1
|
Kalin S, Comert Onder F. Discovery of potential RSK1 inhibitors for cancer therapy using virtual screening, molecular docking, molecular dynamics simulation, and MM/GBSA calculations. J Biomol Struct Dyn 2025; 43:1424-1444. [PMID: 38084766 DOI: 10.1080/07391102.2023.2291830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2025]
Abstract
The p90 ribosomal protein S6 Kinase (RSK) family belongs to Ser/Thr protein kinases that includes four isoform RSK1-4 in mammals. The ribosomal protein S6 Kinase 1 (RSK1) is also known as ribosomal protein S6 kinase alpha-1 (RPS6KA1) is a special protein due to their two catalytic regions that is associated with abundantly various cancers and it is proposed as a drug target. Several RSK1 isoform inhibitors have been reported but none of them are used in clinical studies. Thus, we aimed to perform ligand pharmacophore mapping with the known inhibitor and structure-based virtual screening studies to determine potential candidates against RSK1-terminal kinase domains CTKD and NTKD. The studied compounds from the databases (ApexBio, ChEMBL, ChemDiv). The molecular docking study was performed with the resulted candidates by using CDOCKER and Glide/SP methods. The four candidates with the highest docking scores were used for further 100-ns molecular dynamics (MD) simulations and Molecular Mechanics Generalised Born and Surface Area (MM/GBSA) calculations. The root mean square deviation (RMSD) for protein complexes were found between 2 Å and 4 Å. Solvent accessible surface area (SASA), radius of gyration (Rg), and polar surface area (PSA) values were calculated for compounds. The binding free energies were calculated between -72.22 kcal/mol and -82.44 kcal/mol. The interaction diagrams showed that hydrogen bond, alkyl, and π-alkyl interactions were observed with specific residues such as Leu144, Lys94, Asp142 for RSK1-NTKD, and Cys532, Cys556, Lys447, Asn540 for RSK1-CTKD. The identified compounds may be potential inhibitor candidates of RSK1 following the preclinical studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sevil Kalin
- Department of Medical System Biology, School of Graduate Students, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Ferah Comert Onder
- Department of Medical Biology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
2
|
Rathore M, Curry K, Huang W, Wright M, Martin D, Baek J, Taylor D, Miyagi M, Tang W, Feng H, Li Y, Wang Z, Graor H, Willis J, Bryson E, Boutros CS, Desai O, Islam BN, Ellis LM, Moss SE, Winter JM, Greenwood J, Wang R. Leucine-Rich Alpha-2-Glycoprotein 1 Promotes Metastatic Colorectal Cancer Growth Through Human Epidermal Growth Factor Receptor 3 Signaling. Gastroenterology 2025; 168:300-315.e3. [PMID: 39393543 PMCID: PMC11769768 DOI: 10.1053/j.gastro.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND & AIMS Therapy failure in patients with metastatic colorectal cancer (mCRC, ∼80% occur in the liver) remains an overarching challenge. Preclinical studies demonstrated that human epidermal growth factor receptor 3 (HER3) promotes colorectal cancer (CRC) cell survival, but therapies blocking the neuregulin-induced canonical HER3 signaling have made little impact in the clinic. Recent studies suggest that the liver microenvironment promotes CRC growth by activating HER3 in a neuregulin-independent fashion, thus elucidation of these mechanisms may reveal new strategies for treating patients with mCRC. METHODS Patient-derived primary liver endothelial cells (ECs) were used to interrogate EC-CRC crosstalk. We conducted proteomic analysis to identify EC-secreted factor(s) that triggers noncanonical HER3 activation in CRC and determined the subsequent effects on mCRC using diverse murine mCRC models. In vitro studies with genetic and pharmacological interventions were used to map the noncanonical HER3 pathway. RESULTS We demonstrated that EC-secreted leucine-rich alpha-2-glycoprotein 1 (LRG1) directly binds and activates HER3 and promotes CRC growth distinct from neuregulin, the canonical HER3 ligand. Blocking host-derived LRG1 by gene knockout or a neutralizing antibody impaired mCRC outgrowth in the liver and prolonged mouse survival. We identified protein synthesis activated by the PI3K-PDK1-RSK-eIF4B axis as the biologically relevant signaling cascade downstream of the LRG1-HER3 interaction, which was not blocked by conventional HER3-specific antibodies that failed in prior clinical trials. CONCLUSIONS LRG1 is a novel HER3 ligand and mediates liver-mCRC crosstalk. The LRG1-HER3 signaling axis is distinct from canonical HER3 signaling and represents a new therapeutic opportunity to treat patients with mCRC, and potentially other types of liver metastases.
Collapse
Affiliation(s)
- Moeez Rathore
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Kimberly Curry
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Michel'le Wright
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Daniel Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Jiyeon Baek
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Derek Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Wen Tang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Hao Feng
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Yamu Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Zhenghe Wang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Hallie Graor
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Joseph Willis
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Elizabeth Bryson
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Christina S Boutros
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Omkar Desai
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Bianca N Islam
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Medicine, Division of Gastroenterology and Liver Disease, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Lee M Ellis
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Jordan M Winter
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
3
|
Mishan MA, Choo YM, Winkler J, Hamann MT, Karan D. Manzamine A: A promising marine-derived cancer therapeutic for multi-targeted interactions with E2F8, SIX1, AR, GSK-3β, and V-ATPase - A systematic review. Eur J Pharmacol 2025; 990:177295. [PMID: 39863145 DOI: 10.1016/j.ejphar.2025.177295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Manzamine A, a natural compound derived from various sponge genera, features a β-carboline structure and exhibits a range of biological activities, including anti-inflammatory and antimalarial effects. Its potential as an anticancer agent has been explored in several tumor models, both in vitro and in vivo, showing effects through mechanisms such as cytotoxicity, regulation of the cell cycle, inhibition of cell migration, epithelial-to-mesenchymal transition (EMT), autophagy, and apoptosis through multi-target interactions of E2F transcriptional factors, ribosomal S6 kinases, androgen receptor (AR), SIX1, GSK-3β, v-ATPase, and p53/p21/p27 cascades. This systematic review evaluates existing literature on the potential application of this marine alkaloid as a novel cancer therapy, highlighting its promising ability to inhibit cancer cell growth while causing minimal side effects.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Department of Urology, Brown Cancer Center, 505 S Hancock Street, Louisville, KY, USA
| | - Yeun-Mun Choo
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jeffery Winkler
- Department of Chemistry, The University of Pennsylvania, Philadelphia, PA, USA
| | - Mark T Hamann
- Department of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Dev Karan
- Department of Urology, Brown Cancer Center, 505 S Hancock Street, Louisville, KY, USA.
| |
Collapse
|
4
|
Wu T, Chen Z, Liu X, Wu X, Wang Z, Guo W. Targeting RSK2 in Cancer Therapy: A Review of Natural Products. Anticancer Agents Med Chem 2025; 25:35-41. [PMID: 39248063 DOI: 10.2174/0118715206329546240830055233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
P90 ribosomal S6 kinase 2 (RSK2) is an important member of the RSK family, functioning as a kinase enzyme that targets serine and threonine residues and contributes to regulating cell growth. RSK2 comprises two major functional domains: the N-terminal kinase domain (NTKD) and the C-terminal kinase domain (CTKD). RSK2 is situated at the lower end of the Mitogen-activated protein kinases (MAPK) signaling pathway and is phosphorylated by the direct regulation of Extracellular signal-regulating kinase (ERK). RSK2 has been found to play a pivotal role in regulating cell proliferation, apoptosis, metastasis, and invasion in various cancer cells, including breast cancer and melanoma. Consequently, RSK2 has emerged as a potential target for the development of anti-cancer drugs. Presently, several inhibitors are undergoing clinical trials, such as SL0101. Current inhibitors of RSK2 mainly bind to its NTK or CTK domains and inhibit their activity. Natural products serve as an important resource for drug development and screening and with the potential to identify RSK2 inhibitors. This article discusses how RSK2 influences tumor cell proliferation, prevents apoptosis, arrests the cell cycle process, and promotes cancer metastasis through its regulation of downstream pathways or interaction with other biological molecules. Additionally, the paper also covers recent research progress on RSK2 inhibitors and the mechanisms of action of natural RSK2 inhibitors on tumors. This review emphasizes the significance of RSK2 as a potential therapeutic target in cancer and offers a theoretical basis for the clinical application of RSK2 inhibitors.
Collapse
Affiliation(s)
- Tianhui Wu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ziming Chen
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Xin Liu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Xinyan Wu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Zhaobo Wang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Weiqiang Guo
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
5
|
Werlen G, Hernandez T, Jacinto E. Food for thought: Nutrient metabolism controlling early T cell development. Bioessays 2025; 47:e2400179. [PMID: 39504233 DOI: 10.1002/bies.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
T cells develop in the thymus by expressing a diverse repertoire of either αβ- or γδ-T cell receptors (TCR). While many studies have elucidated how TCR signaling and gene expression control T cell ontogeny, the role of nutrient metabolism is just emerging. Here, we discuss how metabolic reprogramming and nutrient availability impact the fate of developing thymic T cells. We focus on how the PI3K/mTOR signaling mediates various extracellular inputs and how this signaling pathway controls metabolic rewiring during highly proliferative and anabolic developmental stages. We highlight the role of the hexosamine biosynthetic pathway that generates metabolites that are utilized for N- and O-linked glycosylation of proteins and how it impacts TCR expression during T cell ontogeny. We consider the dichotomy in metabolic needs during αβ- versus γδ-T cell lineage commitment as well as how metabolism is also coupled to molecular signaling that controls cell fate.
Collapse
Affiliation(s)
- Guy Werlen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Tatiana Hernandez
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
6
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
7
|
Brial F, Puel G, Gonzalez L, Russick J, Auld D, Lathrop M, Poirier R, Matsuda F, Gauguier D. Stimulation of insulin secretion induced by low 4-cresol dose involves the RPS6KA3 signalling pathway. PLoS One 2024; 19:e0310370. [PMID: 39446839 PMCID: PMC11500888 DOI: 10.1371/journal.pone.0310370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/29/2024] [Indexed: 10/26/2024] Open
Abstract
4-cresol (4-methylphenol, p-cresol) is a xenobiotic substance negatively correlated with type 2 diabetes and associated with health improvement in preclinical models of diabetes. We aimed at refining our understanding of the physiological role of this metabolite and identifying potential signalling mechanisms. Functional studies revealed that 4-cresol does not deteriorate insulin sensitivity in human primary adipocytes and exhibits an additive effect to that of insulin on insulin sensitivity in mouse C2C12 myoblasts. Experiments in mouse isolated islets showed that 4-cresol potentiates glucose induced insulin secretion. We demonstrated the absence of off target effects of 4-cresol on a panel of 44 pharmacological compounds. Screening large panels of 241 G protein-coupled receptors (GPCRs) and 468 kinases identified binding of 4-cresol only to TNK1, EIF2AK4 (GCN2) and RPS6KA3 (RSK2), a kinase strongly expressed in human and rat pancreatic islets. Islet expression of RPS6KA3 is reduced in spontaneously diabetic rats chronically treated with 4-cresol and Rps6ka3 deficient mice exhibit reduction in both body weight and fasting glycemia, modest improvement in glycemic control and enhanced insulin release in vivo. Similar to low doses of 4-cresol, incubation of isolated rat islets with low concentrations of the RPS6KA3 inhibitor BIX 02565 stimulates both glucose induced insulin secretion and β-cell proliferation. These results provide further information on the role of low 4-cresol doses in the regulation of insulin secretion.
