1
|
Lin S, Qiu X, Fu X, Zhang S, Tang C, Kuang J, Guan H, Lai S. SNRK modulates mTOR-autophagy pathway for liver lipid homeostasis in MAFLD. Mol Ther 2025; 33:279-296. [PMID: 39521960 PMCID: PMC11764968 DOI: 10.1016/j.ymthe.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolism-related fatty liver disease (MAFLD) is associated with abnormal fat accumulation in the liver. The exact mechanism underlying the occurrence and development of MAFLD remains to be elucidated. Here, we discovered that the expression of sucrose non-fermenting-related kinase (SNRK) is elevated in the liver of the MAFLD population. Mice deficient in SNRK exhibited damage to fatty acid oxidation and persistent accumulation of lipids in the liver. Pharmacological inhibition of the mTOR pathway in SNRK-deficient mice restored autophagy and improved lipid accumulation. In terms of mechanism, we observed that SNRK binds to the raptor component of mTOR complex 1, promoting fatty acid oxidation in the liver by activating autophagy. Overexpression of SNRK in high-fat diet-induced obese mice restored autophagy and ameliorated lipid accumulation. Notably, we also demonstrated that overexpression of SNRK significantly enhanced fatty acid oxidation in the mouse liver. We further confirmed that SNRK is essential for the liver to regulate autophagy and fatty acid oxidation. These findings underscore the importance of the potential of SNRK in the treatment of MAFLD.
Collapse
Affiliation(s)
- Shan Lin
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Xiaoying Fu
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China
| | - Shuting Zhang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Jian Kuang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China.
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China.
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China.
| |
Collapse
|
2
|
de Oliveira LP, de Jesus Pereira JP, Navarro BV, Martins MCM, Riaño-Pachón DM, Buckeridge MS. Bioinformatic insights into sugar signaling pathways in sugarcane growth. Sci Rep 2024; 14:24935. [PMID: 39438542 PMCID: PMC11496834 DOI: 10.1038/s41598-024-75220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
The SnRK1, hexokinase, and TORC1 (TOR, LST8, RAPTOR) are three pivotal kinases at the core of sugar level sensing, significantly impacting plant metabolism and development. We retrieved and analyzed protein sequences of these three kinase pathways from seven sugarcane transcriptome and genome datasets, identifying protein domains, phylogenetic relationships, sequence ancestry, and in silico expression levels. Additionally, we predicted HXK subcellular localization and assessed its enzymatic activity in sugarcane leaves and culms along development in the field. We retrieved 11 TOR, 23 RAPTOR, 55 LST8, 95 SnRK1α, 98 HXK, and 14 HXK-like putative full-length sequences containing all the conserved domains. Most of these transcripts seem to share a common origin with the three ancestral species of sugarcane: Saccharum officinarum, Saccharum spontaneum, and Saccharum barberi. We accessed the expression profile of sequences from one sugarcane transcriptome. We found the highest enzymatic activity of HXK in culms in the first month, which, at this stage, provides carbon (sucrose) and nitrogen (amino acids) for initial plant development. Our approach places novel sugar sensing sequences that work as a guideline for further research into the underlying signaling mechanisms and biotechnology applications in sugarcane.
Collapse
Affiliation(s)
- Lauana Pereira de Oliveira
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência E Tecnologia Do Bioetanol, São Paulo, Brazil
| | - João Pedro de Jesus Pereira
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência E Tecnologia Do Bioetanol, São Paulo, Brazil
| | - Bruno Viana Navarro
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência E Tecnologia Do Bioetanol, São Paulo, Brazil
| | - Marina C M Martins
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência E Tecnologia Do Bioetanol, São Paulo, Brazil
| | - Diego Mauricio Riaño-Pachón
- Laboratório de Biologia Computacional, Evolutiva e de Sistemas, Centro de Energia Nuclear Na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
- Instituto Nacional de Ciência E Tecnologia Do Bioetanol, São Paulo, Brazil
| | - Marcos Silveira Buckeridge
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
- Instituto Nacional de Ciência E Tecnologia Do Bioetanol, São Paulo, Brazil.
| |
Collapse
|
3
|
Kaur H, Kaur G, Sirhindi G, Bhardwaj R, Alsahli AA, Ahmad P. Exploring the role of 28-homobrassinolide in regulation of temperature induced clastogenic aberrations and sugar metabolism of Brassica juncea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108893. [PMID: 39018776 DOI: 10.1016/j.plaphy.2024.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
The present research primarily focuses on Brassica juncea's physiological and cytological responses to low and high temperature stress at 4 °C and 44 °C respectively, along with elucidating the protective role of 28-Homobrassinolide (28-homoBL). Cytological investigations performed in floral buds of Brassica juncea L. under temperature (24, 4, 44 °C) stress conditions depict the presence of some abnormalities associated with cytomixis such as chromosome stickiness or agglutination, pycnotic nature of chromatin, irregularities in spindle formation, disoriented chromatins, and non-synchronous chromatin material condensation in Brassicaceae family that subsisted at diploid level (2n = 36). Spindle abnormalities produce various size pollen grains such as sporads micronuclei at some stages of microsporogenesis, polyads, triads, dyads that irrupted the productiveness of pollen grains. Furthermore, sugars play an imperative role in protecting plants under stress besides being energy sources. Therefore, the present study revealed accumulation of total soluble sugars (TSS), with 28-homoBL treatment which pinpoints protective role of 28-homoBL under temperature stress. Sugar profiling was done by using high-performance liquid chromatography (HPLC) which helped in analyzing different sugars both quantitatively and qualitatively under 28-homoBL and temperature stress conditions. The results indicate that the 28-homoBL treatment substantially enhances plant tolerance to heat stress, as evident by higher mitotic indices, fewer chromosomal abnormalities, and significantly more sugar accumulation. The findings of the study acknowledge the potential of 28-homoBL in inducing temperature stress tolerance in B. juncea along with improving the metabolic stability thereby implying application of 28-homoBL in crop strengthening under variable temperature conditions.
Collapse
Affiliation(s)
- Harpreet Kaur
- P.G. Department of Botany, Khalsa College, Amritsar, 143001, Punjab, India; Department of Botany, Punjabi University, Patiala, 147002, Punjab, India.
| | - Gurvarinder Kaur
- Department of Botany, Punjabi University, Patiala, 147002, Punjab, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, 147002, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical & Environmental Sciences, GNDU, Amritsar, India
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
4
|
Asad MAU, Yan Z, Zhou L, Guan X, Cheng F. How abiotic stresses trigger sugar signaling to modulate leaf senescence? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108650. [PMID: 38653095 DOI: 10.1016/j.plaphy.2024.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Plants have evolved the adaptive capacity to mitigate the negative effect of external adversities at chemical, molecular, cellular, and physiological levels. This capacity is conferred by triggering the coordinated action of internal regulatory factors, in which sugars play an essential role in the regulating chloroplast degradation and leaf senescence under various stresses. In this review, we summarize the recent findings on the senescent-associated changes in carbohydrate metabolism and its relation to chlorophyl degradation, oxidative damage, photosynthesis inhibition, programmed cell death (PCD), and sink-source relation as affected by abiotic stresses. The action of sugar signaling in regulating the initiation and progression of leaf senescence under abiotic stresses involves interactions with various plant hormones, reactive oxygen species (ROS) burst, and protein kinases. This discussion aims to elucidate the complex regulatory network and molecular mechanisms that underline sugar-induced leaf senescence in response to various abiotic stresses. The imperative role of sugar signaling in regulating plant stress responses potentially enables the production of crop plants with modified sugar metabolism. This, in turn, may facilitate the engineering of plants with improved stress responses, optimal life span and higher yield achievement.
Collapse
Affiliation(s)
- Muhmmad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhang Yan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Collaborative Innovation Centre for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, China.
| |
Collapse
|
5
|
Rawat SS, Laxmi A. Sugar signals pedal the cell cycle! FRONTIERS IN PLANT SCIENCE 2024; 15:1354561. [PMID: 38562561 PMCID: PMC10982403 DOI: 10.3389/fpls.2024.1354561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.
Collapse
Affiliation(s)
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
6
|
Bortlik J, Lühle J, Alseekh S, Weiste C, Fernie AR, Dröge-Laser W, Börnke F. DOMAIN OF UNKNOWN FUNCTION581-9 negatively regulates SnRK1 kinase activity. PLANT PHYSIOLOGY 2024; 194:1853-1869. [PMID: 37936321 PMCID: PMC10904321 DOI: 10.1093/plphys/kiad594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023]
Abstract
In plants, sucrose nonfermenting 1 (SNF1)-related protein kinase 1 (SnRK1) is a key energy sensor that orchestrates large-scale transcriptional reprograming to maintain cellular homeostasis under energy deficit. SnRK1 activity is under tight negative control, although the exact mechanisms leading to its activation are not well understood. We show that the Arabidopsis (Arabidopsis thaliana) DOMAIN OF UNKNOWN FUNCTION (DUF581) protein DUF581-9/FCS-like zinc finger 3 binds to the catalytic SnRK1.1 α subunit (KIN10) to inhibit its activation by geminivirus rep-interacting kinase (GRIK)-dependent T-loop phosphorylation. Overexpression of DUF581-9 in Arabidopsis dampens SnRK1 signaling and interferes with adaptation to dark-induced starvation. The presence of DUF581-9 significantly reduced SnRK1 activity in protoplasts and in vitro. This was accompanied by a reduction in T175 T-loop phosphorylation and also diminished KIN10 auto-phosphorylation. Furthermore, DUF581-9 reduced binding of the upstream activating kinase GRIK2 to KIN10, explaining the reduced KIN10 T-loop phosphorylation. Ectopically expressed DUF581-9 protein was rapidly turned over by the proteasome when Arabidopsis plants were subjected to starvation treatment, likely releasing its inhibitory activity on the SnRK1 complex. Taken together, our results support a model in which DUF581-9 negatively regulates SnRK1 activity under energy sufficient conditions. Turnover of the protein provides a rapid way for SnRK1 activation under energy deficit without the need of de novo protein synthesis.
Collapse
Affiliation(s)
- Jennifer Bortlik
- Plant Metabolism Group, Department of Plant Adaptation, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
| | - Jost Lühle
- Plant Metabolism Group, Department of Plant Adaptation, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
| | - Saleh Alseekh
- Department Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institut, Biozentrum, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany
| | - Alisdair R Fernie
- Department Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | | | - Frederik Börnke
- Plant Metabolism Group, Department of Plant Adaptation, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
7
|
Li C, Zhang H, Qi Y, Zhao Y, Duan C, Wang Y, Meng Z, Zhang Q. Genome-wide identification of PYL/PYR-PP2C (A)-SnRK2 genes in Eutrema and their co-expression analysis in response to ABA and abiotic stresses. Int J Biol Macromol 2023; 253:126701. [PMID: 37673165 DOI: 10.1016/j.ijbiomac.2023.126701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
ABA signaling core components PYR/PYL, group A PP2C and SnRK2 play important roles in various environmental stress responses of plants. This study identified 14 PYR/PYL, 9 PP2C (A), and 10 SnRK2 genes from halophytic Eutrema. Phylogenetic analysis showed 4 EsPYR/PYL, 4 EsPP2C (A) and 3 EsSnRK2 subfamilies characterized, which was supported by their gene structures and protein motifs. Large-scale segmental duplication event was demonstrated to be a major contributor to expansion of the EsPYL-PP2C (A)-SnRK2 gene families. Synteny relationship analysis revealed more orthologous PYL-PP2C (A)-SnRK2 gene pairs located in collinear blocks between Eutrema and Brassica than that between Eutrema and Arabidopsis. RNA-seq and qRT-PCR revealed EsABI1, EsABI2 and EsHAL2 showed a significantly up-regulated expression in leaves and roots in response to ABA, NaCl or cold stress. Three markedly co-expression modules of ABA/R-brown, NaCl/L-lightsteelblue1 and Cold/R-lightgreen were uncovered to contain EsPYL-PP2C (A)-SnRK2 genes by WGCNA analysis. GO and KEGG analysis indicated that the genes of ABA/R-brown module containing EsHAB1, EsHAI2 and EsSnRK2.6 were enriched in proteasome pathway. Further, EsHAI2-OE transgenic Arabidopsis lines showed significantly enhanced seeds germination and seedlings growth. This work provides a new insight for elucidating potential molecular functions of PYL-PP2C (A)-SnRK2 responding to ABA and abiotic stresses.
