1
|
Naidu P, Holford M. Microscopic marvels: Decoding the role of micropeptides in innate immunity. Immunology 2024; 173:605-621. [PMID: 39188052 DOI: 10.1111/imm.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
The innate immune response is under selection pressures from changing environments and pathogens. While sequence evolution can be studied by comparing rates of amino acid mutations within and between species, how a gene's birth and death contribute to the evolution of immunity is less known. Short open reading frames, once regarded as untranslated or transcriptional noise, can often produce micropeptides of <100 amino acids with a wide array of biological functions. Some micropeptide sequences are well conserved, whereas others have no evolutionary conservation, potentially representing new functional compounds that arise from species-specific adaptations. To date, few reports have described the discovery of novel micropeptides of the innate immune system. The diversity of immune-related micropeptides is a blind spot for gene and functional annotation. Immune-related micropeptides represent a potential reservoir of untapped compounds for understanding and treating disease. This review consolidates what is currently known about the evolution and function of innate immune-related micropeptides to facilitate their investigation.
Collapse
Affiliation(s)
- Praveena Naidu
- Graduate Center, Programs in Biology, Biochemistry, Chemistry, City University of New York, New York, New York, USA
- Department of Chemistry and Biochemistry, City University of New York, Hunter College, Belfer Research Building, New York, New York, USA
| | - Mandë Holford
- Graduate Center, Programs in Biology, Biochemistry, Chemistry, City University of New York, New York, New York, USA
- Department of Chemistry and Biochemistry, City University of New York, Hunter College, Belfer Research Building, New York, New York, USA
- American Museum of Natural History, Invertebrate Zoology, Sackler Institute for Comparative Genomics, New York, New York, USA
- Weill Cornell Medicine, Department of Biochemistry, New York, New York, USA
| |
Collapse
|
2
|
Martisova A, Faktor J, Sosolikova T, Klemesova I, Kolarova T, Holcakova J, Hrstka R. Characterization of the AGR2-NPM3 axis uncovers the AGR2 involvement in PD-L1 regulation in colorectal cancer. Sci Rep 2024; 14:21926. [PMID: 39300184 PMCID: PMC11413233 DOI: 10.1038/s41598-024-72990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Despite extensive research, the molecular role of AGR2 in the progression and metastasis of colorectal cancer (CRC) has not been fully characterized. We used quantitative mass spectrometry (SWATH MS) to identify differentially expressed proteins in paired CRC cell models of the SW480 and SW620 cell lines in response to AGR2 protein level manipulation. Relying on the results from SWATH MS and subsequent immunochemical validation, we selected NMP3 as the top candidate protein associated with AGR2 in CRC tumour cells in our screen. RT‒qPCR and immunochemical analysis confirmed the involvement of AGR2-mediated regulation of NPM3 at the transcriptional and posttranscriptional levels. Since PD-L1 is a constituent of the NPM3 regulatory axis, we aimed to correlate the changes in PD-L1 to the differential expression of AGR2 in our cell models. We found that AGR2 positively regulates PD-L1 levels in both SW480 and SW620 cell lines; additionally, several different CRC patient transcriptome cohorts confirmed the association of AGR2 with PD-L1. Our work reveals a new AGR2-NPM3 regulatory axis and the involvement of AGR2 in the regulation of PD-L1, which paves the way for the association of AGR2 with immune evasion in CRC cells.
Collapse
Affiliation(s)
- Andrea Martisova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, Gdansk, 80-822, Poland
| | - Tereza Sosolikova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
- Department of Experimental Biology, Faculty of Science, 117204 Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Iveta Klemesova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
| | - Tamara Kolarova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
| | - Jitka Holcakova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic.
| |
Collapse
|
3
|
Fang Q, Xue Y, Yao T, Liu X, Chen J, Han Q, Wang X. Identification of COMMD gene family in large yellow croaker (Larimichthys crocea): Immune response induced by Pseudomonas plecoglossicida infection and acute hypoxia stress. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109780. [PMID: 39033968 DOI: 10.1016/j.fsi.2024.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The COMMD (Copper Metabolism gene MURR1 Domain) gene family consists of 10 members, which are involved in various biological processes such as copper and sodium transport, NF-κB activity and cell cycle progression. However, the study of COMMD gene family in large yellow croaker (Larimichthys crocea) is largely unknown. In this study, 10 COMMD gene family members (named LcCOMMDs) were successfully identified from large yellow croaker. The results showed that there were differences in the number of LcCOMMDs exons at the level of gene structure, which reflected that they had adjusted and changed accordingly in the process of evolution to adapt to the environment and achieved functional diversification. Through phylogenetic analysis, we found that the LcCOMMDs was highly conserved, indicating their important functions in organisms. It was worth noting that the expression levels of LcCOMMD1, LcCOMMD2, LcCOMMD3, LcCOMMD5 and LcCOMMD10 in the spleen changed significantly after bacterial stress, which suggested that these genes might be involved in the regulation of innate immune response. In addition, the expression levels of LcCOMMD1, LcCOMMD2, LcCOMMD3, LcCOMMD5, LcCOMMD7, LcCOMMD8, LcCOMMD9 and LcCOMMD10 changed significantly after hypoxia exposure, which further proved the role of LcCOMMDs in immune function. In summary, this study not only revealed the important role of COMMD genes in the innate immune response of large yellow croaker, but also provided valuable information for further understanding the regulatory mechanism of COMMD gene family under different conditions.
Collapse
Affiliation(s)
- Qian Fang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Yadong Xue
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - TingYan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Jianming Chen
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China.
| | - Qingxi Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
4
|
Tang M, Burgess JT, Fisher M, Boucher D, Bolderson E, Gandhi NS, O'Byrne KJ, Richard DJ, Suraweera A. Targeting the COMMD4-H2B protein complex in lung cancer. Br J Cancer 2023; 129:2014-2024. [PMID: 37914802 PMCID: PMC10703884 DOI: 10.1038/s41416-023-02476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Lung cancer is the biggest cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 85-90% of all lung cancers. Identification of novel therapeutic targets are required as drug resistance impairs chemotherapy effectiveness. COMMD4 is a potential NSCLC therapeutic target. The aims of this study were to investigate the COMMD4-H2B binding pose and develop a short H2B peptide that disrupts the COMMD4-H2B interaction and mimics COMMD4 siRNA depletion. METHODS Molecular modelling, in vitro binding and site-directed mutagenesis were used to identify the COMMD4-H2B binding pose and develop a H2B peptide to inhibit the COMMD4-H2B interaction. Cell viability, DNA repair and mitotic catastrophe assays were performed to determine whether this peptide can specially kill NSCLC cells. RESULTS Based on the COMMD4-H2B binding pose, we have identified a H2B peptide that inhibits COMMD4-H2B by directly binding to COMMD4 on its H2B binding binding site, both in vitro and in vivo. Treatment of NSCLC cell lines with this peptide resulted in increased sensitivity to ionising radiation, increased DNA double-strand breaks and induction of mitotic catastrophe in NSCLC cell lines. CONCLUSIONS Our data shows that COMMD4-H2B represents a novel potential NSCLC therapeutic target.
Collapse
Affiliation(s)
- Ming Tang
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Joshua T Burgess
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Mark Fisher
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Didier Boucher
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Emma Bolderson
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Neha S Gandhi
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Kenneth J O'Byrne
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| | - Derek J Richard
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| | - Amila Suraweera
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
5
|
Lee CM, Go YY, Song JJ. Inhibition of lipopolysaccharide-induced inflammation by trophoblast-conditioned medium and trophoblast-derived extracellular vesicles in human middle ear epithelial cells. Sci Rep 2023; 13:19822. [PMID: 37963902 PMCID: PMC10645728 DOI: 10.1038/s41598-023-46731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023] Open
Abstract
Otitis media is a common disease but can cause severe inner ear inflammation and hearing loss if it persists for more than two weeks. This study elucidates the inflammation-inhibiting efficacy of conditioned medium (CM) and extracellular vesicles (EVs) derived from human trophoblast (TB) cells in lipopolysaccharide (LPS)-induced human middle ear epithelial cells (HMEECs). TB-conditioned medium (TB-CM) reduced the inflammatory response and regulated mucin and epithelial sodium channel genes in LPS-induced HMEECs. The underlying mechanism of cell migration during inflammatory healing in LPS-induced HMEECs treated with TB-CM was determined by RNA-sequencing analysis. Specifically, the NF-κB pathway related to the copper metabolism MURR1 domain protein was studied and verified through siRNA. This elucidation of the anti-inflammatory effect of TB-CM and TB-derived EVs demonstrates their clinical potential to treat chronic inflammation.
Collapse
Affiliation(s)
- Chan Mi Lee
- Division of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoon Young Go
- Division of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
- Center for Health Care Convergence at Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jae-Jun Song
- Division of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea.
- Center for Health Care Convergence at Korea University Guro Hospital, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Healy MD, McNally KE, Butkovič R, Chilton M, Kato K, Sacharz J, McConville C, Moody ERR, Shaw S, Planelles-Herrero VJ, Yadav SKN, Ross J, Borucu U, Palmer CS, Chen KE, Croll TI, Hall RJ, Caruana NJ, Ghai R, Nguyen THD, Heesom KJ, Saitoh S, Berger I, Schaffitzel C, Williams TA, Stroud DA, Derivery E, Collins BM, Cullen PJ. Structure of the endosomal Commander complex linked to Ritscher-Schinzel syndrome. Cell 2023; 186:2219-2237.e29. [PMID: 37172566 PMCID: PMC10187114 DOI: 10.1016/j.cell.2023.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.
Collapse
Affiliation(s)
- Michael D Healy
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kerrie E McNally
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK; MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.
| | - Rebeka Butkovič
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Molly Chilton
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Kohji Kato
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Joanna Sacharz
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Calum McConville
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Edmund R R Moody
- School of Biological Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - Shrestha Shaw
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | | | - Sathish K N Yadav
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Jennifer Ross
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Ufuk Borucu
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Catherine S Palmer
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Kai-En Chen
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK
| | - Ryan J Hall
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; Institute of Health and Sport (iHeS), Victoria University, Melbourne, VIC Australia
| | - Rajesh Ghai
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Thi H D Nguyen
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Imre Berger
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK; Max Planck Bristol Centre for Minimal Biology, Department of Chemistry, University of Bristol, BS8 1TS Bristol, UK
| | - Christiane Schaffitzel
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - David A Stroud
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC Australia
| | | | - Brett M Collins
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK.
| |
Collapse
|
7
|
Shirai T, Nakai A, Ando E, Fujimoto J, Leach S, Arimori T, Higo D, van Eerden FJ, Tulyeu J, Liu YC, Okuzaki D, Murayama MA, Miyata H, Nunomura K, Lin B, Tani A, Kumanogoh A, Ikawa M, Wing JB, Standley DM, Takagi J, Suzuki K. Celastrol suppresses humoral immune responses and autoimmunity by targeting the COMMD3/8 complex. Sci Immunol 2023; 8:eadc9324. [PMID: 37000855 DOI: 10.1126/sciimmunol.adc9324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Celastrol, a bioactive molecule extracted from the
Tripterygium wilfordii
plant, has been shown to exhibit anti-inflammatory properties. However, its mechanism of action has not been fully elucidated. Here, we show that celastrol suppresses humoral immune responses and autoimmunity by disabling a protein complex consisting of copper metabolism MURR1 domain–containing (COMMD) 3 and COMMD8 (COMMD3/8 complex), a signaling adaptor for chemoattractant receptors. Having demonstrated the involvement of the COMMD3/8 complex in a mouse model of rheumatoid arthritis, we identified celastrol as a compound that covalently bound to and dissociated the COMMD3/8 complex. Celastrol inhibited B cell migration, reduced antibody responses, and blocked arthritis progression, recapitulating deficiency of the COMMD3/8 complex. These effects of celastrol were abolished in mice expressing a celastrol-resistant mutant of the COMMD3/8 complex. These findings establish that celastrol exerts immunosuppressive activity by targeting the COMMD3/8 complex. Our study suggests that the COMMD3/8 complex is a potentially druggable target in autoimmune diseases and points to celastrol as a lead pharmacologic candidate in this capacity.