Collapse
Affiliation(s)
- François Brial
- Université Paris Cité, INSERM U1132 Biologie de l’os et du cartilage (BIOSCAR), Paris, France
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Laurine Gonzalez
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Jules Russick
- Université Paris Cité, INSERM UMR 1124, Paris, France
| | - Daniel Auld
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, Canada
- Metabolica Drug Discovery Inc., Montreal, QC, Canada
| | - Mark Lathrop
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, Canada
| | - Roseline Poirier
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Dominique Gauguier
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Université Paris Cité, INSERM UMR 1124, Paris, France
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Dai W, Yin S, Wang F, Kuang T, Xiao H, Kang W, Yun C, Wang F, Luo L, Ao S, Zhou J, Yang X, Fan C, Li W, He D, Jin H, Tang W, Liu L, Wang R, Liang H, Zhu J. Punicalagin as a novel selective aryl hydrocarbon receptor (AhR) modulator upregulates AhR expression through the PDK1/p90RSK/AP-1 pathway to promote the anti-inflammatory response and bactericidal activity of macrophages. Cell Commun Signal 2024; 22:473. [PMID: 39363344 PMCID: PMC11448010 DOI: 10.1186/s12964-024-01847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) plays an important role in inflammation and immunity as a new therapeutic target for infectious disease and sepsis. Punicalagin (PUN) is a Chinese herbal monomer extract of pomegranate peel that has beneficial anti-inflammatory, antioxidant and anti-infective effects. However, whether PUN is a ligand of AhR, its effect on AhR expression, and its signaling pathway remain poorly understood. In this study, we found that PUN was a unique polyphenolic compound that upregulated AhR expression at the transcriptional level, and regulated the AhR nongenomic pathway. AhR expression in lipopolysaccharide-induced macrophages was upregulated by PUN in vitro and in vivo in a time- and dose-dependent manner. Using specific inhibitors and siRNA, induction of AhR by PUN depended on sequential phosphorylation of 90-kDa ribosomal S6 kinase (p90RSK), which was activated by the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide-dependent protein kinase (PDK)1 pathways. PUN promoted p90RSK-mediated activator protein-1 (AP-1) activation. AhR knockout or inhibitors reversed suppression of interleukin (IL)-6 and IL-1β expression by PUN. PUN decreased Listeria load and increased macrophage survival via AhR upregulation. In conclusion, we identified PUN as a novel selective AhR modulator involved in AhR expression via the MEK/ERK and PDK1 pathways targeting p90RSK/AP-1 in inflammatory macrophages, which inhibited macrophage inflammation and promoted bactericidal activity.
Collapse
Affiliation(s)
- Weihong Dai
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Shuangqin Yin
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Fangjie Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Tianyin Kuang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hongyan Xiao
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wenyuan Kang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Caihong Yun
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Fei Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Li Luo
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shengxiang Ao
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Zhou
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xue Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Chao Fan
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Li
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dongmei He
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - He Jin
- Department of Cardiothoracic Surgery, 926th Hospital of Joint Logistics Support Force of PLA, Kaiyuan, 661600, China
| | - Wanqi Tang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lizhu Liu
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Rixing Wang
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China.
| | - Huaping Liang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Junyu Zhu
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
9
|
Maietta I, Viscusi E, Laudati S, Iannaci G, D’Antonio A, Melillo RM, Motti ML, De Falco V. Targeting the p90RSK/MDM2/p53 Pathway Is Effective in Blocking Tumors with Oncogenic Up-Regulation of the MAPK Pathway Such as Melanoma and Lung Cancer. Cells 2024; 13:1546. [PMID: 39329730 PMCID: PMC11430938 DOI: 10.3390/cells13181546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
In most human tumors, the MAPK pathway is constitutively activated. Since p90RSK is downstream of MAPK, it is often hyperactive and capable of phosphorylating oncogenic substrates. We have previously shown that p90RSK phosphorylates MDM2 at S166, promoting p53 degradation in follicular thyroid carcinomas. Thus, the inhibition of p90RSK restores p53 expression, which in turn inhibits cell proliferation and promotes apoptosis. In the present study, we demonstrated that the p90RSK/MDM2/p53 pathway proved to be an excellent target in the therapy of tumors with MAPK hyperactivation. For this purpose, we selected p53wt melanoma, lung and medullary thyroid carcinoma cell lines with high activation of p90RSK. In these cell lines, we demonstrated that the p90RSK/MDM2/p53 pathway is implicated in the regulation of the cell cycle and apoptosis through p53-dependent transcriptional control of p21 and Bcl-2. Furthermore, with an immunohistochemical evaluation of primary melanomas and lung tumors, which exhibit highly activated p90RSK compared to corresponding normal tissue, we demonstrated that MDM2 stabilization was associated with p90RSK phosphorylation. The results indicate that p90RSK is able to control the proliferative rate and induction of apoptosis through the regulation of p53wt levels by stabilizing MDM2 in selected tumors with constitutively activated MAPKs, making p90RSK a new attractive target for anticancer therapy.
Collapse
Affiliation(s)
- Immacolata Maietta
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy; (I.M.); (R.M.M.)
| | - Eleonora Viscusi
- U.O.C. Anatomia Patologica, P.O. Pellegrini ASL NA1 Centro, 80134 Naples, Italy; (E.V.); (G.I.)
| | - Stefano Laudati
- U.O.C. Anatomia Patologica, Ospedale del Mare ASL NA1 Centro, 80147 Naples, Italy; (S.L.); (A.D.)
| | - Giuseppe Iannaci
- U.O.C. Anatomia Patologica, P.O. Pellegrini ASL NA1 Centro, 80134 Naples, Italy; (E.V.); (G.I.)
| | - Antonio D’Antonio
- U.O.C. Anatomia Patologica, Ospedale del Mare ASL NA1 Centro, 80147 Naples, Italy; (S.L.); (A.D.)
| | - Rosa Marina Melillo
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy; (I.M.); (R.M.M.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Letizia Motti
- Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Valentina De Falco
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy; (I.M.); (R.M.M.)
| |
Collapse
|
10
|
Hou Y, Chen Y, Zhang Y, Li M, Chen J. Prognostic role of chemokine-related genes in acute myeloid leukemia. PeerJ 2024; 12:e17862. [PMID: 39135956 PMCID: PMC11318587 DOI: 10.7717/peerj.17862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024] Open
Abstract
Background Chemotactic cytokines play a crucial role in the development of acute myeloid leukemia (AML). Thus, investigating the mechanisms of chemotactic cytokine-related genes (CCRGs) in AML is of paramount importance. Methods Using the TCGA-AML, GSE114868, and GSE12417 datasets, differential expression analysis identified differentially expressed CCRGs (DE-CCRGs). These genes were screened by overlapping differentially expressed genes (DEGs) between AML and control groups with CCRGs. Subsequently, functional enrichment analysis and the construction of a protein-protein interaction (PPI) network were conducted to explore the functions of the DE-CCRGs. Univariate Cox regression, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses identified relevant prognostic genes and developed a prognostic model. Survival analysis of the prognostic gene was performed, followed by functional similarity analysis, immune analysis, enrichment analysis, and drug prediction analysis. Results Differential expression analysis revealed 6,743 DEGs, of which 29 DE-CCRGs were selected for this study. Functional enrichment analysis indicated that DE-CCRGs were primarily involved in chemotactic cytokine-related functions and pathways. Six prognostic genes (CXCR3, CXCR2, CXCR6, CCL20, CCL4, and CCR2) were identified and incorporated into the risk model. The model's performance was validated using the GSE12417 dataset. Survival analysis showed significant differences in AML overall survival (OS) between prognostic gene high and low expression groups, indicating that prognostic gene might be significantly associated with patient survival. Additionally, nine different immune cells were identified between the two risk groups. Correlation analysis revealed that CCR2 had the most significant positive correlation with monocytes and the most significant negative correlation with resting mast cells. The tumor immune dysfunction and exclusion score was lower in the high-risk group. Conclusion CXCR3, CXCR2, CXCR6, CCL20, CCL4, and CCR2 were identified as prognostic genes correlated to AML and the tumor immune microenvironment. These findings offerred novel insights into the prevention and treatment of AML.
Collapse
Affiliation(s)
- Yanfei Hou
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yu Chen
- Department of Hematology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Yaofang Zhang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Mengyao Li
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jianfang Chen
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
11
|
Alam A, Khan MS, Mathur Y, Sulaimani MN, Farooqui N, Ahmad SF, Nadeem A, Yadav DK, Mohammad T. Structure-based identification of potential inhibitors of ribosomal protein S6 kinase 1, targeting cancer therapy: a combined docking and molecular dynamics simulations approach. J Biomol Struct Dyn 2024; 42:5758-5769. [PMID: 37365756 DOI: 10.1080/07391102.2023.2228912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
Ribosomal protein S6 kinase 1 (S6K1), commonly known as P70-S6 kinase 1 (p70S6), is a key protein kinase involved in cellular signaling pathways that regulate cell growth, proliferation, and metabolism. Its significant role is reported in the PIK3/mTOR signaling pathway and is associated with various complex diseases, including diabetes, obesity, and different types of cancer. Due to its involvement in various physiological and pathological conditions, S6K1 is considered as an attractive target for drug design and discovery. One way to target S6K1 is by developing small molecule inhibitors that specifically bind to its ATP-binding site, preventing its activation and thus inhibiting downstream signaling pathways necessary for cell growth and survival. In this study, we have conducted a multitier virtual screening of a pool of natural compounds to identify potential S6K1 inhibitors. We performed molecular docking on IMPPAT 2.0 library and selected top hits based on their binding affinity, ligand efficiency, and specificity towards S6K1. The selected hits were further assessed based on different filters of drug-likeliness where two compounds (Hecogenin and Glabrene) were identified as potential leads for S6K1 inhibition. Both compounds showed appreciable affinity, ligand efficiency and specificity towards S6K1 binding pocket, drug-like properties, and stable protein-ligand complexes in molecular dynamics (MD) simulations. Finally, our study has suggested that Hecogenin and Glabrene can be potential S6K1 inhibitors which are presumably implicated in the therapeutic management of associated diseases such as diabetes, obesity, and varying types of cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afsar Alam
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Shahzeb Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Yash Mathur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Naqiya Farooqui
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
12
|
Lekkos K, Bhuiyan AA, Albloshi AMK, Brooks PM, Coate TM, Lionikas A. Validation of positional candidates Rps6ka6 and Pou3f4 for a locus associated with skeletal muscle mass variability. G3 (BETHESDA, MD.) 2024; 14:jkae046. [PMID: 38577978 PMCID: PMC11075558 DOI: 10.1093/g3journal/jkae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/17/2024] [Indexed: 04/06/2024]
Abstract
Genetic variability significantly contributes to individual differences in skeletal muscle mass; however, the specific genes involved in that process remain elusive. In this study, we examined the role of positional candidates, Rps6ka6 and Pou3f4, of a chromosome X locus, implicated in muscle mass variability in CFW laboratory mice. Histology of hindlimb muscles was studied in CFW male mice carrying the muscle "increasing" allele C (n = 15) or "decreasing" allele T (n = 15) at the peak marker of the locus, rs31308852, and in the Pou3f4y/- and their wild-type male littermates. To study the role of the Rps6ka6 gene, we deleted exon 7 (Rps6ka6-ΔE7) using clustered regularly interspaced palindromic repeats-Cas9 based method in H2Kb myogenic cells creating a severely truncated RSK4 protein. We then tested whether that mutation affected myoblast proliferation, migration, and/or differentiation. The extensor digitorum longus muscle was 7% larger (P < 0.0001) due to 10% more muscle fibers (P = 0.0176) in the carriers of the "increasing" compared with the "decreasing" CFW allele. The number of fibers was reduced by 15% (P = 0.0268) in the slow-twitch soleus but not in the fast-twitch extensor digitorum longus (P = 0.2947) of Pou3f4y/- mice. The proliferation and migration did not differ between the Rps6ka6-ΔE7 and wild-type H2Kb myoblasts. However, indices of differentiation (myosin expression, P < 0.0001; size of myosin-expressing cells, P < 0.0001; and fusion index, P = 0.0013) were significantly reduced in Rps6ka6-ΔE7 cells. This study suggests that the effect of the X chromosome locus on muscle fiber numbers in the fast-twitch extensor digitorum longus is mediated by the Rps6ka6 gene, whereas the Pou3f4 gene affects fiber number in slow-twitch soleus.