Collapse
Affiliation(s)
- Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hengyang Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China; Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuting Qi
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yaoyao Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China; Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Chonghao Duan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China; Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yujiao Wang
- Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Zhe Meng
- Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China.
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China; Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China.
| |
Collapse
|
8
|
Asim M, Zhang Y, Sun Y, Guo M, Khan R, Wang XL, Hussain Q, Shi Y. Leaf senescence attributes: the novel and emerging role of sugars as signaling molecules and the overlap of sugars and hormones signaling nodes. Crit Rev Biotechnol 2023; 43:1092-1110. [PMID: 35968918 DOI: 10.1080/07388551.2022.2094215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Sugars are the primary products of photosynthesis and play multiple roles in plants. Although sugars are usually considered to be the building blocks of energy storage and carbon transport molecules, they have also gradually come to be acknowledged as signaling molecules that can initiate senescence. Senescence is an active and essential process that occurs at the last developmental stage and corresponds to programmed degradation of: cells, tissues, organs, and entire organisms. It is a complex process involving: numerous biochemical changes, transporters, genes, and transcription factors. The process is controlled by multiple developmental signals, among which sugar signals are considered to play a vital role; however, the regulatory pathways involved are not fully understood. The dynamic mechanistic framework of sugar accumulation has an inconsistent effect on senescence through the sugar signaling pathway. Key metabolizing enzymes produce different sugar signals in response to the onset of senescence. Diverse sugar signal transduction pathways and a variety of sugar sensors are involved in controlling leaf senescence. This review highlights the processes underlying initiation of sugar signaling and crosstalk between sugars and hormones signal transduction pathways affecting leaf senescence. This summary of the state of current knowledge across different plants aids in filling knowledge gaps and raises key questions that remain to be answered with respect to regulation of leaf senescence by sugar signaling pathways.
Collapse
Affiliation(s)
- Muhammad Asim
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Yan Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Yanguo Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Mei Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Xiao Lin Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yi Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| |
Collapse
|
9
|
Zhou Z, Zhang Z, van der Putten PEL, Fabre D, Dingkuhn M, Struik PC, Yin X. Triose phosphate utilization in leaves is modulated by whole-plant sink-source ratios and nitrogen budgets in rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6692-6707. [PMID: 37642225 PMCID: PMC10662237 DOI: 10.1093/jxb/erad329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Triose phosphate utilization (TPU) is a biochemical process indicating carbon sink-source (im)balance within leaves. When TPU limits leaf photosynthesis, photorespiration-associated amino acid exports probably provide an additional carbon outlet and increase leaf CO2 uptake. However, whether TPU is modulated by whole-plant sink-source relations and nitrogen (N) budgets remains unclear. We address this question by model analyses of gas-exchange data measured on leaves at three growth stages of rice plants grown at two N levels. Sink-source ratio was manipulated by panicle pruning, by using yellower-leaf variant genotypes, and by measuring photosynthesis on adaxial and abaxial leaf sides. Across all these treatments, higher leaf N content resulted in the occurrence of TPU limitation at lower intercellular CO2 concentrations. Photorespiration-associated amino acid export was greater in high-N leaves, but was smaller in yellower-leaf genotypes, panicle-pruned plants, and for abaxial measurement. The feedback inhibition of panicle pruning on rates of TPU was not always observed, presumably because panicle pruning blocked N remobilization from leaves to grains and the increased leaf N content masked feedback inhibition. The leaf-level TPU limitation was thus modulated by whole-plant sink-source relations and N budgets during rice grain filling, suggesting a close link between within-leaf and whole-plant sink limitations.
Collapse
Affiliation(s)
- Zhenxiang Zhou
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Zichang Zhang
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Peter E L van der Putten
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Denis Fabre
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Michael Dingkuhn
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| |
Collapse
|
10
|
Li KL, Xue H, Tang RJ, Luan S. TORC pathway intersects with a calcium sensor kinase network to regulate potassium sensing in Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2316011120. [PMID: 37967217 PMCID: PMC10665801 DOI: 10.1073/pnas.2316011120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 11/17/2023] Open
Abstract
Potassium (K) is an essential macronutrient for plant growth, and its availability in the soil varies widely, requiring plants to respond and adapt to the changing K nutrient status. We show here that plant growth rate is closely correlated with K status in the medium, and this K-dependent growth is mediated by the highly conserved nutrient sensor, target of rapamycin (TOR). Further study connected the TOR complex (TORC) pathway with a low-K response signaling network consisting of calcineurin B-like proteins (CBL) and CBL-interacting kinases (CIPK). Under high K conditions, TORC is rapidly activated and shut down the CBL-CIPK low-K response pathway through regulatory-associated protein of TOR (RAPTOR)-CIPK interaction. In contrast, low-K status activates CBL-CIPK modules that in turn inhibit TORC by phosphorylating RAPTOR, leading to dissociation and thus inactivation of the TORC. The reciprocal regulation of the TORC and CBL-CIPK modules orchestrates plant response and adaptation to K nutrient status in the environment.
Collapse
Affiliation(s)
- Kun-Lun Li
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Hui Xue
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| |
Collapse
|
11
|
Wang G, Liu X, Gan SS. The ABA-AtNAP-SAG113 PP2C module regulates leaf senescence by dephoshorylating SAG114 SnRK3.25 in Arabidopsis. MOLECULAR HORTICULTURE 2023; 3:22. [PMID: 37899482 PMCID: PMC10614403 DOI: 10.1186/s43897-023-00072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
We previously reported that ABA inhibits stomatal closure through AtNAP-SAG113 PP2C regulatory module during leaf senescence. The mechanism by which this module exerts its function is unknown. Here we report the identification and functional analysis of SAG114, a direct target of the regulatory module. SAG114 encodes SnRK3.25. Both bimolecular fluorescence complementation (BiFC) and yeast two-hybrid assays show that SAG113 PP2C physically interacts with SAG114 SnRK3.25. Biochemically the SAG113 PP2C dephosphorylates SAG114 in vitro and in planta. RT-PCR and GUS reporter analyses show that SAG114 is specifically expressed in senescing leaves in Arabidopsis. Functionally, the SAG114 knockout mutant plants have a significantly bigger stomatal aperture and a much faster water loss rate in senescing leaves than those of wild type, and display a precocious senescence phenotype. The premature senescence phenotype of sag114 is epistatic to sag113 (that exhibits a remarkable delay in leaf senescence) because the sag113 sag114 double mutant plants show an early leaf senescence phenotype, similar to that of sag114. These results not only demonstrate that the ABA-AtNAP-SAG113 PP2C regulatory module controls leaf longevity by dephosphorylating SAG114 kinase, but also reveal the involvement of the SnRK3 family gene in stomatal movement and water loss during leaf senescence.
Collapse
Affiliation(s)
- Gaopeng Wang
- Present Address: Shanghai Institute of Technology, Shanghai, 201418, China
| | - Xingwang Liu
- Present Address: Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Su-Sheng Gan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Han X, Yang R, Zhang L, Wei Q, Zhang Y, Wang Y, Shi Y. A Review of Potato Salt Tolerance. Int J Mol Sci 2023; 24:10726. [PMID: 37445900 DOI: 10.3390/ijms241310726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Potato is the world's fourth largest food crop. Due to limited arable land and an ever-increasing demand for food from a growing population, it is critical to increase crop yields on existing acreage. Soil salinization is an increasing problem that dramatically impacts crop yields and restricts the growing area of potato. One possible solution to this problem is the development of salt-tolerant transgenic potato cultivars. In this work, we review the current potato planting distribution and the ways in which it overlaps with salinized land, in addition to covering the development and utilization of potato salt-tolerant cultivars. We also provide an overview of the current progress toward identifying potato salt tolerance genes and how they may be deployed to overcome the current challenges facing potato growers.
Collapse
Affiliation(s)
- Xue Han
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ruijie Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Qiaorong Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yazhi Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ying Shi
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
13
|
Liu J, Nie B, Yu B, Xu F, Zhang Q, Wang Y, Xu W. Rice ubiquitin-conjugating enzyme OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37102249 PMCID: PMC10363768 DOI: 10.1111/pbi.14059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/28/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Ubc13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity still remain largely unknown. Here, we used molecular biological, pathological, biochemical, and genetic approaches to evaluate the roles of rice OsUbc13 in response to pathogens. The OsUbc13-RNA interference (RNAi) lines with lesion mimic phenotypes displayed a significant increase in the accumulation of flg22- and chitin-induced reactive oxygen species, and in defence-related genes expression or hormones as well as resistance to Magnaporthe oryzae and Xanthomonas oryzae pv oryzae. Strikingly, OsUbc13 directly interacts with OsSnRK1a, which is the α catalytic subunit of SnRK1 (sucrose non-fermenting-1-related protein kinase-1) and acts as a positive regulator of broad-spectrum disease resistance in rice. In the OsUbc13-RNAi plants, although the protein level of OsSnRK1a did not change, its activity and ABA sensitivity were obviously enhanced, and the K63-linked polyubiquitination was weaker than that of wild-type Dongjin (DJ). Overexpression of the deubiquitinase-encoding gene OsOTUB1.1 produced similar effects with inhibition of OsUbc13 in affecting immunity responses, M. oryzae resistance, OsSnRK1a ubiquitination, and OsSnRK1a activity. Furthermore, re-interfering with OsSnRK1a in one OsUbc13-RNAi line (Ri-3) partially restored its M. oryzae resistance to a level between those of Ri-3 and DJ. Our data demonstrate OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Nie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Boling Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Zhang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Wang G, Guan SL, Zhu N, Li Q, Chong X, Wang T, Xuan J. Comprehensive Genomic Analysis of SnRK in Rosaceae and Expression Analysis of RoSnRK2 in Response to Abiotic Stress in Rubus occidentalis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091784. [PMID: 37176842 PMCID: PMC10181103 DOI: 10.3390/plants12091784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
The sucrose nonfermenting 1-related protein kinase (SnRK) plays an important role in responding to abiotic stresses by phosphorylating the target protein to regulate various signaling pathways. However, little is known about the characteristics, evolutionary history, and expression patterns of the SnRK family in black raspberry (Rubus occidentalis L.) or other Rosaceae family species. In this study, a total of 209 SnRK genes were identified in 7 Rosaceae species and divided into 3 subfamilies (SnRK1, SnRK2, and SnRK3) based on phylogenetic analysis and specific motifs. Whole-genome duplication (WGD) and dispersed duplication (DSD) were considered to be major contributions to the SnRK family expansion. Purifying selection was the primary driving force in the SnRK family evolution. The spatial expression indicated that the RoSnRK genes may play important roles in different tissues. In addition, the expression models of 5 RoSnRK2 genes in response to abiotic stresses were detected by qRT-PCR. The proteins encoded by RoSnRK2 genes localize to the cytoplasm and nucleus in order to perform their respective functions. Taken together, this study provided an analysis of the SnRK gene family expansion and evolution, and contributed to the current knowledge of the function of 5 RoSnRK2 genes, which in turn expanded understanding of the molecular mechanisms of black raspberry responses to abiotic stress.