Collapse
Affiliation(s)
- Taiichiro Shirai
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Akiko Nakai
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Emiko Ando
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Jun Fujimoto
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sarah Leach
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Takao Arimori
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Daisuke Higo
- Thermo Fisher Scientific K.K., Yokohama, Kanagawa, Japan
| | - Floris J. van Eerden
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Janyerkye Tulyeu
- Laboratory of Human Single Cell Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Yu-Chen Liu
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masanori A. Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
| | - Akiyoshi Tani
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - James B. Wing
- Laboratory of Human Single Cell Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Daron M. Standley
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
You G, Zhou C, Wang L, Liu Z, Fang H, Yao X, Zhang X. COMMD proteins function and their regulating roles in tumors. Front Oncol 2023; 13:1067234. [PMID: 36776284 PMCID: PMC9910083 DOI: 10.3389/fonc.2023.1067234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The COMMD proteins are a highly conserved protein family with ten members that play a crucial role in a variety of biological activities, including copper metabolism, endosomal sorting, ion transport, and other processes. Recent research have demonstrated that the COMMD proteins are closely associated with a wide range of disorders, such as hepatitis, myocardial ischemia, cerebral ischemia, HIV infection, and cancer. Among these, the role of COMMD proteins in tumors has been thoroughly explored; they promote or inhibit cancers such as lung cancer, liver cancer, gastric cancer, and prostate cancer. COMMD proteins can influence tumor proliferation, invasion, metastasis, and tumor angiogenesis, which are strongly related to the prognosis of tumors and are possible therapeutic targets for treating tumors. In terms of molecular mechanism, COMMD proteins in tumor cells regulate the oncogenes of NF-κB, HIF, c-MYC, and others, and are related to signaling pathways including apoptosis, autophagy, and ferroptosis. For the clinical diagnosis and therapy of malignancies, additional research into the involvement of COMMD proteins in cancer is beneficial.
Collapse
Affiliation(s)
- Guangqiang You
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China
| | - Chen Zhou
- Department of General Affairs, First Hospital of Jilin University (the Eastern Division), Jilin University, Changchun, China
| | - Lei Wang
- Department of Pediatric Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zefeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China
| | - He Fang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiaoxao Yao
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China,*Correspondence: Xiaoxao Yao, ; Xuewen Zhang,
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China,*Correspondence: Xiaoxao Yao, ; Xuewen Zhang,
| |
Collapse
|
9
|
Tai P, Wang Z, Chen X, Chen A, Gong L, Cheng Y, Cao K. Multi-omics analysis of the oncogenic value of copper Metabolism-Related protein COMMD2 in human cancers. Cancer Med 2022. [PMID: 36205192 DOI: 10.1002/cam4.5320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The copper metabolism MURR1 domain (COMMD) protein family is involved in tumorigenicity of malignant tumors. However, as the member of COMMD, the role of COMMD2 in human tumors remains unknown. METHODS We used The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Human Protein Atlas (HPA) database, Cancer Cell Line Encyclopedia (CCLE) platform, univariate Cox regression analysis, Kaplan-Meier curve, cBioPortal, UALCAN database, Sangerbox online platform, GSCA database gene set enrichment analysis (GSEA), and GeneMANIA to analyze the expression of COMMD2, its prognostic values, genomic alteration patterns, and the correlation with tumor stemness, tumor mutational burden (TMB), microsatellite instability (MSI), and immune infiltrates, drug sensitivity, and gene function enrichment in pan-cancer. qRT-PCR, CCK-8, EdU, wound healing, and transwell migration assays were performed to confirm the function of COMMD2. RESULTS COMMD2 was strongly expressed in most cancer types. Elevated COMMD2 expression affects the prognosis, clinicopathological stage, and molecular or immune subtypes of various tumors. Moreover, promoter hypomethylation and mutations in the COMMD2 gene may be associated with its high expression and poor survival. Additionally, we discovered that COMMD2 expression was linked to tumor stemness, TMB, MSI, immune cell infiltration, immune-checkpoint inhibitors, and drug sensitivity in pan-cancer. Furthermore, the COMMD2 gene co-expression network is constructed with GSEA analysis, displaying significant interaction of COMMD2 with E2F targets, G2-M checkpoint, and mitotic spindle in bladder cancer (BLCA). Finally, RNA interference data showed suppression of COMMD2 prevented proliferation and migration of BLCA and uterine corpus endometrial carcinoma (UCEC) cells. CONCLUSION Our findings shed light on the COMMD2 functions in human cancers and demonstrate that it is a promising prognostic biomarker and therapeutic target in pan-cancer.
Collapse
Affiliation(s)
- Panpan Tai
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xinyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Aiyan Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Lian Gong
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Canonical and Divergent N-Terminal HBx Isoform Proteins Unveiled: Characteristics and Roles during HBV Replication. Biomedicines 2021; 9:biomedicines9111701. [PMID: 34829930 PMCID: PMC8616016 DOI: 10.3390/biomedicines9111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B virus (HBV) X protein (HBx) is a viral regulatory and multifunctional protein. It is well-known that the canonical HBx reading frame bears two phylogenetically conserved internal in-frame translational initiation codons at Met2 and Met3, thus possibly generating divergent N-terminal smaller isoforms during translation. Here, we demonstrate that the three distinct HBx isoforms are generated from the ectopically expressed HBV HBx gene, named XF (full-length), XM (medium-length), and XS (short-length); they display different subcellular localizations when expressed individually in cultured hepatoma cells. Particularly, the smallest HBx isoform, XS, displayed a predominantly cytoplasmic localization. To study HBx proteins during viral replication, we performed site-directed mutagenesis to target the individual or combinatorial expression of the HBx isoforms within the HBV viral backbone (full viral genome). Our results indicate that of all HBx isoforms, only the smallest HBx isoform, XS, can restore WT levels of HBV replication, and bind to the viral mini chromosome, thereby establishing an active chromatin state, highlighting its crucial activities during HBV replication. Intriguingly, we found that sequences of HBV HBx genotype H are devoid of the conserved Met3 position, and therefore HBV genotype H infection is naturally silent for the expression of the HBx XS isoform. Finally, we found that the HBx XM (medium-length) isoform shares significant sequence similarity with the N-terminus domain of the COMMD8 protein, a member of the copper metabolism MURR1 domain-containing (COMMD) protein family. This novel finding might facilitate studies on the phylogenetic origin of the HBV X protein. The identification and functional characterization of its isoforms will shift the paradigm by changing the concept of HBx from being a unique, canonical, and multifunctional protein toward the occurrence of different HBx isoforms, carrying out different overlapping functions at different subcellular localizations during HBV genome replication. Significantly, our current work unveils new crucial HBV targets to study for potential antiviral research, and human virus pathogenesis.
Collapse
|
11
|
Yang M, Wu X, Li L, Li S, Li N, Mao M, Pan S, Du R, Wang X, Chen M, Xiao N, Zhu X, He G, Zhang L, Huang W, Pan H, Deng L, Chen L, Liang L, Guan J. COMMD10 inhibits tumor progression and induces apoptosis by blocking NF-κB signal and values up BCLC staging in predicting overall survival in hepatocellular carcinoma. Clin Transl Med 2021; 11:e403. [PMID: 34047468 PMCID: PMC8093973 DOI: 10.1002/ctm2.403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. Currently, there is limited knowledge of dysregulation of cellular proliferation and apoptosis that contribute to the malignant phenotype in HCC. Copper metabolism gene MURR1 domain 10 (COMMD10) is initially identified as a suppressor gene in the pathogenesis of HCC in our observations. Here we aimed to explore its function and prognostic value in the progression of HCC. METHODS Functional experiments were performed to explore the role of COMMD10 in HCC. The molecular mechanisms of COMMD10 were determined by luciferase assay, immunofluorescence, and immunoprecipitation. The nomogram was based on a retrospective and multicenter study of 516 patients who were pathologically diagnosed with HCC from three Chinese hospitals. The predictive accuracy and discriminative ability of the nomogram were determined by a C-index and calibration curve and were compared with COMMD10 and the Barcelona Clinic Liver Cancer (BCLC) staging system. The primary endpoint was overall survival (OS). RESULTS COMMD10 expression was significantly lower in HCC than that in normal liver tissues. In vitro and in vivo experiments revealed that COMMD10 suppressed cell proliferation and induced apoptosis in HCC. Mechanistically, COMMD10 inhibits TNFα mediated ubiquitination of IκBα and p65 nuclear translocation through the combination of COMMD10-N terminal to the Rel homology domain of p65, which inhibited NF-κB activity and increased expression of cleaved caspase9/3 in HCC. Clinically, COMMD10 stratifies early-stage HCC patients into two risk groups with significantly different OS. Additionally, the nomogram based on COMMD10 and BCLC stage yielded more accuracy than BCLC stage alone for predicting OS of HCC patients in three cohorts. CONCLUSIONS COMMD10 suppresses proliferation and promotes apoptosis by inhibiting NF-κB signaling and values up BCLC staging in predicting OS, which provides evidence for the identification of potential therapeutic targets and the accurate prediction of prognosis for patients with HCC.