Collapse
Affiliation(s)
- Konstantinos Lekkos
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Afra A Bhuiyan
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Abdullah M K Albloshi
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Department of Anatomy and Histology, School of Medicine, University of Albaha, Alaqiq 65779, Saudi Arabia
| | - Paige M Brooks
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Thomas M Coate
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Arimantas Lionikas
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
13
|
Veth TS, Nouwen LV, Zwaagstra M, Lyoo H, Wierenga KA, Westendorp B, Altelaar MAFM, Berkers C, van Kuppeveld FJM, Heck AJR. Assessment of Kinome-Wide Activity Remodeling upon Picornavirus Infection. Mol Cell Proteomics 2024; 23:100757. [PMID: 38556169 PMCID: PMC11067349 DOI: 10.1016/j.mcpro.2024.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/16/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Picornaviridae represent a large family of single-stranded positive RNA viruses of which different members can infect both humans and animals. These include the enteroviruses (e.g., poliovirus, coxsackievirus, and rhinoviruses) as well as the cardioviruses (e.g., encephalomyocarditis virus). Picornaviruses have evolved to interact with, use, and/or evade cellular host systems to create the optimal environment for replication and spreading. It is known that viruses modify kinase activity during infection, but a proteome-wide overview of the (de)regulation of cellular kinases during picornavirus infection is lacking. To study the kinase activity landscape during picornavirus infection, we here applied dedicated targeted mass spectrometry-based assays covering ∼40% of the human kinome. Our data show that upon infection, kinases of the MAPK pathways become activated (e.g., ERK1/2, RSK1/2, JNK1/2/3, and p38), while kinases involved in regulating the cell cycle (e.g., CDK1/2, GWL, and DYRK3) become inactivated. Additionally, we observed the activation of CHK2, an important kinase involved in the DNA damage response. Using pharmacological kinase inhibitors, we demonstrate that several of these activated kinases are essential for the replication of encephalomyocarditis virus. Altogether, the data provide a quantitative understanding of the regulation of kinome activity induced by picornavirus infection, providing a resource important for developing novel antiviral therapeutic interventions.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Lonneke V Nouwen
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Marleen Zwaagstra
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Heyrhyoung Lyoo
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Kathryn A Wierenga
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bart Westendorp
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten A F M Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Celia Berkers
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Suleiman M, Al Najjar A, Zakaria ZZ, Ahmed R, Yalcin HC, Korashy HM, Uddin S, Riaz S, Abdulrahman N, Mraiche F. The Role of p90 Ribosomal S6 Kinase (RSK) in Tyrosine Kinase Inhibitor (TKI)-Induced Cardiotoxicity. J Cardiovasc Transl Res 2024; 17:334-344. [PMID: 37725271 DOI: 10.1007/s12265-023-10431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Targeted therapy, such as tyrosine kinase inhibitors (TKIs), has been approved to manage various cancer types. However, TKI-induced cardiotoxicity is a limiting factor for their use. This issue has raised the need for investigating potential cardioprotective techniques to be combined with TKIs. Ribosomal S6-kinases (RSKs) are a downstream effector of the mitogen-activated-protein-kinase (MAPK) pathway; specific RSK isoforms, such as RSK1 and RSK2, have been expressed in cancer cells, in which they increase tumour proliferation. Selective targeting of those isoforms would result in tumour suppression. Moreover, activation of RSKs expressed in the heart has resulted in cardiac hypertrophy and arrhythmia; thus, inhibiting RSKs would result in cardio-protection. This review article presents an overview of the usefulness of RSK inhibitors that can be novel agents to be assessed in future research for their effect in reducing cancer proliferation, as well as protecting the heart from cardiotoxicity induced by TKIs.
Collapse
Affiliation(s)
- Muna Suleiman
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Afnan Al Najjar
- National Center for Cancer Care and Research, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Zain Z Zakaria
- Medical and Health Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Rashid Ahmed
- Department of Biotechnology, Faculty of Science, Mirpur University of Science and Technology, Mirpur, 10250, AJK, Pakistan
| | - Huseyin C Yalcin
- Biomedical Research Centre (BRC), Qatar University, PO Box 2713, Doha, Qatar
- College of Health Sciences, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Hesham M Korashy
- National Center for Cancer Care and Research, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Sadaf Riaz
- Pharmacy Department, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Nabeel Abdulrahman
- College of Health Sciences, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Fatima Mraiche
- National Center for Cancer Care and Research, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
15
|
Lin Y, Liu S, Sun Y, Chen C, Yang S, Pei G, Lin M, Yu J, Liu X, Wang H, Long J, Yan Q, Liang J, Yao J, Yi F, Meng L, Tan Y, Chen N, Yang Y, Ai Q. CCR5 and inflammatory storm. Ageing Res Rev 2024; 96:102286. [PMID: 38561044 DOI: 10.1016/j.arr.2024.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Chemokines and their corresponding receptors play crucial roles in orchestrating inflammatory and immune responses, particularly in the context of pathological conditions disrupting the internal environment. Among these receptors, CCR5 has garnered considerable attention due to its significant involvement in the inflammatory cascade, serving as a pivotal mediator of neuroinflammation and other inflammatory pathways associated with various diseases. However, a notable gap persists in comprehending the intricate mechanisms governing the interplay between CCR5 and its ligands across diverse and intricate inflammatory pathologies. Further exploration is warranted, especially concerning the inflammatory cascade instigated by immune cell infiltration and the precise binding sites within signaling pathways. This study aims to illuminate the regulatory axes modulating signaling pathways in inflammatory cells by providing a comprehensive overview of the pathogenic processes associated with CCR5 and its ligands across various disorders. The primary focus lies on investigating the pathomechanisms associated with CCR5 in disorders related to neuroinflammation, alongside the potential impact of aging on these processes and therapeutic interventions. The discourse culminates in addressing current challenges and envisaging potential future applications, advocating for innovative research endeavors to advance our comprehension of this realm.
Collapse
Affiliation(s)
- Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Gang Pei
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
16
|
He S, Lu M, Zhang L, Wang Z. RSK4 promotes the macrophage recruitment and M2 polarization in esophageal squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166996. [PMID: 38142759 DOI: 10.1016/j.bbadis.2023.166996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
High infiltration of tumor-associated macrophages (TAMs) participates in host immunity and tumor progression in patients with esophageal squamous cell carcinoma (ESCC). Ribosomal s6 kinase 4 (RSK4) has been shown to be aberrantly overexpressed in ESCC. The role of RSK4 in cytokine secretion and its impact on macrophage recruitment and M2 polarization remains unclear. Therefore, a thorough understanding of RSK4 is needed to expand our knowledge of its therapeutic potential. Herein, RSK4 expression in human ESCC tissues and a xenograft mouse model was positively correlated with high infiltration of M0 and M2 macrophages which is positively associated with unfavorable overall survival outcomes and treatment resistance in patients with ESCC. In vitro experiments revealed that RSK4 derived from ESCC cells promoted macrophage recruitment and M2 polarization by enhancingsoluble intercellular adhesion molecule-1 (sICAM-1) secretion via direct and indirect STAT3 phosphorylation. Furthermore, RSK4-induced macrophages enhanced tumor proliferation, migration, and invasion by secreting C-C motif chemokine ligand 22 (CCL22). We further showed that patients with elevated CD68 and CD206 expression had unfavorable overall survival. Collectively, these results demonstrate that RSK4 promotes the macrophage recruitment and M2 polarization by regulating the STAT3/ICAM-1 axis in ESCC, influencing tumor progression primarily in a CCL22-dependent manner. These data also offer valuable insights for developing novel agents for the treatment of ESCC.
Collapse
Affiliation(s)
- Shuai He
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China; Department of Pathology, Baotou Medical college, Baotou, Inner Mongolia Autonomous Region, China
| | - Ming Lu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liang Zhang
- Department of Pathology, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhe Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
17
|
Lizcano-Perret B, Vertommen D, Herinckx G, Calabrese V, Gatto L, Roux PP, Michiels T. Identification of RSK substrates using an analog-sensitive kinase approach. J Biol Chem 2024; 300:105739. [PMID: 38342435 PMCID: PMC10945272 DOI: 10.1016/j.jbc.2024.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024] Open
Abstract
The p90 ribosomal S6 kinases (RSK) family of serine/threonine kinases comprises four isoforms (RSK1-4) that lie downstream of the ERK1/2 mitogen-activated protein kinase pathway. RSKs are implicated in fine tuning of cellular processes such as translation, transcription, proliferation, and motility. Previous work showed that pathogens such as Cardioviruses could hijack any of the four RSK isoforms to inhibit PKR activation or to disrupt cellular nucleocytoplasmic trafficking. In contrast, some reports suggest nonredundant functions for distinct RSK isoforms, whereas Coffin-Lowry syndrome has only been associated with mutations in the gene encoding RSK2. In this work, we used the analog-sensitive kinase strategy to ask whether the cellular substrates of distinct RSK isoforms differ. We compared the substrates of two of the most distant RSK isoforms: RSK1 and RSK4. We identified a series of potential substrates for both RSKs in cells and validated RanBP3, PDCD4, IRS2, and ZC3H11A as substrates of both RSK1 and RSK4, and SORBS2 as an RSK1 substrate. In addition, using mutagenesis and inhibitors, we confirmed analog-sensitive kinase data showing that endogenous RSKs phosphorylate TRIM33 at S1119. Our data thus identify a series of potential RSK substrates and suggest that the substrates of RSK1 and RSK4 largely overlap and that the specificity of the various RSK isoforms likely depends on their cell- or tissue-specific expression pattern.
Collapse
Affiliation(s)
- Belén Lizcano-Perret
- Molecular Virology Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Didier Vertommen
- MASSPROT Platform, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Gaëtan Herinckx
- MASSPROT Platform, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Viviane Calabrese
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada; Faculty of Medicine, Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada
| | - Thomas Michiels
- Molecular Virology Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
18
|
Zhang X, Zheng G, Gao S, Zhou F, Pan T, Shi Q, Li J, Zhang X, Huang Z, Quan X. Synthesis and anti-tumor activity evaluation of 1H-pyrrolo[2,3-b]pyridine-2-carboxamide derivatives with phenyl sulfonamide groups as potent RSK2 inhibitors. Chem Biol Drug Des 2024; 103:e14376. [PMID: 37852922 DOI: 10.1111/cbdd.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Ribosome S6 Protein Kinase 2 (RSK2) is involved in many signal pathways such as cell growth, proliferation, survival and migration in tumors. Also, RSK2 can phosphorylate YB-1, which induces the expression of tumor initiating cells, leading to poor prognosis of triple negative breast cancer. Herein, phenyl sulfonamide was introduced to a series of 1H-pyrrolo[2,3-b]pyridine-2-carboxamide derivatives to obtain novel RSK2 inhibitors which were evaluated RSK2 inhibitory activity and proliferation inhibitory activity against MDA-MB-468. The newly introduced sulfonamide group was observed to form a hydrogen bond with target residue LEU-74 which played crucial role in activity. The results showed that most of compounds exhibited RSK2 enzyme inhibitory with IC50 up to 1.7 nM. Compound B1 exhibited the strongest MDA-MB-468 cell anti-proliferation activity (IC50 = 0.13 μM). The in vivo tumor growth inhibitory activities were evaluated with compounds B1-B3 in MDA-MB-468 xenograft model which gave up to 54.6% of TGI.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu, China
| | - Guochuang Zheng
- R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu, China
| | - Shang Gao
- R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu, China
| | - Feng Zhou
- R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu, China
| | - Tao Pan
- R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qiqi Shi
- R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jiani Li
- R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu, China
| | - Xiaomeng Zhang
- R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu, China
| | - Zhangjian Huang
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xu Quan
- R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Shishkova D, Lobov A, Repkin E, Markova V, Markova Y, Sinitskaya A, Sinitsky M, Kondratiev E, Torgunakova E, Kutikhin A. Calciprotein Particles Induce Cellular Compartment-Specific Proteome Alterations in Human Arterial Endothelial Cells. J Cardiovasc Dev Dis 2023; 11:5. [PMID: 38248875 PMCID: PMC10816121 DOI: 10.3390/jcdd11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Calciprotein particles (CPPs) are indispensable scavengers of excessive Ca2+ and PO43- ions in blood, being internalised and recycled by liver and spleen macrophages, monocytes, and endothelial cells (ECs). Here, we performed a pathway enrichment analysis of cellular compartment-specific proteomes in primary human coronary artery ECs (HCAEC) and human internal thoracic artery ECs (HITAEC) treated with primary (amorphous) or secondary (crystalline) CPPs (CPP-P and CPPs, respectively). Exposure to CPP-P and CPP-S induced notable upregulation of: (1) cytokine- and chemokine-mediated signaling, Ca2+-dependent events, and apoptosis in cytosolic and nuclear proteomes; (2) H+ and Ca2+ transmembrane transport, generation of reactive oxygen species, mitochondrial outer membrane permeabilisation, and intrinsic apoptosis in the mitochondrial proteome; (3) oxidative, calcium, and endoplasmic reticulum (ER) stress, unfolded protein binding, and apoptosis in the ER proteome. In contrast, transcription, post-transcriptional regulation, translation, cell cycle, and cell-cell adhesion pathways were underrepresented in cytosol and nuclear compartments, whilst biosynthesis of amino acids, mitochondrial translation, fatty acid oxidation, pyruvate dehydrogenase activity, and energy generation were downregulated in the mitochondrial proteome of CPP-treated ECs. Differentially expressed organelle-specific pathways were coherent in HCAEC and HITAEC and between ECs treated with CPP-P or CPP-S. Proteomic analysis of mitochondrial and nuclear lysates from CPP-treated ECs confirmed bioinformatic filtration findings.
