der Schyf CJ. 3D-QSAR and docking studies of pentacycloundecylamines at the sigma-1 (σ1) receptor. Bioorg Med Chem Lett 2013; 23:1707-11. [PMID: 23414839 DOI: 10.1016/j.bmcl.2013.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/09/2013] [Accepted: 01/16/2013] [Indexed: 11/26/2022]
Abstract
Pentacycloundecylamine (PCU) derived compounds have been shown to be promising lead structures for the development of novel drug candidates aimed at a variety of neurodegenerative and psychiatric diseases. Here we show for the first time a 3D quantitative structure-activity relationship (3D-QSAR) for a series of aza-PCU-derived compounds with activity at the sigma-1 (σ1) receptor. A comparative molecular field analysis (CoMFA) model was developed with a partial least squares cross validated (q(2)) regression value of 0.6, and a non-cross validated r(2) of 0.9. The CoMFA model was effective at predicting the sigma-1 activities of a test set with an r(2) >0.7. We also describe here the docking of the PCU-derived compounds into a homology model of the sigma-1 (σ1) receptor, which was developed to gain insight into binding of these cage compounds to the receptor. Based on docking studies we evaluated in a [(3)H]pentazocine binding assay an oxa-PCU, NGP1-01 (IC50=1.78μM) and its phenethyl derivative (IC50=1.54μM). Results from these studies can be used to develop new compounds with specific affinity for the sigma-1(σ1) receptor.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA.
| | | | | | | |
Collapse
|
38
|
Amer MS, McKeown L, Tumova S, Liu R, Seymour VAL, Wilson LA, Naylor J, Greenhalgh K, Hou B, Majeed Y, Turner P, Sedo A, O'Regan DJ, Li J, Bon RS, Porter KE, Beech DJ. Inhibition of endothelial cell Ca²⁺ entry and transient receptor potential channels by Sigma-1 receptor ligands. Br J Pharmacol 2013; 168:1445-55. [PMID: 23121507 PMCID: PMC3596649 DOI: 10.1111/bph.12041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/10/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The Sigma-1 receptor (Sig1R) impacts on calcium ion signalling and has a plethora of ligands. This study investigated Sig1R and its ligands in relation to endogenous calcium events of endothelial cells and transient receptor potential (TRP) channels. EXPERIMENTAL APPROACH Intracellular calcium and patch clamp measurements were made from human saphenous vein endothelial cells and HEK 293 cells expressing exogenous human TRPC5, TRPM2 or TRPM3. Sig1R ligands were applied and short interfering RNA was used to deplete Sig1R. TRP channels tagged with fluorescent proteins were used for subcellular localization studies. KEY RESULTS In endothelial cells, 10-100 μM of the Sig1R antagonist BD1063 inhibited sustained but not transient calcium responses evoked by histamine. The Sig1R agonist 4-IBP and related antagonist BD1047 were also inhibitory. The Sig1R agonist SKF10047 had no effect. Sustained calcium entry evoked by VEGF or hydrogen peroxide was also inhibited by BD1063, BD1047 or 4-IBP, but not SKF10047. 4-IBP, BD1047 and BD1063 inhibited TRPC5 or TRPM3, but not TRPM2. Inhibitory effects of BD1047 were rapid in onset and readily reversed on washout. SKF10047 inhibited TRPC5 but not TRPM3 or TRPM2. Depletion of Sig1R did not prevent the inhibitory actions of BD1063 or BD1047 and Sig1R did not co-localize with TRPC5 or TRPM3. CONCLUSIONS AND IMPLICATIONS The data suggest that two types of Sig1R ligand (BD1047/BD1063 and 4-IBP) are inhibitors of receptor- or chemically activated calcium entry channels, acting relatively directly and independently of the Sig1R. Chemical foundations for TRP channel inhibitors are suggested.