Collapse
Affiliation(s)
- Guoming Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Sophia Lee Guan
- College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Nan Zhu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qionghou Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinran Chong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jiping Xuan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
15
|
Huang J, Zhao J, Wang X, Ma L, Ma Z, Meng X, Fan H. SnRK1 signaling regulates cucumber growth and resistance to Corynespora cassiicola. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111716. [PMID: 37086974 DOI: 10.1016/j.plantsci.2023.111716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Energy metabolism is one of the key factors determining the growth and development of plants and the response to biotic and abiotic stresses. Sucrose non-fermentation 1 related protein kinase 1 (SnRK1) is an important energy-sensitive regulator that plays a key role in the overall control of carbohydrate metabolism. However, little is known about the function of SnRK1 in cucumber. In this study, metformin (an SnRK1 activator) and trehalose (an SnRK1 inhibitor) were used to investigate the role of SnRK1 signaling in cucumber. The results showed that SnRK1 activation could inhibit the growth of cucumber, slow down the net photosynthetic rate (Pn), reduce the contents of photosynthetic pigments and soluble sugars, and suppress the expression of genes related to sucrose metabolism. By contrast, SnRK1 inhibition yielded opposite results. Furthermore, SnRK1 activation and CsSnRK1 over-expression improved cucumber resistance to Corynespora cassiicola. While, SnRK1 inhibition and CsSnRK1 silencing reduced the resistance of cucumber to C. cassiicola. The results indicated that CsSnRK1 gene can positively regulate the resistance of cucumber to C. cassiicola. We conclude that CsSnRK1 signaling plays an important role in balancing the growth and immune response of cucumber. These results can be applied to the improvement of disease-resistant cucumber varieties.
Collapse
Affiliation(s)
- Jingnan Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Juyong Zhao
- Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Xue Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lifeng Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhangtong Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
16
|
Xing Q, Zhou X, Cao Y, Peng J, Zhang W, Wang X, Wu J, Li X, Yan J. The woody plant-degrading pathogen Lasiodiplodia theobromae effector LtCre1 targets the grapevine sugar-signaling protein VvRHIP1 to suppress host immunity. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2768-2785. [PMID: 36788641 PMCID: PMC10112684 DOI: 10.1093/jxb/erad055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/14/2023] [Indexed: 06/06/2023]
Abstract
Lasiodiplodia theobromae is a causal agent of Botryosphaeria dieback, which seriously threatens grapevine production worldwide. Plant pathogens secrete diverse effectors to suppress host immune responses and promote the progression of infection, but the mechanisms underlying the manipulation of host immunity by L. theobromae effectors are poorly understood. In this study, we characterized LtCre1, which encodes a L. theobromae effector that suppresses BAX-triggered cell death in Nicotiana benthamiana. RNAi-silencing and overexpression of LtCre1 in L. theobromae showed impaired and increased virulence, respectively, and ectopic expression in N. benthamiana increased susceptibility. These results suggest that LtCre1 is as an essential virulence factor for L. theobromae. Protein-protein interaction studies revealed that LtCre1 interacts with grapevine RGS1-HXK1-interacting protein 1 (VvRHIP1). Ectopic overexpression of VvRHIP1 in N. benthamiana reduced infection, suggesting that VvRHIP1 enhances plant immunity against L. theobromae. LtCre1 was found to disrupt the formation of the VvRHIP1-VvRGS1 complex and to participate in regulating the plant sugar-signaling pathway. Thus, our results suggest that L. theobromae LtCre1 targets the grapevine VvRHIP1 protein to manipulate the sugar-signaling pathway by disrupting the association of the VvRHIP1-VvRGS1 complex.
Collapse
Affiliation(s)
| | | | - Yang Cao
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junbo Peng
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiahong Wu
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xinghong Li
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | | |
Collapse
|
17
|
Wang X, Tang Q, Chi F, Liu H, Zhang H, Song Y. Sucrose non-fermenting1-related protein kinase VcSnRK2.3 promotes anthocyanin biosynthesis in association with VcMYB1 in blueberry. FRONTIERS IN PLANT SCIENCE 2023; 14:1018874. [PMID: 36909449 PMCID: PMC9998538 DOI: 10.3389/fpls.2023.1018874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Sucrose non-fermenting1-related protein kinase-2 (SnRK2) is a plant-specific protein kinase family and an important component of the abscisic acid (ABA) signaling pathway. However, there is a lack of relevant studies in blueberry (Vaccinium corymbosum). In this study, we identified six SnRK2 family members (from VcSnRK2.1 to VcSnRK2.6) in blueberries for the first time. In addition, we found that VcSnRK2.3 expression was not only positively correlated with fruit ripening but was also induced by ABA signaling. Transient expression in blueberry fruits also proved that VcSnRK2.3 promoted anthocyanin accumulation and the expression of anthocyanin synthesis-related genes such as VcF3H, VcDFR, VcANS, and VcUFGT. Transgenic Arabidopsis thaliana seeds and seedlings overexpressing VcSnRK2.3 showed anthocyanin pigmentation. Yeast two-hybrid assays (Y2H) and Bimolecular fluorescence complementation assays (BiFC) demonstrated that VcSnRK2.3 could interact with the anthocyanin positive regulator VcMYB1. Finally, VcSnRK2.3 was able to enhance the binding of VcMYB1 to the VcDFR promoter. Via regulation transcription of anthocyanin biosynthesis genes, VcSnRK2.3 promoted anthocyanin accumulation in blueberry. The above results suggest that VcSnRK2.3 plays an important role in blueberry anthocyanin synthesis, is induced by ABA, and can interact with VcMYB1 to promote anthocyanin biosynthesis in blueberry.
Collapse
|
18
|
Zhang Y, Wang J, Li Y, Zhang Z, Yang L, Wang M, Zhang Y, Zhang J, Li C, Li L, Reynolds MP, Jing R, Wang C, Mao X. Wheat TaSnRK2.10 phosphorylates TaERD15 and TaENO1 and confers drought tolerance when overexpressed in rice. PLANT PHYSIOLOGY 2023; 191:1344-1364. [PMID: 36417260 PMCID: PMC9922405 DOI: 10.1093/plphys/kiac523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Wheat (Triticum aestivum) is particularly susceptible to water deficit at the jointing stage of its development. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2) acts as a signaling hub in the response to drought stress, but whether SnRK2 helps plants cope with water deficit via other mechanisms is largely unknown. Here, we cloned and characterized TaSnRK2.10, which was induced by multiple abiotic stresses and phytohormones. Ectopic expression of TaSnRK2.10 in rice (Oryza sativa) conferred drought tolerance, manifested by multiple improved physiological indices, including increased water content, cell membrane stability, and survival rates, as well as decreased water loss and accumulation of H2O2 and malonaldehyde. TaSnRK2.10 interacted with and phosphorylated early responsive to dehydration 15 (TaERD15) and enolase 1 (TaENO1) in vivo and in vitro. TaERD15 phosphorylated by TaSnRK2.10 was prone to degradation by the 26S proteasome, thereby mitigating its negative effects on drought tolerance. Phosphorylation of TaENO1 by TaSnRK2.10 may account for the substantially increased levels of phosphoenolpyruvate (PEP), a key metabolite of primary and secondary metabolism, in TaSnRK2.10-overexpressing rice, thereby enhancing its viability under drought stress. Our results demonstrate that TaSnRK2.10 not only regulated stomatal aperture and the expression of drought-responsive genes, but also enhanced PEP supply and promoted the degradation of TaERD15, all of which enhanced drought tolerance.
Collapse
Affiliation(s)
- Yanfei Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450000, China
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuying Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450000, China
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zihui Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Gansu Agricultural University, Gansu 730070, China
| | - Lili Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yining Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Gansu Agricultural University, Gansu 730070, China
| | - Jie Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenyang Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450000, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Gansu Agricultural University, Gansu 730070, China
| |
Collapse
|
19
|
Son S, Im JH, Ko J, Han K. SNF1-related protein kinase 1 represses Arabidopsis growth through post-translational modification of E2Fa in response to energy stress. THE NEW PHYTOLOGIST 2023; 237:823-839. [PMID: 36478538 PMCID: PMC10107498 DOI: 10.1111/nph.18597] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/08/2022] [Indexed: 06/01/2023]
Abstract
Cellular sugar starvation and/or energy deprivation serves as an important signaling cue for the live cells to trigger the necessary stress adaptation response. When exposed to cellular energy stress (ES) conditions, the plants reconfigure metabolic pathways and rebalance energy status while restricting vegetative organ growth. Despite the vital importance of this ES-induced growth restriction, the regulatory mechanism underlying the response remains largely elusive in plants. Using plant cell- and whole plant-based functional analyses coupled with extended genetic validation, we show that cellular ES-activated SNF1-related protein kinase 1 (SnRK1.1) directly interacts with and phosphorylates E2Fa transcription factor, a critical cell cycle regulator. Phosphorylation of E2Fa by SnRK1.1 leads to its proteasome-mediated protein degradation, resulting in S-phase repression and organ growth restriction. Our findings show that ES-dependently activated SnRK1.1 adjusts cell proliferation and vegetative growth for plants to cope with constantly fluctuating environments.
Collapse
Affiliation(s)
- Seungmin Son
- Department of Life SciencesKorea University145 Anamro, Sungbuk‐guSeoul02841Korea
- National Institute of Agricultural Sciences, Rural Development AdministrationJeonju54874Korea
| | - Jong Hee Im
- Department of Life SciencesKorea University145 Anamro, Sungbuk‐guSeoul02841Korea
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Jae‐Heung Ko
- Department of Plant & Environmental New Resources, College of Life Science and Graduate School of BiotechnologyKyung Hee UniversityYongin‐siGyeonggi‐do17104Korea
| | - Kyung‐Hwan Han
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
- Department of ForestryMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
20
|
Ahmed B, Hasan F, Tabassum A, Ahmed R, Hassan R, Amin MR, Alam M. Genome-wide investigation of SnRK2 gene family in two jute species: Corchorus olitorius and Corchorus capsularis. J Genet Eng Biotechnol 2023; 21:5. [PMID: 36652035 PMCID: PMC9849630 DOI: 10.1186/s43141-022-00453-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Sucrose non-fermenting-1 (SNF1)-related protein kinase 2 (SnRK2), a plant-specific serine/threonine kinase family, is associated with metabolic responses, including abscisic acid signaling under biotic and abiotic stresses. So far, no information on a genome-wide investigation and stress-mediated expression profiling of jute SnRK2 is available. Recent whole-genome sequencing of two Corchorus species prompted to identify and characterize this SnRK2 gene family. RESULT We identified seven SnRK2 genes of each of Corchorus olitorius (Co) and C. capsularis (Cc) genomes, with similar physico-molecular properties and sub-group patterns of other models and related crops. In both species, the SnRK2 gene family showed an evolutionarily distinct trend. Highly variable C-terminal and conserved N-terminal regions were observed. Co- and CcSnRK2.3, Co- and CcSnRk2.5, Co- and CcSnRk2.7, and Co- and CcSnRK2.8 were upregulated in response to drought and salinity stresses. In waterlogging conditions, Co- and CcSnRk2.6 and Co- and CcSnRK2.8 showed higher activity when exposed to hypoxic conditions. Expression analysis in different plant parts showed that SnRK2.5 in both Corchorus species is highly expressed in fiber cells providing evidence of the role of fiber formation. CONCLUSION This is the first comprehensive study of SnRK2 genes in both Corchorus species. All seven genes identified in this study showed an almost similar pattern of gene structures and molecular properties. Gene expression patterns of these genes varied depending on the plant parts and in response to abiotic stresses.