Collapse
Affiliation(s)
- Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Arseniy Lobov
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the RAS, 4 Tikhoretskiy Prospekt, 194064 St. Petersburg, Russia;
| | - Egor Repkin
- Centre for Molecular and Cell Technologies, St. Petersburg State University, Universitetskaya Embankment, 7/9, 199034 St. Petersburg, Russia;
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Yulia Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Anna Sinitskaya
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Maxim Sinitsky
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Egor Kondratiev
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Evgenia Torgunakova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| |
Collapse
|
20
|
Pang F, Zhang L, Li M, Yi X, Wang Y, Yang P, Wen B, Jiang J, Teng Y, Yang X, Chen L, Xu J, Wang L. Ribosomal S6 protein kinase 4 promotes resistance to EZH2 inhibitors in glioblastoma. Cancer Gene Ther 2023; 30:1636-1648. [PMID: 37726387 DOI: 10.1038/s41417-023-00666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Glioblastoma (GBM) is a highly malignant type of brain tumor with limited treatment options. Recent research has focused on epigenetic regulatory factors, such as Enhancer of Zeste Homolog 2 (EZH2), which plays a role in gene expression through epigenetic modifications. EZH2 inhibitors have been developed as potential therapeutic agents for GBM, but resistance to these inhibitors remains a considerable challenge. This study aimed to investigate the role of ribosomal S6 protein kinase 4 (RSK4) in GBM and its association with resistance to EZH2 inhibitors. We first induced drug resistance in primary GBM cell lines by treatment with an EZH2 inhibitor and observed increases in the expression of stemness markers associated with glioblastoma stem cells (GSCs) in the drug-resistant cells. We also found high expression of RSK4 in GBM patient samples and identified the correlation of high RSK4 expression with poor prognosis and GSC marker expression. Further experiments showed that knocking down RSK4 in drug-resistant GBM cells restored their sensitivity to EZH2 inhibitors and decreased the expression of GSC markers, thus reducing their self-renewal capacity. From a mechanistic perspective, we discovered that RSK4 directly phosphorylates EZH2, activating the EZH2/STAT3 pathway and promoting resistance to EZH2 inhibitors in GBM. We also found that combining EZH2 inhibitors with an RSK4 inhibitor called BI-D1870 had better inhibitory effects on GBM occurrence and progression in both in vitro and in vivo experiments. In conclusion, this study demonstrates that RSK4 enhances cancer stemness and mediates resistance to EZH2 inhibitors in GBM. Combination treatment with EZH2 inhibitors and RSK4 inhibitors is a promising potential therapeutic strategy for GBM. Collectively, our results strongly demonstrate that RSK4 regulates the EZH2/STAT3 pathway to promote GSC maintenance and EZH2i resistance in a PRC2-independent manner, indicating that RSK4 is a promising therapeutic target for GBM.
Collapse
Affiliation(s)
- Fangning Pang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xicai Yi
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yu Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peng Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bin Wen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jinquan Jiang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yunpeng Teng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xinyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Ligang Chen
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
21
|
Nagumo Y, Villareal MO, Isoda H, Usui T. RSK4 confers paclitaxel resistance to ovarian cancer cells, which is resensitized by its inhibitor BI-D1870. Biochem Biophys Res Commun 2023; 679:23-30. [PMID: 37660640 DOI: 10.1016/j.bbrc.2023.08.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Many ovarian cancers initially respond well to chemotherapy, but often become drug-resistant after several years. Therefore, analysis of drug resistance mechanisms and overcoming resistance are urgently needed. Paclitaxel is one of the first-choice and widely-used drugs for ovarian cancer, but like most drugs, drug resistance is observed in subsequent use. RSK4 is known as a tumor-suppressor, however, it has increasingly been reported to lead to drug resistance. Here, we found that RSK4 expression was elevated in paclitaxel-resistant ovarian cancer cells using DNA microarray, quantitative real-time PCR, and western blotting analysis. We examined the contribution of RSK4 to paclitaxel resistance and found that paclitaxel sensitivity was restored by RSK inhibitor co-treatment. We analyzed the mechanism by which resistance is developed when RSK4 level is elevated, and accelerated phosphorylation of the downstream translation factor eIF4B was discovered. In the Kaplan-Meier plot, the overall survival time was longer with RSK4 high, supporting its role as a tumor suppressor, as in previous findings, but the tendency was reversed when focusing on paclitaxel treatment. In addition, RSK4 levels were higher in non-responders than in responders in the ROC plotter. Finally, external expression of RSK4 in ovarian cancer cells increased the cell viability under paclitaxel treatment. These findings suggest that RSK4 may contribute to paclitaxel resistance, and that co-treatment with RSK4 inhibitors is effective treatment of paclitaxel-resistant ovarian cancer in which RSK4 is elevated.
Collapse
Affiliation(s)
- Yoko Nagumo
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan; Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, 305-8572, Japan.
| | - Myra O Villareal
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroko Isoda
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan; Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Takeo Usui
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan; Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
22
|
Schaeffer S, Gupta B, Calatayud AL, Calderaro J, Caruso S, Hirsch TZ, Pelletier L, Zucman-Rossi J, Rebouissou S. RSK2 inactivation cooperates with AXIN1 inactivation or β-catenin activation to promote hepatocarcinogenesis. J Hepatol 2023; 79:704-716. [PMID: 37201672 DOI: 10.1016/j.jhep.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/06/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND & AIMS Recurrent somatic mutations of the RPS6KA3 gene encoding for the serine/threonine kinase RSK2 were identified in hepatocellular carcinomas (HCCs), suggesting its tumour-suppressive function. Our goal was to demonstrate the tumour suppressor role of RSK2 in the liver and investigate the functional consequences of its inactivation. METHODS We analysed a series of 1,151 human HCCs for RSK2 mutations and 20 other driver genetic alterations. We then modelled RSK2 inactivation in mice in various mutational contexts recapitulating or not those naturally found in human HCC, using transgenic mice and liver-specific carcinogens. These models were monitored for liver tumour appearance and subjected to phenotypic and transcriptomic analyses. Functional consequences of RSK2 rescue were also investigated in a human RSK2-deficient HCC cell line. RESULTS RSK2-inactivating mutations are specific to human HCC and frequently co-occur with AXIN1-inactivating or β-catenin-activating mutations. Modelling of these co-occurrences in mice showed a cooperative effect in promoting liver tumours with transcriptomic profiles recapitulating those of human HCCs. By contrast, there was no cooperation in liver tumour induction between RSK2 loss and BRAF-activating mutations chemically induced by diethylnitrosamine. In human liver cancer cells, we also showed that RSK2 inactivation confers some dependency to the activation of RAS/MAPK signalling that can be targeted by MEK inhibitors. CONCLUSIONS Our study demonstrates the tumour suppressor role of RSK2 and its specific synergistic effect in hepatocarcinogenesis when its loss of function is specifically combined with AXIN1 inactivation or β-catenin activation. Furthermore, we identified the RAS/MAPK pathway as a potential therapeutic target for RSK2-inactivated liver tumours. IMPACT AND IMPLICATIONS This study demonstrated the tumour suppressor role of RSK2 in the liver and showed that its inactivation specifically synergises with AXIN1 inactivation or β-catenin activation to promote the development of HCC with similar transcriptomic profiles as found in humans. Furthermore, this study highlights that activation of the RAS/MAPK pathway is one of the key signalling pathways mediating the oncogenic effect of RSK2 inactivation that can be targeted with already available anti-MEK therapies.
Collapse
Affiliation(s)
- Samantha Schaeffer
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Barkha Gupta
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Anna-Line Calatayud
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Julien Calderaro
- Service d'Anatomopathologie, Hôpital Henri Mondor, APHP, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Théo Z Hirsch
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Laura Pelletier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France; Hôpital Européen Georges Pompidou, APHP, Paris, France.
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France.
| |
Collapse
|
23
|
Veth TS, Francavilla C, Heck AJR, Altelaar M. Elucidating Fibroblast Growth Factor-Induced Kinome Dynamics Using Targeted Mass Spectrometry and Dynamic Modeling. Mol Cell Proteomics 2023; 22:100594. [PMID: 37328066 PMCID: PMC10368922 DOI: 10.1016/j.mcpro.2023.100594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Fibroblast growth factors (FGFs) are paracrine or endocrine signaling proteins that, activated by their ligands, elicit a wide range of health and disease-related processes, such as cell proliferation and the epithelial-to-mesenchymal transition. The detailed molecular pathway dynamics that coordinate these responses have remained to be determined. To elucidate these, we stimulated MCF-7 breast cancer cells with either FGF2, FGF3, FGF4, FGF10, or FGF19. Following activation of the receptor, we quantified the kinase activity dynamics of 44 kinases using a targeted mass spectrometry assay. Our system-wide kinase activity data, supplemented with (phospho)proteomics data, reveal ligand-dependent distinct pathway dynamics, elucidate the involvement of not earlier reported kinases such as MARK, and revise some of the pathway effects on biological outcomes. In addition, logic-based dynamic modeling of the kinome dynamics further verifies the biological goodness-of-fit of the predicted models and reveals BRAF-driven activation upon FGF2 treatment and ARAF-driven activation upon FGF4 treatment.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, and Manchester Breast Centre, Manchester Cancer Research Centre, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester, UK
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
24
|
Kosnopfel C, Wendlinger S, Niessner H, Siewert J, Sinnberg T, Hofmann A, Wohlfarth J, Schrama D, Berthold M, Siedel C, Sauer B, Jayanthan A, Lenz G, Dunn SE, Schilling B, Schittek B. Inhibition of p90 ribosomal S6 kinases disrupts melanoma cell growth and immune evasion. J Exp Clin Cancer Res 2023; 42:175. [PMID: 37464364 PMCID: PMC10354913 DOI: 10.1186/s13046-023-02755-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND The mitogen-activated protein kinase (MAPK) signaling pathway is frequently hyperactivated in malignant melanoma and its inhibition has proved to be an efficient treatment option for cases harboring BRAFV600 mutations (BRAFMut). However, there is still a significant need for effective targeted therapies for patients with other melanoma subgroups characterized by constitutive MAPK activation, such as tumors with NRAS or NF-1 alterations (NRASMut, NF-1LOF), as well as for patients with MAPK pathway inhibitor-resistant BRAFMut melanomas, which commonly exhibit a reactivation of this pathway. p90 ribosomal S6 kinases (RSKs) represent central effectors of MAPK signaling, regulating cell cycle progression and survival. METHODS RSK activity and the functional effects of its inhibition by specific small molecule inhibitors were investigated in established melanoma cell lines and patient-derived short-term cultures from different MAPK pathway-hyperactivated genomic subgroups (NRASMut, BRAFMut, NF-1LOF). Real-time qPCR, immunoblots and flow cytometric cell surface staining were used to explore the molecular changes following RSK inhibition. The effect on melanoma cell growth was evaluated by various two- and three-dimensional in vitro assays as well as with melanoma xenograft mouse models. Co-cultures with gp100- or Melan-A-specific cytotoxic T cells were used to assess immunogenicity of melanoma cells and associated T-cell responses. RESULTS In line with elevated activity of the MAPK/RSK signaling axis, growth and survival of not only BRAFMut but also NRASMut and NF-1LOF melanoma cells were significantly impaired by RSK inhibitors. Intriguingly, RSK inhibition was particularly effective in three-dimensional growth settings with long-term chronic drug exposure and suppressed tumor cell growth of in vivo melanoma models. Additionally, our study revealed that RSK inhibition simultaneously promoted differentiation and immunogenicity of the tumor cells leading to enhanced T-cell activation and melanoma cell killing. CONCLUSIONS Collectively, RSK inhibitors exhibited both multi-layered anti-tumor efficacy and broad applicability across different genomic melanoma subgroups. RSK inhibition may therefore represent a promising novel therapeutic strategy for malignant melanoma with hyperactivated MAPK signaling.