Collapse
Affiliation(s)
- Mi Yang
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xixi Wu
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Lu Li
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shaoqun Li
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Nan Li
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Mengyuan Mao
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Suming Pan
- Department of RadiotherapyYue Bei People's Hospital of Guangdong provinceShaoguanGuangdongChina
| | - Richang Du
- Department of PathologyYue Bei People's Hospital of Guangdong provinceShaoguanGuangdongChina
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Chen
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Nanjie Xiao
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaohui Zhu
- Department of Patholog, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of Patholog, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- Guangdong Province Key Laboratory of Molecular Tumor PathologyGuangzhouGuangdongChina
| | - Guoyang He
- Department of Patholog, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of Patholog, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- Guangdong Province Key Laboratory of Molecular Tumor PathologyGuangzhouGuangdongChina
| | - Longshan Zhang
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Weiqiang Huang
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Hua Pan
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Lan Deng
- Department of Hematology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Li Liang
- Department of Patholog, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of Patholog, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- Guangdong Province Key Laboratory of Molecular Tumor PathologyGuangzhouGuangdongChina
| | - Jian Guan
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
12
|
Weiskirchen R, Penning LC. COMMD1, a multi-potent intracellular protein involved in copper homeostasis, protein trafficking, inflammation, and cancer. J Trace Elem Med Biol 2021; 65:126712. [PMID: 33482423 DOI: 10.1016/j.jtemb.2021.126712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
Copper is a trace element indispensable for life, but at the same time it is implicated in reactive oxygen species formation. Several inherited copper storage diseases are described of which Wilson disease (copper overload, mutations in ATP7B gene) and Menkes disease (copper deficiency, mutations in ATP7A gene) are the most prominent ones. After the discovery in 2002 of a novel gene product (i.e. COMMD1) involved in hepatic copper handling in Bedlington terriers, studies on the mechanism of action of COMMD1 revealed numerous non-copper related functions. Effects on hepatic copper handling are likely mediated via interactions with ATP7B. In addition, COMMD1 has many more interacting partners which guide their routing to either the plasma membrane or, often in an ubiquitination-dependent fashion, trigger their proteolysis via the S26 proteasome. By stimulating NF-κB ubiquitination, COMMD1 dampens an inflammatory reaction. Finally, targeting COMMD1 function can be a novel approach in the treatment of tumors.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital Aachen, Aachen, Germany
| | - Louis C Penning
- Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Department of Clinical Sciences of Companion Animals, 3584 CM, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Suraweera A, Duijf PHG, Jekimovs C, Schrobback K, Liu C, Adams MN, O’Byrne KJ, Richard DJ. COMMD1, from the Repair of DNA Double Strand Breaks, to a Novel Anti-Cancer Therapeutic Target. Cancers (Basel) 2021; 13:830. [PMID: 33669398 PMCID: PMC7920454 DOI: 10.3390/cancers13040830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has the highest incidence and mortality among all cancers, with non-small cell lung cancer (NSCLC) accounting for 85-90% of all lung cancers. Here we investigated the function of COMMD1 in the repair of DNA double strand breaks (DSBs) and as a prognostic and therapeutic target in NSCLC. COMMD1 function in DSB repair was investigated using reporter assays in COMMD1-siRNA-depleted cells. The role of COMMD1 in NSCLC was investigated using bioinformatic analysis, qRT-PCR and immunoblotting of control and NSCLC cells, tissue microarrays, cell viability and cell cycle experiments. DNA repair assays demonstrated that COMMD1 is required for the efficient repair of DSBs and reporter assays showed that COMMD1 functions in both non-homologous-end-joining and homologous recombination. Bioinformatic analysis showed that COMMD1 is upregulated in NSCLC, with high levels of COMMD1 associated with poor patient prognosis. COMMD1 mRNA and protein were upregulated across a panel of NSCLC cell lines and siRNA-mediated depletion of COMMD1 decreased cell proliferation and reduced cell viability of NSCLC, with enhanced death after exposure to DNA damaging-agents. Bioinformatic analyses demonstrated that COMMD1 levels positively correlate with the gene ontology DNA repair gene set enrichment signature in NSCLC. Taken together, COMMD1 functions in DSB repair, is a prognostic maker in NSCLC and is potentially a novel anti-cancer therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Amila Suraweera
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Pascal H. G. Duijf
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Centre for Data Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia
| | - Christian Jekimovs
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
| | - Karsten Schrobback
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
| | - Cheng Liu
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia;
- Envoi Specialist Pathologists, 5/38 Bishop Street, Kelvin Grove, QLD 4059, Australia
| | - Mark N. Adams
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Kenneth J. O’Byrne
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Derek J. Richard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
14
|
Singla A, Chen Q, Suzuki K, Song J, Fedoseienko A, Wijers M, Lopez A, Billadeau DD, van de Sluis B, Burstein E. Regulation of murine copper homeostasis by members of the COMMD protein family. Dis Model Mech 2021; 14:dmm.045963. [PMID: 33262129 PMCID: PMC7803461 DOI: 10.1242/dmm.045963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
Copper is an essential transition metal for all eukaryotes. In mammals, intestinal copper absorption is mediated by the ATP7A copper transporter, whereas copper excretion occurs predominantly through the biliary route and is mediated by the paralog ATP7B. Both transporters have been shown to be recycled actively between the endosomal network and the plasma membrane by a molecular machinery known as the COMMD/CCDC22/CCDC93 or CCC complex. In fact, mutations in COMMD1 can lead to impaired biliary copper excretion and liver pathology in dogs and in mice with liver-specific Commd1 deficiency, recapitulating aspects of this phenotype. Nonetheless, the role of the CCC complex in intestinal copper absorption in vivo has not been studied, and the potential redundancy of various COMMD family members has not been tested. In this study, we examined copper homeostasis in enterocyte-specific and hepatocyte-specific COMMD gene-deficient mice. We found that, in contrast to effects in cell lines in culture, COMMD protein deficiency induced minimal changes in ATP7A in enterocytes and did not lead to altered copper levels under low- or high-copper diets, suggesting that regulation of ATP7A in enterocytes is not of physiological consequence. By contrast, deficiency of any of three COMMD genes (Commd1, Commd6 or Commd9) resulted in hepatic copper accumulation under high-copper diets. We found that each of these deficiencies caused destabilization of the entire CCC complex and suggest that this might explain their shared phenotype. Overall, we conclude that the CCC complex plays an important role in ATP7B endosomal recycling and function. Summary: Examination of copper homeostasis in enterocyte-specific and hepatocyte-specific COMMD gene-deficient mice revealed that homologs of COMMD1, which has been linked previously by genetic studies to copper regulation, also regulate copper handling in mammals.
Collapse
Affiliation(s)
- Amika Singla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Chen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of General Surgery, Tongji Hospital, Tongji School of Medicine, Shanghai 200065, China
| | - Kohei Suzuki
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jie Song
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alina Fedoseienko
- Section of Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Melinde Wijers
- Section of Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Adam Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel D Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Bart van de Sluis
- Section of Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Dumoulin B, Ufer C, Stehling S, Heydeck D, Kuhn H, Sofi S. Identification of the COMM-domain containing protein 1 as specific binding partner for the guanine-rich RNA sequence binding factor 1. Biochim Biophys Acta Gen Subj 2020; 1864:129678. [PMID: 32645484 DOI: 10.1016/j.bbagen.2020.129678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein of the hnRNP H/F family, which has been implicated in erythropoiesis, regulation of the redox homeostasis, embryonic brain development, mitochondrial function and cellular senescence. The molecular basis for GRSF1-RNA interaction has extensively been studied in the past but for the time being GRSF1 binding proteins have not been identified. METHODS To search for GRSF1 binding proteins we first employed the yeast two-hybrid system and screened a cDNA library of human fetal brain for potential GRSF1 binding proteins. Subsequently, we explored the protein-protein-interaction of the recombiant proteins, carried out immunoprecipitation experiments to confirm the interaction of the native proteins in living cells and performed truncation studies to identify the protein-binding motif of GRSF1. RESULTS Using the yeast two-hybrid system we identified the COMM-domain containing protein 1 (COMMD1) as specific GRSF1 binding protein and in vitro truncation studies suggested that COMMD1 interacts with the alanine-rich domain of GRSF1. Co-immunoprecipitation strategies indicated that COMMD1-GRSF1 interaction was RNA independent and also occurred in living cells expressing the two native proteins. CONCLUSION In mammalian cells the COMM-domain containing protein 1 (COMMD1) specifically interacts with the Ala-rich domain of GRSF1 in an RNA-independent manner. GENERAL SIGNIFICANCE This is the first report describing a specific GRSF1 binding protein.
Collapse
Affiliation(s)
- Bernhard Dumoulin
- Institute of Biochemistry, Charite - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Christoph Ufer
- Institute of Biochemistry, Charite - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Sabine Stehling
- Institute of Biochemistry, Charite - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Dagmar Heydeck
- Institute of Biochemistry, Charite - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charite - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Sajad Sofi
- University of York, Department of Biology, York YO10 5DD, United Kingdom
| |
Collapse
|
16
|
Iwuchukwu I, Nguyen D, Beavers M, Tran V, Sulaiman W, Fannin E, Lasseigne L, Ramsay E, Wilson J, Bazan NG. MicroRNA Regulatory Network as Biomarkers of Late Seizure in Patients with Spontaneous Intracerebral Hemorrhage. Mol Neurobiol 2020; 57:2346-2357. [PMID: 32040835 DOI: 10.1007/s12035-020-01872-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022]
Abstract
Approximately 15% of patients experience seizures after spontaneous intracerebral hemorrhage (ICH). The pathogenesis of seizures post-ICH is not well-known; however, iron deposition-related neuronal injury following hemoglobin breakdown may contribute. Profiling known miRNAs to identify biomarkers for post-ICH late seizures, we found 64 differentially expressed miRNA: 32 upregulated and 32 downregulated in seizure vs. non-seizure. Functional classification of upregulated miRNA for KEGG pathways and biological processes identified enrichment for cell cycle, protein modifications, and FoxO neurotrophin signaling pathways. No significant enrichment was found for downregulated miRNA. Molecular functions Gene Ontology (GO) terms enriched for upregulated miRNA are numerous, while downregulated miRNAs were associated with ion channel activity. RT-PCR confirmed two miRNAs, 4317 and 4325, were differentially expressed in patients who developed seizures at 1 year. MiR-4317 regulates SLC38A1, a glutamine-glutamate transporter. Integrated miRNA-mRNA network analysis identified COMMD6, APOBEC2, and RASSF6-involved in NF-kB regulation. Two miRNAs (miR-4317 and 4325) differentiated post-ICH late seizures vs. non-seizures at 1 year. The results suggest functional and miRNA-mRNA networks as potential biomarkers for post-ICH late seizures.
Collapse
Affiliation(s)
- Ifeanyi Iwuchukwu
- Neurocritical Care and Neurology, University of Queensland, Ochsner Clinical School, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA, 70121, USA. .,Institute of Translational Research, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA, 70121, USA. .,Neuroscience Center of Excellence, Louisiana State University Health New Orleans, School of Medicine, 2020 Gravier Street, 8th Floor, New Orleans, LA, 70112, USA.
| | - Doan Nguyen
- Institute of Translational Research, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| | - Michelle Beavers
- Institute of Translational Research, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| | - Vi Tran
- Institute of Translational Research, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| | - Wale Sulaiman
- Neurosurgery, Ochsner Neuroscience Institute, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| | - Erin Fannin
- Department of Neurosurgery, Louisiana State University Health New Orleans, School of Medicine, 2020 Gravier Street, 7th Floor, New Orleans, LA, 70112, USA
| | - Lindsay Lasseigne
- Department of Neurosurgery, Louisiana State University Health New Orleans, School of Medicine, 2020 Gravier Street, 7th Floor, New Orleans, LA, 70112, USA
| | - Eugene Ramsay
- Neurocritical Care and Neurology, University of Queensland, Ochsner Clinical School, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| | - Jason Wilson
- Department of Neurosurgery, Louisiana State University Health New Orleans, School of Medicine, 2020 Gravier Street, 7th Floor, New Orleans, LA, 70112, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University Health New Orleans, School of Medicine, 2020 Gravier Street, 8th Floor, New Orleans, LA, 70112, USA
| |
Collapse
|
17
|
Yang M, Huang W, Sun Y, Liang H, Chen M, Wu X, Wang X, Zhang L, Cheng X, Fan Y, Pan H, Chen L, Guan J. Prognosis and modulation mechanisms of COMMD6 in human tumours based on expression profiling and comprehensive bioinformatics analysis. Br J Cancer 2019; 121:699-709. [PMID: 31523056 PMCID: PMC6889128 DOI: 10.1038/s41416-019-0571-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Background The Copper Metabolism MURR1 (COMM) domain family has been reported to play important roles in tumorigenesis. As a prototype for the COMMD family, the expression pattern and biological function of COMMD6 in human tumours remain unknown. Methods COMMD6 expression in BALB/c mice and human tissues was examined using real-time PCR and immunohistochemistry. Kaplan–Meier analysis was applied to evaluate the prognosis of COMMD6 in tumours. Competing endogenous RNA (ceRNA) and transcriptional regulation network were constructed based on differentially expressed mRNAs, microRNAs and long non-coding RNAs from the cancer genome atlas database. GO and KEGG enrichment analysis were used to explore the bioinformatics implication. Results COMMD6 expression was widely observed in BALB/c mice and human tissues, which predicted prognosis of cancer patients. Furthermore, we shed light on the underlying tumour promoting role and mechanism of COMMD6 by constructing a TEX41-miR-340-COMMD6 ceRNA network in head and neck squamous cell carcinoma and miR-218-CDX1-COMMD6 transcriptional network in cholangiocarcinoma. In addition, COMMD6 may modulate the ubiquitination and degradation of NF-κB subunits and regulate ribonucleoprotein and spliceosome complex biogenesis in tumours. Conclusions This study may help to elucidate the functions and mechanisms of COMMD6 in human tumours, providing a potential biomarker for tumour prevention and therapy.
Collapse
Affiliation(s)
- Mi Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Yaling Sun
- Department of Radiation Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou, China
| | - Huazhen Liang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Min Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Xixi Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Longshan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Xiaoya Cheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Yao Fan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Hua Pan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China.
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China.
| |
Collapse
|
18
|
Mallam AL, Marcotte EM. Systems-wide Studies Uncover Commander, a Multiprotein Complex Essential to Human Development. Cell Syst 2019; 4:483-494. [PMID: 28544880 DOI: 10.1016/j.cels.2017.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/25/2017] [Accepted: 03/23/2017] [Indexed: 11/27/2022]
Abstract
Recent mass spectrometry maps of the human interactome independently support the existence of a large multiprotein complex, dubbed "Commander." Broadly conserved across animals and ubiquitously expressed in nearly every human cell type examined thus far, Commander likely plays a fundamental cellular function, akin to other ubiquitous machines involved in expression, proteostasis, and trafficking. Experiments on individual subunits support roles in endosomal protein sorting, including the trafficking of Notch proteins, copper transporters, and lipoprotein receptors. Commander is critical for vertebrate embryogenesis, and defects in the complex and its interaction partners disrupt craniofacial, brain, and heart development. Here, we review the synergy between large-scale proteomic efforts and focused studies in the discovery of Commander, describe its composition, structure, and function, and discuss how it illustrates the power of systems biology. Based on 3D modeling and biochemical data, we draw strong parallels between Commander and the retromer cargo-recognition complex, laying a foundation for future research into Commander's role in human developmental disorders.