Collapse
Affiliation(s)
- Borhan Ahmed
- grid.482525.c0000 0001 0699 8850Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, 1207 Bangladesh
| | - Fakhrul Hasan
- grid.443108.a0000 0000 8550 5526Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, 1706 Bangladesh
| | - Anika Tabassum
- grid.442972.e0000 0001 2218 5390American International University of Bangladesh, Dhaka, 1229 Bangladesh
| | - Rasel Ahmed
- grid.482525.c0000 0001 0699 8850Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, 1207 Bangladesh
| | - Rajnee Hassan
- grid.24434.350000 0004 1937 0060Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Md. Ruhul Amin
- grid.482525.c0000 0001 0699 8850Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, 1207 Bangladesh
| | - Mobashwer Alam
- grid.1003.20000 0000 9320 7537Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 47 Mayers Rd, Nambour, QLD 4560 Australia
| |
Collapse
|
21
|
Liu Y, Cao L, Wu X, Wang S, Zhang P, Li M, Jiang J, Ding X, Cao X. Functional characterization of wild soybean (Glycine soja) GsSnRK1.1 protein kinase in plant resistance to abiotic stresses. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153881. [PMID: 36463657 DOI: 10.1016/j.jplph.2022.153881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Protein kinases play crucial roles in the regulation of plant resistance to various stresses. In this work, we determined that GsSnRK1.1 was actively responsive to saline-alkali, drought, and abscisic acid (ABA) stresses by histochemical staining and qRT-PCR analyses. The wild-type GsSnRK1.1 but not the kinase-dead mutant, GsSnRK1.1(K49M), demonstrated in vitro kinase activity by phosphorylating GsABF2. Intriguingly, we found that GsSnRK1.1 could complement the loss of SNF1 kinase in yeast Msy1193 (-snf1) mutant, rescue growth defects of yeast cells on medium with glycerol as a carbon resource, and promote yeast resistance to NaCl or NaHCO3. To further elucidate GsSnRK1.1 function in planta, we knocked out SnRK1.1 gene from the Arabidopsis genome by the CRISPR/Cas9 approach, and then expressed GsSnRK1.1 and a series of mutants into snrk1.1-null lines. The transgenic Arabidopsis lines were subjected to various abiotic stress treatments. The results showed that GsSnRK1.1(T176E) mutant with enhanced protein kinase activity significantly promoted, but GsSnRK1.1(K49M) and GsSnRK1.1(T176A) mutants with disrupted protein kinase activity abrogated, plant stomatal closure and tolerance to abiotic stresses. In conclusion, this study provides the molecular clues to fully understand the physiological functions of plant SnRK1 protein kinases.
Collapse
Affiliation(s)
- Yuanming Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xuan Wu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Sai Wang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Pengmin Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Minglong Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaoying Cao
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
22
|
Ai D, Wang Y, Wei Y, Zhang J, Meng J, Zhang Y. Comprehensive identification and expression analyses of the SnRK gene family in Casuarina equisetifolia in response to salt stress. BMC PLANT BIOLOGY 2022; 22:572. [PMID: 36482301 PMCID: PMC9733041 DOI: 10.1186/s12870-022-03961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sucrose nonfermenting-1 (SNF1)-related protein kinases (SnRKs) play crucial roles in plant signaling pathways and stress adaptive responses by activating protein phosphorylation pathways. However, there have been no comprehensive studies of the SnRK gene family in the widely planted salt-tolerant tree species Casuarina equisetifolia. Here, we comprehensively analyze this gene family in C. equisetifolia using genome-wide identification, characterization, and profiling of expression changes in response to salt stress. RESULTS A total of 26 CeqSnRK genes were identified, which were divided into three subfamilies (SnRK1, SnRK2, and SnRK3). The intron-exon structures and protein‑motif compositions were similar within each subgroup but differed among groups. Ka/Ks ratio analysis indicated that the CeqSnRK family has undergone purifying selection, and cis-regulatory element analysis suggested that these genes may be involved in plant development and responses to various environmental stresses. A heat map was generated using quantitative real‑time PCR (RT-qPCR) data from 26 CeqSnRK genes, suggesting that they were expressed in different tissues. We also examined the expression of all CeqSnRK genes under exposure to different salt concentrations using RT-qPCR, finding that most CeqSnRK genes were regulated by different salt treatments. Moreover, co-expression network analysis revealed synergistic effects among CeqSnRK genes. CONCLUSIONS Several CeqSnRK genes (CeqSnRK3.7, CeqSnRK3.16, CeqSnRK3.17) were up-regulated following salt treatment. Among them, CeqSnRK3.16 expression was significantly up-regulated under various salt treatments, identifying this as a candidate gene salt stress tolerance gene. In addition, CeqSnRK3.16 showed significant expression change correlations with multiple genes under salt stress, indicating that it might exhibit synergistic effects with other genes in response to salt stress. This comprehensive analysis will provide a theoretical reference for CeqSnRK gene functional verification and the role of these genes in salt tolerance.
Collapse
Affiliation(s)
- Di Ai
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
- College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - Yujiao Wang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Yongcheng Wei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Jie Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - Jingxiang Meng
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Yong Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
23
|
Molecular and Physiological Evaluation of Bread Wheat ( Triticum aestivum L.) Genotypes for Stay Green under Drought Stress. Genes (Basel) 2022; 13:genes13122261. [PMID: 36553528 PMCID: PMC9778276 DOI: 10.3390/genes13122261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Water availability is considered as the main limiting factor of wheat growth illuminating the need of cultivars best adapted to drought situations for better wheat production and yield. Among these, the stay-green trait is thought to be related to the ability of wheat plants to maintain photosynthesis and CO2 assimilation, and a detailed molecular understanding of this trait may help in the selection of high-yielding, drought-tolerant wheats. The current study, therefore, evaluated the physiological responses of the selected wheat genotypes under pot-induced water stress conditions through different field capacities. The study also focused on exploring the molecular mechanisms involved in drought tolerance conferred due to the stay-green trait by studying the expression pattern of the selected PSI-associated light-harvesting complex I (LHC1) and PSII-associated LHCII gene families related to pigment-binding proteins. The results revealed that the studied traits, including relative water content, membrane stability index and chlorophyll, were variably and negatively affected, while the proline content was positively enhanced in the studied wheats under water stress treatments. Molecular diagnosis of the selected wheat genotypes using the expression profile of 06 genes, viz. TaLhca1, TaLhca2, TaLhca3, TaLhcb1, TaLhcb4 and TaLhcb6 that encodes for the LHCI and LHCII proteins, indicated variable responses to different levels of drought stress. The results obtained showed the relation between the genotypes and the severity of the drought stress condition. Among the studied genotypes, Chirya-1 and SD-28 performed well with a higher level of gene expression under drought stress conditions and may be used in genetic crosses to enrich the genetic background of common wheat against drought stress.
Collapse
|
24
|
Guo X, Zhou M, Chen J, Shao M, Zou L, Ying Y, Liu S. Genome-Wide Identification of the Highly Conserved INDETERMINATE DOMAIN ( IDD) Zinc Finger Gene Family in Moso Bamboo ( Phyllostachys edulis). Int J Mol Sci 2022; 23:ijms232213952. [PMID: 36430436 PMCID: PMC9695771 DOI: 10.3390/ijms232213952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
INDETERMINATE DOMAIN (IDD) proteins, a family of transcription factors unique to plants, function in multiple developmental processes. Although the IDD gene family has been identified in many plants, little is known about it in moso bamboo. In this present study, we identified 32 PheIDD family genes in moso bamboo and randomly sequenced the full-length open reading frames (ORFs) of ten PheIDDs. All PheIDDs shared a highly conserved IDD domain that contained two canonical C2H2-ZFs, two C2HC-ZFs, and a nuclear localization signal. Collinearity analysis showed that segmental duplication events played an important role in expansion of the PheIDD gene family. Synteny analysis indicated that 30 PheIDD genes were orthologous to those of rice (Oryza sativa). Thirty PheIDDs were expressed at low levels, and most PheIDDs exhibited characteristic organ-specific expression patterns. Despite their diverse expression patterns in response to exogenous plant hormones, 8 and 22 PheIDDs responded rapidly to IAA and 6-BA treatments, respectively. The expression levels of 23 PheIDDs were closely related to the outgrowth of aboveground branches and 20 PheIDDs were closely related to the awakening of underground dormant buds. In addition, we found that the PheIDD21 gene generated two products by alternative splicing. Both isoforms interacted with PheDELLA and PheSCL3. Furthermore, both isoforms could bind to the cis-elements of three genes (PH02Gene17121, PH02Gene35441, PH02Gene11386). Taken together, our work provides valuable information for studying the molecular breeding mechanism of lateral organ development in moso bamboo.
Collapse
|
25
|
Kumar P, Mishra A, Rahim MS, Sharma V, Madhawan A, Parveen A, Fandade V, Sharma H, Roy J. Comparative transcriptome analyses revealed key genes involved in high amylopectin biosynthesis in wheat. 3 Biotech 2022; 12:295. [PMID: 36276458 PMCID: PMC9519823 DOI: 10.1007/s13205-022-03364-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
High amylopectin starch is an important modified starch for food processing industries. Despite a thorough understanding of starch biosynthesis pathway, the regulatory mechanism responsible for amylopectin biosynthesis is not well explored. The present study utilized transcriptome sequencing approach to understand the molecular basis of high amylopectin content in three high amylopectin mutant wheat lines ('TAC 6', 'TAC 358', and 'TAC 846') along with parent variety 'C 306'. Differential scanning calorimetry (DSC) of high amylopectin starch identified a high thermal transition temperature and scanning electron microscopy (SEM) revealed more spherical starch granules in mutant lines compared to parent variety. A set of 4455 differentially expressed genes (DEGs) were identified at two-fold compared to the parent variety in high amylopectin wheat mutants. At ten-fold, 279 genes, including two starch branching genes (SBEIIa and SBEIIb), were up-regulated and only 30 genes, including the starch debranching enzyme (DBE), were down-regulated. Among the genes, different isoforms of sucrose non-fermenting-1-related protein kinase-1 (TaSnRK1α2-3B and TaSnRK1α2-3D) and its regulatory subunit, sucrose non-fermenting-4 (SNF-4-2A, SNF-4-2B, and SNF-4-5D), were found to be highly up-regulated. Further, expression of the DEGs related to starch biosynthesis pathway and TaSnRK1α2 and SNF-4 was performed using qRT-PCR. High expression of TaSnRK1α2, SNF-4, and SBEII isoforms suggests their probable role in high amylopectin starch biosynthesis in grain endosperm. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03364-3.