Collapse
Affiliation(s)
- Corinna Kosnopfel
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany.
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, 97080, Wuerzburg, Germany.
- Mildred Scheel Early Career Center Wuerzburg, University Hospital Wuerzburg, 97080, Wuerzburg, Germany.
| | - Simone Wendlinger
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, 97080, Wuerzburg, Germany
- Mildred Scheel Early Career Center Wuerzburg, University Hospital Wuerzburg, 97080, Wuerzburg, Germany
| | - Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, 72076, Tuebingen, Germany
| | - Johannes Siewert
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, 97080, Wuerzburg, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, 72076, Tuebingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Angelika Hofmann
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, 97080, Wuerzburg, Germany
| | - Jonas Wohlfarth
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, 97080, Wuerzburg, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, 97080, Wuerzburg, Germany
| | - Marion Berthold
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, 97080, Wuerzburg, Germany
| | - Claudia Siedel
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, 97080, Wuerzburg, Germany
| | - Birgit Sauer
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, 72076, Tuebingen, Germany
| | | | - Georg Lenz
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
| | | | - Bastian Schilling
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, 97080, Wuerzburg, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, 72076, Tuebingen, Germany
| |
Collapse
|
25
|
Lin L, Hu K. Macrophage Function Modulated by tPA Signaling in Mouse Experimental Kidney Disease Models. Int J Mol Sci 2023; 24:11067. [PMID: 37446244 DOI: 10.3390/ijms241311067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Macrophage infiltration and accumulation is a hallmark of chronic kidney disease. Tissue plasminogen activator (tPA) is a serine protease regulating the homeostasis of blood coagulation, fibrinolysis, and matrix degradation, and has been shown to act as a cytokine to trigger various receptor-mediated intracellular signal pathways, modulating macrophage function in response to kidney injury. In this review, we discuss the current understanding of tPA-modulated macrophage function and underlying signaling mechanisms during kidney fibrosis and inflammation.
Collapse
Affiliation(s)
- Ling Lin
- Division of Nephrology, Department of Medicine, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Kebin Hu
- Division of Nephrology, Department of Medicine, Penn State University College of Medicine, Hershey, PA 17033, USA
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
26
|
Ma TP, Izrael-Tomasevic A, Mroue R, Budayeva H, Malhotra S, Raisner R, Evangelista M, Rose CM, Kirkpatrick DS, Yu K. AzidoTMT Enables Direct Enrichment and Highly Multiplexed Quantitation of Proteome-Wide Functional Residues. J Proteome Res 2023. [PMID: 37285454 DOI: 10.1021/acs.jproteome.2c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advances in targeted covalent inhibitors have aroused significant interest for their potential in drug development for difficult therapeutic targets. Proteome-wide profiling of functional residues is an integral step of covalent drug discovery aimed at defining actionable sites and evaluating compound selectivity in cells. A classical workflow for this purpose is called IsoTOP-ABPP, which employs an activity-based probe and two isotopically labeled azide-TEV-biotin tags to mark, enrich, and quantify proteome from two samples. Here we report a novel isobaric 11plex-AzidoTMT reagent and a new workflow, named AT-MAPP, that significantly expands multiplexing power as compared to the original isoTOP-ABPP. We demonstrate its application in identifying cysteine on- and off-targets using a KRAS G12C covalent inhibitor ARS-1620. However, changes in some of these hits can be explained by modulation at the protein and post-translational levels. Thus, it would be crucial to interrogate site-level bona fide changes in concurrence to proteome-level changes for corroboration. In addition, we perform a multiplexed covalent fragment screening using four acrylamide-based compounds as a proof-of-concept. This study identifies a diverse set of liganded cysteine residues in a compound-dependent manner with an average hit rate of 0.07% in intact cell. Lastly, we screened 20 sulfonyl fluoride-based compounds to demonstrate that the AT-MAPP assay is flexible for noncysteine functional residues such as tyrosine and lysine. Overall, we envision that 11plex-AzidoTMT will be a useful addition to the current toolbox for activity-based protein profiling and covalent drug development.
Collapse
Affiliation(s)
- Taylur P Ma
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Rana Mroue
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Hanna Budayeva
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Ryan Raisner
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Marie Evangelista
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher M Rose
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Donald S Kirkpatrick
- Interline Therapeutics, Inc., South San Francisco, California 94080, United States
| | - Kebing Yu
- Fuhong Biopharma, Inc., Shanghai 201206, China
| |
Collapse
|
27
|
Bennani FE, Doudach L, Karrouchi K, Tarib A, Rudd CE, Ansar M, Faouzi MEA. Targeting EGFR, RSK1, RAF1, PARP2 and LIN28B for several cancer type therapies with newly synthesized pyrazole derivatives via a computational study. J Biomol Struct Dyn 2023; 41:4194-4218. [PMID: 35442150 DOI: 10.1080/07391102.2022.2064915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
Cancer remains the leading cause of death in the world despite the significant advancements made in anticancer drug discovery. This study is aimed to computationally evaluate the efficacy of 63 in-house synthesized pyrazole derivatives targeted to bind with prominent cancer targets namely EGFR, RSK1, RAF1, PARP2 and LIN28B known to be expressed, respectively, in lung, colon, skin, ovarian and pancreatic cancer cells. Initially, we perform the molecular docking investigations for all pyrazole compounds with a comparison to known standard drugs for each target. Docking studies have revealed that some pyrazole compounds possess better binding affinity scores than standard drug compounds. Thereafter, a long-range of 1 μs molecular dynamic (MD) simulation study for top ranked docked compounds with all respective proteins was carried out to assess the interaction stability in a dynamic environment. The results suggested that the top ranked complexes showed a stable interaction profile for a longer period of time. The outcome of this study suggests that pyrazole compounds, M33, M36, M76 and M77, are promising molecular candidates that can modulate the studied target proteins significantly in comparison to their known inhibitor based on their selective binding interactions profile. Furthermore, ADME-T profile has been explored to check for the drug-likeness and pharmacokinetics profiles and found that all proposed compounds exhibited acceptable values for being a potential drug-like candidate with non-toxic characteristics. Overall, extensive computational investigations indicate that the four proposed pyrazole inhibitors/modulators studied against each respective target protein will be helpful for future cancer therapeutic developments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatima Ezzahra Bennani
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Latifa Doudach
- Department of Biomedical Engineering Medical Physiology, Higher School of Technical Education of Rabat, Mohammed V University in Rabat, Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdelilah Tarib
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Christopher E Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Université de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - M'hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
28
|
Han N, Zhang Q, Tang X, Bai L, Yan L, Tang H. Hepatitis B Virus X Protein Modulates p90 Ribosomal S6 Kinase 2 by ERK to Promote Growth of Hepatoma Cells. Viruses 2023; 15:v15051182. [PMID: 37243268 DOI: 10.3390/v15051182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma (HCC), one of the most prevalent malignant tumors worldwide that poses a significant threat to human health. The multifunctional regulator known as Hepatitis B virus X-protein (HBx) interacts with host factors, modulating gene transcription and signaling pathways and contributing to hepatocellular carcinogenesis. The p90 ribosomal S6 kinase 2 (RSK2) is a member of the 90 kDa ribosomal S6 kinase family involved in various intracellular processes and cancer pathogenesis. At present, the role and mechanism of RSK2 in the development of HBx-induced HCC are not yet clear. In this study, we found that HBx upregulates the expression of RSK2 in HBV-HCC tissues, HepG2, and SMMC-7721 cells. We further observed that reducing the expression of RSK2 inhibited HCC cell proliferation. In HCC cell lines with stable HBx expression, RSK2 knockdown impaired the ability of HBx to promote cell proliferation. The extracellularly regulated protein kinases (ERK) 1/2 signaling pathway, rather than the p38 signaling pathway, mediated HBx-induced upregulation of RSK2 expression. Additionally, RSK2 and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were highly expressed and positively correlated in HBV-HCC tissues and associated with tumor size. This study showed that HBx upregulates the expression of RSK2 and CREB by activating the ERK1/2 signaling pathway, promoting the proliferation of HCC cells. Furthermore, we identified RSK2 and CREB as potential prognostic markers for HCC patients.
Collapse
Affiliation(s)
- Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingbo Zhang
- Jiangxi Qiushi Forensic Science Center, Nanchang 330096, China
| | - Xiaoqiong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Russo L, Capra E, Franceschi V, Cavazzini D, Sala R, Lazzari B, Cavirani S, Donofrio G. Characterization of BoHV-4 ORF45. Front Microbiol 2023; 14:1171770. [PMID: 37234529 PMCID: PMC10206056 DOI: 10.3389/fmicb.2023.1171770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Bovine herpesvirus 4 (BoHV-4) is a Gammaherpesvirus belonging to the Rhadinovirus genus. The bovine is BoHV-4's natural host, and the African buffalo is BoHV-4's natural reservoir. In any case, BoHV-4 infection is not associated with a specific disease. Genome structure and genes are well-conserved in Gammaherpesvirus, and the orf 45 gene and its product, ORF45, are one of those. BoHV-4 ORF45 has been suggested to be a tegument protein; however, its structure and function have not yet been experimentally characterized. The present study shows that BoHV-4 ORF45, despite its poor homology with other characterized Rhadinovirus ORF45s, is structurally related to Kaposi's sarcoma-associated herpesvirus (KSHV), is a phosphoprotein, and localizes in the host cell nuclei. Through the generation of an ORF45-null mutant BoHV-4 and its pararevertant, it was possible to demonstrate that ORF45 is essential for BoHV-4 lytic replication and is associated with the viral particles, as for the other characterized Rhadinovirus ORF45s. Finally, the impact of BoHV-4 ORF45 on cellular transcriptome was investigated, an aspect poorly explored or not at all for other Gammaherpesvirus. Many cellular transcriptional pathways were found to be altered, mainly those involving p90 ribosomal S6 kinase (RSK) and signal-regulated kinase (ERK) complex (RSK/ERK). It was concluded that BoHV-4 ORF45 has similar characteristics to those of KSHV ORF45, and its unique and incisive impact on the cell transcriptome paves the way for further investigations.
Collapse
Affiliation(s)
- Luca Russo
- Dipartimento di Scienze Medico Veterinarie, Università di Parma, Parma, Italy
| | - Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Lodi, Italy
| | | | - Davide Cavazzini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italy
| | - Roberto Sala
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Barbara Lazzari
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Lodi, Italy
| | - Sandro Cavirani
- Dipartimento di Scienze Medico Veterinarie, Università di Parma, Parma, Italy
| | - Gaetano Donofrio
- Dipartimento di Scienze Medico Veterinarie, Università di Parma, Parma, Italy
| |
Collapse
|
30
|
Chikhale V, Goswami N, Khan MA, Borah P, Varma AK. Evaluation of Pathogenicity and Structural Alterations for the Mutations Identified in the Conserved Region of the C-Terminal Kinase Domain of Human-Ribosomal S6 Kinase 1. ACS OMEGA 2023; 8:16273-16283. [PMID: 37179615 PMCID: PMC10173430 DOI: 10.1021/acsomega.3c00722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/23/2023] [Indexed: 05/15/2023]
Abstract
Human-ribosomal s6 kinase 1 (h-RSK1) is an effector kinase of the Ras/MAPK signaling pathway, which is involved in the regulation of the cell cycle, proliferation, and survival. RSKs comprise two functionally distinct kinase domains at the N-terminal (NTKD) and C-terminal (CTKD) separated by a linker region. The mutations in RSK1 may have the potential to provide an extra benefit to the cancer cell to proliferate, migrate, and survive. The present study focuses on evaluating the structural basis for the missense mutations identified at the C-terminal kinase domain of human-RSK1. A total of 139 mutations reported on RSK1 were retrieved from cBioPortal, where 62 were located at the CTKD region. Furthermore, 10 missense mutations Arg434Pro, Thr701Met, Ala704Thr, Arg725Trp, Arg726Gln, His533Asn, Pro613Leu, Ser720Cys, Arg725Gln, and Ser732Phe were predicted to be deleterious using in silico tools. To our observation, these mutations are located in the evolutionarily conserved region of RSK1 and shown to alter the inter- and intramolecular interactions and also the conformational stability of RSK1-CTKD. The molecular dynamics (MD) simulation study further revealed that the five mutations Arg434Pro, Thr701Met, Ala704Thr, Arg725Trp, and Arg726Gln showed maximum structural alterations in RSK1-CTKD. Thus, based on the in silico and MD simulation analysis, it can be concluded that the reported mutations may serve as potential candidates for further functional studies.