Collapse
Affiliation(s)
- Mohamed S Amer
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
- Clinical Physiology Department, Faculty of Medicine, Menoufiya UniversityMenoufiya, Egypt
| | - Lynn McKeown
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Sarka Tumova
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Ruifeng Liu
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Victoria AL Seymour
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Lesley A Wilson
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Jacqueline Naylor
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Katriona Greenhalgh
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Bing Hou
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Yasser Majeed
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Paul Turner
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Alicia Sedo
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - David J O'Regan
- Department of Cardiac Surgery, Leeds General InfirmaryLeeds, UK
| | - Jing Li
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Robin S Bon
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- School of Chemistry, University of LeedsLeeds, UK
| | - Karen E Porter
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - David J Beech
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| |
Collapse
|
39
|
Zhang CL, Feng ZJ, Liu Y, Ji XH, Peng JY, Zhang XH, Zhen XC, Li BM. Methylphenidate enhances NMDA-receptor response in medial prefrontal cortex via sigma-1 receptor: a novel mechanism for methylphenidate action. PLoS One 2012; 7:e51910. [PMID: 23284812 PMCID: PMC3527396 DOI: 10.1371/journal.pone.0051910] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/07/2012] [Indexed: 01/09/2023] Open
Abstract
Methylphenidate (MPH), commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD). Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC). To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca(2+) increase, but does not require PKA and extracellular Ca(2+) influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects.
Collapse
Affiliation(s)
- Chun-Lei Zhang
- Institute of Neurobiology and State Key laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ze-Jun Feng
- Institute of Neurobiology and State Key laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yue Liu
- Institute of Neurobiology and State Key laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiao-Hua Ji
- Institute of Neurobiology and State Key laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ji-Yun Peng
- Institute of Neurobiology and State Key laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xue-Han Zhang
- Institute of Neurobiology and State Key laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xue-Chu Zhen
- Neuropharmacological Laboratory, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bao-Ming Li
- Institute of Neurobiology and State Key laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
40
|
Ono Y, Shimazawa M, Ishisaka M, Oyagi A, Tsuruma K, Hara H. Imipramine protects mouse hippocampus against tunicamycin-induced cell death. Eur J Pharmacol 2012; 696:83-8. [PMID: 23041155 DOI: 10.1016/j.ejphar.2012.09.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/11/2012] [Accepted: 09/22/2012] [Indexed: 11/22/2022]
Abstract
Endoplasmic reticulum (ER) stress is implicated in various diseases. Recently, some reports have suggested that the sigma-1 receptor may play a role in ER stress, and many antidepressants have a high affinity for the sigma-1 receptor. In the present study, we focused on imipramine, a widely used antidepressant, and investigated whether it might protect against the neuronal cell death induced by tunicamycin, an ER stress inducer. In mouse cultured hippocampal HT22 cells, imipramine inhibited cell death and caspase-3 activation induced by tunicamycin, although it did not alter the elevated expressions of 78 kDa glucose-regulated protein (GRP78) and C/EBP-homologous protein (CHOP). Interestingly, in such cells application of imipramine normalized the expression of the sigma-1 receptor, which was decreased by treatment with tunicamycin alone. Additionally, NE-100, a selective sigma-1 receptor antagonist, abolished the protective effect of imipramine against such tunicamycin-induced cell death. Imipramine inhibited the reduction of mitochondrial membrane potential induced by tunicamycin, and NE-100 blocked this modulating effect of imipramine. Furthermore, in anesthetized mice intracerebroventricular administration of tunicamycin decreased the number of neuronal cells in the hippocampus, particularly in the CA1 and dentate gyrus (DG) areas, and 7 days' imipramine treatment (10mg/kg/day; i.p.) significantly suppressed these reductions in CA1 and DG. These findings suggest that imipramine protects against ER stress-induced hippocampal neuronal cell death both in vitro and in vivo. Such protection may be partly due to the sigma-1 receptor.
Collapse
Affiliation(s)
- Yoko Ono
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Clarkson C, Herrero-Turrión MJ, Merchán MA. Cortical Auditory Deafferentation Induces Long-Term Plasticity in the Inferior Colliculus of Adult Rats: Microarray and qPCR Analysis. Front Neural Circuits 2012; 6:86. [PMID: 23233834 PMCID: PMC3516126 DOI: 10.3389/fncir.2012.00086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/29/2012] [Indexed: 12/14/2022] Open
Abstract
The cortico-collicular pathway is a bilateral excitatory projection from the cortex to the inferior colliculus (IC). It is asymmetric and predominantly ipsilateral. Using microarrays and RT-qPCR we analyzed changes in gene expression in the IC after unilateral lesions of the auditory cortex, comparing the ICs ipsi- and contralateral to the lesioned side. At 15 days after surgery there were mainly changes in gene expression in the IC ipsilateral to the lesion. Regulation primarily involved inflammatory cascade genes, suggesting a direct effect of degeneration rather than a neuronal plastic reorganization. Ninety days after the cortical lesion the ipsilateral IC showed a significant up-regulation of genes involved in apoptosis and axonal regeneration combined with a down-regulation of genes involved in neurotransmission, synaptic growth, and gap junction assembly. In contrast, the contralateral IC at 90 days post-lesion showed an up-regulation in genes primarily related to neurotransmission, cell proliferation, and synaptic growth. There was also a down-regulation in autophagy and neuroprotection genes. These findings suggest that the reorganization in the IC after descending pathway deafferentation is a long-term process involving extensive changes in gene expression regulation. Regulated genes are involved in many different neuronal functions, and the number and gene rearrangement profile seems to depend on the density of loss of the auditory cortical inputs.