Collapse
Affiliation(s)
- Anna L Mallam
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Sharma A, Valle ML, Beveridge C, Liu Y, Sharma S. Unraveling the role of genetics in the pathogenesis of diabetic retinopathy. Eye (Lond) 2019; 33:534-541. [PMID: 30679875 PMCID: PMC6461978 DOI: 10.1038/s41433-019-0337-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular disease of the retina and the leading cause of visual disability in diabetic patients. Genetic factors have shown to play a pivotal role in DR onset, and several candidate genes have been associated with its progression. A literature search was performed to identify the genes known to be associated with DR through linkage analysis, candidate gene association, and genome-wide association studies (GWAS). A further literature search was performed to discover their potential connection with various biological pathways. A total of 65 genes were found and several of these genes belong to major signaling pathways known to play a significant role in DR, including systemic inflammation, angiogenesis, and neurogenesis. A comprehensive analysis presented in this review will be helpful in unraveling the role of genetics in the pathogenesis of DR.
Collapse
Affiliation(s)
- Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia
| | - Maria L Valle
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia
| | - Connor Beveridge
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia
| | - Yutao Liu
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia.
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia.
| |
Collapse
|
20
|
Song Y, Liu Y, Wu P, Zhang F, Wang G. Genome-wide mRNA expression analysis of peripheral blood from patients with obsessive-compulsive disorder. Sci Rep 2018; 8:12583. [PMID: 30135499 PMCID: PMC6105577 DOI: 10.1038/s41598-018-30624-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 08/02/2018] [Indexed: 11/20/2022] Open
Abstract
The onset of obsessive-compulsive disorder (OCD) involves the interaction of heritability and environment. The aim of this study is to identify the global messenger RNA (mRNA) expressed in peripheral blood from 30 patients with OCD and 30 paired healthy controls. We generated whole-genome gene expression profiles of peripheral blood mononuclear cells (PBMCs) from all the subjects using microarrays. The expression of the top 10 mRNAs was verified by real-time quantitative PCR (qRT-PCR) analysis. We also performed an enrichment analysis of the gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) annotations of the differentially expressed mRNAs. We identified 51 mRNAs that were significantly differentially expressed between the subjects with OCD and the controls (fold change ≥1.5; false discovery rate <0.05); 45 mRNAs were down-regulated and 6 mRNAs were up-regulated. The qRT-PCR analysis of 10 selected genes showed that they were all up-regulated, which was opposite to the results obtained from the microarrays. The GO and KEGG enrichment analysis showed that ribosomal pathway was the most enriched pathway among the differentially expressed mRNAs. Our findings support the idea that altered genome expression profiles may underlie the development of OCD.
Collapse
Affiliation(s)
- Yuqing Song
- Peking University Sixth Hospital (Institute of Mental Health), Key Laboratory of Mental Health, Ministry of Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yansong Liu
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Panpan Wu
- Wuxi Mental Health Centre, Nanjing Medical University, Wuxi, 214151, Jiangsu, China
| | - Fuquan Zhang
- Wuxi Mental Health Centre, Nanjing Medical University, Wuxi, 214151, Jiangsu, China.
| | - Guoqiang Wang
- Wuxi Mental Health Centre, Nanjing Medical University, Wuxi, 214151, Jiangsu, China.
| |
Collapse
|
21
|
Healy MD, Hospenthal MK, Hall RJ, Chandra M, Chilton M, Tillu V, Chen KE, Celligoi DJ, McDonald FJ, Cullen PJ, Lott JS, Collins BM, Ghai R. Structural insights into the architecture and membrane interactions of the conserved COMMD proteins. eLife 2018; 7:e35898. [PMID: 30067224 PMCID: PMC6089597 DOI: 10.7554/elife.35898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
The COMMD proteins are a conserved family of proteins with central roles in intracellular membrane trafficking and transcription. They form oligomeric complexes with each other and act as components of a larger assembly called the CCC complex, which is localized to endosomal compartments and mediates the transport of several transmembrane cargos. How these complexes are formed however is completely unknown. Here, we have systematically characterised the interactions between human COMMD proteins, and determined structures of COMMD proteins using X-ray crystallography and X-ray scattering to provide insights into the underlying mechanisms of homo- and heteromeric assembly. All COMMD proteins possess an α-helical N-terminal domain, and a highly conserved C-terminal domain that forms a tightly interlocked dimeric structure responsible for COMMD-COMMD interactions. The COMM domains also bind directly to components of CCC and mediate non-specific membrane association. Overall these studies show that COMMD proteins function as obligatory dimers with conserved domain architectures.
Collapse
Affiliation(s)
- Michael D Healy
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | | | - Ryan J Hall
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Mintu Chandra
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Molly Chilton
- School of Biochemistry, Biomedical Sciences BuildingUniversity of BristolBristolUnited Kingdom
| | - Vikas Tillu
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Kai-En Chen
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Dion J Celligoi
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | | | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences BuildingUniversity of BristolBristolUnited Kingdom
| | - J Shaun Lott
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Brett M Collins
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Rajesh Ghai
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| |
Collapse
|
22
|
Jin P, Lv C, Peng S, Cai L, Zhu J, Ma F. Genome-wide organization, evolutionary diversification of the COMMD family genes of amphioxus (Branchiostoma belcheri) with the possible role in innate immunity. FISH & SHELLFISH IMMUNOLOGY 2018; 77:31-39. [PMID: 29551666 DOI: 10.1016/j.fsi.2018.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
The COMMD (COpper Metabolism gene MURR1 Domain) gene family with ten members participates in various biological processes, such as the regulation of copper and sodium transport, NF-κB activity and cell cycle progression. However, studies on the COMMD gene family in amphioxus (Branchiostoma belcheri) are yet largely unknown. In this study, we have identified and characterized the ten COMMD family members from amphioxus (designated as AmphiCOMMDs). Firstly, we clone the full length of AmphiCOMMDs, and all AmphiCOMMD proteins contain the conserved COMM domain with two NES (Nuclear Export Signal) motifs. Secondly, the genomic structure analysis demonstrates that genes of the COMMD family have undergone intron loss and gain during the process of divergence from amphioxus to vertebrates. Thirdly, phylogenetic analysis indicates that AmphiCOMMDs are more closely related to vertebrates, implying the AmphiCOMMDs may be the ancestor of the vertebrate COMMDs. Fourthly, AmphiCOMMDs are ubiquitously and differentially expressed in five investigated tissues (muscles, gills, intestine, heaptic cecum and notochord). Finally, our results show that expression levels of AmphiCOMMD genes are fluctuating after LPS stimulation to some different extent. Taken together, our studies have elaborated the evolutionary dynamic and the innate immune role of the COMMD family genes in amphioxus.
Collapse
Affiliation(s)
- Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Caiyun Lv
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Shuangli Peng
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Lu Cai
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Jiu Zhu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
23
|
Broadgate S, Kiire C, Halford S, Chong V. Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy. Acta Ophthalmol 2018; 96 Suppl A111:1-51. [PMID: 29682912 DOI: 10.1111/aos.13678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Christine Kiire
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
- Oxford Eye Hospital; John Radcliffe Hospital; Oxford University NHS Foundation Trust; Oxford UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Victor Chong
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| |
Collapse
|
24
|
Fedoseienko A, Wijers M, Wolters JC, Dekker D, Smit M, Huijkman N, Kloosterhuis N, Klug H, Schepers A, Willems van Dijk K, Levels JHM, Billadeau DD, Hofker MH, van Deursen J, Westerterp M, Burstein E, Kuivenhoven JA, van de Sluis B. The COMMD Family Regulates Plasma LDL Levels and Attenuates Atherosclerosis Through Stabilizing the CCC Complex in Endosomal LDLR Trafficking. Circ Res 2018; 122:1648-1660. [PMID: 29545368 DOI: 10.1161/circresaha.117.312004] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/03/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022]
Abstract
RATIONALE COMMD (copper metabolism MURR1 domain)-containing proteins are a part of the CCC (COMMD-CCDC22 [coiled-coil domain containing 22]-CCDC93 [coiled-coil domain containing 93]) complex facilitating endosomal trafficking of cell surface receptors. Hepatic COMMD1 inactivation decreases CCDC22 and CCDC93 protein levels, impairs the recycling of the LDLR (low-density lipoprotein receptor), and increases plasma low-density lipoprotein cholesterol levels in mice. However, whether any of the other COMMD members function similarly as COMMD1 and whether perturbation in the CCC complex promotes atherogenesis remain unclear. OBJECTIVE The main aim of this study is to unravel the contribution of evolutionarily conserved COMMD proteins to plasma lipoprotein levels and atherogenesis. METHODS AND RESULTS Using liver-specific Commd1, Commd6, or Commd9 knockout mice, we investigated the relation between the COMMD proteins in the regulation of plasma cholesterol levels. Combining biochemical and quantitative targeted proteomic approaches, we found that hepatic COMMD1, COMMD6, or COMMD9 deficiency resulted in massive reduction in the protein levels of all 10 COMMDs. This decrease in COMMD protein levels coincided with destabilizing of the core (CCDC22, CCDC93, and chromosome 16 open reading frame 62 [C16orf62]) of the CCC complex, reduced cell surface levels of LDLR and LRP1 (LDLR-related protein 1), followed by increased plasma low-density lipoprotein cholesterol levels. To assess the direct contribution of the CCC core in the regulation of plasma cholesterol levels, Ccdc22 was deleted in mouse livers via CRISPR/Cas9-mediated somatic gene editing. CCDC22 deficiency also destabilized the complete CCC complex and resulted in elevated plasma low-density lipoprotein cholesterol levels. Finally, we found that hepatic disruption of the CCC complex exacerbates dyslipidemia and atherosclerosis in ApoE3*Leiden mice. CONCLUSIONS Collectively, these findings demonstrate a strong interrelationship between COMMD proteins and the core of the CCC complex in endosomal LDLR trafficking. Hepatic disruption of either of these CCC components causes hypercholesterolemia and exacerbates atherosclerosis. Our results indicate that not only COMMD1 but all other COMMDs and CCC components may be potential targets for modulating plasma lipid levels in humans.
Collapse
Affiliation(s)
- Alina Fedoseienko
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Melinde Wijers
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Justina C Wolters
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Daphne Dekker
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Marieke Smit
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Nicolette Huijkman
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Niels Kloosterhuis
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Helene Klug
- University Medical Center Groningen, University of Groningen, The Netherlands; PolyQuant GmbH, Bad Abbach, Germany (H.K.)
| | - Aloys Schepers
- Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz Zentrum, München, Germany (A.S.)
| | - Ko Willems van Dijk
- Department of Human Genetics (K.W.v.D.) and Department of Medicine (K.W.v.D.)
| | - Johannes H M Levels
- Division of Endocrinology, Leiden University Medical Center, The Netherlands; Department of Vascular and Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands (J.H.M.L.)
| | - Daniel D Billadeau
- Division of Oncology Research, Department of Immunology and Biochemistry (D.D.B.)
| | - Marten H Hofker
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Jan van Deursen
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic College of Medicine (J.v.D.).,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine (J.v.D.)
| | - Marit Westerterp
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Ezra Burstein
- Mayo Clinic, Rochester, MN; and University of Texas Southwestern Medical Center, Dallas (E.B.)
| | - Jan Albert Kuivenhoven
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Bart van de Sluis
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S) .,iPSC/CRISPR Center Groningen (B.v.d.S.)
| |
Collapse
|
25
|
Yang SS, Li XM, Yang M, Ren XL, Hu JL, Zhu XH, Wang FF, Zeng ZC, Li JY, Cheng ZQ, Liao WT, Ding YQ, Guan J, Liang L. FMNL2 destabilises COMMD10 to activate NF-κB pathway in invasion and metastasis of colorectal cancer. Br J Cancer 2017; 117:1164-1175. [PMID: 28817833 PMCID: PMC5674093 DOI: 10.1038/bjc.2017.260] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/19/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diaphanous-related formins (DRFs), actin necleator, have been known to participate in the progression of cancer cells. We previously reported that FMNL2 (Formin-like2), a member of DRFs, was a positive regulator in colorectal cancer (CRC) metastasis, yet proteins and pathways required for the function of this pro-invasive DRFs remain to be identified. METHODS The relationship between FMNL2 and COMMD10 was examined using Co-IP, GST pull-down, immunofluorescence and in vitro ubiquitination assay. The in vitro and in vivo function of COMMD10 in CRC was evaluated using CCK-8 proliferation assay, plate colony formation, cell cycle, apoptosis and animal models. The inhibition of NF-κB signalling by COMMD10 was detected using dual-luciferase reporter assay and western blotting. Co-IP, GST pull-down and nuclear protein extraction assay were performed to evaluate the effect on p65 by COMMD10. Real-time PCR and western blotting were performed to detect expressions of FMNL2, COMMD10 and p65 in paired tissues. RESULTS FMNL2 targets COMMD10 for ubiquitin-mediated proteasome degradation in CRC cells. COMMD10 targets p65 NF-κB (nuclear factor-κB) subunit and reduces its nuclear translocation, thereby leading to the inactivation of NF-κB pathway and suppression of CRC invasion and metastasis. Inhibition of NF-κB signalling by COMMD10 is necessary for FMNL2-mediated CRC cell behaviours. Downregulation of COMMD10 predicts poor prognosis of CRC patients. The expressions of FMNL2, COMMD10 and p65 are highly linked in CRC tissues. CONCLUSIONS These data demonstrate that the FMNL2/COMMD10/p65 axis acts as a critical regulator in the maintenance of metastatic phenotypes and is strongly associated with negative clinical outcomes.