Collapse
Affiliation(s)
- Vaishnvee Chikhale
- Advanced
Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra 410210, India
- Training
School Complex, Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Nabajyoti Goswami
- Advanced
Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra 410210, India
| | - Mudassar Ali Khan
- Advanced
Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra 410210, India
- Training
School Complex, Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Probodh Borah
- Bioinformatics
Infrastructure Facility, Department of Animal Biotechnology, Assam Agricultural University, Khanapara, Guwahati, Assam 781022, India
| | - Ashok K. Varma
- Advanced
Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra 410210, India
- Training
School Complex, Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra 400094, India
| |
Collapse
|
31
|
Fruergaard MU, Nielsen CJF, Kjeldsen CR, Iversen L, Andersen JL, Nissen P. Activation and inhibition of the C-terminal kinase domain of p90 ribosomal S6 kinases. Life Sci Alliance 2023; 6:e202201425. [PMID: 36806093 PMCID: PMC9941302 DOI: 10.26508/lsa.202201425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
The p90 ribosomal S6 kinases (RSKs) contain two distinct catalytic kinase domains, the N-terminal and C-terminal kinase domains (NTKD and CTKD, respectively). The activation of CTKD is regulated by phosphorylation by extracellular signal-regulated kinase (ERK1/2) and an autoinhibitory αL helix. Through a mutational series in vitro of the RSK CTKDs, we found a complex mechanism lifting autoinhibition that led us to design constitutively active RSK CTKDs. These are based on a phosphomimetic mutation and a C-terminal truncation (e.g., RSK2 T577E D694*) where a high activity in absence of ERK phosphorylation is obtained. Using these constructs, we characterize IC50 values of ATP-competitive inhibitors and provide a setup for determining specificity constants (kinact/Ki) of covalent CTKD inhibitors.
Collapse
Affiliation(s)
- Marlene Uglebjerg Fruergaard
- Department of Molecular Biology and Genetics, DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Christine Juul Fælled Nielsen
- Department of Molecular Biology and Genetics, DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Cecilia Rosada Kjeldsen
- Department of Clinical Medicine- The Department of Dermatology and Venereology, Aarhus N, Denmark
| | - Lars Iversen
- Department of Clinical Medicine- The Department of Dermatology and Venereology, Aarhus N, Denmark
| | | | - Poul Nissen
- Department of Molecular Biology and Genetics, DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
32
|
Hoyt KR, Li A, Yoon H, Weisenseel Z, Watkins J, Fischer A, Obrietan K. Ribosomal S6 Kinase Regulates the Timing and Entrainment of the Mammalian Circadian Clock Located in the Suprachiasmatic Nucleus. Neuroscience 2023; 516:15-26. [PMID: 36796752 PMCID: PMC10099606 DOI: 10.1016/j.neuroscience.2023.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Previous work in the suprachiasmatic nucleus (SCN), the locus of the principal circadian clock, has shown that the activation state of the ERK/MAPK effector p90 ribosomal S6 kinase (RSK) is responsive to photic stimulation and is modulated across the circadian cycle. These data raise the prospect that RSK signaling contributes to both SCN clock timing and entrainment. Here, we found marked expression of the three main RSK isoforms (RSK1/2/3) within the SCN of C57/Bl6 mice. Further, using a combination of immunolabeling and proximity ligation assays, we show that photic stimulation led to the dissociation of RSK from ERK and the translocation of RSK from the cytoplasm to the nucleus. To test for RSK functionality following light treatment, animals received an intraventricular infusion of the selective RSK inhibitor, SL0101, 30 min prior to light (100 lux) exposure during the early circadian night (circadian time 15). Notably, the disruption of RSK signaling led to a significant reduction (∼45 min) in the phase delaying effects of light, relative to vehicle-infused mice. To test the potential contribution of RSK signaling to SCN pacemaker activity, slice cultures from a per1-Venus circadian reporter mouse line were chronically treated with SL0101. Suppression of RSK signaling led to a significant lengthening of the circadian period (∼40 min), relative to vehicle-treated slices. Together, these data reveal that RSK functions as a signaling intermediate that regulates light-evoked clock entrainment and the inherent time keeping properties of the SCN.
Collapse
Affiliation(s)
- Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA.
| | - Aiqing Li
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Hyojung Yoon
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Zachary Weisenseel
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Jacob Watkins
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Alex Fischer
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
33
|
Mellado W, Willis DE. Ribosomal S6 kinases determine intrinsic axonal regeneration capacity. PLoS Biol 2023; 21:e3002094. [PMID: 37083865 PMCID: PMC10121044 DOI: 10.1371/journal.pbio.3002094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Why do adult mammalian central nervous system axons not regenerate, when peripheral axons do? Two studies in PLOS Biology point to the role of 2 related ribosomal S6 kinase family members in the differences in regeneration capacity between central and peripheral axons.
Collapse
Affiliation(s)
- Wilfredo Mellado
- Burke Neurological Institute, White Plains, New York, United States of America
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, New York, United States of America
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
34
|
Decourt C, Schaeffer J, Blot B, Paccard A, Excoffier B, Pende M, Nawabi H, Belin S. The RSK2-RPS6 axis promotes axonal regeneration in the peripheral and central nervous systems. PLoS Biol 2023; 21:e3002044. [PMID: 37068088 PMCID: PMC10109519 DOI: 10.1371/journal.pbio.3002044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/21/2023] [Indexed: 04/18/2023] Open
Abstract
Unlike immature neurons and the ones from the peripheral nervous system (PNS), mature neurons from the central nervous system (CNS) cannot regenerate after injury. In the past 15 years, tremendous progress has been made to identify molecules and pathways necessary for neuroprotection and/or axon regeneration after CNS injury. In most regenerative models, phosphorylated ribosomal protein S6 (p-RPS6) is up-regulated in neurons, which is often associated with an activation of the mTOR (mammalian target of rapamycin) pathway. However, the exact contribution of posttranslational modifications of this ribosomal protein in CNS regeneration remains elusive. In this study, we demonstrate that RPS6 phosphorylation is essential for PNS and CNS regeneration in mice. We show that this phosphorylation is induced during the preconditioning effect in dorsal root ganglion (DRG) neurons and that it is controlled by the p90S6 kinase RSK2. Our results reveal that RSK2 controls the preconditioning effect and that the RSK2-RPS6 axis is key for this process, as well as for PNS regeneration. Finally, we demonstrate that RSK2 promotes CNS regeneration in the dorsal column, spinal cord synaptic plasticity, and target innervation leading to functional recovery. Our data establish the critical role of RPS6 phosphorylation controlled by RSK2 in CNS regeneration and give new insights into the mechanisms related to axon growth and circuit formation after traumatic lesion.
Collapse
Affiliation(s)
- Charlotte Decourt
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Julia Schaeffer
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Beatrice Blot
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Antoine Paccard
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Blandine Excoffier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Mario Pende
- Institut Necker Enfants Malades, INSERM U1151, Université de Paris, Paris, France
| | - Homaira Nawabi
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Stephane Belin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| |
Collapse
|
35
|
Koutsougianni F, Alexopoulou D, Uvez A, Lamprianidou A, Sereti E, Tsimplouli C, Ilkay Armutak E, Dimas K. P90 ribosomal S6 kinases: A bona fide target for novel targeted anticancer therapies? Biochem Pharmacol 2023; 210:115488. [PMID: 36889445 DOI: 10.1016/j.bcp.2023.115488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
The 90 kDa ribosomal S6 kinase (RSK) family of proteins is a group of highly conserved Ser/Thr kinases. They are downstream effectors of the Ras/ERK/MAPK signaling cascade. ERK1/2 activation directly results in the phosphorylation of RSKs, which further, through interaction with a variety of different downstream substrates, activate various signaling events. In this context, they have been shown to mediate diverse cellular processes like cell survival, growth, proliferation, EMT, invasion, and metastasis. Interestingly, increased expression of RSKs has also been demonstrated in various cancers, such as breast, prostate, and lung cancer. This review aims to present the most recent advances in the field of RSK signaling that have occurred, such as biological insights, function, and mechanisms associated with carcinogenesis. We additionally present and discuss the recent advances but also the limitations in the development of pharmacological inhibitors of RSKs, in the context of the use of these kinases as putative, more efficient targets for novel anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Fani Koutsougianni
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Dimitra Alexopoulou
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Ayca Uvez
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| | - Andromachi Lamprianidou
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Evangelia Sereti
- Dept of Translational Medicine, Medical Faculty, Lund University and Center for Molecular Pathology, Skäne University Hospital, Jan Waldenströms gata 59, SE 205 02 Malmö, Sweden
| | - Chrisiida Tsimplouli
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Elif Ilkay Armutak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece.
| |
Collapse
|
36
|
Prabhakar P, Pielot R, Landgraf P, Wissing J, Bayrhammer A, van Ham M, Gundelfinger ED, Jänsch L, Dieterich DC, Müller A. Monitoring regional astrocyte diversity by cell type-specific proteomic labeling in vivo. Glia 2023; 71:682-703. [PMID: 36401581 DOI: 10.1002/glia.24304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Astrocytes exhibit regional heterogeneity in morphology, function and molecular composition to support and modulate neuronal function and signaling in a region-specific manner. To characterize regional heterogeneity of astrocytic proteomes of different brain regions we established an inducible Aldh1l1-methionyl-tRNA-synthetaseL274G (MetRSL274G ) mouse line that allows astrocyte-specific metabolic labeling of newly synthesized proteins by azidonorleucine (ANL) in vivo and subsequent isolation of tagged proteins by click chemistry. We analyzed astrocytic proteins from four different brain regions by mass spectrometry. The induced expression of MetRSL274G is restricted to astrocytes and identified proteins show a high overlap with proteins compiled in "AstroProt," a newly established database for astrocytic proteins. Gene enrichment analysis reveals a high similarity among brain regions with subtle differences in enriched biological processes and in abundances of key astrocytic proteins for hippocampus, cortex and striatum. However, the cerebellar proteome stands out with proteins being highly associated with the calcium signaling pathway or with bipolar disorder. Subregional analysis of single astrocyte TAMRA intensities in hippocampal layers indicates distinct subregional heterogeneity of astrocytes and highlights the applicability of our toolbox to study differences of astrocytic proteomes in vivo.
Collapse
Affiliation(s)
- Priyadharshini Prabhakar
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Rainer Pielot
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Josef Wissing
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anne Bayrhammer
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eckart D Gundelfinger
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Leibniz Institute for Neurobiology, RG Neuroplasticity, Magdeburg, Germany
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Anke Müller
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
37
|
Sun Y, Tang L, Wu C, Wang J, Wang C. RSK inhibitors as potential anticancer agents: Discovery, optimization, and challenges. Eur J Med Chem 2023; 251:115229. [PMID: 36898330 DOI: 10.1016/j.ejmech.2023.115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Ribosomal S6 kinase (RSK) family is a group of serine/threonine kinases, including four isoforms (RSK1/2/3/4). As a downstream effector of the Ras-mitogen-activated protein kinase (Ras-MAPK) pathway, RSK participates in many physiological activities such as cell growth, proliferation, and migration, and is intimately involved in tumor occurrence and development. As a result, it is recognized as a potential target for anti-cancer and anti-resistance therapies. There have been several RSK inhibitors discovered or designed in recent decades, but only two have entered clinical trials. Low specificity, low selectivity, and poor pharmacokinetic properties in vivo limit their clinical translation. Published studies performed structure optimization by increasing interaction with RSK, avoiding hydrolysis of pharmacophores, eliminating chirality, adapting to binding site shape, and becoming prodrugs. Besides enhancing efficacy, the focus of further design will move towards selectivity since there are functional differences among RSK isoforms. This review summarized the types of cancers associated with RSK, along with the structural characteristics and optimization process of the reported RSK inhibitors. Furthermore, we addressed the importance of RSK inhibitors' selectivity and discussed future drug development directions. This review is expected to shed light on the emergence of RSK inhibitors with high potency, specificity, and selectivity.