Collapse
Affiliation(s)
- Cheryl Clarkson
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca Salamanca, Spain
| | | | | |
Collapse
|
42
|
Gao XF, Yao JJ, He YL, Hu C, Mei YA. Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels. PLoS One 2012; 7:e49384. [PMID: 23139844 PMCID: PMC3489664 DOI: 10.1371/journal.pone.0049384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/09/2012] [Indexed: 12/19/2022] Open
Abstract
(+)-SKF 10047 (N-allyl-normetazocine) is a prototypic and specific sigma-1 receptor agonist that has been used extensively to study the function of sigma-1 receptors. (+)-SKF 10047 inhibits K(+), Na(+) and Ca2+ channels via sigma-1 receptor activation. We found that (+)-SKF 10047 inhibited Na(V)1.2 and Na(V)1.4 channels independently of sigma-1 receptor activation. (+)-SKF 10047 equally inhibited Na(V)1.2/1.4 channel currents in HEK293T cells with abundant sigma-1 receptor expression and in COS-7 cells, which barely express sigma-1 receptors. The sigma-1 receptor antagonists BD 1063,BD 1047 and NE-100 did not block the inhibitory effects of (+)-SKF-10047. Blocking of the PKA, PKC and G-protein pathways did not affect (+)-SKF 10047 inhibition of Na(V)1.2 channel currents. The sigma-1 receptor agonists Dextromethorphan (DM) and 1,3-di-o-tolyl-guanidine (DTG) also inhibited Na(V)1.2 currents through a sigma-1 receptor-independent pathway. The (+)-SKF 10047 inhibition of Na(V)1.2 currents was use- and frequency-dependent. Point mutations demonstrated the importance of Phe(1764) and Tyr(1771) in the IV-segment 6 domain of the Na(V)1.2 channel and Phe(1579) in the Na(V)1.4 channel for (+)-SKF 10047 inhibition. In conclusion, our results suggest that sigma-1 receptor agonists directly inhibit Na(V)1.2/1.4 channels and that these interactions should be given special attention for future sigma-1 receptor function studies.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- School of Life Sciences, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jin-Jing Yao
- School of Life Sciences, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yan-Lin He
- School of Life Sciences, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Changlong Hu
- School of Life Sciences, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yan-Ai Mei
- School of Life Sciences, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Balasuriya D, Stewart AP, Crottès D, Borgese F, Soriani O, Edwardson JM. The sigma-1 receptor binds to the Nav1.5 voltage-gated Na+ channel with 4-fold symmetry. J Biol Chem 2012; 287:37021-9. [PMID: 22952230 PMCID: PMC3481303 DOI: 10.1074/jbc.m112.382077] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/20/2012] [Indexed: 12/19/2022] Open
Abstract
The sigma-1 receptor (Sig1R) is up-regulated in many human tumors and plays a role in the control of cancer cell proliferation and invasiveness. At the molecular level, the Sig1R modulates the activity of various ion channels, apparently through a direct interaction. We have previously shown using atomic force microscopy imaging that the Sig1R binds to the trimeric acid-sensing ion channel 1A with 3-fold symmetry. Here, we investigated the interaction between the Sig1R and the Nav1.5 voltage-gated Na(+) channel, which has also been implicated in promoting the invasiveness of cancer cells. We show that the Sig1R and Nav1.5 can be co-isolated from co-transfected cells, consistent with an intimate association between the two proteins. Atomic force microscopy imaging of the co-isolated proteins revealed complexes in which Nav1.5 was decorated by Sig1Rs. Frequency distributions of angles between pairs of bound Sig1Rs had two peaks, at ∼90° and ∼180°, and the 90° peak was about twice the size of the 180° peak. These results demonstrate that the Sig1R binds to Nav1.5 with 4-fold symmetry. Hence, each set of six transmembrane regions in Nav1.5 likely constitutes a Sig1R binding site, suggesting that the Sig1R interacts with the transmembrane regions of its partners. Interestingly, two known Sig1R ligands, haloperidol and (+)-pentazocine, disrupted the Nav1.5/Sig1R interaction both in vitro and in living cells. Finally, we show that endogenously expressed Sig1R and Nav1.5 also functionally interact.