Collapse
Affiliation(s)
- Prashant Kumar
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Ankita Mishra
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Mohammed Saba Rahim
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Vinita Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Akansha Madhawan
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Afsana Parveen
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Vikas Fandade
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Himanshu Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Joy Roy
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| |
Collapse
|
26
|
Elango D, Wang W, Thudi M, Sebastiar S, Ramadoss BR, Varshney RK. Genome-wide association mapping of seed oligosaccharides in chickpea. FRONTIERS IN PLANT SCIENCE 2022; 13:1024543. [PMID: 36352859 PMCID: PMC9638045 DOI: 10.3389/fpls.2022.1024543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Chickpea (Cicer arietinum L.) is one of the major pulse crops, rich in protein, and widely consumed all over the world. Most legumes, including chickpeas, possess noticeable amounts of raffinose family oligosaccharides (RFOs) in their seeds. RFOs are seed oligosaccharides abundant in nature, which are non-digestible by humans and animals and cause flatulence and severe abdominal discomforts. So, this study aims to identify genetic factors associated with seed oligosaccharides in chickpea using the mini-core panel. We have quantified the RFOs (raffinose and stachyose), ciceritol, and sucrose contents in chickpea using high-performance liquid chromatography. A wide range of variations for the seed oligosaccharides was observed between the accessions: 0.16 to 15.13 mg g-1 raffinose, 2.77 to 59.43 mg g-1 stachyose, 4.36 to 90.65 mg g-1 ciceritol, and 3.57 to 54.12 mg g-1 for sucrose. Kabuli types showed desirable sugar profiles with high sucrose, whereas desi types had high concentrations RFOs. In total, 48 single nucleotide polymorphisms (SNPs) were identified for all the targeted sugar types, and nine genes (Ca_06204, Ca_04353, and Ca_20828: Phosphatidylinositol N-acetylglucosaminyltransferase; Ca_17399 and Ca_22050: Remorin proteins; Ca_11152: Protein-serine/threonine phosphatase; Ca_10185, Ca_14209, and Ca_27229: UDP-glucose dehydrogenase) were identified as potential candidate genes for sugar metabolism and transport in chickpea. The accessions with low RFOs and high sucrose contents may be utilized in breeding specialty chickpeas. The identified candidate genes could be exploited in marker-assisted breeding, genomic selection, and genetic engineering to improve the sugar profiles in legumes and other crop species.
Collapse
Affiliation(s)
- Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Department of Plant Science, Penn State University, University Park, PA, United States
| | - Wanyan Wang
- Ecosystem Science and Management, Penn State University, University Park, PA, United States
| | - Mahender Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
- Centre for Crop Health, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- Genetics Gains Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sheelamary Sebastiar
- Division of Crop Improvement, Indian Council of Agricultural Research (ICAR)-Sugarcane Breeding Institute, Coimbatore, India
| | - Bharathi Raja Ramadoss
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Rajeev K. Varshney
- Genetics Gains Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
27
|
Li R, Radani Y, Ahmad B, Movahedi A, Yang L. Identification and characteristics of SnRK genes and cold stress-induced expression profiles in Liriodendron chinense. BMC Genomics 2022; 23:708. [PMID: 36253733 PMCID: PMC9578244 DOI: 10.1186/s12864-022-08902-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/09/2022] [Indexed: 12/23/2022] Open
Abstract
Background The sucrose non-fermenting 1 (SNF1)-related protein kinases (SnRKs) play a vivid role in regulating plant metabolism and stress response, providing a pathway for regulation between metabolism and stress signals. Conducting identification and stress response studies on SnRKs in plants contributes to the development of strategies for tree species that are more tolerant to stress conditions. Results In the present study, a total of 30 LcSnRKs were identified in Liriodendron chinense (L. chinense) genome, which was distributed across 15 chromosomes and 4 scaffolds. It could be divided into three subfamilies: SnRK1, SnRK2, and SnRK3 based on phylogenetic analysis and domain types. The LcSnRK of the three subfamilies shared the same Ser/Thr kinase structure in gene structure and motif composition, while the functional domains, except for the kinase domain, showed significant differences. A total of 13 collinear gene pairs were detected in L. chinense and Arabidopsis thaliana (A. thaliana), and 18 pairs were detected in L. chinense and rice, suggesting that the LcSnRK family genes may be evolutionarily more closely related to rice. Cis-regulation element analysis showed that LcSnRKs were LTR and TC-rich, which could respond to different environmental stresses. Furthermore, the expression patterns of LcSnRKs are different at different times under low-temperature stress. LcSnRK1s expression tended to be down-regulated under low-temperature stress. The expression of LcSnRK2s tended to be up-regulated under low-temperature stress. The expression trend of LcSnRK3s under low-temperature stress was mainly up-or down-regulated. Conclusion The results of this study will provide valuable information for the functional identification of the LcSnRK gene in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08902-0.
Collapse
Affiliation(s)
- Rongxue Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yasmina Radani
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Baseer Ahmad
- Muhammad Nawaz Sharif University of Agriculture, Multan, Punjab, 25000, Pakistan
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
28
|
Mdivi-1 Induced Mitochondrial Fusion as a Potential Mechanism to Enhance Stress Tolerance in Wheat. Life (Basel) 2022; 12:life12091386. [PMID: 36143422 PMCID: PMC9503966 DOI: 10.3390/life12091386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Mitochondria play a key role in providing energy to cells. This paper is dedicated to elucidating mitochondria-dependent mechanisms that may enhance abiotic stress tolerance in wheat. Mitochondria are constantly undergoing dynamic processes of fusion and fission. In plants, stressful conditions tend to favor mitochondrial fusion processes. The role of mitochondrial fusion was studied by applying Mdivi-1, an inhibitor of mitochondrial fission, to wheat roots subjected to a wounding stress. Increased mitochondrial functional activity and upregulation of genes involved in energy metabolism suggest that mitochondrial fusion is associated with a general activation of energy metabolism. Controlling mitochondrial fusion rates could change the physiology of wheat plants by altering the energy status of the cell and helping to reduce the effects of stress. Abstract Mitochondria play a key role in providing energy to cells. These organelles are constantly undergoing dynamic processes of fusion and fission that change in stressful conditions. The role of mitochondrial fusion in wheat root cells was studied using Mdivi-1, an inhibitor of the mitochondrial fragmentation protein Drp1. The effect of the inhibitor was studied on mitochondrial dynamics in the roots of wheat seedlings subjected to a wounding stress, simulated by excision. Treatment of the stressed roots with the inhibitor increased the size of the mitochondria, enhanced their functional activity, and elevated their membrane potentials. Mitochondrial fusion was accompanied by a decrease in ROS formation and associated cell damage. Exposure to Mdivi-1 also upregulated genes encoding the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and an energy sensor AMP-dependent protein sucrose non-fermenting-related kinase (SnRK1), suggesting that mitochondrial fusion is associated with a general activation of energy metabolism. Controlling mitochondrial fusion rates could change the physiology of wheat plants by altering the energy status of the cell and helping to mitigate the effects of stress.
Collapse
|
29
|
Dias-Fields L, Adamala KP. Engineering Ribosomes to Alleviate Abiotic Stress in Plants: A Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:2097. [PMID: 36015400 PMCID: PMC9415564 DOI: 10.3390/plants11162097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
As the centerpiece of the biomass production process, ribosome activity is highly coordinated with environmental cues. Findings revealing ribosome subgroups responsive to adverse conditions suggest this tight coordination may be grounded in the induction of variant ribosome compositions and the differential translation outcomes they might produce. In this perspective, we go through the literature linking ribosome heterogeneity to plants' abiotic stress response. Once unraveled, this crosstalk may serve as the foundation of novel strategies to custom cultivars tolerant to challenging environments without the yield penalty.
Collapse
Affiliation(s)
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
30
|
Jin H, Han X, Wang Z, Xie Y, Zhang K, Zhao X, Wang L, Yang J, Liu H, Ji X, Dong L, Zheng H, Hu W, Liu Y, Wang X, Zhou X, Zhang Y, Qian W, Zheng W, Shen Q, Gou M, Wang D. Barley GRIK1-SnRK1 kinases subvert a viral virulence protein to upregulate antiviral RNAi and inhibit infection. EMBO J 2022; 41:e110521. [PMID: 35929182 PMCID: PMC9475517 DOI: 10.15252/embj.2021110521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 12/21/2022] Open
Abstract
Viruses often usurp host machineries for their amplification, but it remains unclear if hosts may subvert virus proteins to regulate viral proliferation. Here, we show that the 17K protein, an important virulence factor conserved in barley yellow dwarf viruses (BYDVs) and related poleroviruses, is phosphorylated by host GRIK1‐SnRK1 kinases, with the phosphorylated 17K (P17K) capable of enhancing the abundance of virus‐derived small interfering RNAs (vsiRNAs) and thus antiviral RNAi. Furthermore, P17K interacts with barley small RNA‐degrading nuclease 1 (HvSDN1) and impedes HvSDN1‐catalyzed vsiRNA degradation. Additionally, P17K weakens the HvSDN1‐HvAGO1 interaction, thus hindering HvSDN1 from accessing and degrading HvAGO1‐carried vsiRNAs. Importantly, transgenic expression of 17K phosphomimetics (17K5D), or genome editing of SDN1, generates stable resistance to BYDV through elevating vsiRNA abundance. These data validate a novel mechanism that enhances antiviral RNAi through host subversion of a viral virulence protein to inhibit SDN1‐catalyzed vsiRNA degradation and suggest new ways for engineering BYDV‐resistant crops.
Collapse
Affiliation(s)
- Huaibing Jin
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaohui Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Yilin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Xiaoge Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lina Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Jin Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Huiyun Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Xiang Ji
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyuan Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Weijuan Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xifeng Wang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Wenming Zheng
- National Biological Experimental Teaching Demonstration Center, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Qianhua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,National Biological Experimental Teaching Demonstration Center, College of Life Sciences, Henan Agricultural University, Zhengzhou, China.,The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
31
|
Li Y, Gao Z, Lu J, Wei X, Qi M, Yin Z, Li T. SlSnRK2.3 interacts with SlSUI1 to modulate high temperature tolerance via Abscisic acid (ABA) controlling stomatal movement in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111305. [PMID: 35696906 DOI: 10.1016/j.plantsci.2022.111305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Tomato is often exposed to high temperature stress during summer cultivation. Stomatal movement plays important roles in photosynthesis and transpiration which restricts the quality and yield of tomato under environmental stress. To elucidate the mechanism of stomatal movement in high temperature tolerance, SlSnRK2s (sucrose non-fermenting 1-related protein kinases) silenced plants were generated in tomato with CRISPR-Cas 9 gene editing techniques. Through the observation of stomatal parameters, SlSnRK2.3 regulated stomatal closure which was responded to ABA (abscisic acid) and activated signaling pathway of ROS (reactive oxygen species) in high temperature stress. Based on the positive functions of SlSnRK2.3, the cDNA library was generated to investigate interaction proteins of SlSnRK2s. The interaction between SlSnRK2.3 and SlSUI1 (protein translation factor SUI1 homolog) was employed by Yeast two hybrid assay (Y2H), Luciferase (LUC), and Bimolecular fluorescence complementation (BiFC). Finally, the specific interactive sites between SlSnRK2.3 and SlSUI1 were verified by site-directed mutagenesis. The consistent mechanism of SlSnRK2.3 and SlSUI1 in stomatal movement, indicating that SlSUI1 interacted with SlSnRK2.3 through ABA-dependent signaling pathway in high temperature stress. Our results provided evidence for improving the photosynthetic capacity of tomato under high temperature stress, and support the breeding and genetic engineering of tomato over summer facility cultivation.