Collapse
Affiliation(s)
- S S Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Department of Pathology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, People’s Republic of China
| | - X M Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Department of Pathology, Shenzhen Baoan Maternal and Child Health Hospital, Shenzhen 518100, Guangdong Province, People’s Republic of China
| | - M Yang
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - X L Ren
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - J L Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - X H Zhu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - F F Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - Z C Zeng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - J Y Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - Z Q Cheng
- Department of Pathology, Shenzhen people’s Hospital, Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong Province, People’s Republic of China
| | - W T Liao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - Y Q Ding
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - J Guan
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- E-mail:
| | - L Liang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
- E-mail:
| |
Collapse
|
26
|
D'Amico F, Fiorito G, Skarmoutsou E, Granata M, Rossi GA, Trovato C, Bellocchi C, Marchini M, Beretta L, Mazzarino MC. FOXP3, ICOS and ICOSL gene polymorphisms in systemic sclerosis: FOXP3 rs2294020 is associated with disease progression in a female Italian population. Immunobiology 2017; 223:112-117. [PMID: 29030005 DOI: 10.1016/j.imbio.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/13/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022]
Abstract
Systemic sclerosis (SSc), an autoimmune disorder, is characterized by vasculopathy, inflammation, progressive perivascular and interstitial fibrosis. Its pathogenesis is largely unknown, however strong evidences suggest that genetic predisposition may contribute to SSc development. Several gene polymorphisms involved in regulatory T cell function have been identified in many autoimmune diseases, including SSc. Moreover, dysregulation of co-stimulatory and/or co-inhibitory signals, including ICOS signalling, can lead to autoimmunity. The aim of the present study was to investigate the association of the FOXP3 rs2294020, ICOS rs6726035 and ICOSL rs378299 SNPs with both the susceptibility and the progression to SSc in an Italian case-series of patients. SNP genotyping results were successfully obtained from a total of 350 subjects including 166 individuals with SSc and 184 healthy controls. Although analysis tests did not show any significant associations between the SNPs under study and susceptibility to SSc, the occurrence of FOXP3 rs2294020 in female patients was associated with decreased time to progression from early to definite SSc (allelic model: HR=1.43; CI=1.03-1.99; p=0.03; dominant model: HR=1.54; CI=1.04-2.28; p=0.03). The inclusion of presence of ACA autoantibodies in the model did not significantly change the estimates. No conclusions can be drawn for the susceptibility to the disease or the time to progression in men due to the low statistical power. This study provides evidence of the association of rs2294020 with SSc evolution in female patients, modulating the time of progression from the diagnosis of early SSc to the diagnosis of definite SSc, while no effect on SSc susceptibility per se was found. rs2294020 may be considered a disease-modifying gene-variant rather than a disease-susceptibility SNP in SSc.
Collapse
Affiliation(s)
- Fabio D'Amico
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Giovanni Fiorito
- Department of Medical Sciences, University of Turin, via Nizza 52, 10126 Turin, Italy; Italian Istitute for Genomic Medicine (IIGM), via Nizza 52, 10126 Turin, Italy
| | - Evangelia Skarmoutsou
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Mariagrazia Granata
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Giulio A Rossi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Chiara Trovato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Chiara Bellocchi
- Referral Center for Systemic Autoimmune Diseases, University of Milan and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, via Pace 9, I-20122 Milan, Italy
| | - Maurizio Marchini
- Referral Center for Systemic Autoimmune Diseases, University of Milan and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, via Pace 9, I-20122 Milan, Italy
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, University of Milan and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, via Pace 9, I-20122 Milan, Italy
| | - Maria Clorinda Mazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|
27
|
Transcriptional Effects of ApoE4: Relevance to Alzheimer's Disease. Mol Neurobiol 2017; 55:5243-5254. [PMID: 28879423 DOI: 10.1007/s12035-017-0757-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
The major genetic risk factor for sporadic Alzheimer's disease (AD) is the lipid binding and transporting carrier protein apolipoprotein E, epsilon 4 allele (ApoE4). One of the unsolved mysteries of AD is how the presence of ApoE4 elicits this age-associated, currently incurable neurodegenerative disease. Recently, we showed that ApoE4 acts as a transcription factor and binds to the promoters of genes involved in a range of processes linked to aging and AD disease pathogenesis. These findings point to novel therapeutic strategies for AD and aging, resulting in an extension of human healthspan, the disease-free and functional period of life. Here, we review the effects and implications of the putative transcriptional role of ApoE4 and propose a model of Alzheimer's disease that focuses on the transcriptional nature of ApoE4 and its downstream effects, with the aim that this knowledge will help to define the role ApoE4 plays as a risk factor for AD, aging, and other processes such as inflammation and cardiovascular disease.
Collapse
|
28
|
Riera‐Romo M. COMMD1: A Multifunctional Regulatory Protein. J Cell Biochem 2017; 119:34-51. [DOI: 10.1002/jcb.26151] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Mario Riera‐Romo
- Department of PharmacologyInstitute of Marine SciencesHavanaCuba
| |
Collapse
|
29
|
Astrada S, Gomez Y, Barrera E, Obal G, Pritsch O, Pantano S, Vallespí MG, Bollati-Fogolín M. Comparative analysis reveals amino acids critical for anticancer activity of peptide CIGB-552. J Pept Sci 2017; 22:711-722. [PMID: 27933724 DOI: 10.1002/psc.2934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 12/29/2022]
Abstract
Because of resistance development by cancer cells against current anticancer drugs, there is a considerable interest in developing novel antitumor agents. We have previously demonstrated that CIGB-552, a novel cell-penetrating synthetic peptide, was effective in reducing tumor size and increasing lifespan in tumor-bearing mice. Studies of protein-peptide interactions have shown that COMMD1 protein is a major mediator of CIGB-552 antitumor activity. Furthermore, a typical serine-protease degradation pattern for CIGB-552 in BALB/c mice serum was identified, yielding peptides which differ from CIGB-552 in size and physical properties. In the present study, we show the results obtained from a comparative analysis between CIGB-552 and its main metabolites regarding physicochemical properties, cellular internalization, and their capability to elicit apoptosis in MCF-7 cells. None of the analyzed metabolites proved to be as effective as CIGB-552 in promoting apoptosis in MCF-7. Taking into account these results, it seemed important to examine their cell-penetrating capacity and interaction with COMMD1. We show that internalization, a lipid binding-dependent process, is impaired as well as metabolite-COMMD1 interaction, key component of the apoptotic mechanism. Altogether, our results suggest that features conferred by the amino acid sequence are decisive for CIGB-552 biological activity, turning it into the minimal functional unit. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Soledad Astrada
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Yolanda Gomez
- Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Exequiel Barrera
- Biomolecular Simulations, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Gonzalo Obal
- Protein Biophysics Unit, Institut Pasteur Montevideo, Montevideo, Uruguay.,Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, 11800, Montevideo, Uruguay
| | - Otto Pritsch
- Protein Biophysics Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Sergio Pantano
- Biomolecular Simulations, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Maribel G Vallespí
- Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | |
Collapse
|
30
|
D'Amico F, Skarmoutsou E, Lo LJ, Granata M, Trovato C, Rossi GA, Bellocchi C, Marchini M, Scorza R, Mazzarino MC, Keinan A. Association between rs2294020 in X-linked CCDC22 and susceptibility to autoimmune diseases with focus on systemic lupus erythematosus. Immunol Lett 2016; 181:58-62. [PMID: 27888057 DOI: 10.1016/j.imlet.2016.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases often share common susceptibility genes. Most genetic variants associated with susceptibility to systemic lupus erythematosus are also associated with other autoimmune diseases. The X-linked variant rs2294020 is positioned in exon 7 of the CCDC22 gene. The encoded protein functions in the regulation of NF-κB, a master regulator in immune response. The aim of this study is to investigate whether the rs2294020 polymorphism may be a general susceptibility factor for autoimmunity. We evaluated case-control association between the occurrence of rs2294020 and different autoimmune diseases, including new data for systemic lupus erythematosus and previous genome-wide association studies (GWAS) (though most did not analyse the X chromosome) of psoriasis, celiac disease, Crohn's disease, ulcerative colitis, multiple sclerosis, vitiligo, type-1 diabetes, rheumatoid arthritis, and ankylosing spondylitis. Cases from patients affected by amyotrophic lateral sclerosis and type-2 diabetes were also included in the study. We detected nominal significant associations of rs2294020 with systemic lupus erythematosus (additive model test: p=0.01), vitiligo (p=0.016), psoriasis (p=0.038), and in only one of two studies of multiple sclerosis (p=0.03). Our results suggest that rs2294020 is associated with the risk of several autoimmune diseases in European populations, specifically with diseases that present themselves, among else, in the skin.
Collapse
Affiliation(s)
- Fabio D'Amico
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Androne 83, I-95124 Catania, Italy.
| | - Evangelia Skarmoutsou
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Androne 83, I-95124 Catania, Italy
| | - Lauren J Lo
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Mariagrazia Granata
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Androne 83, I-95124 Catania, Italy
| | - Chiara Trovato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Androne 83, I-95124 Catania, Italy
| | - Giulio A Rossi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Androne 83, I-95124 Catania, Italy
| | - Chiara Bellocchi
- Referral Center for Systemic Autoimmune Diseases, University of Milan and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Via Pace 9, I-20122 Milan, Italy
| | - Maurizio Marchini
- Referral Center for Systemic Autoimmune Diseases, University of Milan and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Via Pace 9, I-20122 Milan, Italy
| | - Raffaella Scorza
- Referral Center for Systemic Autoimmune Diseases, University of Milan and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Via Pace 9, I-20122 Milan, Italy
| | - Maria Clorinda Mazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Androne 83, I-95124 Catania, Italy
| | - Alon Keinan
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Susnea I, Weiskirchen R. Trace metal imaging in diagnostic of hepatic metal disease. MASS SPECTROMETRY REVIEWS 2016; 35:666-686. [PMID: 25677057 DOI: 10.1002/mas.21454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
The liver is the most central organ and the largest gland of the body that influences and controls a variety of metabolic and catabolic processes. It produces inconceivable many essential proteins, is responsible for the recovery of various food components, degrades toxins, mediates the bile production, and is involved in the excretion of unwanted metabolites. Several of these anabolic or catabolic functions of the liver depend on trace elements. These are either integral part of enzymes, cofactors, or act as chemical catalysts. Therefore, a lack of trace elements can lead to organ failure or systemic illness. Conversely, excessive hepatic trace element deposition resulting from genetic disorders, intoxication, extensive dietary supply, or long-term parenteral nutrition may cause hepatic inflammation, fibrosis, cirrhosis, and even hepatocellular carcinoma. Although specific serum parameters currently allow rough assessment of metal deficit and excess, the precise quantification of hepatic metal content in liver is presently only possible by different titration or staining techniques of biopsy specimens. Recently, novel innovative metal imaging techniques were developed that are on the way to replace these traditional methods. In the present review, we summarize the function of different trace elements in liver health and disease and discuss the present knowledge on how quantitative biometal imaging techniques such as synchrotron X-ray fluorescence microscopy, secondary ion mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry enrich diagnostics in the detection and quantification of hepatic metal disorders. We will further discuss sample preparation, sensitivity, spatial resolution, specificity, quantification strategies, and potential future applications of metal bioimaging in experimental research and clinical daily routine. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:666-686, 2016.