Collapse
Affiliation(s)
- Dilshan Balasuriya
- From the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom and
| | - Andrew P. Stewart
- From the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom and
| | - David Crottès
- Institut de Biologie de Valrose, CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Franck Borgese
- Institut de Biologie de Valrose, CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Olivier Soriani
- Institut de Biologie de Valrose, CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
| | - J. Michael Edwardson
- From the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom and
| |
Collapse
|
44
|
Meyer C, Schepmann D, Yanagisawa S, Yamaguchi J, Dal Col V, Laurini E, Itami K, Pricl S, Wünsch B. Pd-catalyzed direct C-H bond functionalization of spirocyclic σ1 ligands: generation of a pharmacophore model and analysis of the reverse binding mode by docking into a 3D homology model of the σ1 receptor. J Med Chem 2012; 55:8047-65. [PMID: 22913577 DOI: 10.1021/jm300894h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To explore the hydrophobic binding region of the σ(1) receptor protein, regioisomeric spirocyclic thiophenes 9-11 were developed as versatile building blocks. Regioselective α- and β-arylation using the catalyst systems PdCl(2)/bipy/Ag(2)CO(3) and PdCl(2)/P[OCH(CF(3))(2)](3)/Ag(2)CO(3) allowed the introduction of various aryl moieties at different positions in the last step of the synthesis. The increasing σ(1) affinity in the order 4 < 5/6 < 7/8 indicates that the positions of the additional aryl moiety and the S atom in the spirocyclic thiophene systems control the σ(1) affinity. The main features of the pharmacophore model developed for this class of σ(1) ligands are a positive ionizable group, a H-bond acceptor group, two hydrophobic moieties, and one hydrophobic aromatic group. Docking of the ligands into a σ(1) 3D homology model via molecular mechanics/Poisson-Boltzmann surface area calculations led to a very good correlation between the experimentally determined and estimated free energy of receptor binding. These calculations support the hypothesis of a reverse binding mode of ligands bearing the aryl moiety at the "top" (compounds 2, 3, 7, and 8) and "left" (compounds 4, 5, and 6) positions, respectively.
Collapse
Affiliation(s)
- Christina Meyer
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Hittorfstrasse 58-62, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Oberdorf C, Schepmann D, Vela JM, Buschmann H, Holenz J, Wünsch B. Thiophene Bioisosteres of Spirocyclic σ Receptor Ligands: Relationships between Substitution Pattern and σ Receptor Affinity. J Med Chem 2012; 55:5350-60. [DOI: 10.1021/jm300302p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christoph Oberdorf
- Institut für Pharmazeutische
und Medizinische Chemie der Universität Münster, Hittorfstraße
58-62, D-48149 Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische
und Medizinische Chemie der Universität Münster, Hittorfstraße
58-62, D-48149 Münster, Germany
| | - Jose Miguel Vela
- Esteve, Av. Mare de Deu de Montserrat
221, 08041 Barcelona, Spain
| | - Helmut Buschmann
- Esteve, Av. Mare de Deu de Montserrat
221, 08041 Barcelona, Spain
| | - Jörg Holenz
- Esteve, Av. Mare de Deu de Montserrat
221, 08041 Barcelona, Spain
| | - Bernhard Wünsch
- Institut für Pharmazeutische
und Medizinische Chemie der Universität Münster, Hittorfstraße
58-62, D-48149 Münster, Germany
| |
Collapse
|
46
|
Pal A, Fontanilla D, Gopalakrishnan A, Chae YK, Markley JL, Ruoho AE. The sigma-1 receptor protects against cellular oxidative stress and activates antioxidant response elements. Eur J Pharmacol 2012; 682:12-20. [PMID: 22381068 PMCID: PMC3314091 DOI: 10.1016/j.ejphar.2012.01.030] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 01/19/2012] [Accepted: 01/24/2012] [Indexed: 10/28/2022]