Collapse
Affiliation(s)
- Yangyang Li
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, 110866, PR China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District, 110866, PR China
| | - Zhenhua Gao
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, 110866, PR China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District, 110866, PR China
| | - Jiazhi Lu
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, 110866, PR China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District, 110866, PR China
| | - Xueying Wei
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, 110866, PR China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District, 110866, PR China
| | - Mingfang Qi
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, 110866, PR China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District, 110866, PR China
| | - Zepeng Yin
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District, 110866, PR China; Key Laboratory of Fruit Postharvest Biology of Liaoning Province, No. 120 Dongling Road, Shenhe District, 110866, PR China.
| | - Tianlai Li
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, 110866, PR China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District, 110866, PR China.
| |
Collapse
|
32
|
Jiang B, Liu Y, Niu H, He Y, Ma D, Li Y. Mining the Roles of Wheat ( Triticum aestivum) SnRK Genes in Biotic and Abiotic Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:934226. [PMID: 35845708 PMCID: PMC9280681 DOI: 10.3389/fpls.2022.934226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/01/2022] [Indexed: 05/27/2023]
Abstract
Sucrose non-fermenting-1-related protein kinases (SnRKs) play vital roles in plant growth and stress responses. However, little is known about the SnRK functions in wheat. In this study, 149 TaSnRKs (wheat SnRKs) were identified and were divided into three subfamilies. A combination of public transcriptome data and real-time reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed the distinct expression patterns of TaSnRKs under various abiotic and biotic stresses. TaSnRK2.4-B, a member of SnRK2s, has different expression patterns under polyethylene glycol (PEG), sodium chloride (NaCl) treatment, and high concentrations of abscisic acid (ABA) application. Yeast two-hybrid assay indicated that TaSnRK2.4-B could interact with the SnRK2-interacting calcium sensor (SCS) in wheat and play a role in the ABA-dependent pathway. Moreover, TaSnRK2.4-B might be a negative regulator in wheat against pathogen infection. The present study provides valuable information for understanding the functions of the TaSnRK family and provides recommendations for future genetic improvement in wheat stress resistance.
Collapse
Affiliation(s)
- Baihui Jiang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Yike Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Hongli Niu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Yiqin He
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Longgan Lake National Nature Reserve Authority of Hubei, Huanggang, China
| | - Dongfang Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Yan Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Wheat Disease Biology Research Station for Central China, Wuhan, China
| |
Collapse
|
33
|
Li Q, Sun Q, Wang D, Liu Y, Zhang P, Lu H, Zhang Y, Zhang S, Wang A, Ding X, Xiao J. Quantitative phosphoproteomics reveals the role of wild soybean GsSnRK1 as a metabolic regulator under drought and alkali stresses. J Proteomics 2022; 258:104528. [PMID: 35182787 DOI: 10.1016/j.jprot.2022.104528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022]
Abstract
Drought and alkali stresses cause detrimental effects on plant growth and development. SnRK1 protein kinases act as key energy and stress sensors by phosphorylation-mediated signaling in the regulation of plant defense reactions against adverse environments. To understand SnRK1-dependent phosphorylation events in signaling pathways triggered by abiotic factors, we employed quantitative phosphoproteomics to compare the global changes in phosphopeptides and phosphoproteins in 2kinm mutant Arabidopsis (SnRK1.1 T-DNA knockout and SnRK1.2 knockdown by β-estradiol-induced RNAi) complemented with wild soybean GsSnRK1(wt) or dominant negative mutant GsSnRK1(K49M) in response to drought and alkali stresses. Among 4014 phosphopeptides (representing 2380 phosphoproteins) identified in this study, we finalized 74 phosphopeptides (representing 61 phosphoproteins), and 75 phosphopeptides (representing 57 phosphoproteins) showing significant changes in phosphorylation levels under drought and alkali treatments respectively. Function enrichment and protein-protein interaction analyses indicated that the differentially-expressed phosphoproteins (DPs) under drought and alkali stresses were mainly involved in signaling transduction, stress response, carbohydrate and energy metabolism, transport and membrane trafficking, RNA splicing and processing, DNA binding and gene expression, and protein synthesis/folding/degradation. These results provide assistance to identify bona fide and novel SnRK1 phosphorylation substrates and shed new light on the biological functions of SnRK1 kinase in responses to abiotic stresses. SIGNIFICANCE: These results provide assistance to identify novel SnRK1 phosphorylation substrates and regulatory proteins, and shed new light on investigating the potential roles of reversible phosphorylation in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Qi Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Di Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Yuanming Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Pengmin Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Haoran Lu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China
| | - Aoxue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaodong Ding
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.
| | - Jialei Xiao
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
34
|
Si A, Sun Z, Li Z, Chen B, Gu Q, Zhang Y, Wu L, Zhang G, Wang X, Ma Z. A Genome Wide Association Study Revealed Key Single Nucleotide Polymorphisms/Genes Associated With Seed Germination in Gossypium hirsutum L. FRONTIERS IN PLANT SCIENCE 2022; 13:844946. [PMID: 35371175 PMCID: PMC8967292 DOI: 10.3389/fpls.2022.844946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/21/2022] [Indexed: 05/17/2023]
Abstract
Fast and uniform seed germination is essential to stabilize crop yields in agricultural production. It is important to understand the genetic basis of seed germination for improving the vigor of crop seeds. However, little is known about the genetic basis of seed vigor in cotton. In this study, we evaluated four seed germination-related traits of a core collection consisting of 419 cotton accessions, and performed a genome-wide association study (GWAS) to explore important loci associated with seed vigor using 3.66 million high-quality single nucleotide polymorphisms (SNPs). The results showed that four traits, including germination potential, germination rate, germination index, and vigor index, exhibited broad variations and high correlations. A total of 92 significantly associated SNPs located within or near 723 genes were identified for these traits, of which 13 SNPs could be detected in multiple traits. Among these candidate genes, 294 genes were expressed at seed germination stage. Further function validation of the two genes of higher expression showed that Gh_A11G0176 encoding Hsp70-Hsp90 organizing protein negatively regulated Arabidopsis seed germination, while Gh_A09G1509 encoding glutathione transferase played a positive role in regulating tobacco seed germination and seedling growth. Furthermore, Gh_A09G1509 might promote seed germination and seedling establishment through regulating glutathione metabolism in the imbibitional seeds. Our findings provide unprecedented information for deciphering the genetic basis of seed germination and performing molecular breeding to improve field emergence through genomic selection in cotton.
Collapse
Affiliation(s)
- Aijun Si
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
- Xingfen Wang,
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
- *Correspondence: Zhiying Ma,
| |
Collapse
|
35
|
Mishra BS, Sharma M, Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. PHYSIOLOGIA PLANTARUM 2022; 174:e13546. [PMID: 34480799 DOI: 10.1111/ppl.13546] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/07/2023]
Abstract
Under the natural environment, nutrient signals interact with phytohormones to coordinate and reprogram plant growth and survival. Sugars are important molecules that control almost all morphological and physiological processes in plants, ranging from seed germination to senescence. In addition to their functions as energy resources, osmoregulation, storage molecules, and structural components, sugars function as signaling molecules and interact with various plant signaling pathways, such as hormones, stress, and light to modulate growth and development according to fluctuating environmental conditions. Auxin, being an important phytohormone, is associated with almost all stages of the plant's life cycle and also plays a vital role in response to the dynamic environment for better growth and survival. In the previous years, substantial progress has been made that showed a range of common responses mediated by sugars and auxin signaling. This review discusses how sugar signaling affects auxin at various levels from its biosynthesis to perception and downstream gene activation. On the same note, the review also highlights the role of auxin signaling in fine-tuning sugar metabolism and carbon partitioning. Furthermore, we discussed the crosstalk between the two signaling machineries in the regulation of various biological processes, such as gene expression, cell cycle, development, root system architecture, and shoot growth. In conclusion, the review emphasized the role of sugar and auxin crosstalk in the regulation of several agriculturally important traits. Thus, engineering of sugar and auxin signaling pathways could potentially provide new avenues to manipulate for agricultural purposes.
Collapse
Affiliation(s)
- Bhuwaneshwar Sharan Mishra
- National Institute of Plant Genome Research, New Delhi, India
- Bhuwaneshwar Sharan Mishra, Ram Gulam Rai P. G. College Banktashiv, Affiliated to Deen Dayal Upadhyaya Gorakhpur University Gorakhpur, Deoria, Uttar Pradesh, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
36
|
Kashtoh H, Baek KH. Structural and Functional Insights into the Role of Guard Cell Ion Channels in Abiotic Stress-Induced Stomatal Closure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122774. [PMID: 34961246 PMCID: PMC8707303 DOI: 10.3390/plants10122774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
A stomatal pore is formed by a pair of specialized guard cells and serves as a major gateway for water transpiration and atmospheric CO2 influx for photosynthesis in plants. These pores must be tightly controlled, as inadequate CO2 intake and excessive water loss are devastating for plants. When the plants are exposed to extreme weather conditions such as high CO2 levels, O3, low air humidity, and drought, the turgor pressure of the guard cells exhibits an appropriate response against these stresses, which leads to stomatal closure. This phenomenon involves a complex network of ion channels and their regulation. It is well-established that the turgor pressure of guard cells is regulated by ions transportation across the membrane, such as anions and potassium ions. In this review, the guard cell ion channels are discussed, highlighting the structure and functions of key ion channels; the SLAC1 anion channel and KAT1 potassium channel, and their regulatory components, emphasizing their significance in guard cell response to various stimuli.
Collapse
|
37
|
Mishra S, Sharma P, Singh R, Tiwari R, Singh GP. Genome-wide identification and expression analysis of sucrose nonfermenting-1-related protein kinase (SnRK) genes in Triticum aestivum in response to abiotic stress. Sci Rep 2021; 11:22477. [PMID: 34795369 PMCID: PMC8602265 DOI: 10.1038/s41598-021-99639-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
The SnRK gene family is a key regulator that plays an important role in plant stress response by phosphorylating the target protein to regulate subsequent signaling pathways. This study was aimed to perform a genome-wide analysis of the SnRK gene family in wheat and the expression profiling of SnRKs in response to abiotic stresses. An in silico analysis identified 174 SnRK genes, which were then categorized into three subgroups (SnRK1/2/3) on the basis of phylogenetic analyses and domain types. The gene intron-exon structure and protein-motif composition of SnRKs were similar within each subgroup but different amongst the groups. Gene duplication and synteny between the wheat and Arabidopsis genomes was also investigated in order to get insight into the evolutionary aspects of the TaSnRK family genes. The result of cis-acting element analysis showed that there were abundant stress- and hormone-related cis-elements in the promoter regions of 129 SnRK genes. Furthermore, quantitative real-time PCR data revealed that heat, salt and drought treatments enhanced TaSnRK2.11 expression, suggesting that it might be a candidate gene for abiotic stress tolerance. We also identified eight microRNAs targeting 16 TaSnRK genes which are playing important role across abiotic stresses and regulation in different pathways. These findings will aid in the functional characterization of TaSnRK genes for further research.