Collapse
Affiliation(s)
- Iuliana Susnea
- Central Institute of Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074, Aachen, Germany.
| |
Collapse
|
32
|
Abstract
A major unanswered question in biology and medicine is the mechanism by which the product of the apolipoprotein E ε4 allele, the lipid-binding protein apolipoprotein E4 (ApoE4), plays a pivotal role in processes as disparate as Alzheimer's disease (AD; in which it is the single most important genetic risk factor), atherosclerotic cardiovascular disease, Lewy body dementia, hominid evolution, and inflammation. Using a combination of neural cell lines, skin fibroblasts from AD patients, and ApoE targeted replacement mouse brains, we show in the present report that ApoE4 undergoes nuclear translocation, binds double-stranded DNA with high affinity (low nanomolar), and functions as a transcription factor. Using chromatin immunoprecipitation and high-throughput DNA sequencing, our results indicate that the ApoE4 DNA binding sites include ∼1700 gene promoter regions. The genes associated with these promoters provide new insight into the mechanism by which AD risk is conferred by ApoE4, because they include genes associated with trophic support, programmed cell death, microtubule disassembly, synaptic function, aging, and insulin resistance, all processes that have been implicated in AD pathogenesis. Significance statement: This study shows for the first time that apolipoprotein E4 binds DNA with high affinity and that its binding sites include 1700 promoter regions that include genes associated with neurotrophins, programmed cell death, synaptic function, sirtuins and aging, and insulin resistance, all processes that have been implicated in Alzheimer's disease pathogenesis.
Collapse
|
33
|
Esposito E, Napolitano G, Pescatore A, Calculli G, Incoronato MR, Leonardi A, Ursini MV. COMMD7 as a novel NEMO interacting protein involved in the termination of NF-κB signaling. J Cell Physiol 2016; 231:152-61. [PMID: 26060140 DOI: 10.1002/jcp.25066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/05/2015] [Indexed: 11/08/2022]
Abstract
NEMO/IKKγ is the regulatory subunit of the IκB Kinase (IKK) complex, required for the activation of the NF-κB pathway, which is involved in a variety of key processes, including immunity, inflammation, differentiation, and cell survival. Termination of NF-κB activity on specific -κB responsive genes, which is crucial for the resolution of inflammatory responses, can be achieved by direct degradation of the chromatin-bound NF-κB subunit RelA/p65, a process mediated by a protein complex that contains Copper Metabolism Murr1 Domain 1 (COMMD1). In this study, we identify COMMD7, another member of the COMMDs protein family, as a novel NEMO-interacting protein. We show that COMMD7 exerts an inhibitory effect on NF-κB activation upon TNFα stimulation. COMMD7 interacts with COMMD1 and together they cooperate to down-regulate NF-κB activity. Accordingly, termination of TNFα-induced NF-κB activity on the -κB responsive gene, Icam1, is defective in cells silenced for COMMD7 expression. Furthermore, this impairment is not greatly increased when we silence the expression of both COMMD7 and COMMD1 indicating that the two proteins participate in the same pathway of termination of TNFα-induced NF-κB activity. Importantly, we have demonstrated that COMMD7's binding to NEMO does not interfere with the binding to the IKKs, and that the disruption of the IKK complex through the use of the NBP competitor impairs the termination of NF-κB activity. We propose that an intact IKK complex is required for the termination of NF-κB-dependent transcription and that COMMD7 acts as a scaffold in the IKK-mediated NF-κB termination.
Collapse
Affiliation(s)
- Elio Esposito
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | - Gennaro Napolitano
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | - Alessandra Pescatore
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | - Giuseppe Calculli
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | | | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, via S. Pansini 5, Naples, Italy
| | - Matilde Valeria Ursini
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy.,IRCCS SDN, Via E. Gianturco 113, Naples, Italy
| |
Collapse
|
34
|
Lappas M. Copper metabolism domain-containing 1 represses the mediators involved in the terminal effector pathways of human labour and delivery. Mol Hum Reprod 2016; 22:299-310. [PMID: 26733542 DOI: 10.1093/molehr/gav075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022] Open
Abstract
STUDY HYPOTHESIS Does Copper Metabolism MURR1 Domain 1 (COMMD1) play a role in regulating the mediators involved in the terminal processes of human labour and delivery? STUDY FINDING COMMD1 plays a critical role in the termination of nuclear factor-κB (NF-κB) activity and the control of pro-inflammatory and pro-labour mediators. WHAT IS KNOWN ALREADY Inflammation and infection are the biggest aetiological factors associated with preterm birth. NF-κB drives the transcription of pro-inflammatory mediators involved in the terminal effector pathways of human labour and delivery. In non-gestational tissues, COMMD1 is a negative regulator of NF-κB-induced inflammation. STUDY DESIGN, SAMPLES/MATERIALS, METHODS The mRNA and/or protein level of COMMD1 was assessed in myometrium (n = 8 per group) and fetal membranes (n = 8 per group) obtained from term non-labouring and labouring women at term, and fetal membranes (n = 8 per group) at preterm with and without histological chorioamnionitis. Primary human myometrial cells were used to determine the effect of pro-inflammatory mediators on COMMD1 level, and the effect of COMMD1 small interfering RNA (siRNA) on pro-labour mediators. Statistical significance was ascribed to a P < 0.05. MAIN RESULTS AND THE ROLE OF CHANCE COMMD1 expression was significantly decreased with spontaneous term labour in myometrium; in fetal membranes with histologically confirmed chorioamnionitis and in myometrial cells treated with pro-inflammatory cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α, the bacterial product fibroblast-stimulating lipopeptide and the viral double stranded RNA analogue polyinosinic polycytidilic acid. Loss-of-function studies revealed an increase in inflammation- and infection-induced TNF-α, IL-1α, IL-1β, IL-6, IL-8 and/or monocyte chemoattractant protein-1 mRNA abundance and/or release; and cyclo-oxygenase-2 mRNA level, release of prostaglandin (PG) F2α and mRNA level of the PGF2α receptor FP. In addition, siRNA knockdown of COMMD1 was associated with significantly increased NF-κB activation as evidenced by increased IL-1β-induced IκB-α protein degradation and NF-κB DNA binding activity. LIMITATIONS, REASONS FOR CAUTION The conclusions are based on in vitro experiments with cells isolated from myometrium. Animal models, however, will be required to establish whether COMMD1 activators can prevent spontaneous preterm birth in vivo. WIDER IMPLICATIONS OF THE FINDINGS The control of COMMD1 activation may provide an alternative therapeutic strategy for reducing the release of pro-labour mediators in spontaneous preterm labour. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS Associate Professor Martha Lappas is supported by a Career Development Fellowship from the National Health and Medical Research Council (NHMRC; grant no. 1047025). Additional funding was provided by the Medical Research Foundation for Women and Babies and the Mercy Research Foundation. The author has no conflict of interest.
Collapse
Affiliation(s)
- Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Level 4/163 Studley Road, Heidelberg 3084, Victoria, Australia Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
35
|
Wan C, Borgeson B, Phanse S, Tu F, Drew K, Clark G, Xiong X, Kagan O, Kwan J, Bezginov A, Chessman K, Pal S, Cromar G, Papoulas O, Ni Z, Boutz DR, Stoilova S, Havugimana PC, Guo X, Malty RH, Sarov M, Greenblatt J, Babu M, Derry WB, Tillier ER, Wallingford JB, Parkinson J, Marcotte EM, Emili A. Panorama of ancient metazoan macromolecular complexes. Nature 2015; 525:339-44. [PMID: 26344197 PMCID: PMC5036527 DOI: 10.1038/nature14877] [Citation(s) in RCA: 372] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/30/2015] [Indexed: 12/21/2022]
Abstract
Macromolecular complexes are essential to conserved biological processes, but their prevalence across animals is unclear. By combining extensive biochemical fractionation with quantitative mass spectrometry, we directly examined the composition of soluble multiprotein complexes among diverse metazoan models. Using an integrative approach, we then generated a draft conservation map consisting of >1 million putative high-confidence co-complex interactions for species with fully sequenced genomes that encompasses functional modules present broadly across all extant animals. Clustering revealed a spectrum of conservation, ranging from ancient Eukaryal assemblies likely serving cellular housekeeping roles for at least 1 billion years, ancestral complexes that have accrued contemporary components, and rarer metazoan innovations linked to multicellularity. We validated these projections by independent co-fractionation experiments in evolutionarily distant species, by affinity-purification and by functional analyses. The comprehensiveness, centrality and modularity of these reconstructed interactomes reflect their fundamental mechanistic significance and adaptive value to animal cell systems.
Collapse
Affiliation(s)
- Cuihong Wan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Blake Borgeson
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Sadhna Phanse
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Fan Tu
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Kevin Drew
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Greg Clark
- Department of Medical Biophysics, Toronto, Ontario M5G 1L7, Canada
| | - Xuejian Xiong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Olga Kagan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Julian Kwan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Kyle Chessman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Swati Pal
- Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Graham Cromar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Ophelia Papoulas
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Zuyao Ni
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Daniel R Boutz
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Snejana Stoilova
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Pierre C Havugimana
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Xinghua Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Ramy H Malty
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jack Greenblatt
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | - John B Wallingford
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - John Parkinson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Edward M Marcotte
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
36
|
Dill BD, Gierlinski M, Härtlova A, Arandilla AG, Guo M, Clarke RG, Trost M. Quantitative proteome analysis of temporally resolved phagosomes following uptake via key phagocytic receptors. Mol Cell Proteomics 2015; 14:1334-49. [PMID: 25755298 PMCID: PMC4424403 DOI: 10.1074/mcp.m114.044594] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/26/2015] [Indexed: 12/31/2022] Open
Abstract
Macrophages operate at the forefront of innate immunity and their discrimination of foreign versus "self" particles is critical for a number of responses including efficient pathogen killing, antigen presentation, and cytokine induction. In order to efficiently destroy the particles and detect potential threats, macrophages express an array of receptors to sense and phagocytose prey particles. In this study, we accurately quantified a proteomic time-course of isolated phagosomes from murine bone marrow-derived macrophages induced by particles conjugated to seven different ligands representing pathogen-associated molecular patterns, immune opsonins or apoptotic cell markers. We identified a clear functional differentiation over the three timepoints and detected subtle differences between certain ligand-phagosomes, indicating that triggering of receptors through a single ligand type has mild, but distinct, effects on phagosome proteome and function. Moreover, our data shows that uptake of phosphatidylserine-coated beads induces an active repression of NF-κB immune responses upon Toll-like receptor (TLR)-activation by recruitment of anti-inflammatory regulators to the phagosome. This data shows for the first time a systematic time-course analysis of bone marrow-derived macrophages phagosomes and how phagosome fate is regulated by the receptors triggered for phagocytosis.