Collapse
Affiliation(s)
- Ying Sun
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lichao Tang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, 60208, IL, United States
| | - Chengyong Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
38
|
Yang WS, Caliva MJ, Khadka VS, Tiirikainen M, Matter ML, Deng Y, Ramos JW. RSK1 and RSK2 serine/threonine kinases regulate different transcription programs in cancer. Front Cell Dev Biol 2023; 10:1015665. [PMID: 36684450 PMCID: PMC9845784 DOI: 10.3389/fcell.2022.1015665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
The 90 kDa ribosomal S6 kinases (RSKs) are serine threonine kinases comprising four isoforms. The isoforms can have overlapping functions in regulation of migration, invasion, proliferation, survival, and transcription in various cancer types. However, isoform specific differences in RSK1 versus RSK2 functions in gene regulation are not yet defined. Here, we delineate ribosomal S6 kinases isoform-specific transcriptional gene regulation by comparing transcription programs in RSK1 and RSK2 knockout cells using microarray analysis. Microarray analysis revealed significantly different mRNA expression patterns between RSK1 knockout and RSK2 knockout cell lines. Importantly some of these functions have not been previously recognized. Our analysis revealed RSK1 has specific roles in cell adhesion, cell cycle regulation and DNA replication and repair pathways, while RSK2 has specific roles in the immune response and interferon signaling pathways. We further validated that the identified gene sets significantly correlated with mRNA datasets from cancer patients. We examined the functional significance of the identified transcriptional programs using cell assays. In alignment with the microarray analysis, we found that RSK1 modulates the mRNA and protein expression of Fibronectin1, affecting cell adhesion and CDK2, affecting S-phase arrest in the cell cycle, and impairing DNA replication and repair. Under similar conditions, RSK2 showed increased ISG15 transcriptional expression, affecting the immune response pathway and cytokine expression. Collectively, our findings revealed the occurrence of RSK1 and RSK2 specific transcriptional regulation, defining separate functions of these closely related isoforms.
Collapse
Affiliation(s)
- Won Seok Yang
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, HI, United States
| | - Maisel J. Caliva
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, HI, United States
| | - Vedbar S. Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Maarit Tiirikainen
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, HI, United States
| | - Michelle L. Matter
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, HI, United States
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Joe W. Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, HI, United States
| |
Collapse
|
39
|
Wolf A, Tanguy E, Wang Q, Gasman S, Vitale N. Phospholipase D and cancer metastasis: A focus on exosomes. Adv Biol Regul 2023; 87:100924. [PMID: 36272918 DOI: 10.1016/j.jbior.2022.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 03/01/2023]
Abstract
In mammals, phospholipase D (PLD) enzymes involve 6 isoforms, of which only three have established lipase activity to produce the signaling lipid phosphatidic acid (PA). This phospholipase activity has been postulated to contribute to cancer progression for over three decades now, but the exact mechanisms involved have yet to be uncovered. Indeed, using various models, an altered PLD activity has been proposed altogether to increase cell survival rate, promote angiogenesis, boost rapamycin resistance, and favor metastasis. Although for some part, the molecular pathways by which this increase in PA is pro-oncogenic are partially known, the pleiotropic functions of PA make it quite difficult to distinguish which among these simple signaling pathways is responsible for each of these PLD facets. In this review, we will describe an additional potential contribution of PA generated by PLD1 and PLD2 in the biogenesis, secretion, and uptake of exosomes. Those extracellular vesicles are now viewed as membrane vehicles that carry informative molecules able to modify the fate of receiving cells at distance from the original tumor to favor homing of metastasis. The perspectives for a better understanding of these complex role of PLDs will be discussed.
Collapse
Affiliation(s)
- Alexander Wolf
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Emeline Tanguy
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Qili Wang
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
40
|
Shi C, Lin L, Hu K. Fibroblast p90RSK induces epithelial transdifferentiation through oxidative stress-mediated β-catenin pathway. Clin Transl Med 2023; 13:e1128. [PMID: 36617538 PMCID: PMC9826782 DOI: 10.1002/ctm2.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 01/10/2023] Open
Affiliation(s)
- Chaowen Shi
- Division of Nephrology, Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Ling Lin
- Division of Nephrology, Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kebin Hu
- Division of Nephrology, Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
41
|
AlTarabeen M, Al-Balas Q, Albohy A, Müller WEG, Proksch P. Marine-Based Candidates as Potential RSK1 Inhibitors: A Computational Study. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010202. [PMID: 36615396 PMCID: PMC9822162 DOI: 10.3390/molecules28010202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Manzamines are chemically related compounds extracted from the methanolic extract of Acanthostrongylophora ingens species. Seven compounds were identified by our research group and are being characterized. As their biological target is unknown, this work is based on previous screening work performed by Mayer et al., who revealed that manzamine A could be an inhibitor of RSK1 kinase. Within this work, the RSK1 N-terminal kinase domain is exploited as a target for our work and the seven compounds are docked using Autodock Vina software. The results show that one of the most active compounds, Manzamine A N-oxide (5), with an IC50 = 3.1 μM, displayed the highest docking score. In addition, the compounds with docking scores lower than the co-crystalized ligand AMP-PCP (-7.5 and -8.0 kcal/mol) for ircinial E (1) and nakadomarin A (7) were found to be inferior in activity in the biological assay. The docking results successfully managed to predict the activities of four compounds, and their in silico results were in concordance with their biological data. The β-carboline ring showed noticeable receptor binding, which could explain its reported biological activities, while the lipophilic side of the compound was found to fit well inside the hydrophobic active site.
Collapse
Affiliation(s)
- Mousa AlTarabeen
- Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba 11191, Jordan
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-211-81-14163; Fax: +49-211-81-11923
| | - Qosay Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science & Technology, Irbid 22110, Jordan
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Werner Ernst Georg Müller
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
42
|
p90RSK Regulates p53 Pathway by MDM2 Phosphorylation in Thyroid Tumors. Cancers (Basel) 2022; 15:cancers15010121. [PMID: 36612117 PMCID: PMC9817759 DOI: 10.3390/cancers15010121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The expression level of the tumor suppressor p53 is controlled by the E3 ubiquitin ligase MDM2 with a regulatory feedback loop, which allows p53 to upregulate its inhibitor MDM2. In this manuscript we demonstrated that p90RSK binds and phosphorylates MDM2 on serine 166 both in vitro and in vivo by kinase assay, immunoblot, and co-immunoprecipitation assay; this phosphorylation increases the stability of MDM2 which in turn binds p53, ubiquitinating it and promoting its degradation by proteasome. A pharmacological inhibitor of p90RSK, BI-D1870, decreases MDM2 phosphorylation, and restores p53 function, which in turn transcriptionally increases the expression of cell cycle inhibitor p21 and of pro-apoptotic protein Bax and downregulates the anti-apoptotic protein Bcl-2, causing a block of cell proliferation, measured by a BrdU assay and growth curve, and promoting apoptosis, measured by a TUNEL assay. Finally, an immunohistochemistry evaluation of primary thyroid tumors, in which p90RSK is very active, confirms MDM2 stabilization mediated by p90RSK phosphorylation.
Collapse
|
43
|
Wang R, Li Y, Zhao Y, Shi F, Zhou Q, Wu J, Lyu S, Song Q. Metformin Inducing the Change of Functional and Exhausted Phenotypic Tumor-Infiltrated Lymphocytes and the Correlation with JNK Signal Pathway in Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:391-403. [PMID: 36482884 PMCID: PMC9725923 DOI: 10.2147/bctt.s384702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/16/2022] [Indexed: 08/29/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Metformin has been shown to have the potential to inhibit the proliferation of malignant cells. This study aimed to investigate the regulatory effect of metformin on phenotypic tumor-infiltrated lymphocytes (TILs) and mechanisms in TNBC. METHODS Microarray analysis was performed on 4T1 cells post metformin treatment. BALB/c mice were inoculated with 4T1 cells with knockdown/overexpression of C-Jun N-terminal kinase (JNK), and administered with metformin. Phenotypic TILs in the tumor microenvironment (TME) were visualized by immunofluorescence staining. RESULTS Metformin inhibited 4T1 cell proliferation and increased expression of JNK by 21% in vitro. In vivo, Metformin increased cell counts of CD4+ and CD8+TILs by 100% and 85%, respectively, and the increase of TILs was associated with JNK pathway. Cell counts of CD4+/PD-1+ and CD8+/PD-1+TILs were reduced by 64% and 58%, respectively, post metformin treatment, but the reduction of exhausted TILs was not associated with JNK pathway. Metformin induced a 11% and 20% reduction of IL-6 and TNF-α level in the TNBC model. CONCLUSION Our study demonstrated that metformin increased the functional phenotype of TILs and associated with JNK pathway, and suppressed the exhausted phenotype of TILs independently to JNK pathway in TNBC microenvironment. Further studies are needed to explore the basic mechanism of action of the drug. Metformin has potentially enhanced efficacy when used in combination with immunotherapy against TNBC.
Collapse
Affiliation(s)
- Ruibin Wang
- Department of Emergency, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yuchen Li
- Cell and Molecular Biology, Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Yanjie Zhao
- Department of Medical Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Feng Shi
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Quan Zhou
- Department of Pathology, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiangping Wu
- Department of Cancer Research, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shuzhen Lyu
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Qingkun Song
- Department of Clinical Epidemiology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of Clinical Epidemiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
44
|
Differential Expression of RSK4 Transcript Isoforms in Cancer and Its Clinical Relevance. Int J Mol Sci 2022; 23:ijms232314569. [PMID: 36498899 PMCID: PMC9737342 DOI: 10.3390/ijms232314569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022] Open
Abstract
While we previously revealed RSK4 as a therapeutic target in lung and bladder cancers, the wider role of this kinase in other cancers remains controversial. Indeed, other reports instead proposed RSK4 as a tumour suppressor in colorectal and gastric cancers and are contradictory in breast malignancies. One explanation for these discrepancies may be the expression of different RSK4 isoforms across cancers. Four RNAs are produced from the RSK4 gene, with two being protein-coding. Here, we analysed the expression of the latter across 30 normal and 33 cancer tissue types from the combined GTEx/TCGA dataset and correlated it with clinical features. This revealed the expression of RSK4 isoforms 1 and 2 to be independent prognostic factors for patient survival, pathological stage, cancer metastasis, recurrence, and immune infiltration in brain, stomach, cervical, and kidney cancers. However, we found that upregulation of either isoform can equally be associated with good or bad prognosis depending on the cancer type, and changes in the expression ratio of isoforms fail to predict clinical outcome. Hence, differential isoform expression alone cannot explain the contradictory roles of RSK4 in cancers, and further research is needed to highlight the underlying mechanisms for the context-dependent function of this kinase.
Collapse
|
45
|
The ORF45 Protein of Kaposi's Sarcoma-Associated Herpesvirus and Its Critical Role in the Viral Life Cycle. Viruses 2022; 14:v14092010. [PMID: 36146816 PMCID: PMC9506158 DOI: 10.3390/v14092010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) protein ORF45 is a virion-associated tegument protein that is unique to the gammaherpesvirus family. Generation of KSHV ORF45-knockout mutants and their subsequent functional analyses have permitted a better understanding of ORF45 and its context-specific and vital role in the KSHV lytic cycle. ORF45 is a multifaceted protein that promotes infection at both the early and late phases of the viral life cycle. As an immediate-early protein, ORF45 is expressed within hours of KSHV lytic reactivation and plays an essential role in promoting the lytic cycle, using multiple mechanisms, including inhibition of the host interferon response. As a tegument protein, ORF45 is necessary for the proper targeting of the viral capsid for envelopment and release, affecting the late stage of the viral life cycle. A growing list of ORF45 interaction partners have been identified, with one of the most well-characterized being the association of ORF45 with the host extracellular-regulated kinase (ERK) p90 ribosomal s6 kinase (RSK) signaling cascade. In this review, we describe ORF45 expression kinetics, as well as the host and viral interaction partners of ORF45 and the significance of these interactions in KSHV biology. Finally, we discuss the role of ORF45 homologs in gammaherpesvirus infections.