Collapse
Affiliation(s)
- Shefali Mishra
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India.
| | - Rajender Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | |
Collapse
|
38
|
Jamsheer K M, Kumar M, Srivastava V. SNF1-related protein kinase 1: the many-faced signaling hub regulating developmental plasticity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6042-6065. [PMID: 33693699 DOI: 10.1093/jxb/erab079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/17/2021] [Indexed: 05/03/2023]
Abstract
The Snf1-related protein kinase 1 (SnRK1) is the plant homolog of the heterotrimeric AMP-activated protein kinase/sucrose non-fermenting 1 (AMPK/Snf1), which works as a major regulator of growth under nutrient-limiting conditions in eukaryotes. Along with its conserved role as a master regulator of sugar starvation responses, SnRK1 is involved in controlling the developmental plasticity and resilience under diverse environmental conditions in plants. In this review, through mining and analyzing the interactome and phosphoproteome data of SnRK1, we are highlighting its role in fundamental cellular processes such as gene regulation, protein synthesis, primary metabolism, protein trafficking, nutrient homeostasis, and autophagy. Along with the well-characterized molecular interaction in SnRK1 signaling, our analysis highlights several unchartered regions of SnRK1 signaling in plants such as its possible communication with chromatin remodelers, histone modifiers, and inositol phosphate signaling. We also discuss potential reciprocal interactions of SnRK1 signaling with other signaling pathways and cellular processes, which could be involved in maintaining flexibility and homeostasis under different environmental conditions. Overall, this review provides a comprehensive overview of the SnRK1 signaling network in plants and suggests many novel directions for future research.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Manoj Kumar
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
39
|
Cisneros-Hernández I, Vargas-Ortiz E, Sánchez-Martínez ES, Martínez-Gallardo N, Soto González D, Délano-Frier JP. Highest Defoliation Tolerance in Amaranthus cruentus Plants at Panicle Development Is Associated With Sugar Starvation Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:658977. [PMID: 34163500 PMCID: PMC8215675 DOI: 10.3389/fpls.2021.658977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 05/15/2023]
Abstract
Defoliation tolerance (DT) in Amaranthus cruentus is known to reach its apex at the panicle emergence (PE) phase and to decline to minimal levels at flowering (FL). In this study, defoliation-induced changes were recorded in the content of non-structural carbohydrates and raffinose family oligosaccharides (RFOs), and in the expression and/or activity of sugar starvation response-associated genes in plants defoliated at different vegetative and reproductive stages. This strategy identified sugar-starvation-related factors that explained the opposite DT observed at these key developmental stages. Peak DT at PE was associated with increased cytosolic invertase (CI) activity in all organs and with the extensive induction of various class II trehalose-phosphate synthase (TPS) genes. Contrariwise, least DT at FL coincided with a sharp depletion of starch reserves and with sucrose (Suc) accumulation, in leaves and stems, the latter of which was consistent with very low levels of CI and vacuolar invertase activities that were not further modified by defoliation. Increased Suc suggested growth-inhibiting conditions associated with altered cytosolic Suc-to-hexose ratios in plants defoliated at FL. Augmented cell wall invertase activity in leaves and roots, probably acting in a regulatory rather than hydrolytic role, was also associated with minimal DT observed at FL. The widespread contrast in gene expression patterns in panicles also matched the opposite DT observed at PE and FL. These results reinforce the concept that a localized sugar starvation response caused by C partitioning is crucial for DT in grain amaranth.
Collapse
Affiliation(s)
| | - Erandi Vargas-Ortiz
- Facultad de Agrobiología, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Mexico
| | | | | | | | - John Paul Délano-Frier
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
40
|
Thakur M, Anand A. Hydrogen sulfide: An emerging signaling molecule regulating drought stress response in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1227-1243. [PMID: 33860955 DOI: 10.1111/ppl.13432] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2 S) is a small, reactive signaling molecule that is produced within chloroplasts of plant cells as an intermediate in the assimilatory sulfate reduction pathway by the enzyme sulfite reductase. In addition, H2 S is also produced in cytosol and mitochondria by desulfhydration of l-cysteine catalyzed by l-cysteine desulfhydrase (DES1) in the cytosol and from β-cyanoalanine in mitochondria, in a reaction catalyzed by β-cyano-Ala synthase C1 (CAS-C1). H2 S exerts its numerous biological functions by post-translational modification involving oxidation of cysteine residues (RSH) to persulfides (RSSH). At lower concentrations (10-1000 μmol L-1 ), H2 S shows huge agricultural potential as it increases the germination rate, the size, fresh weight, and ultimately the crop yield. It is also involved in abiotic stress response against drought, salinity, high temperature, and heavy metals. H2 S donor, for example, sodium hydrosulfide (NaHS), has been exogenously applied on plants by various researchers to provide drought stress tolerance. Exogenous application results in the accumulation of polyamines, sugars, glycine betaine, and enhancement of the antioxidant enzyme activities in response to drought-induced osmotic and oxidative stress, thus, providing stress adaptation to plants. At the biochemical level, administration of H2 S donors reduces malondialdehyde content and lipoxygenase activity to maintain the cell integrity, causes abscisic acid-mediated stomatal closure to prevent water loss through transpiration, and accelerates the photosystem II repair cycle. Here, we review the crosstalk of H2 S with secondary messengers and phytohormones towards the regulation of drought stress response and emphasize various approaches that can be addressed to strengthen research in this area.
Collapse
Affiliation(s)
- Meenakshi Thakur
- College of Horticulture and Forestry (Dr. Y.S. Parmar University of Horticulture and Forestry), Neri, Hamirpur, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
41
|
Qin X, Tian S, Zhang W, Dong X, Ma C, Wang Y, Yan J, Yue B. Q Dtbn1 , an F-box gene affecting maize tassel branch number by a dominant model. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1183-1194. [PMID: 33382512 PMCID: PMC8196637 DOI: 10.1111/pbi.13540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 05/26/2023]
Abstract
Tassel branch number (TBN) is one of the important agronomic traits that directly contribute to grain yield in maize (Zea mays L.), and identification of genes precisely regulating TBN in the parental lines is important for maize hybrid breeding. In this study, a quantitative trait nucleotide (QTN), QDtbn1 , related to tassel branch number was identified using a testcrossing association mapping population through association mapping with the Indels/SNPs in the 5'-UTR (untranslated region) of Zm00001d053358, which encodes a Kelch repeat-containing F-box protein. QDtbn1 was further confirmed to be associated with TBN by a dominant model using an F2 population, and over-expressing of the candidate gene resulted in a decreasing of TBN, implying that QDtbn1 was governed by the candidate gene with a negative model. This makes QDtbn1 very useful in maize hybrid breeding. QDtbn1 could interact with a maize Skp1-like protein and a SnRK1 protein, and the SnRK1 could also interact with a SnRK2.8 protein. In addition, quantitative real-time PCR assay showed that five substrates of SnRK2 were down-regulated in the over-expressed plants. These imply that the SCF (Skp1/Cul1/F-box protein/Roc1) complex and ABA signal pathway might be involved in the modulation of TBN in maize.
Collapse
Affiliation(s)
- Xiner Qin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Shike Tian
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Wenliang Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xue Dong
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Chengxin Ma
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yi Wang
- Industrial Crops Research InstitutionHeilongjiang Academy of Land Reclamation of SciencesHaerbinChina
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Bing Yue
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
42
|
Alves HLS, Matiolli CC, Soares RC, Almadanim MC, Oliveira MM, Abreu IA. Carbon/nitrogen metabolism and stress response networks - calcium-dependent protein kinases as the missing link? JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4190-4201. [PMID: 33787877 PMCID: PMC8162629 DOI: 10.1093/jxb/erab136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/29/2021] [Indexed: 05/04/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) play essential roles in plant development and stress responses. CDPKs have a conserved kinase domain, followed by an auto-inhibitory junction connected to the calmodulin-like domain that binds Ca2+. These structural features allow CDPKs to decode the dynamic changes in cytoplasmic Ca2+ concentrations triggered by hormones and by biotic and abiotic stresses. In response to these signals, CDPKs phosphorylate downstream protein targets to regulate growth and stress responses according to the environmental and developmental circumstances. The latest advances in our understanding of the metabolic, transcriptional, and protein-protein interaction networks involving CDPKs suggest that they have a direct influence on plant carbon/nitrogen (C/N) balance. In this review, we discuss how CDPKs could be key signaling nodes connecting stress responses with metabolic homeostasis, and acting together with the sugar and nutrient signaling hubs SnRK1, HXK1, and TOR to improve plant fitness.
Collapse
Affiliation(s)
- Hugo L S Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-157 Oeiras, Portugal
| | - Cleverson C Matiolli
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-157 Oeiras, Portugal
| | - Rafael C Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-157 Oeiras, Portugal
| | - M Cecília Almadanim
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-157 Oeiras, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-157 Oeiras, Portugal
| | - Isabel A Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
43
|
Pandit M, Timilshina M, Chang JH. LKB1-PTEN axis controls Th1 and Th17 cell differentiation via regulating mTORC1. J Mol Med (Berl) 2021; 99:1139-1150. [PMID: 34003330 DOI: 10.1007/s00109-021-02090-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/09/2023]
Abstract
Immuno-environmental change triggers CD4+ T cell differentiation. T cell specialization activates metabolic signal pathways to meet energy requirements. Defective T cell-intrinsic metabolism can aggravate immunopathology in chronic diseases. Liver kinase B1 (LKB1) deletion in T cell or Treg cell results in systemic inflammatory symptoms, indicating a crucial role of LKB1 in T cells. However, the mechanism underlying the development of inflammation is unclear. In our study, LKB1-deficient T cells were differentiated preferentially into Th1 and Th17 cells in the absence of inflammation. Mechanistically, LKB1 directly binds and phosphorylates phosphatase and tensin homolog (PTEN), an upstream regulator of mammalian target of rapamycin complex 1 (mTORC1), which is independent of AMP-activated protein kinase (AMPK). As a result, LKB1 deficiency was associated with increased mTORC1 activity and hypoxia-inducible factor (HIF)1α-mediated glycolysis. Inhibition of glycolysis or biallelic disruption of LKB1 and HIF1α abrogated this phenotype, suggesting Th1- and Th17-biased differentiation in LKB1-deficient T cells was mediated by glycolysis. Our study indicates that LKB1 controls mTORC1 signaling through PTEN activation, not AMPK, which controls effector T cell differentiation in a T cell-intrinsic manner. KEY MESSAGES: • LKB1 maintains T cell homeostasis in a cell intrinsic manner. • Glycolysis is involved in the LKB1-mediated T cell differentiation. • LKB1 phosphorylates PTEN, not AMPK, to regulate mTORC1.
Collapse
Affiliation(s)
- Mahesh Pandit
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
44
|
Genome-Wide Identification and Expression Analyses of AnSnRK2 Gene Family under Osmotic Stress in Ammopiptanthus nanus. PLANTS 2021; 10:plants10050882. [PMID: 33925572 PMCID: PMC8145913 DOI: 10.3390/plants10050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/29/2022]
Abstract
Sucrose non-fermenting-1 (SNF1)-related protein kinase 2’s (SnRK2s) are plant-specific serine/threonine protein kinases and play crucial roles in the abscisic acid signaling pathway and abiotic stress response. Ammopiptanthus nanus is a relict xerophyte shrub and extremely tolerant of abiotic stresses. Therefore, we performed genome-wide identification of the AnSnRK2 genes and analyzed their expression profiles under osmotic stresses including drought and salinity. A total of 11 AnSnRK2 genes (AnSnRK2.1-AnSnRK2.11) were identified in the A. nanus genome and were divided into three groups according to the phylogenetic tree. The AnSnRK2.6 has seven introns and others have eight introns. All of the AnSnRK2 proteins are highly conserved at the N-terminus and contain similar motif composition. The result of cis-acting element analysis showed that there were abundant hormone- and stress-related cis-elements in the promoter regions of AnSnRK2s. Moreover, the results of quantitative real-time PCR exhibited that the expression of most AnSnRK2s was induced by NaCl and PEG-6000 treatments, but the expression of AnSnRK2.3 and AnSnRK2.6 was inhibited, suggesting that the AnSnRK2s might play key roles in stress tolerance. The study provides insights into understanding the function of AnSnRK2s.