Collapse
Affiliation(s)
- Brian D Dill
- From the ‡MRC Protein Phosphorylation and Ubiquitylation Unit
| | | | - Anetta Härtlova
- From the ‡MRC Protein Phosphorylation and Ubiquitylation Unit
| | | | - Manman Guo
- From the ‡MRC Protein Phosphorylation and Ubiquitylation Unit
| | - Rosemary G Clarke
- ¶Division of Cell Signalling and Immunology, University of Dundee, Scotland, DD1 5EH, United Kingdom
| | - Matthias Trost
- From the ‡MRC Protein Phosphorylation and Ubiquitylation Unit,
| |
Collapse
|
37
|
Galligan J, Martinez-Noël G, Arndt V, Hayes S, Chittenden TW, Harper JW, Howley PM. Proteomic analysis and identification of cellular interactors of the giant ubiquitin ligase HERC2. J Proteome Res 2015; 14:953-66. [PMID: 25476789 PMCID: PMC4324439 DOI: 10.1021/pr501005v] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Indexed: 01/10/2023]
Abstract
HERC2 is a large E3 ubiquitin ligase with multiple structural domains that has been implicated in an array of cellular processes. Mutations in HERC2 are linked to developmental delays and impairment caused by nervous system dysfunction, such as Angelman Syndrome and autism-spectrum disorders. However, HERC2 cellular activity and regulation remain poorly understood. We used a broad proteomic approach to survey the landscape of cellular proteins that interact with HERC2. We identified nearly 300 potential interactors, a subset of which we validated binding to HERC2. The potential HERC2 interactors included the eukaryotic translation initiation factor 3 complex, the intracellular transport COPI coatomer complex, the glycogen regulator phosphorylase kinase, beta-catenin, PI3 kinase, and proteins involved in fatty acid transport and iron homeostasis. Through a complex bioinformatic analysis of potential interactors, we linked HERC2 to cellular processes including intracellular protein trafficking and transport, metabolism of cellular energy, and protein translation. Given its size, multidomain structure, and association with various cellular activities, HERC2 may function as a scaffold to integrate protein complexes and bridge critical cellular pathways. This work provides a significant resource with which to interrogate HERC2 function more deeply and evaluate its contributions to mechanisms governing cellular homeostasis and disease.
Collapse
Affiliation(s)
- Jeffrey
T. Galligan
- Department
of Microbiology and Immunobiology, Harvard
Medical School, 77 Avenue
Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Gustavo Martinez-Noël
- Department
of Microbiology and Immunobiology, Harvard
Medical School, 77 Avenue
Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Verena Arndt
- Department
of Microbiology and Immunobiology, Harvard
Medical School, 77 Avenue
Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Sebastian Hayes
- Department
of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Thomas W. Chittenden
- Research
Computing Group, Harvard Medical School, 25 Shattuck Street #500, Boston, Massachusetts 02115, United States
- Complex Biological
Systems Alliance, 17 Peterson Road, North Andover, Massachusetts 01845, United States
| | - J. Wade Harper
- Department
of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Peter M. Howley
- Department
of Microbiology and Immunobiology, Harvard
Medical School, 77 Avenue
Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
38
|
Identification of putative fertility markers in seminal plasma of crossbred bulls through differential proteomics. Theriogenology 2014; 82:1254-62.e1. [DOI: 10.1016/j.theriogenology.2014.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 12/30/2022]
|
39
|
Minoia M, Boncoraglio A, Vinet J, Morelli FF, Brunsting JF, Poletti A, Krom S, Reits E, Kampinga HH, Carra S. BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch. Autophagy 2014; 10:1603-21. [PMID: 25046115 DOI: 10.4161/auto.29409] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic cells use autophagy and the ubiquitin-proteasome system as their major protein degradation pathways. Upon proteasomal impairment, cells switch to autophagy to ensure proper clearance of clients (the proteasome-to-autophagy switch). The HSPA8 and HSPA1A cochaperone BAG3 has been suggested to be involved in this switch. However, at present it is still unknown whether and to what extent BAG3 can indeed reroute proteasomal clients to the autophagosomal pathway. Here, we show that BAG3 induces the sequestration of ubiquitinated clients into cytoplasmic puncta colabeled with canonical autophagy linkers and markers. Following proteasome inhibition, BAG3 upregulation significantly contributes to the compensatory activation of autophagy and to the degradation of the (poly)ubiquitinated proteins. BAG3 binding to the ubiquitinated clients occurs through the BAG domain, in competition with BAG1, another BAG family member, that normally directs ubiquitinated clients to the proteasome. Therefore, we propose that following proteasome impairment, increasing the BAG3/BAG1 ratio ensures the "BAG-instructed proteasomal to autophagosomal switch and sorting" (BIPASS).
Collapse
Affiliation(s)
- Melania Minoia
- Department of Cell Biology; University Medical Center Groningen; University of Groningen; Groningen, The Netherlands
| | - Alessandra Boncoraglio
- Department of Cell Biology; University Medical Center Groningen; University of Groningen; Groningen, The Netherlands; Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB); Università degli Studi di Milano; Centro di Eccellenza sulle Patologie Neurodegenerative (CEND); Milano, Italy
| | - Jonathan Vinet
- Dipartimento di Scienze Biomediche; Metaboliche e Neuroscienze; Università degli Studi di Modena e Reggio Emilia; Modena, Italy
| | - Federica F Morelli
- Dipartimento di Scienze Biomediche; Metaboliche e Neuroscienze; Università degli Studi di Modena e Reggio Emilia; Modena, Italy
| | - Jeanette F Brunsting
- Department of Cell Biology; University Medical Center Groningen; University of Groningen; Groningen, The Netherlands
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB); Università degli Studi di Milano; Centro di Eccellenza sulle Patologie Neurodegenerative (CEND); Milano, Italy
| | - Sabine Krom
- Departments of Cell Biology and Histology; University of Amsterdam; Academic Medical Center; Amsterdam, The Netherlands
| | - Eric Reits
- Departments of Cell Biology and Histology; University of Amsterdam; Academic Medical Center; Amsterdam, The Netherlands
| | - Harm H Kampinga
- Department of Cell Biology; University Medical Center Groningen; University of Groningen; Groningen, The Netherlands
| | - Serena Carra
- Department of Cell Biology; University Medical Center Groningen; University of Groningen; Groningen, The Netherlands; Dipartimento di Scienze Biomediche; Metaboliche e Neuroscienze; Università degli Studi di Modena e Reggio Emilia; Modena, Italy
| |
Collapse
|
40
|
Vonk WIM, Kakkar V, Bartuzi P, Jaarsma D, Berger R, Hofker MH, Klomp LWJ, Wijmenga C, Kampinga HH, van de Sluis B. The Copper Metabolism MURR1 domain protein 1 (COMMD1) modulates the aggregation of misfolded protein species in a client-specific manner. PLoS One 2014; 9:e92408. [PMID: 24691167 PMCID: PMC3972230 DOI: 10.1371/journal.pone.0092408] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/21/2014] [Indexed: 01/27/2023] Open
Abstract
The Copper Metabolism MURR1 domain protein 1 (COMMD1) is a protein involved in multiple cellular pathways, including copper homeostasis, NF-κB and hypoxia signalling. Acting as a scaffold protein, COMMD1 mediates the levels, stability and proteolysis of its substrates (e.g. the copper-transporters ATP7B and ATP7A, RELA and HIF-1α). Recently, we established an interaction between the Cu/Zn superoxide dismutase 1 (SOD1) and COMMD1, resulting in a decreased maturation and activation of SOD1. Mutations in SOD1, associated with the progressive neurodegenerative disorder Amyotrophic Lateral Sclerosis (ALS), cause misfolding and aggregation of the mutant SOD1 (mSOD1) protein. Here, we identify COMMD1 as a novel regulator of misfolded protein aggregation as it enhances the formation of mSOD1 aggregates upon binding. Interestingly, COMMD1 co-localizes to the sites of mSOD1 inclusions and forms high molecular weight complexes in the presence of mSOD1. The effect of COMMD1 on protein aggregation is client-specific as, in contrast to mSOD1, COMMD1 decreases the abundance of mutant Parkin inclusions, associated with Parkinson’s disease. Aggregation of a polyglutamine-expanded Huntingtin, causative of Huntington’s disease, appears unaltered by COMMD1. Altogether, this study offers new research directions to expand our current knowledge on the mechanisms underlying aggregation disease pathologies.
Collapse
Affiliation(s)
- Willianne I. M. Vonk
- University Medical Center Utrecht, Department of Metabolic and Endocrine Diseases, and Netherlands Metabolomics Center, Utrecht, the Netherlands
- University Medical Center Utrecht, Complex Genetics Section, Utrecht, the Netherlands
| | - Vaishali Kakkar
- University of Groningen, University Medical Center Groningen, Department of Cell Biology, Groningen, the Netherlands
| | - Paulina Bartuzi
- University of Groningen, University Medical Center Groningen, Molecular Genetics, Groningen, the Netherlands
| | - Dick Jaarsma
- Erasmus Medical Center, Department of Neuroscience, Rotterdam, the Netherlands
| | - Ruud Berger
- University Medical Center Utrecht, Department of Metabolic and Endocrine Diseases, and Netherlands Metabolomics Center, Utrecht, the Netherlands
| | - Marten H. Hofker
- University of Groningen, University Medical Center Groningen, Molecular Genetics, Groningen, the Netherlands
| | - Leo W. J. Klomp
- University Medical Center Utrecht, Department of Metabolic and Endocrine Diseases, and Netherlands Metabolomics Center, Utrecht, the Netherlands
| | - Cisca Wijmenga
- University Medical Center Utrecht, Complex Genetics Section, Utrecht, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Harm H. Kampinga
- University of Groningen, University Medical Center Groningen, Department of Cell Biology, Groningen, the Netherlands
| | - Bart van de Sluis
- University of Groningen, University Medical Center Groningen, Molecular Genetics, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
41
|
Fedoseienko A, Bartuzi P, van de Sluis B. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis. Ann N Y Acad Sci 2014; 1314:6-14. [PMID: 24697840 DOI: 10.1111/nyas.12353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in humans and animals. At present, Wilson's disease is the best-described and best-studied copper-storage disorder in humans; it is caused by mutations in the ATP7B gene. In dogs, a mutation in the COMMD1 gene has been found to be associated with copper toxicosis. Using a liver-specific Commd1 knockout mouse, the biological role of Commd1 in copper homeostasis has been confirmed. Yet, the exact mechanism by which COMMD1 regulates copper homeostasis is still unknown. Here, we give an overview of the current knowledge and perspectives on the molecular function of COMMD1 in copper homeostasis.
Collapse
Affiliation(s)
- Alina Fedoseienko
- University of Groningen, University Medical Center Groningen, Molecular Genetics section, Groningen, the Netherlands
| | | | | |
Collapse
|
42
|
Hypertension-related, calcium-regulated gene (HCaRG/COMMD5) and kidney diseases: HCaRG accelerates tubular repair. J Nephrol 2014; 27:351-60. [PMID: 24515317 PMCID: PMC4104007 DOI: 10.1007/s40620-014-0054-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/21/2013] [Indexed: 12/22/2022]
Abstract
Hypertension is a risk factor for renal impairment. While treatment of hypertension provides significant renal protection, there is still an unmet need requiring further exploration of additional pathogenetic mechanisms. We have found that the hypertension-related, calcium-regulated gene (HCaRG/COMMD5) is involved in renal repair. HCaRG is a small intracellular protein of 225 amino acids and its gene expression is negatively regulated by extracellular calcium concentrations. HCaRG is mostly expressed in the kidneys, with higher levels found in the spontaneously hypertensive rat than in normotensive rats. In an acute kidney injury model, HCaRG expression decreases immediately after injury but increases above baseline during the repair phase. In cell cultures, HCaRG has been shown to facilitate differentiation and to inhibit cell proliferation via p21 transactivation through the p53-independent signaling pathway. Induction of p21 independently of p53 is also observed in transgenic mice overexpressing HCaRG during the repair phase after ischemia/reperfusion injury, resulting in their improved renal function and survival with rapid re-differentiation of proximal tubular epithelial cells. In addition, transgenic mice recover rapidly from the inflammatory burst most likely as a result of maintenance of the tubular epithelial barrier. Recent studies indicate that facilitating re-differentiation and cell cycle regulation in injured renal proximal tubules might be important functions of HCaRG. We have proposed that HCaRG is a component of differential genetic susceptibility to renal impairment in response to hypertension.
Collapse
|
43
|
|
44
|
Tuning NF-κB activity: a touch of COMMD proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2315-21. [PMID: 24080195 DOI: 10.1016/j.bbadis.2013.09.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/06/2013] [Accepted: 09/23/2013] [Indexed: 12/28/2022]
Abstract
NF-κB is an important regulator of immunity and inflammation, and its activation pathway has been studied extensively. The mechanisms that downregulate the activity of NF-κB have also received a lot of attention, particularly since its activity needs to be terminated to prevent chronic inflammation and subsequent tissue damage. The COMMD family has been identified as a new group of proteins involved in NF-κB termination. All ten COMMD members share the structurally conserved carboxy-terminal motif, the COMM domain, and are ubiquitously expressed. They seem to play distinct and non-redundant roles in various physiological processes, including NF-κB signaling. In this review, we describe the mechanisms and proteins involved in the termination of canonical NF-κB signaling, with a specific focus on the role of the COMMD family in the down-modulation of NF-κB.