Collapse
|
46
|
Zhang S, Liu J, Lu ZY, Xue YT, Mu XR, Liu Y, Cao J, Li ZY, Li F, Xu KL, Wu QY. Combination of RSK inhibitor LJH-685 and FLT3 inhibitor FF-10101 promoted apoptosis and proliferation inhibition of AML cell lines. Cell Oncol (Dordr) 2022; 45:1005-1018. [PMID: 36036884 DOI: 10.1007/s13402-022-00703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE FLT3 mutations occurred in approximately one third of patients with acute myeloid leukemia (AML). FLT3-ITD mutations caused the constitutive activation of the RAS/MAPK signaling pathway. Ribosomal S6 Kinases (RSKs) were serine/threonine kinases that function downstream of the Ras/Raf/MEK/ERK signaling pathway. However, roles and mechanisms of RSKs inhibitor LJH-685, and combinational effects of LJH-685 and FLT3 inhibitor FF-10101 on AML cells were till unclear. METHODS Cell viability assay, CFSE assay, RT-qPCR, Colony formation assay, PI stain, Annexin-V/7-AAD double stain, Western blot, and Xenogeneic transplantation methods were used to used to investigate roles and mechanisms of LJH-685 in the leukemogenesis of AML. RESULTS LJH-685 inhibited the proliferation and clone formation of AML cells, caused cell cycle arrest and induced the apoptosis of AML cells via inhibiting the RSK-YB-1 signaling pathway. MV4-11 and MOLM-13 cells carrying FLT3-ITD mutations were more sensitive to LJH-685 than that of other AML cell lines. Further studies suggested that LJH-685 combined with Daunorubicin or FF- 10101 synergistically inhibited the cell viability, promoted the apoptosis and caused cycle arrest of AML cells carrying FLT3-ITD mutations. Moreover, in vivo experiments also indicated that LJH-685 combined with FF-10101 or Daunorubicin prolonged the survival time of NSG mice and reduced the leukemogenesis of AML. CONCLUSION Thus, these observations demonstrated combination of RSK inhibitor LJH-685 and FLT3 inhibitor FF-10101 showed synergism anti-leukemia effects in AML cell lines with FLT3-ITD mutations via inhibiting MAPK-RSKs-YB-1 pathway and provided new targets for therapeutic intervention especially for AML with FLT3-ITD mutations and Daunorubicin-resistant AML.
Collapse
Affiliation(s)
- Sen Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zi-Yi Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Tong Xue
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing-Ru Mu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
47
|
Xing N, Meng X, Wang S. Isobavachalcone: A comprehensive review of its plant sources, pharmacokinetics, toxicity, pharmacological activities and related molecular mechanisms. Phytother Res 2022; 36:3120-3142. [PMID: 35684981 DOI: 10.1002/ptr.7520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
Isobavachalcone (IBC), also known as isobapsoralcone, is a natural flavonoid widely derived from many medicinal plants, including Fabaceae, Moraceae, and so forth. IBC has been paid more and more attention by researchers in recent years due to its pharmacological activity in many diseases. This review aims to describe in detail the plant sources, pharmacokinetics, toxicity, pharmacological activities, and molecular mechanisms of IBC on various diseases. We found that IBC can be obtained not only by extraction but also by chemical synthesis. Pharmacokinetic studies have shown that IBC has low bioavailability, but can penetrate the blood-brain barrier and is widely distributed in the brain. Its pharmacological activities mainly include anticancer, antibacterial, anti-inflammatory, antiviral, neuroprotective, bone protection, and other activities. In particular, IBC shows strong anti-tumor and anti-inflammatory therapeutic potential due to its anti-cancer and anti-inflammatory activities. However, due to its hepatotoxicity, there may be more drug interactions. Therefore, more and more in-depth studies are needed for its clinical application. Mechanically, IBC can induce the production of reactive oxygen species (ROS), inhibit AKT, ERK, and Wnt pathways, and promote apoptosis of cancer cells through mitochondrial or endoplasmic reticulum pathways. IBC can inhibit the NF-κB pathway and the production of multiple inflammatory mediators by activating NRF2/HO-1 pathway, thus producing anti-inflammatory effects. Moreover, we discussed the limitations of current research on IBC and put forward some new perspectives and challenges, which provide a strong basis for clinical application and new drug development of IBC in the future.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
48
|
Shen M, Wang D, Sennari Y, Zeng Z, Baba R, Morimoto H, Kitamura N, Nakanishi T, Tsukada J, Ueno M, Todoroki Y, Iwata S, Yonezawa T, Tanaka Y, Osada Y, Yoshida Y. Pentacyclic triterpenoid ursolic acid induces apoptosis with mitochondrial dysfunction in adult T-cell leukemia MT-4 cells to promote surrounding cell growth. Med Oncol 2022; 39:118. [PMID: 35674939 DOI: 10.1007/s12032-022-01707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
We investigated the antitumor effects of oleanolic acid (OA) and ursolic acid (UA) on adult T-cell leukemia cells. OA and UA dose-dependently inhibited the proliferation of adult T-cell leukemia cells. UA-treated cells showed caspase 3/7 and caspase 9 activation. PARP cleavage was detected in UA-treated MT-4 cells. Activation of mTOR and PDK-1 was inhibited by UA. Autophagosomes were detected in MT-4 cells after UA treatment using electron microscopy. Consistently, mitophagy was observed in OA- and UA-treated MT-4 cells by confocal microscopy. The mitochondrial membrane potential in MT-4 cells considerably decreased, and mitochondrial respiration and aerobic glycolysis were significantly reduced following UA treatment. Furthermore, MT-1 and MT-4 cells were sorted into two regions based on their mitochondrial membrane potential. UA-treated MT-4 cells from both regions showed high activation of caspase 3/7, which were inhibited by Z-vad. Interestingly, MT-4 cells cocultured with sorted UA-treated cells showed enhanced proliferation. Finally, UA induced cell death and ex vivo PARP cleavage in peripheral blood mononuclear cells from patients with adult T-cell leukemia. Therefore, UA-treated MT-4 cells show caspase activation following mitochondrial dysfunction and may produce survival signals to the surrounding cells.
Collapse
Affiliation(s)
- Mengyue Shen
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Duo Wang
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yusuke Sennari
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Zirui Zeng
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Ryoko Baba
- Department of Anatomy (II), School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hiroyuki Morimoto
- Department of Anatomy (II), School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Noriaki Kitamura
- Department of Hematology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tsukasa Nakanishi
- Department of Hematology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Junichi Tsukada
- Department of Hematology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Masanobu Ueno
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuyuki Todoroki
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Shigeru Iwata
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tomo Yonezawa
- Division of Functional Genomics and Therapeutic Innovation, Research Center for Advanced Genomics, Graduate School of Biomedical Sciences,, Nagasaki University, 1-12-14 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoshio Osada
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
49
|
Isa R, Horinaka M, Tsukamoto T, Mizuhara K, Fujibayashi Y, Taminishi-Katsuragawa Y, Okamoto H, Yasuda S, Kawaji-Kanayama Y, Matsumura-Kimoto Y, Mizutani S, Shimura Y, Taniwaki M, Sakai T, Kuroda J. The Rationale for the Dual-Targeting Therapy for RSK2 and AKT in Multiple Myeloma. Int J Mol Sci 2022; 23:ijms23062919. [PMID: 35328342 PMCID: PMC8949999 DOI: 10.3390/ijms23062919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is characterized by remarkable cytogenetic/molecular heterogeneity among patients and intraclonal diversity even in a single patient. We previously demonstrated that PDPK1, the master kinase of series of AGC kinases, is universally active in MM, and plays pivotal roles in cell proliferation and cell survival of myeloma cells regardless of the profiles of cytogenetic and genetic abnormalities. This study investigated the therapeutic efficacy and mechanism of action of dual blockade of two major PDPK1 substrates, RSK2 and AKT, in MM. The combinatory treatment of BI-D1870, an inhibitor for N-terminal kinase domain (NTKD) of RSK2, and ipatasertib, an inhibitor for AKT, showed the additive to synergistic anti-tumor effect on human MM-derived cell lines (HMCLs) with active RSK2-NTKD and AKT, by enhancing apoptotic induction with BIM and BID activation. Moreover, the dual blockade of RSK2 and AKT exerted robust molecular effects on critical gene sets associated with myeloma pathophysiologies, such as those with MYC, mTOR, STK33, ribosomal biogenesis, or cell-extrinsic stimuli of soluble factors, in HMCLs. These results provide the biological and molecular rationales for the dual-targeting strategy for RSK2 and AKT, which may overcome the therapeutic difficulty due to cytogenetic/molecular heterogeneity in MM.
Collapse
Affiliation(s)
- Reiko Isa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (R.I.); (T.T.); (K.M.); (Y.F.); (Y.T.-K.); (H.O.); (Y.K.-K.); (Y.M.-K.); (S.M.); (Y.S.); (M.T.)
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (M.H.); (S.Y.); (T.S.)
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (R.I.); (T.T.); (K.M.); (Y.F.); (Y.T.-K.); (H.O.); (Y.K.-K.); (Y.M.-K.); (S.M.); (Y.S.); (M.T.)
| | - Kentaro Mizuhara
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (R.I.); (T.T.); (K.M.); (Y.F.); (Y.T.-K.); (H.O.); (Y.K.-K.); (Y.M.-K.); (S.M.); (Y.S.); (M.T.)
| | - Yuto Fujibayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (R.I.); (T.T.); (K.M.); (Y.F.); (Y.T.-K.); (H.O.); (Y.K.-K.); (Y.M.-K.); (S.M.); (Y.S.); (M.T.)
| | - Yoko Taminishi-Katsuragawa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (R.I.); (T.T.); (K.M.); (Y.F.); (Y.T.-K.); (H.O.); (Y.K.-K.); (Y.M.-K.); (S.M.); (Y.S.); (M.T.)
| | - Haruya Okamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (R.I.); (T.T.); (K.M.); (Y.F.); (Y.T.-K.); (H.O.); (Y.K.-K.); (Y.M.-K.); (S.M.); (Y.S.); (M.T.)
| | - Shusuke Yasuda
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (M.H.); (S.Y.); (T.S.)
| | - Yuka Kawaji-Kanayama
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (R.I.); (T.T.); (K.M.); (Y.F.); (Y.T.-K.); (H.O.); (Y.K.-K.); (Y.M.-K.); (S.M.); (Y.S.); (M.T.)
| | - Yayoi Matsumura-Kimoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (R.I.); (T.T.); (K.M.); (Y.F.); (Y.T.-K.); (H.O.); (Y.K.-K.); (Y.M.-K.); (S.M.); (Y.S.); (M.T.)
| | - Shinsuke Mizutani
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (R.I.); (T.T.); (K.M.); (Y.F.); (Y.T.-K.); (H.O.); (Y.K.-K.); (Y.M.-K.); (S.M.); (Y.S.); (M.T.)
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (R.I.); (T.T.); (K.M.); (Y.F.); (Y.T.-K.); (H.O.); (Y.K.-K.); (Y.M.-K.); (S.M.); (Y.S.); (M.T.)
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (R.I.); (T.T.); (K.M.); (Y.F.); (Y.T.-K.); (H.O.); (Y.K.-K.); (Y.M.-K.); (S.M.); (Y.S.); (M.T.)
- Center for Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (M.H.); (S.Y.); (T.S.)
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (R.I.); (T.T.); (K.M.); (Y.F.); (Y.T.-K.); (H.O.); (Y.K.-K.); (Y.M.-K.); (S.M.); (Y.S.); (M.T.)
- Correspondence:
| |
Collapse
|
50
|
MYSM1 induces apoptosis and sensitizes TNBC cells to cisplatin via RSK3-phospho-BAD pathway. Cell Death Dis 2022; 8:84. [PMID: 35217648 PMCID: PMC8881619 DOI: 10.1038/s41420-022-00881-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
Breast cancer is one of the leading causes of mortality among women. Triple-negative breast cancer (TNBC) is responsible for a large percentage of all breast cancer deaths in women. This study demonstrated the function of Myb-like, SWIRM, and MPN domains 1 (MYSM1), an H2A deubiquitinase (DUB), in TNBC. MYSM1 expression was drastically decreased in breast cancer, especially in TNBC, suggesting a potential anticancer effect. Overexpressing and suppressing MYSM1 expression in TNBC cell lines led to significant biological changes in cell proliferation. Furthermore, MYSM1 overexpression increased cisplatin-induced apoptosis, which might be attributed to RSK3 inactivation and the subsequently decreased phosphorylation of Bcl-2 antagonist of cell death (BAD) (Ser 112). The findings suggest that MYSM1 is a potential target for regulating cell apoptosis and suppressing resistance to cisplatin in TNBC.
Collapse
|