Abstract
Sigma-1 receptors are associated with Alzheimer's disease, major depressive disorders, and schizophrenia. These receptors show progrowth/antiapoptotic properties via their chaperoning functions to counteract ER (endoplasmic reticulum) stress, to block neurodegeneration, and to regulate neuritogenesis. The sigma-1 receptor knock out mouse offered an opportunity to assess possible mechanisms by which the sigma-1 receptor modulates cellular oxidative stress. Nuclear magnetic resonance (NMR) metabolomic screening of the WT (wild type) and sigma-1 KO (knockout) livers was performed to investigate major changes in metabolites that are linked to oxidative stress. Significant changes in protein levels were also identified by two-dimensional (2D) gel electrophoresis and mass spectrometry. Increased levels of the antioxidant protein peroxiredoxin 6 (Prdx6), and the ER chaperone BiP (GRP78) compared to WT littermates were detected. Oxidative stress was measured in WT and sigma-1 KO mouse liver homogenates, in primary hepatocytes and in lung homogenates. Furthermore, sigma-1 receptor mediated activation of the antioxidant response element (ARE) to upregulate NAD(P)H quinone oxidoreductase 1 (NQO1) and superoxide dismutase 1 (SOD1) mRNA expression in COS cells was shown by RT PCR. These novel functions of the sigma-1 receptor were sensitive to well-known sigma ligands via their antagonist/agonist properties.
Collapse
Affiliation(s)
- Arindam Pal
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Dominique Fontanilla
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Anupama Gopalakrishnan
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Young-Kee Chae
- Department of Chemistry, Sejong University, Seoul, South Korea
| | - John L Markley
- Department of Biochemistry and NMRFAM, University of Wisconsin-Madison, WI, USA
| | - Arnold E Ruoho
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
47
|
Ito K, Hirooka Y, Matsukawa R, Nakano M, Sunagawa K. Decreased brain sigma-1 receptor contributes to the relationship between heart failure and depression. Cardiovasc Res 2012; 93:33-40. [PMID: 21960687 DOI: 10.1093/cvr/cvr255] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Depression often coexists with cardiovascular disease, such as hypertension and heart failure, in which sympathetic hyperactivation is critically involved. Reduction in the brain sigma-1 receptor (S1R) functions in depression pathogenesis via neuronal activity modulation. We hypothesized that reduced brain S1R exacerbates heart failure, especially with pressure overload via sympathetic hyperactivation and worsening depression. METHODS AND RESULTS Male Institute of Cancer Research mice were treated with aortic banding and, 4 weeks thereafter, fed a high-salt diet for an additional 4 weeks to accelerate cardiac dysfunction (AB-H). Compared with sham-operated controls (Sham), AB-H showed augmented sympathetic activity, decreased per cent fractional shortening, increased left ventricular dimensions, and significantly lower brain S1R expression. Intracerebroventricular (ICV) infusion of S1R agonist PRE084 increased brain S1R expression, lowered sympathetic activity, and improved cardiac function in AB-H. ICV infusion of S1R antagonist BD1063 increased sympathetic activity and decreased cardiac function in Sham. Tail suspension test was used to evaluate the index of depression-like behaviour, with immobility time and strain amplitude recorded as markers of struggle activity using a force transducer. Immobility time increased and strain amplitude decreased in AB-H compared with Sham, and these changes were attenuated by ICV infusion of PRE084. CONCLUSION These results indicate that decreased brain S1R contributes to the relationship between heart failure and depression in a mouse model of pressure overload.