Collapse
|
45
|
Chen Z, Zhou L, Jiang P, Lu R, Halford NG, Liu C. Genome-wide identification of sucrose nonfermenting-1-related protein kinase (SnRK) genes in barley and RNA-seq analyses of their expression in response to abscisic acid treatment. BMC Genomics 2021; 22:300. [PMID: 33902444 PMCID: PMC8074225 DOI: 10.1186/s12864-021-07601-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/11/2021] [Indexed: 01/21/2023] Open
Abstract
Background Sucrose nonfermenting-1 (SNF1)-related protein kinases (SnRKs) play important roles in regulating metabolism and stress responses in plants, providing a conduit for crosstalk between metabolic and stress signalling, in some cases involving the stress hormone, abscisic acid (ABA). The burgeoning and divergence of the plant gene family has led to the evolution of three subfamilies, SnRK1, SnRK2 and SnRK3, of which SnRK2 and SnRK3 are unique to plants. Therefore, the study of SnRKs in crops may lead to the development of strategies for breeding crop varieties that are more resilient under stress conditions. In the present study, we describe the SnRK gene family of barley (Hordeum vulgare), the widespread cultivation of which can be attributed to its good adaptation to different environments. Results The barley HvSnRK gene family was elucidated in its entirety from publicly-available genome data and found to comprise 50 genes. Phylogenetic analyses assigned six of the genes to the HvSnRK1 subfamily, 10 to HvSnRK2 and 34 to HvSnRK3. The search was validated by applying it to Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) genome data, identifying 50 SnRK genes in rice (four OsSnRK1, 11 OsSnRK2 and 35 OsSnRK3) and 39 in Arabidopsis (three AtSnRK1, 10 AtSnRK2 and 26 AtSnRK3). Specific motifs were identified in the encoded barley proteins, and multiple putative regulatory elements were found in the gene promoters, with light-regulated elements (LRE), ABA response elements (ABRE) and methyl jasmonate response elements (MeJa) the most common. RNA-seq analysis showed that many of the HvSnRK genes responded to ABA, some positively, some negatively and some with complex time-dependent responses. Conclusions The barley HvSnRK gene family is large, comprising 50 members, subdivided into HvSnRK1 (6 members), HvSnRK2 (10 members) and HvSnRK3 (34 members), showing differential positive and negative responses to ABA. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07601-6.
Collapse
Affiliation(s)
- Zhiwei Chen
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Longhua Zhou
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Panpan Jiang
- Shenzhen RealOm ics (Biotech) Co., Ltd., Shenzhen, 518081, China
| | - Ruiju Lu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Nigel G Halford
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China. .,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China.
| |
Collapse
|
46
|
In silico identification of conserved miRNAs in the genome of fibre biogenesis crop Corchorus capsularis. Heliyon 2021; 7:e06705. [PMID: 33869875 PMCID: PMC8045047 DOI: 10.1016/j.heliyon.2021.e06705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/02/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Corchorus capsularis, commonly known as jute occupies the leading position in the production of natural fibre alongside lower environmental threat. Small noncoding ~21 to 24 nucleotides long microRNAs play significant roles in regulating the gene expression as well as different functions in cellular growth and development. Here, the study adopted a comprehensive in silico approach to identify and characterize the conserved miRNAs in the genome of C. capsularis including functional annotation of specific gene targets. Expressed Sequence Tags (ESTs) based homology search of 3350 known miRNAs of dicotyledons were allowed against 763 non-redundant ESTs of jute genome, resulted in the prediction of 5 potential miRNA candidates belonging five different miRNA families (miR1536, miR9567-3p, miR4391, miR11300, and miR8689). The putative miRNAs were composed of 18 nucleotides having a range of -0.49 to -1.56 MFEI values and 55%–61% of (A + U) content in their pre-miRNAs. A total of 1052 gene targets of putative miRNAs were identified and their functions were extensively analyzed. Most of the gene targets were involved in plant growth, cell cycle regulation, organelle synthesis, developmental process and environmental responses. Five gene targets, namely, NAC Domain Containing Protein, WRKY DNA binding protein, 3-dehydroquinate synthase, S-adenosyl-L-Met–dependent methyl transferase and Vascular-related NAC-Domain were found to be involved in the lignin biosynthesis, phenylpropanoid pathways and secondary wall formation. The present study might accelerate the more miRNA discovery, strengthening the complete understanding of miRNAs association in the cellular basis of lignin biosynthesis towards the production of high standard jute products.
Collapse
|
47
|
Conneely LJ, Mauleon R, Mieog J, Barkla BJ, Kretzschmar T. Characterization of the Cannabis sativa glandular trichome proteome. PLoS One 2021; 16:e0242633. [PMID: 33793557 PMCID: PMC8016307 DOI: 10.1371/journal.pone.0242633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cannabis sativa has been cultivated since antiquity as a source of fibre, food and medicine. The recent resurgence of C. sativa as a cash crop is mainly driven by the medicinal and therapeutic properties of its resin, which contains compounds that interact with the human endocannabinoid system. Compared to other medicinal crops of similar value, however, little is known about the biology of C. sativa. Glandular trichomes are small hair-like projections made up of stalk and head tissue and are responsible for the production of the resin in C. sativa. Trichome productivity, as determined by C. sativa resin yield and composition, is only beginning to be understood at the molecular level. In this study the proteomes of glandular trichome stalks and heads, were investigated and compared to the proteome of the whole flower tissue, to help further elucidate C. sativa glandular trichome biochemistry. The data suggested that the floral tissue acts as a major source of carbon and energy to the glandular trichome head sink tissue, supplying sugars which drive secondary metabolite biosynthesis. The trichome stalk seems to play only a limited role in secondary metabolism and acts as both source and sink.
Collapse
Affiliation(s)
- Lee James Conneely
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Ramil Mauleon
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Jos Mieog
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Bronwyn J. Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Tobias Kretzschmar
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
48
|
Wang C, Abbas F, Zhou Y, Ke Y, Li X, Yue Y, Yu Y, Yu R, Fan Y. Genome-wide identification and expression pattern of SnRK gene family under several hormone treatments and its role in floral scent emission in Hedychium coronarium. PeerJ 2021; 9:e10883. [PMID: 33854831 PMCID: PMC7955670 DOI: 10.7717/peerj.10883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022] Open
Abstract
The SnRK (Snf1-Related protein Kinase) gene family plays crucial roles in various plant signaling pathways and stress-adaptive responses including biotic and abiotic stresses via activating protein phosphorylation pathways. However, there is no information available on the role of the SnRK gene family in Hedychium coronarium. H. coronarium is an important crop widely cultivated as an ornamental plant, herb, spice, or condiment. In this study, 60 HcSnRK genes were identified from the H. coronarium genomic and transcriptome data. Phylogenetic and gene structure analysis showed that the HcSnRK genes were divided into three groups (HcSnRK1, HcSnRK2 and HcSnRK3) and among them HcSnRK3 subfamily was further subdivided into two clades according to the number of introns. Chromosome localization analysis showed that HcSnRK genes were unevenly mapped onto all chromosomes, and the Ka/Ks ratio of 24 paralogues includes four tandems and 20 segmental duplications indicated that the HcSnRK gene family underwent a purifying selection. Cis-regulatory elements analysis suggested that the HcSnRK genes respond to multiple hormones and other stresses. The responsiveness of HcSnRK genes to several hormones was analyzed by quantitative real-time PCR. Based on the different transcriptome data, two candidates HcSnRK genes (HcSnRK2.2 and HcSnRK2.9) were screened out for further characterization . The subcellular localization experiment revealed that both genes were located in the nucleus and cytoplasm. Moreover, virus-induced gene silencing (VIGS) of HcSnRK2.2 and HcSnRK2.9 significantly reduced the floral volatile contents by suppressing the expression of terpene synthase genes (HcTPS1, HcTPS3, and HcTPS5), indicating that HcSnRK2.2 and HcSnRK2.9 genes play an important role in the regulatory mechanism of floral aroma. These results will provide novel insights into the functional dissection of H. coronarium SnRK gene family.
Collapse
Affiliation(s)
- Chutian Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
- College of Economics and Management, Kunming university, Kunming, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangdong, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, China
| |
Collapse
|
49
|
Wang Y, Liu A. Genomic Characterization and Expression Analysis of the SnRK Family Genes in Dendrobium officinale Kimura et Migo (Orchidaceae). PLANTS 2021; 10:plants10030479. [PMID: 33802577 PMCID: PMC8000535 DOI: 10.3390/plants10030479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
Sucrose non-fermenting1-related protein kinases (SnRKs) are a type of Ser/Thr protein kinases, and they play an important role in plant life, especially in metabolism and responses to environmental stresses. However, there is limited information on SnRK genes in Dendrobium officinale. In the present research, a total of 36 DoSnRK genes were identified based on genomic data. These DoSnRKs could be grouped into three subfamilies, including 1 member of DoSnRK1, 7 of DoSnRK2, and 28 of DoSnRK3. The gene structure analysis of DoSnRK genes showed that 17 members had no introns, while 16 members contained six or more introns. The conserved domains and motifs were found in the same subfamily. The various cis-elements present in the promoter regions showed that DoSnRK genes could respond to stresses and hormones. Furthermore, the expression patterns of DoSnRK genes in eight tissues were investigated according to RNA sequencing data, indicating that multiple DoSnRK genes were ubiquitously expressed in these tissues. The transcript levels of DoSnRK genes after drought, MeJA, and ABA treatments were analyzed by quantitative real-time PCR and showed that most DoSnRK genes could respond to these stresses. Therefore, genomic characterization and expression analyses provide valuable information on DoSnRK genes for further understanding the functions of SnRKs in plants.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Correspondence: ; Tel.: +86-87165223125
| |
Collapse
|
50
|
Su T, Zhou B, Cao D, Pan Y, Hu M, Zhang M, Wei H, Han M. Transcriptomic Profiling of Populus Roots Challenged with Fusarium Reveals Differential Responsive Patterns of Invertase and Invertase Inhibitor-Like Families within Carbohydrate Metabolism. J Fungi (Basel) 2021; 7:jof7020089. [PMID: 33513923 PMCID: PMC7911864 DOI: 10.3390/jof7020089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Fusarium solani (Fs) is one of the notorious necrotrophic fungal pathogens that cause root rot and vascular wilt, accounting for the severe loss of Populus production worldwide. The plant-pathogen interactions have a strong molecular basis. As yet, the genomic information and transcriptomic profiling on the attempted infection of Fs remain unavailable in a woody model species, Populus trichocarpa. We used a full RNA-seq transcriptome to investigate the molecular interactions in the roots with a time-course infection at 0, 24, 48, and 72 h post-inoculation (hpi) of Fs. Concomitantly, the invertase and invertase inhibitor-like gene families were further analyzed, followed by the experimental evaluation of their expression patterns using quantitative PCR (qPCR) and enzyme assay. The magnitude profiles of the differentially expressed genes (DEGs) were observed at 72 hpi inoculation. Approximately 839 genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and secondary and carbohydrate metabolism changes. Among these, a total of 63 critical genes that consistently appear during the entire interactions of plant-pathogen had substantially altered transcript abundance and potentially constituted suitable candidates as resistant genes in genetic engineering. These data provide essential clues in the developing new strategies of broadening resistance to Fs through transcriptional or translational modifications of the critical responsive genes within various analyzed categories (e.g., carbohydrate metabolism) in Populus.
Collapse
Affiliation(s)
- Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (B.Z.); (D.C.); (M.H.); (M.Z.); (H.W.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Biyao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (B.Z.); (D.C.); (M.H.); (M.Z.); (H.W.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Dan Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (B.Z.); (D.C.); (M.H.); (M.Z.); (H.W.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Yuting Pan
- College of Forest, Nanjing Forestry University, Nanjing 210037, China;
| | - Mei Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (B.Z.); (D.C.); (M.H.); (M.Z.); (H.W.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Mengru Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (B.Z.); (D.C.); (M.H.); (M.Z.); (H.W.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Haikun Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (B.Z.); (D.C.); (M.H.); (M.Z.); (H.W.)
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (B.Z.); (D.C.); (M.H.); (M.Z.); (H.W.)
- Correspondence: ; Tel.: +86-158-9598-9551
| |
Collapse
|