Collapse
|
45
|
Liu YF, Swart M, Ke Y, Ly K, McDonald FJ. Functional interaction of COMMD3 and COMMD9 with the epithelial sodium channel. Am J Physiol Renal Physiol 2013; 305:F80-9. [PMID: 23637203 DOI: 10.1152/ajprenal.00158.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epithelial sodium channel (ENaC) plays an important role in controlling Na⁺ homeostasis, extracellular fluid volume, and blood pressure. Copper metabolism Murr1 domain-containing protein 1 (COMMD1) interacts with ENaC and downregulates ENaC. COMMD1 belongs to the COMMD family consisting of COMMD1-10, and all COMMD family members share a C-terminal COMM domain. Here, we report that COMMD2-10 also interacts with ENaC, and COMMD3 and COMMD9 were selected for further study. Amiloride-sensitive current in mammalian epithelia expressing ENaC was significantly reduced by COMMD3 or COMMD9, and ENaC expression at the cell surface was significantly decreased in the presence of COMMD3 or COMMD9. COMMD3 and COMMD9 retained their ability to reduce current when COMMD1 was knocked down. COMMD3 and COMMD9 were widely expressed in kidney and were colocalized with ENaC in renal collecting duct cells. These data suggest that COMMD3 and COMMD9 may be endogenous regulators of ENaC to regulate Na⁺ transport through altering ENaC cell surface expression.
Collapse
Affiliation(s)
- Yong Feng Liu
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
46
|
Starokadomskyy P, Gluck N, Li H, Chen B, Wallis M, Maine GN, Mao X, Zaidi IW, Hein MY, McDonald FJ, Lenzner S, Zecha A, Ropers HH, Kuss AW, McGaughran J, Gecz J, Burstein E. CCDC22 deficiency in humans blunts activation of proinflammatory NF-κB signaling. J Clin Invest 2013; 123:2244-56. [PMID: 23563313 DOI: 10.1172/jci66466] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 02/14/2013] [Indexed: 01/11/2023] Open
Abstract
NF-κB is a master regulator of inflammation and has been implicated in the pathogenesis of immune disorders and cancer. Its regulation involves a variety of steps, including the controlled degradation of inhibitory IκB proteins. In addition, the inactivation of DNA-bound NF-κB is essential for its regulation. This step requires a factor known as copper metabolism Murr1 domain-containing 1 (COMMD1), the prototype member of a conserved gene family. While COMMD proteins have been linked to the ubiquitination pathway, little else is known about other family members. Here we demonstrate that all COMMD proteins bind to CCDC22, a factor recently implicated in X-linked intellectual disability (XLID). We showed that an XLID-associated CCDC22 mutation decreased CCDC22 protein expression and impaired its binding to COMMD proteins. Moreover, some affected individuals displayed ectodermal dysplasia, a congenital condition that can result from developmental NF-κB blockade. Indeed, patient-derived cells demonstrated impaired NF-κB activation due to decreased IκB ubiquitination and degradation. In addition, we found that COMMD8 acted in conjunction with CCDC22 to direct the degradation of IκB proteins. Taken together, our results indicate that CCDC22 participates in NF-κB activation and that its deficiency leads to decreased IκB turnover in humans, highlighting an important regulatory component of this pathway.
Collapse
Affiliation(s)
- Petro Starokadomskyy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sheu WHH, Kuo JZ, Lee IT, Hung YJ, Lee WJ, Tsai HY, Wang JS, Goodarzi MO, Klein R, Klein BEK, Ipp E, Lin SY, Guo X, Hsieh CH, Taylor KD, Fu CP, Rotter JI, Chen YDI. Genome-wide association study in a Chinese population with diabetic retinopathy. Hum Mol Genet 2013; 22:3165-73. [PMID: 23562823 DOI: 10.1093/hmg/ddt161] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of preventable blindness in adults. To identify genetic contributions in DR, we studied 2071 type 2 diabetics. We first conducted a genome-wide association study of 1007 individuals, comparing 570 subjects with ≥8 years duration without DR (controls) with 437 PDR (cases) in the Chinese discovery cohort. Cases and controls were similar for HbA1c, diabetes duration and body mass index. Association analysis with imputed data identified three novel loci: TBC1D4-COMMD6-UCHL3 (rs9565164, P = 1.3 × 10(-7)), LRP2-BBS5 (rs1399634, P = 2.0 × 10(-6)) and ARL4C-SH3BP4 (rs2380261, P = 2.1 × 10(-6)). Analysis of an independent cohort of 585 Hispanics diabetics with or without DR though did not confirm these signals. These genes are still of particular interest because they are involved in insulin regulation, inflammation, lipid signaling and apoptosis pathways, all of which are possibly involved with DR. Our finding nominates possible novel loci as potential DR susceptibility genes in the Chinese that are independent of the level of HbA1c and duration of diabetes and may provide insight into the pathophysiology of DR.
Collapse
Affiliation(s)
- Wayne H-H Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Smith L, Litman P, Liedtke CM. COMMD1 interacts with the COOH terminus of NKCC1 in Calu-3 airway epithelial cells to modulate NKCC1 ubiquitination. Am J Physiol Cell Physiol 2013; 305:C133-46. [PMID: 23515529 DOI: 10.1152/ajpcell.00394.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mice deficient in Na-K-2Cl cotransporter (NKCC1) have been generated by targeted disruption of the gene encoding NKCC1 involving the carboxy terminus (CT-NKCC1) but not the amino terminus. We hypothesize that the resulting physiological defects are due to loss of proteins interacting with CT-NKCC1. Using a yeast two-hybrid approach, adaptor protein COMMD1 was found to bind to CT-NKCC1 (aa 1,040-1,212). Binding was verified in a yeast-independent system using GST-COMMD1 and myc-CT-NKCC1. Truncated COMMD1 and CT-NKCC1 peptides were used in binding assays to identify the site of interaction. The results demonstrate concentration-dependent binding of COMMD1 (aa 1-47) to CT-NKCC1 (aa 1,040-1,134). Endogenous COMMD1 was detected in pull downs using recombinant FLAG-CT-NKCC1; this co-pull down was blocked by COMMD1 (aa 1-47). CT-NKCC1 (aa 1,040-1,137) decreased basolateral membrane expression of NKCC1, and COMMD1 (aa 1-47) increased NKCC1 membrane expression. Downregulation of COMMD1 using silencing (si)RNA led to a transient loss of endogenous COMMD1 but did not affect activation of NKCC1 by hyperosmotic sucrose. Hyperosmolarity caused a transient increase in NKCC1 membrane expression, indicating regulated trafficking of NKCC1; downregulation of COMMD1 using siRNA reduced baseline (unstimulated) NKCC1 expression and blunted a transient elevation in NKCC1 membrane expression caused by hyperosmolarity. Constitutive downregulation of COMMD1 in HT29 engineered cells exhibited loss of COMMD1 and decreased NKCC1 membrane expression with no effect on activation of NKCC1. Loss of COMMD1 in Calu-3 cells and in HT29 cells led to reduced ubiquitinated NKCC1. The results indicate a role for COMMD1 in the regulation of NKCC1 membrane expression and ubiquitination.
Collapse
Affiliation(s)
- Laura Smith
- Willard Alan Bernbaum, Center for Cystic Fibrosis Research, Departments of Pediatrics at Rainbow Babies and Children Hospital and Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | |
Collapse
|
49
|
The Antitumor Peptide CIGB-552 Increases COMMD1 and Inhibits Growth of Human Lung Cancer Cells. JOURNAL OF AMINO ACIDS 2013; 2013:251398. [PMID: 23401744 PMCID: PMC3562689 DOI: 10.1155/2013/251398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 11/17/2022]
Abstract
We have demonstrated that the peptide L-2 designed from an alanine scanning of the Limulus-derived LALF32-51 region is a potential candidate for the anticancer therapy and its cell-penetrating capacity is an associated useful property. By the modification in the primary structure of L-2, a second-generation peptide (CIGB-552) was developed. However, the molecular mechanism underlying its cytotoxic activity remains partially unknown. In this study, it was shown that CIGB-552 increases the levels of COMMD1, a protein involved in copper homeostasis, sodium transport, and the NF-κB signaling pathway. We found that CIGB-552 induces ubiquitination of RelA and inhibits the antiapoptotic activity regulated by NF-κB, whereas the knockdown of COMMD1 blocks this effect. We also found that CIGB-552 decreases the antioxidant capacity and induces the peroxidation of proteins and lipids in the tumor cells. Altogether, this study provides new insights into the mechanism of action of the peptide CIGB-552, which could be relevant in the design of future anticancer therapies.
Collapse
|
50
|
Fry RS, Spears JW, Lloyd KE, O'Nan AT, Ashwell MS. Effect of dietary copper and breed on gene products involved in copper acquisition, distribution, and use in Angus and Simmental cows and fetuses. J Anim Sci 2012; 91:861-71. [PMID: 23148247 DOI: 10.2527/jas.2011-3888] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Copper (Cu) deficiency is a widespread problem in cattle across the United States and breed differences in Cu metabolism may contribute to this issue. Intracellular Cu is tightly regulated by transport and chaperone proteins, and to date, these mechanisms have not been elucidated to address breed differences in Cu metabolism, nor have these proteins been characterized in bovine fetal liver. Mature, pregnant Angus (n = 8) and Simmental (n = 8) cows (∼4 mo into gestation) were used in a 2 × 2 factorial arrangement of treatments. All cows were bred to Angus sires resulting in an Angus vs. Simmental × Angus comparison for fetuses. Cows were randomly assigned to corn silage-based diets that were either adequate (+Cu) or deficient (-Cu; 6.6 mg Cu/kg DM) in Cu. Diets were individually fed for 112 d. At the end of the study, cows were harvested to collect duodenal mucosa scrapes, liver samples, and fetal liver samples for mineral analysis and also for mRNA and protein analysis of Cu transport and chaperone proteins. Placentomes were also obtained for mineral analysis. Plasma Cu and liver Cu were affected by Cu, breed, and Cu × breed. Both of these Cu indices were less (P ≤ 0.05) in-Cu Simmentals (-CuS) than in-Cu Angus (- uA), but were similar among +Cu Simmental (+CuS) and +Cu Angus cows (+CuA). Duodenal Cu was less (P = 0.01) in-Cu vs. +Cu cows. Placentome Cu was less (P = 0.003) in-Cu vs. +Cu cows, and was also less (P = 0.03) in Simmentals vs. Angus. Fetal liver Cu was less (P = 0.002) in-Cu vs. +Cu fetuses, and was also less (P = 0.05) in Simmental × Angus vs. Angus. Abundance of Cu transporter1 (CTR1) protein and transcripts for Cu transporters and chaperones were not affected by Cu or breed in liver and were not affected by Cu in the intestine. Duodenal Ctr1 was less (P = 0.04) and CTR1 tended (P = 0.10) to be less in Simmentals vs. Angus. Expression of Atp7a tended (P = 0.08) to be less in Simmentals than in Angus. In fetal liver, expression of antioxidant 1 (Atox1), cytochrome c oxidase assembly protein 17 (Cox17), and Cu metabolism MURR1 domain 1 (Commd1) were up-regulated (P ≤ 0.05) in-Cu vs. +Cu fetuses. In conclusion, less expression of duodenal Ctr1 and a tendency for less CTR1 (P = 0.10) and Atp7a (P = 0.08) suggest that Simmentals have a lesser ability to absorb and utilize dietary Cu, and may explain why Simmentals are more prone to Cu deficiency than Angus. Up-regulation of fetal liver Atox1, Cox17, and Commd1 in-Cu fetuses may reflect the great Cu demand by the fetus.
Collapse
Affiliation(s)
- R S Fry
- Department of Animal Science, North Carolina State University, Raleigh 27695, USA
| | | | | | | | | |
Collapse
|