Collapse
Affiliation(s)
- Koji Ito
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
48
|
Ohsawa M, Carlsson A, Asato M, Koizumi T, Nakanishi Y, Fransson R, Sandström A, Hallberg M, Nyberg F, Kamei J. The dipeptide Phe-Phe amide attenuates signs of hyperalgesia, allodynia and nociception in diabetic mice using a mechanism involving the sigma receptor system. Mol Pain 2011; 7:85. [PMID: 22040520 PMCID: PMC3225307 DOI: 10.1186/1744-8069-7-85] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 10/31/2011] [Indexed: 01/11/2023] Open
Abstract
Background Previous studies have demonstrated that intrathecal administration of the substance P amino-terminal metabolite substance P1-7 (SP1-7) and its C-terminal amidated congener induced antihyperalgesic effects in diabetic mice. In this study, we studied a small synthetic dipeptide related to SP1-7 and endomorphin-2, i.e. Phe-Phe amide, using the tail-flick test and von Frey filament test in diabetic and non-diabetic mice. Results Intrathecal treatment with the dipeptide increased the tail-flick latency in both diabetic and non-diabetic mice. This effect of Phe-Phe amide was significantly greater in diabetic mice than non-diabetic mice. The Phe-Phe amide-induced antinociceptive effect in both diabetic and non-diabetic mice was reversed by the σ1 receptor agonist (+)-pentazocine. Moreover, Phe-Phe amide attenuated mechanical allodynia in diabetic mice, which was reversible by (+)-pentazocine. The expression of spinal σ1 receptor mRNA and protein did not differ between diabetic mice and non-diabetic mice. On the other hand, the expression of phosphorylated extracellular signal-regulated protein kinase 1 (ERK1) and ERK2 proteins was enhanced in diabetic mice. (+)-Pentazocine caused phosphorylation of ERK1 and ERK2 proteins in non-diabetic mice, but not in diabetic mice. Conclusions These results suggest that the spinal σ1 receptor system might contribute to diabetic mechanical allodynia and thermal hyperalgesia, which could be potently attenuated by Phe-Phe amide.
Collapse
Affiliation(s)
- Masahiro Ohsawa
- Department of Pathophysiology & Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41, Ebara 2-chome, Tokyo 142-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
van Waarde A, Ramakrishnan NK, Rybczynska AA, Elsinga PH, Ishiwata K, Nijholt IM, Luiten PGM, Dierckx RA. The cholinergic system, sigma-1 receptors and cognition. Behav Brain Res 2011; 221:543-54. [PMID: 20060423 DOI: 10.1016/j.bbr.2009.12.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/26/2009] [Indexed: 12/31/2022]
Abstract
This article provides an overview of present knowledge regarding the relationship between the cholinergic system and sigma-1 receptors, and discusses potential applications of sigma-1 receptor agonists in the treatment of memory deficits and cognitive disorders. Sigma-1 receptors, initially considered as a subtype of the opioid family, are unique ligand-regulated molecular chaperones in the endoplasmatic reticulum playing a modulatory role in intracellular calcium signaling and in the activity of several neurotransmitter systems, particularly the cholinergic and glutamatergic pathways. Several central nervous system (CNS) drugs show high to moderate affinities for sigma-1 receptors, including acetylcholinesterase inhibitors (donepezil), antipsychotics (haloperidol, rimcazole), selective serotonin reuptake inhibitors (fluvoxamine, sertraline) and monoamine oxidase inhibitors (clorgyline). These compounds can influence cognitive functions both via their primary targets and by activating sigma-1 receptors in the CNS. Sigma-1 agonists show powerful anti-amnesic and neuroprotective effects in a large variety of animal models of cognitive dysfunction involving, among others (i) pharmacologic target blockade (with muscarinic or NMDA receptor antagonists or p-chloroamphetamine); (ii) selective lesioning of cholinergic neurons; (iii) CNS administration of β-amyloid peptides; (iv) aging-induced memory loss, both in normal and senescent-accelerated rodents; (v) neurodegeneration induced by toxic compounds (CO, trimethyltin, cocaine), and (vi) prenatal restraint stress.
Collapse
Affiliation(s)
- Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Banister SD, Yoo DT, Chua SW, Cui J, Mach RH, Kassiou M. N-Arylalkyl-2-azaadamantanes as cage-expanded polycarbocyclic sigma (σ) receptor ligands. Bioorg Med Chem Lett 2011; 21:5289-92. [PMID: 21788137 DOI: 10.1016/j.bmcl.2011.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 11/15/2022]
Abstract
A series of racemic N-arylalkyl-2-azaadamantan-1-ols (9-15) and the corresponding deoxygenated, achiral N-arylalkyl-2-azaadamantanes (23-29) were synthesized and screened in competition binding assays against a panel of CNS targets. Adamantyl hemiaminals 9-15 displayed generally low affinity for both σ(1) (K(i) values= 294-1950 nM) and σ(2) receptors (K(i) values=201-1020 nM), and negligible affinity for 42 other CNS proteins. Deoxygenation of 9-15 to give the corresponding achiral azaadamantanes 23-29 greatly improved affinity for σ(1) (K(i) values=8.3-239 nM) and σ(2) receptors (K(i) values=34-312 nM).
Collapse
Affiliation(s)
- Samuel D Banister
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|